 ### Docu update

parent 45414664
 ... ... @@ -116,12 +116,12 @@ o(t,x) = \mbox{\bf avg}\{i(t',x), t_1 < t' \leq t_n\} @BeginDescription @IfMan Divisor is n. For every adjacent sequence t_1, ...,t_n of timesteps of the same day it is Normalize by n. For every adjacent sequence t_1, ...,t_n of timesteps of the same day it is o(t,x) = var{i(t',x), t_1
 ... ... @@ -101,7 +101,7 @@ o(t,x) = \mbox{\bf avg}\{i_1(t,x), i_2(t,x), \cdots, i_n(t,x)\} @Title = Ensemble standard deviation @BeginDescription Divisor is n. Normalize by n. @IfMan o(t,x) = std{i1(t,x), i2(t,x), ..., in(t,x)} ... ... @@ -119,7 +119,7 @@ o(t,x) = \mbox{\bf std}\{i_1(t,x), i_2(t,x), \cdots, i_n(t,x)\} @Title = Ensemble standard deviation (n-1) @BeginDescription Divisor is (n-1). Normalize by (n-1). @IfMan o(t,x) = std1{i1(t,x), i2(t,x), ..., in(t,x)} ... ... @@ -137,7 +137,7 @@ o(t,x) = \mbox{\bf std1}\{i_1(t,x), i_2(t,x), \cdots, i_n(t,x)\} @Title = Ensemble variance @BeginDescription Divisor is n. Normalize by n. @IfMan o(t,x) = var{i1(t,x), i2(t,x), ..., in(t,x)} ... ... @@ -155,7 +155,7 @@ o(t,x) = \mbox{\bf var}\{i_1(t,x), i_2(t,x), \cdots, i_n(t,x)\} @Title = Ensemble variance (n-1) @BeginDescription Divisor is (n-1). Normalize by (n-1). @IfMan o(t,x) = var1{i1(t,x), i2(t,x), ..., in(t,x)} ... ...
 ... ... @@ -117,12 +117,12 @@ weighted by area weights obtained by the input field. @BeginDescription @IfMan Divisor is n. For every gridpoint x_1, ..., x_n of the same field it is: Normalize by n. For every gridpoint x_1, ..., x_n of the same field it is: o(t,1) = var{i(t,x'), x_1
 ... ... @@ -71,7 +71,7 @@ Average of the selected grid boxes. @Parameter = nx ny @BeginDescription Variance of the selected grid boxes. Divisor is n. Variance of the selected grid boxes. Normalize by n. @EndDescription @EndOperator ... ... @@ -81,7 +81,7 @@ Variance of the selected grid boxes. Divisor is n. @Parameter = nx ny @BeginDescription Variance of the selected grid boxes. Divisor is (n-1). Variance of the selected grid boxes. Normalize by (n-1). @EndDescription @EndOperator ... ... @@ -91,7 +91,7 @@ Variance of the selected grid boxes. Divisor is (n-1). @Parameter = nx ny @BeginDescription Standard deviation of the selected grid boxes. Divisor is n. Standard deviation of the selected grid boxes. Normalize by n. @EndDescription @EndOperator ... ... @@ -101,7 +101,7 @@ Standard deviation of the selected grid boxes. Divisor is n. @Parameter = nx ny @BeginDescription Standard deviation of the selected grid boxes. Divisor is (n-1). Standard deviation of the selected grid boxes. Normalize by (n-1). @EndDescription @EndOperator ... ...
 ... ... @@ -116,12 +116,12 @@ o(t,x) = \mbox{\bf avg}\{i(t',x), t_1 < t' \leq t_n\} @BeginDescription @IfMan Divisor is n. For every adjacent sequence t_1, ...,t_n of timesteps of the same hour it is: Normalize by n. For every adjacent sequence t_1, ...,t_n of timesteps of the same hour it is: o(t,x) = var{i(t',x), t_1
 ... ... @@ -65,7 +65,7 @@ For every longitude the area weighted average over all latitudes is computed. @Title = Meridional variance @BeginDescription For every longitude the variance over all latitudes is computed. Divisor is n. For every longitude the variance over all latitudes is computed. Normalize by n. @EndDescription @EndOperator ... ... @@ -74,7 +74,7 @@ For every longitude the variance over all latitudes is computed. Divisor is n. @Title = Meridional variance (n-1) @BeginDescription For every longitude the variance over all latitudes is computed. Divisor is (n-1). For every longitude the variance over all latitudes is computed. Normalize by (n-1). @EndDescription @EndOperator ... ... @@ -83,7 +83,7 @@ For every longitude the variance over all latitudes is computed. Divisor is (n-1 @Title = Meridional standard deviation @BeginDescription For every longitude the standard deviation over all latitudes is computed. Divisor is n. For every longitude the standard deviation over all latitudes is computed. Normalize by n. @EndDescription @EndOperator ... ... @@ -92,7 +92,7 @@ For every longitude the standard deviation over all latitudes is computed. Divis @Title = Meridional standard deviation (n-1) @BeginDescription For every longitude the standard deviation over all latitudes is computed. Divisor is (n-1). For every longitude the standard deviation over all latitudes is computed. Normalize by (n-1). @EndDescription @EndOperator ... ...