Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
pyicon
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Aaron Wienkers
pyicon
Commits
22a0e5d4
Commit
22a0e5d4
authored
4 months ago
by
Aaron Wienkers
Browse files
Options
Downloads
Patches
Plain Diff
adds new nn and linear interpolator functions from arbitrary grid onto gridICON object grid
parent
0251869c
Branches
master
No related tags found
No related merge requests found
Pipeline
#85727
failed
4 months ago
Stage: test
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
pyicon/pyicon_calc_aw.py
+87
-0
87 additions, 0 deletions
pyicon/pyicon_calc_aw.py
with
87 additions
and
0 deletions
pyicon/pyicon_calc_aw.py
+
87
−
0
View file @
22a0e5d4
...
...
@@ -2,6 +2,8 @@ import warnings
import
numpy
as
np
import
xarray
as
xr
from
itertools
import
product
from
scipy.spatial
import
cKDTree
from
scipy.spatial
import
Delaunay
import
os
...
...
@@ -40,7 +42,92 @@ class daskicon:
return
## Interpolator Functions:
# These Interpolators take arbitrary data and put it onto the present ICON grid of the daskicon object
def
make_nn_interpolator
(
self
,
da
):
points_icon_source
=
np
.
vstack
((
da
.
lon
,
da
.
lat
)).
T
points_icon_target
=
np
.
vstack
((
self
.
grid2d
.
clon
*
180.
/
np
.
pi
,
self
.
grid2d
.
clat
*
180.
/
np
.
pi
)).
T
tree
=
cKDTree
(
points_icon_source
)
_
,
nn_indices_ao
=
tree
.
query
(
points_icon_target
)
return
nn_indices_ao
def
interp_nn
(
self
,
da_source
,
interpolator
):
indices
=
interpolator
da_on_target
=
da_source
.
isel
(
ncells
=
indices
)
return
da_on_target
def
make_linear_interpolator
(
self
,
da
):
points_icon_source
=
np
.
vstack
((
da
.
lon
,
da
.
lat
)).
T
points_icon_target
=
np
.
vstack
((
self
.
grid2d
.
clon
*
180.
/
np
.
pi
,
self
.
grid2d
.
clat
*
180.
/
np
.
pi
)).
T
tri
=
Delaunay
(
points_icon_source
)
# Find simplices containing target points and get valid indices
simplices
=
tri
.
find_simplex
(
points_icon_target
)
indices
=
np
.
where
(
simplices
>=
0
)[
0
]
valid_simplices
=
simplices
[
indices
]
# Get the vertices and compute barycentric coordinates
vertices
=
tri
.
simplices
[
valid_simplices
]
delta
=
points_icon_source
[
vertices
]
-
points_icon_target
[
indices
,
None
,
:]
# Compute barycentric coordinates
weights
=
np
.
einsum
(
'
ijk,ik->ij
'
,
delta
[:,
:
-
1
]
-
delta
[:,
-
1
:],
-
delta
[:,
-
1
])
/
np
.
einsum
(
'
ijk,ijk->ij
'
,
delta
[:,
:
-
1
]
-
delta
[:,
-
1
:],
delta
[:,
:
-
1
]
-
delta
[:,
-
1
:])
weights
=
np
.
c_
[
weights
,
1
-
weights
.
sum
(
axis
=
1
)]
return
indices
,
vertices
,
weights
def
interp_linear
(
self
,
da_source
,
interpolator
):
indices
,
vertices
,
weights
=
interpolator
n_points
=
max
(
indices
.
max
()
+
1
,
len
(
da_source
.
ncells
))
def
interp_timestep
(
values
):
n_times
=
values
.
shape
[
0
]
result
=
np
.
full
((
n_times
,
n_points
),
np
.
nan
)
# Get values at vertices: shape becomes (n_times, n_target_points, n_vertices)
vertex_values
=
values
[:,
vertices
]
# Multiply by weights and sum: (n_times, n_target_points)
result
[:,
indices
]
=
np
.
sum
(
vertex_values
*
weights
,
axis
=
2
)
return
result
result
=
xr
.
apply_ufunc
(
interp_timestep
,
da_source
.
transpose
(
'
time
'
,
'
ncells
'
),
input_core_dims
=
[[
'
ncells
'
]],
output_core_dims
=
[[
'
ncells_target
'
]],
vectorize
=
False
,
dask
=
'
parallelized
'
,
output_dtypes
=
[
np
.
float32
],
dask_gufunc_kwargs
=
{
'
output_sizes
'
:
{
'
ncells_target
'
:
n_points
}}
)
result
=
result
.
rename
({
'
ncells_target
'
:
'
ncells
'
})
result
=
result
.
assign_coords
({
'
lat
'
:
(
'
ncells
'
,
self
.
grid2d
.
clat
.
data
*
180.
/
np
.
pi
),
'
lon
'
:
(
'
ncells
'
,
self
.
grid2d
.
clon
.
data
*
180.
/
np
.
pi
)
})
return
result
## High-level Vector Operations
def
compute_curl_cells
(
self
,
ds_uv
):
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment