cdf_util.c 8.58 KB
Newer Older
1
2
3
4
5
#include <string.h>
#include <ctype.h>
#include "dmemory.h"
#include "cdi.h"
#include "cdf_util.h"
6
#include "error.h"
7
8


9
void str_tolower(char *str)
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
{
  if ( str )
    for ( size_t i = 0; str[i]; ++i )
      str[i] = (char)tolower((int)str[i]);
}


int get_timeunit(size_t len, const char *ptu)
{
  int timeunit = -1;

  if ( len > 2 )
    {
      if      ( memcmp(ptu, "sec",    3) == 0 )          timeunit = TUNIT_SECOND;
      else if ( memcmp(ptu, "minute", 6) == 0 )          timeunit = TUNIT_MINUTE;
      else if ( memcmp(ptu, "hour",   4) == 0 )          timeunit = TUNIT_HOUR;
      else if ( memcmp(ptu, "day",    3) == 0 )          timeunit = TUNIT_DAY;
      else if ( memcmp(ptu, "month",  5) == 0 )          timeunit = TUNIT_MONTH;
      else if ( memcmp(ptu, "calendar_month", 14) == 0 ) timeunit = TUNIT_MONTH;
      else if ( memcmp(ptu, "year",   4) == 0 )          timeunit = TUNIT_YEAR;
    }
  else if ( len == 1 )
    {
      if ( ptu[0] == 's' ) timeunit = TUNIT_SECOND;
    }

  return timeunit;
}


bool is_time_units(const char *timeunits)
{
  bool status = strncmp(timeunits, "sec",    3) == 0
             || strncmp(timeunits, "minute", 6) == 0
             || strncmp(timeunits, "hour",   4) == 0
             || strncmp(timeunits, "day",    3) == 0
             || strncmp(timeunits, "month",  5) == 0;

  return status;
}


bool is_timeaxis_units(const char *timeunits)
{
  bool status = false;

  size_t len = strlen(timeunits);
  char *tu = (char *) Malloc((len+1)*sizeof(char));
  memcpy(tu, timeunits, (len+1) * sizeof(char));
  char *ptu = tu;

  for ( size_t i = 0; i < len; i++ ) ptu[i] = (char)tolower((int)ptu[i]);

  int timeunit = get_timeunit(len, ptu);
  if ( timeunit != -1 )
    {
      while ( ! isspace(*ptu) && *ptu != 0 ) ptu++;
      if ( *ptu )
        {
          while ( isspace(*ptu) ) ptu++;

          int timetype = memcmp(ptu, "as", 2) == 0 ? TAXIS_ABSOLUTE :
            memcmp(ptu, "since", 5) == 0 ? TAXIS_RELATIVE : -1;

          status = timetype != -1;
        }
    }

  Free(tu);

  return status;
}


bool is_height_units(const char *units)
{
  bool status = false;
  int u0 = units[0];

  if ( (u0=='m' && (!units[1] || strncmp(units, "meter", 5) == 0)) ||
       (!units[2] && units[1]=='m' && (u0=='c' || u0=='d' || u0=='k')) )
    {
      status = true;
    }

  return status;
}


bool is_pressure_units(const char *units)
{
  bool status = false;

  if ( strncmp(units, "millibar", 8) == 0 ||
       strncmp(units, "mb", 2)       == 0 ||
       strncmp(units, "hectopas", 8) == 0 ||
       strncmp(units, "hPa", 3)      == 0 ||
       strncmp(units, "Pa", 2)       == 0 )
    {
      status = true;
    }

  return status;
}


bool is_DBL_axis(/*const char *units,*/ const char *longname)
{
  bool status = false;

  if ( strcmp(longname, "depth below land")         == 0 ||
       strcmp(longname, "depth_below_land")         == 0 ||
       strcmp(longname, "levels below the surface") == 0 )
    {
      /*
      if ( strcmp(ncvars[ncvarid].units, "cm") == 0 ||
           strcmp(ncvars[ncvarid].units, "dm") == 0 ||
           strcmp(ncvars[ncvarid].units, "m")  == 0 )
      */
        status = true;
    }

  return status;
}


bool is_depth_axis(const char *stdname, const char *longname)
{
  bool status = false;

  if ( strcmp(stdname, "depth") == 0 )
    status = true;
  else
    if ( strcmp(longname, "depth_below_sea") == 0 ||
         strcmp(longname, "depth below sea") == 0 )
      {
        status = true;
      }

  return status;
}


bool is_height_axis(const char *stdname, const char *longname)
{
  bool status = false;

  if ( strcmp(stdname, "height") == 0 )
    status = true;
  else
    if ( strcmp(longname, "height") == 0 ||
         strcmp(longname, "height above the surface") == 0 )
      {
        status = true;
      }

  return status;
}


bool is_lon_axis(const char *units, const char *stdname)
{
  bool status = false;
  char lc_units[16];

  memcpy(lc_units, units, 15);
  lc_units[15] = 0;
177
  str_tolower(lc_units);
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

  if ( ((memcmp(lc_units, "degree", 6) == 0 || memcmp(lc_units, "radian", 6) == 0) &&
        (memcmp(stdname, "grid_longitude", 14) == 0 || memcmp(stdname, "longitude", 9) == 0)) )
    {
      status = true;
    }

  if ( status == false &&
       memcmp(stdname, "grid_latitude", 13) && memcmp(stdname, "latitude", 8) &&
       memcmp(lc_units, "degree", 6) == 0 )
    {
      int ioff = 6;
      if ( lc_units[ioff] == 's' ) ioff++;
      if ( lc_units[ioff] == '_' ) ioff++;
      if ( lc_units[ioff] == 'e' ) status = true;
    }

  return status;
}


bool is_lat_axis(const char *units, const char *stdname)
{
  bool status = false;
  char lc_units[16];

  memcpy(lc_units, units, 15);
  lc_units[15] = 0;
206
  str_tolower(lc_units);
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

  if ( ((memcmp(lc_units, "degree", 6) == 0 || memcmp(lc_units, "radian", 6) == 0) &&
        (memcmp(stdname, "grid_latitude", 13) == 0 || memcmp(stdname, "latitude", 8) == 0)) )
    {
      status = true;
    }

  if ( status == false &&
       memcmp(stdname, "grid_longitude", 14) && memcmp(stdname, "longitude", 9) &&
       memcmp(lc_units, "degree", 6) == 0 )
    {
      int ioff = 6;
      if ( lc_units[ioff] == 's' ) ioff++;
      if ( lc_units[ioff] == '_' ) ioff++;
      if ( lc_units[ioff] == 'n' || lc_units[ioff] == 's' ) status = true;
    }

  return status;
}
226
227


228
229
bool is_x_axis(const char *units, const char *stdname)
{
230
  return (strcmp(stdname, "projection_x_coordinate") == 0);
231
232
233
234
235
}


bool is_y_axis(const char *units, const char *stdname)
{
236
  return (strcmp(stdname, "projection_y_coordinate") == 0);
237
238
239
}


240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
void set_gridtype(const char *attstring, int *gridtype)
{
  if      ( strcmp(attstring, "gaussian reduced") == 0 )
    *gridtype = GRID_GAUSSIAN_REDUCED;
  else if ( strcmp(attstring, "gaussian") == 0 )
    *gridtype = GRID_GAUSSIAN;
  else if ( strncmp(attstring, "spectral", 8) == 0 )
    *gridtype = GRID_SPECTRAL;
  else if ( strncmp(attstring, "fourier", 7) == 0 )
    *gridtype = GRID_FOURIER;
  else if ( strcmp(attstring, "trajectory") == 0 )
    *gridtype = GRID_TRAJECTORY;
  else if ( strcmp(attstring, "generic") == 0 )
    *gridtype = GRID_GENERIC;
  else if ( strcmp(attstring, "cell") == 0 )
    *gridtype = GRID_UNSTRUCTURED;
  else if ( strcmp(attstring, "unstructured") == 0 )
    *gridtype = GRID_UNSTRUCTURED;
  else if ( strcmp(attstring, "curvilinear") == 0 )
    *gridtype = GRID_CURVILINEAR;
260
261
262
263
264
265
  else if ( strcmp(attstring, "sinusoidal") == 0 )
    ;
  else if ( strcmp(attstring, "laea") == 0 )
    ;
  else if ( strcmp(attstring, "lcc2") == 0 )
    ;
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
  else if ( strcmp(attstring, "linear") == 0 ) // ignore grid type linear
    ;
  else
    {
      static bool warn = true;
      if ( warn )
        {
          warn = false;
          Warning("NetCDF attribute grid_type='%s' unsupported!", attstring);
        }
    }
}


void set_zaxistype(const char *attstring, int *zaxistype)
{
  if      ( strcmp(attstring, "toa") == 0 ) *zaxistype = ZAXIS_TOA;
  else if ( strcmp(attstring, "cloudbase") == 0 ) *zaxistype = ZAXIS_CLOUD_BASE;
  else if ( strcmp(attstring, "cloudtop") == 0 ) *zaxistype = ZAXIS_CLOUD_TOP;
  else if ( strcmp(attstring, "isotherm0") == 0 ) *zaxistype = ZAXIS_ISOTHERM_ZERO;
  else if ( strcmp(attstring, "seabottom") == 0 ) *zaxistype = ZAXIS_SEA_BOTTOM;
  else if ( strcmp(attstring, "lakebottom") == 0 ) *zaxistype = ZAXIS_LAKE_BOTTOM;
  else if ( strcmp(attstring, "sedimentbottom") == 0 ) *zaxistype = ZAXIS_SEDIMENT_BOTTOM;
  else if ( strcmp(attstring, "sedimentbottomta") == 0 ) *zaxistype = ZAXIS_SEDIMENT_BOTTOM_TA;
  else if ( strcmp(attstring, "sedimentbottomtw") == 0 ) *zaxistype = ZAXIS_SEDIMENT_BOTTOM_TW;
  else if ( strcmp(attstring, "mixlayer") == 0 ) *zaxistype = ZAXIS_MIX_LAYER;
  else if ( strcmp(attstring, "atmosphere") == 0 ) *zaxistype = ZAXIS_ATMOSPHERE;
  else
    {
      static bool warn = true;
      if ( warn )
        {
          warn = false;
          Warning("NetCDF attribute level_type='%s' unsupported!", attstring);
        }
    }  
}
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324


void set_calendar(const char *attstring, int *calendar)
{
  if ( memcmp(attstring, "standard", 8)  == 0 ||
       memcmp(attstring, "gregorian", 9) == 0 )
    *calendar = CALENDAR_STANDARD;
  else if ( memcmp(attstring, "none", 4) == 0 )
    *calendar = CALENDAR_NONE;
  else if ( memcmp(attstring, "proleptic", 9) == 0 )
    *calendar = CALENDAR_PROLEPTIC;
  else if ( memcmp(attstring, "360", 3) == 0 )
    *calendar = CALENDAR_360DAYS;
  else if ( memcmp(attstring, "365", 3) == 0 ||
            memcmp(attstring, "noleap", 6)  == 0 )
    *calendar = CALENDAR_365DAYS;
  else if ( memcmp(attstring, "366", 3)  == 0 ||
            memcmp(attstring, "all_leap", 8) == 0 )
    *calendar = CALENDAR_366DAYS;
  else
    Warning("calendar >%s< unsupported!", attstring);
}