Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
L
lecture materials
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
generic software skills
lecture materials
Commits
f61ef24e
Commit
f61ef24e
authored
1 year ago
by
Tobias Koelling
Browse files
Options
Downloads
Patches
Plain Diff
MVP fib example
parent
0b39df89
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!24
complexity lecture
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
lectures/complexity/slides.qmd
+156
-15
156 additions, 15 deletions
lectures/complexity/slides.qmd
with
156 additions
and
15 deletions
lectures/complexity/slides.qmd
+
156
−
15
View file @
f61ef24e
...
@@ -99,7 +99,7 @@ fib1(30)
...
@@ -99,7 +99,7 @@ fib1(30)
## Fibonacci series example (2/3) {.leftalign}
## Fibonacci series example (2/3) {.leftalign}
Al
ter
n
ative implementation
I
terative implementation
with memory
```{python}
```{python}
#| echo: true
#| echo: true
...
@@ -120,21 +120,11 @@ def fib2(n):
...
@@ -120,21 +120,11 @@ def fib2(n):
fib2(30)
fib2(30)
```
```
$\Rightarrow$
Substantially faster
👉
Substantially faster
:::
:::
## Performance Overview
## fib3
$$
\begin{pmatrix}f_{n-1}\\f_{n}\end{pmatrix} = \begin{pmatrix}0 & 1\\1 & 1\end{pmatrix} \begin{pmatrix}f_{n-2}\\f_{n-1}\end{pmatrix}
$$
## Fibonacci series example (3/3)
**Performance Overview**
```{python}
```{python}
import time
import time
...
@@ -145,10 +135,16 @@ def get_time(f):
...
@@ -145,10 +135,16 @@ def get_time(f):
end = time.perf_counter()
end = time.perf_counter()
return end - start
return end - start
def get_times(f, args, n=1):
if n == 1:
return [get_time(lambda: f(a)) for a in args]
else:
return [min(*t) for t in zip(*[[get_time(lambda: f(a)) for a in args] for _ in range(n)])]
x1 = list(range(30))
x1 = list(range(30))
x2 = list(range(60))
x2 = list(range(60))
y1 =
[
get_time
(lambda: fib1(i)) for i in
x1
]
y1 = get_time
s(fib1,
x1
)
y2 =
[
get_time
(lambda: fib2(i)) for i in
x2
]
y2 = get_time
s(fib2,
x2
)
plt.plot(x1, y1, label="fib1", ls='--')
plt.plot(x1, y1, label="fib1", ls='--')
plt.plot(x2, y2, label="fib2")
plt.plot(x2, y2, label="fib2")
plt.yscale('log')
plt.yscale('log')
...
@@ -158,6 +154,137 @@ plt.legend()
...
@@ -158,6 +154,137 @@ plt.legend()
None
None
```
```
## Fibonacci series example (3/3)
$$
\begin{pmatrix}f_{n-1}\\f_{n}\end{pmatrix} = \begin{pmatrix}0 & 1\\1 & 1\end{pmatrix} \begin{pmatrix}f_{n-2}\\f_{n-1}\end{pmatrix}
$$
## vector
```{python}
#| echo: true
class V2:
def __init__(self, x, y):
self.x, self.y = x, y
def __repr__(self):
return f"({self.x} {self.y})"
V2(1, 2)
```
## matrix
$$
\begin{pmatrix}a & b \\ c & d\end{pmatrix} \begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}a x + b y\\c x + d y\end{pmatrix}
$$
```{python}
#| echo: true
class M2:
def __init__(self, a, b, c, d):
self.a, self.b, self.c, self.d = a, b, c, d
def __mul__(s, o): # self, other
if isinstance(o, V2):
return V2(s.a * o.x + s.b * o.y, s.c * o.x + s.d * o.y)
elif isinstance(o, M2):
return M2(s.a * o.a + s.b * o.c, s.a * o.b + s.b * o.d,
s.c * o.a + s.d * o.c, s.c * o.b + s.d * o.d)
```
## test it:
```{python}
#| echo: true
m = M2(0, 1, 1, 1)
m * V2(0, 1)
```
```{python}
#| echo: true
m * m * V2(0, 1)
```
## power function
```{python}
#| echo: true
def power(a: "A", n: int, op: "A,A -> A, assoc" = lambda a, b: a * b):
assert n > 0
if n == 1: return a
if n % 2 == 0: return power(op(a, a), n // 2, op)
return op(power(op(a, a), n // 2, op), a)
power(2, 4)
```
:::{.fragment}
... applied on matrix class:
```{python}
#| echo: true
power(m, 2) * V2(0, 1)
```
:::
## fib3
```{python}
#| echo: true
def fib3(n):
if n < 2: return n
return (power(m, n) * V2(0, 1)).x
[fib3(i) for i in range(10)]
```
```{python}
#| echo: true
%%time
fib3(30)
```
## Performance Overview
```{python}
x2 = list(range(0, 65, 1))
x3 = list(range(0, 65, 1))
y2 = get_times(fib2, x2, 3)
y3 = get_times(fib3, x3, 3)
plt.plot(x1, y1, label="fib1", color="C0", ls="--")
plt.plot(x2, y2, label="fib2", color="C1")
plt.plot(x3, y3, label="fib3", color="C2")
plt.ylim(0, max(y2 + y3) * 1.05)
plt.xlabel("Number n", fontsize=14)
plt.ylabel("Time to compute / s", fontsize=14)
plt.legend()
None
```
👉 Unfortunately slower 😬
## Performance Overview
```{python}
x2 = list(range(0, 2**16+1, 2**9))
x3 = list(range(0, 2**16+1, 2**9))
y2 = get_times(fib2, x2, 3)
y3 = get_times(fib3, x3, 3)
plt.plot(x1, y1, label="fib1", color="C0", ls="--")
plt.plot(x2, y2, label="fib2", color="C1")
plt.plot(x3, y3, label="fib3", color="C2")
plt.ylim(0, max(y2 + y3) * 1.05)
plt.xlabel("Number n", fontsize=14)
plt.ylabel("Time to compute / s", fontsize=14)
plt.legend()
None
```
👉 Faster for **large** numbers
# Takeaway
# Takeaway
## different algorithms for the same problem
## different algorithms for the same problem
...
@@ -165,6 +292,20 @@ None
...
@@ -165,6 +292,20 @@ None
Often there are different algorithms solving the same problem.
Often there are different algorithms solving the same problem.
These can come with **very** different complexity ratings.
These can come with **very** different complexity ratings.
## scalar factors can matter
Big-$\mathcal{O}$ informs about large problems, especially for small problems, scalar factors may dominate.
## math can be better
*never use algorithms if math can do*
:::{.smaller .fragment}
... and pefer better algorithms if math can't do
:::
## human time matters
## typical tasks
## typical tasks
For certain tasks (e.g. sorting, neighbors, averaging, or really anything...), think about what complexity class is expected.
For certain tasks (e.g. sorting, neighbors, averaging, or really anything...), think about what complexity class is expected.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment