Commit b7b666b9 authored by Uwe Schulzweida's avatar Uwe Schulzweida
Browse files

Docu update

parent 45414664
......@@ -116,12 +116,12 @@ o(t,x) = \mbox{\bf avg}\{i(t',x), t_1 < t' \leq t_n\}
@BeginDescription
@IfMan
Divisor is n. For every adjacent sequence t_1, ...,t_n of timesteps of the same day it is
Normalize by n. For every adjacent sequence t_1, ...,t_n of timesteps of the same day it is
o(t,x) = var{i(t',x), t_1<t'<=t_n}
@EndifMan
@IfDoc
Divisor is n. For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same day it is: \\
Normalize by n. For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same day it is: \\
@BeginMath
o(t,x) = \mbox{\bf var}\{i(t',x), t_1 < t' \leq t_n\}
@EndMath
......@@ -135,12 +135,12 @@ o(t,x) = \mbox{\bf var}\{i(t',x), t_1 < t' \leq t_n\}
@BeginDescription
@IfMan
Divisor is (n-1). For every adjacent sequence t_1, ...,t_n of timesteps of the same day it is
Normalize by (n-1). For every adjacent sequence t_1, ...,t_n of timesteps of the same day it is
o(t,x) = var1{i(t',x), t_1<t'<=t_n}
@EndifMan
@IfDoc
Divisor is (n-1). For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same day it is: \\
Normalize by (n-1). For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same day it is: \\
@BeginMath
o(t,x) = \mbox{\bf var1}\{i(t',x), t_1 < t' \leq t_n\}
@EndMath
......@@ -154,12 +154,12 @@ o(t,x) = \mbox{\bf var1}\{i(t',x), t_1 < t' \leq t_n\}
@BeginDescription
@IfMan
Divisor is n. For every adjacent sequence t_1, ...,t_n of timesteps of the same day it is
Normalize by n. For every adjacent sequence t_1, ...,t_n of timesteps of the same day it is
o(t,x) = std{i(t',x), t_1<t'<=t_n}
@EndifMan
@IfDoc
Divisor is n. For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same day it is: \\
Normalize by n. For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same day it is: \\
@BeginMath
o(t,x) = \mbox{\bf std}\{i(t',x), t_1 < t' \leq t_n\}
@EndMath
......@@ -173,12 +173,12 @@ o(t,x) = \mbox{\bf std}\{i(t',x), t_1 < t' \leq t_n\}
@BeginDescription
@IfMan
Divisor is (n-1). For every adjacent sequence t_1, ...,t_n of timesteps of the same day it is
Normalize by (n-1). For every adjacent sequence t_1, ...,t_n of timesteps of the same day it is
o(t,x) = std1{i(t',x), t_1<t'<=t_n}
@EndifMan
@IfDoc
Divisor is (n-1). For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same day it is: \\
Normalize by (n-1). For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same day it is: \\
@BeginMath
o(t,x) = \mbox{\bf std1}\{i(t',x), t_1 < t' \leq t_n\}
@EndMath
......
......@@ -101,7 +101,7 @@ o(t,x) = \mbox{\bf avg}\{i_1(t,x), i_2(t,x), \cdots, i_n(t,x)\}
@Title = Ensemble standard deviation
@BeginDescription
Divisor is n.
Normalize by n.
@IfMan
o(t,x) = std{i1(t,x), i2(t,x), ..., in(t,x)}
......@@ -119,7 +119,7 @@ o(t,x) = \mbox{\bf std}\{i_1(t,x), i_2(t,x), \cdots, i_n(t,x)\}
@Title = Ensemble standard deviation (n-1)
@BeginDescription
Divisor is (n-1).
Normalize by (n-1).
@IfMan
o(t,x) = std1{i1(t,x), i2(t,x), ..., in(t,x)}
......@@ -137,7 +137,7 @@ o(t,x) = \mbox{\bf std1}\{i_1(t,x), i_2(t,x), \cdots, i_n(t,x)\}
@Title = Ensemble variance
@BeginDescription
Divisor is n.
Normalize by n.
@IfMan
o(t,x) = var{i1(t,x), i2(t,x), ..., in(t,x)}
......@@ -155,7 +155,7 @@ o(t,x) = \mbox{\bf var}\{i_1(t,x), i_2(t,x), \cdots, i_n(t,x)\}
@Title = Ensemble variance (n-1)
@BeginDescription
Divisor is (n-1).
Normalize by (n-1).
@IfMan
o(t,x) = var1{i1(t,x), i2(t,x), ..., in(t,x)}
......
......@@ -117,12 +117,12 @@ weighted by area weights obtained by the input field.
@BeginDescription
@IfMan
Divisor is n. For every gridpoint x_1, ..., x_n of the same field it is:
Normalize by n. For every gridpoint x_1, ..., x_n of the same field it is:
o(t,1) = var{i(t,x'), x_1<x'<=x_n}
@EndifMan
@IfDoc
Divisor is n. For every gridpoint \begin{math}x_1, ..., x_n\end{math} of the same field it is: \\
Normalize by n. For every gridpoint \begin{math}x_1, ..., x_n\end{math} of the same field it is: \\
@BeginMath
o(t,1) = \mbox{\bf var}\{i(t,x'), x_1 < x' \leq x_n\}
@EndMath
......@@ -137,12 +137,12 @@ weighted by area weights obtained by the input field.
@BeginDescription
@IfMan
Divisor is (n-1). For every gridpoint x_1, ..., x_n of the same field it is:
Normalize by (n-1). For every gridpoint x_1, ..., x_n of the same field it is:
o(t,1) = var1{i(t,x'), x_1<x'<=x_n}
@EndifMan
@IfDoc
Divisor is (n-1). For every gridpoint \begin{math}x_1, ..., x_n\end{math} of the same field it is: \\
Normalize by (n-1). For every gridpoint \begin{math}x_1, ..., x_n\end{math} of the same field it is: \\
@BeginMath
o(t,1) = \mbox{\bf var1}\{i(t,x'), x_1 < x' \leq x_n\}
@EndMath
......@@ -157,12 +157,12 @@ weighted by area weights obtained by the input field.
@BeginDescription
@IfMan
Divisor is n. For every gridpoint x_1, ..., x_n of the same field it is:
Normalize by n. For every gridpoint x_1, ..., x_n of the same field it is:
o(t,1) = std{i(t,x'), x_1<x'<=x_n}
@EndifMan
@IfDoc
Divisor is n. For every gridpoint \begin{math}x_1, ..., x_n\end{math} of the same field it is: \\
Normalize by n. For every gridpoint \begin{math}x_1, ..., x_n\end{math} of the same field it is: \\
@BeginMath
o(t,1) = \mbox{\bf std}\{i(t,x'), x_1 < x' \leq x_n\}
@EndMath
......@@ -177,12 +177,12 @@ weighted by area weights obtained by the input field.
@BeginDescription
@IfMan
Divisor is (n-1). For every gridpoint x_1, ..., x_n of the same field it is:
Normalize by (n-1). For every gridpoint x_1, ..., x_n of the same field it is:
o(t,1) = std1{i(t,x'), x_1<x'<=x_n}
@EndifMan
@IfDoc
Divisor is (n-1). For every gridpoint \begin{math}x_1, ..., x_n\end{math} of the same field it is: \\
Normalize by (n-1). For every gridpoint \begin{math}x_1, ..., x_n\end{math} of the same field it is: \\
@BeginMath
o(t,1) = \mbox{\bf std1}\{i(t,x'), x_1 < x' \leq x_n\}
@EndMath
......
......@@ -71,7 +71,7 @@ Average of the selected grid boxes.
@Parameter = nx ny
@BeginDescription
Variance of the selected grid boxes. Divisor is n.
Variance of the selected grid boxes. Normalize by n.
@EndDescription
@EndOperator
......@@ -81,7 +81,7 @@ Variance of the selected grid boxes. Divisor is n.
@Parameter = nx ny
@BeginDescription
Variance of the selected grid boxes. Divisor is (n-1).
Variance of the selected grid boxes. Normalize by (n-1).
@EndDescription
@EndOperator
......@@ -91,7 +91,7 @@ Variance of the selected grid boxes. Divisor is (n-1).
@Parameter = nx ny
@BeginDescription
Standard deviation of the selected grid boxes. Divisor is n.
Standard deviation of the selected grid boxes. Normalize by n.
@EndDescription
@EndOperator
......@@ -101,7 +101,7 @@ Standard deviation of the selected grid boxes. Divisor is n.
@Parameter = nx ny
@BeginDescription
Standard deviation of the selected grid boxes. Divisor is (n-1).
Standard deviation of the selected grid boxes. Normalize by (n-1).
@EndDescription
@EndOperator
......
