@BeginModule @NewPage @Name = Seasstat @Title = Seasonal statistical values @Section = Statistical values @Class = Statistic @Arguments = infile outfile @Operators = seasmin seasmax seasrange seassum seasmean seasavg seasstd seasstd1 seasvar seasvar1 @BeginDescription This module computes statistical values over timesteps of the same season. Depending on the chosen operator the minimum, maximum, range, sum, average, variance or standard deviation of timesteps of the same season is written to @file{outfile}. The time of @file{outfile} is determined by the time in the middle of all contributing timesteps of @file{infile}. Be careful about the first and the last output timestep, they may be incorrect values if the seasons have incomplete timesteps. @EndDescription @EndModule @BeginOperator_seasmin @Title = Seasonal minimum @BeginDescription @IfMan For every adjacent sequence t_1, ...,t_n of timesteps of the same season it is: o(t,x) = min{i(t',x), t1 < t' <= tn} @EndifMan @IfDoc For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same season it is: \\ @BeginMath o(t,x) = \mbox{\textbf{min}}\{i(t',x), t_1 < t' \le t_n\} @EndMath @EndifDoc @EndDescription @EndOperator @BeginOperator_seasmax @Title = Seasonal maximum @BeginDescription @IfMan For every adjacent sequence t_1, ...,t_n of timesteps of the same season it is: o(t,x) = max{i(t',x), t1 < t' <= tn} @EndifMan @IfDoc For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same season it is: \\ @BeginMath o(t,x) = \mbox{\textbf{max}}\{i(t',x), t_1 < t' \le t_n\} @EndMath @EndifDoc @EndDescription @EndOperator @BeginOperator_seasrange @Title = Seasonal range @BeginDescription @IfMan For every adjacent sequence t_1, ...,t_n of timesteps of the same season it is: o(t,x) = range{i(t',x), t1 < t' <= tn} @EndifMan @IfDoc For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same season it is: \\ @BeginMath o(t,x) = \mbox{\textbf{range}}\{i(t',x), t_1 < t' \le t_n\} @EndMath @EndifDoc @EndDescription @EndOperator @BeginOperator_seassum @Title = Seasonal sum @BeginDescription @IfMan For every adjacent sequence t_1, ...,t_n of timesteps of the same season it is: o(t,x) = sum{i(t',x), t1 < t' <= tn} @EndifMan @IfDoc For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same season it is: \\ @BeginMath o(t,x) = \mbox{\textbf{sum}}\{i(t',x), t_1 < t' \le t_n\} @EndMath @EndifDoc @EndDescription @EndOperator @BeginOperator_seasmean @Title = Seasonal mean @BeginDescription @IfMan For every adjacent sequence t_1, ...,t_n of timesteps of the same season it is: o(t,x) = mean{i(t',x), t1 < t' <= tn} @EndifMan @IfDoc For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same season it is: \\ @BeginMath o(t,x) = \mbox{\textbf{mean}}\{i(t',x), t_1 < t' \le t_n\} @EndMath @EndifDoc @EndDescription @EndOperator @BeginOperator_seasavg @Title = Seasonal average @BeginDescription @IfMan For every adjacent sequence t_1, ...,t_n of timesteps of the same season it is: o(t,x) = avg{i(t',x), t1 < t' <= tn} @EndifMan @IfDoc For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same season it is: \\ @BeginMath o(t,x) = \mbox{\textbf{avg}}\{i(t',x), t_1 < t' \le t_n\} @EndMath @EndifDoc @EndDescription @EndOperator @BeginOperator_seasvar @Title = Seasonal variance @BeginDescription @IfMan Normalize by n. For every adjacent sequence t_1, ...,t_n of timesteps of the same season it is: o(t,x) = var{i(t',x), t1 < t' <= tn} @EndifMan @IfDoc Normalize by n. For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same season it is: \\ @BeginMath o(t,x) = \mbox{\textbf{var}}\{i(t',x), t_1 < t' \le t_n\} @EndMath @EndifDoc @EndDescription @EndOperator @BeginOperator_seasvar1 @Title = Seasonal variance (n-1) @BeginDescription @IfMan Normalize by (n-1). For every adjacent sequence t_1, ...,t_n of timesteps of the same season it is: o(t,x) = var1{i(t',x), t1 < t' <= tn} @EndifMan @IfDoc Normalize by (n-1). For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same season it is: \\ @BeginMath o(t,x) = \mbox{\textbf{var1}}\{i(t',x), t_1 < t' \le t_n\} @EndMath @EndifDoc @EndDescription @EndOperator @BeginOperator_seasstd @Title = Seasonal standard deviation @BeginDescription @IfMan Normalize by n. For every adjacent sequence t_1, ...,t_n of timesteps of the same season it is: o(t,x) = std{i(t',x), t1 < t' <= tn} @EndifMan @IfDoc Normalize by n. For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same season it is: \\ @BeginMath o(t,x) = \mbox{\textbf{std}}\{i(t',x), t_1 < t' \le t_n\} @EndMath @EndifDoc @EndDescription @EndOperator @BeginOperator_seasstd1 @Title = Seasonal standard deviation (n-1) @BeginDescription @IfMan Normalize by (n-1). For every adjacent sequence t_1, ...,t_n of timesteps of the same season it is: o(t,x) = std1{i(t',x), t1 < t' <= tn} @EndifMan @IfDoc Normalize by (n-1). For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same season it is: \\ @BeginMath o(t,x) = \mbox{\textbf{std1}}\{i(t',x), t_1 < t' \le t_n\} @EndMath @EndifDoc @EndDescription @EndOperator @BeginExample To compute the seasonal mean of a time series use: @BeginVerbatim cdo seasmean infile outfile @EndVerbatim @EndExample