......@@ -116,12 +116,12 @@ o(t,x) = \mbox{\bf avg}\{i(t',x), t_1 < t' \leq t_n\}
@BeginDescription
@IfMan
Divisor is n. For every adjacent sequence t_1, ...,t_n of timesteps of the same hour it is:
Normalize by n. For every adjacent sequence t_1, ...,t_n of timesteps of the same hour it is:
o(t,x) = var{i(t',x), t_1<t'<=t_n}
@EndifMan
@IfDoc
Divisor is n. For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same hour it is: \\
Normalize by n. For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same hour it is: \\
@BeginMath
o(t,x) = \mbox{\bf var}\{i(t',x), t_1 < t' \leq t_n\}
@EndMath
......@@ -135,12 +135,12 @@ o(t,x) = \mbox{\bf var}\{i(t',x), t_1 < t' \leq t_n\}
@BeginDescription
@IfMan
Divisor is (n-1). For every adjacent sequence t_1, ...,t_n of timesteps of the same hour it is:
Normalize by (n-1). For every adjacent sequence t_1, ...,t_n of timesteps of the same hour it is:
o(t,x) = var1{i(t',x), t_1<t'<=t_n}
@EndifMan
@IfDoc
Divisor is (n-1). For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same hour it is: \\
Normalize by (n-1). For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same hour it is: \\
@BeginMath
o(t,x) = \mbox{\bf var1}\{i(t',x), t_1 < t' \leq t_n\}
@EndMath
......@@ -154,12 +154,12 @@ o(t,x) = \mbox{\bf var1}\{i(t',x), t_1 < t' \leq t_n\}
@BeginDescription
@IfMan
Divisor is n. For every adjacent sequence t_1, ...,t_n of timesteps of the same hour it is:
Normalize by n. For every adjacent sequence t_1, ...,t_n of timesteps of the same hour it is:
o(t,x) = std{i(t',x), t_1<t'<=t_n}
@EndifMan
@IfDoc
Divisor is n. For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same hour it is: \\
Normalize by n. For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same hour it is: \\
@BeginMath
o(t,x) = \mbox{\bf std}\{i(t',x), t_1 < t' \leq t_n\}
@EndMath
......@@ -173,12 +173,12 @@ o(t,x) = \mbox{\bf std}\{i(t',x), t_1 < t' \leq t_n\}
@BeginDescription
@IfMan
Divisor is (n-1). For every adjacent sequence t_1, ...,t_n of timesteps of the same hour it is:
Normalize by (n-1). For every adjacent sequence t_1, ...,t_n of timesteps of the same hour it is:
o(t,x) = std1{i(t',x), t_1<t'<=t_n}
@EndifMan
@IfDoc
Divisor is (n-1). For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same hour it is: \\
Normalize by (n-1). For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same hour it is: \\
@BeginMath
o(t,x) = \mbox{\bf std1}\{i(t',x), t_1 < t' \leq t_n\}
@EndMath
......
......@@ -65,7 +65,7 @@ For every longitude the area weighted average over all latitudes is computed.
@Title = Meridional variance
@BeginDescription
For every longitude the variance over all latitudes is computed. Divisor is n.
For every longitude the variance over all latitudes is computed. Normalize by n.
@EndDescription
@EndOperator
......@@ -74,7 +74,7 @@ For every longitude the variance over all latitudes is computed. Divisor is n.
@Title = Meridional variance (n-1)
@BeginDescription
For every longitude the variance over all latitudes is computed. Divisor is (n-1).
For every longitude the variance over all latitudes is computed. Normalize by (n-1).
@EndDescription
@EndOperator
......@@ -83,7 +83,7 @@ For every longitude the variance over all latitudes is computed. Divisor is (n-1
@Title = Meridional standard deviation
@BeginDescription
For every longitude the standard deviation over all latitudes is computed. Divisor is n.
For every longitude the standard deviation over all latitudes is computed. Normalize by n.
@EndDescription
@EndOperator
......@@ -92,7 +92,7 @@ For every longitude the standard deviation over all latitudes is computed. Divis
@Title = Meridional standard deviation (n-1)
@BeginDescription
For every longitude the standard deviation over all latitudes is computed. Divisor is (n-1).
For every longitude the standard deviation over all latitudes is computed. Normalize by (n-1).
@EndDescription
@EndOperator
......
......@@ -116,12 +116,12 @@ o(t,x) = \mbox{\bf avg}\{i(t',x), t_1 < t' \leq t_n\}
@BeginDescription
@IfMan
Divisor is n. For every adjacent sequence t_1, ...,t_n of timesteps of the same month it is
Normalize by n. For every adjacent sequence t_1, ...,t_n of timesteps of the same month it is
o(t,x) = var{i(t',x), t_1 < t' <= t_n}
@EndifMan
@IfDoc
Divisor is n. For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same month it is: \\
Normalize by n. For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same month it is: \\
@BeginMath
o(t,x) = \mbox{\bf var}\{i(t',x), t_1 < t' \leq t_n\}
@EndMath
......@@ -135,12 +135,12 @@ o(t,x) = \mbox{\bf var}\{i(t',x), t_1 < t' \leq t_n\}
@BeginDescription
@IfMan
Divisor is (n-1). For every adjacent sequence t_1, ...,t_n of timesteps of the same month it is
Normalize by (n-1). For every adjacent sequence t_1, ...,t_n of timesteps of the same month it is
o(t,x) = var1{i(t',x), t_1 < t' <= t_n}
@EndifMan
@IfDoc
Divisor is (n-1). For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same month it is: \\
Normalize by (n-1). For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same month it is: \\
@BeginMath
o(t,x) = \mbox{\bf var1}\{i(t',x), t_1 < t' \leq t_n\}
@EndMath
......@@ -154,12 +154,12 @@ o(t,x) = \mbox{\bf var1}\{i(t',x), t_1 < t' \leq t_n\}
@BeginDescription
@IfMan
Divisor is n. For every adjacent sequence t_1, ...,t_n of timesteps of the same month it is
Normalize by n. For every adjacent sequence t_1, ...,t_n of timesteps of the same month it is
o(t,x) = std{i(t',x), t_1 < t' <= t_n}
@EndifMan
@IfDoc
Divisor is n. For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same month it is: \\
Normalize by n. For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same month it is: \\
@BeginMath
o(t,x) = \mbox{\bf std}\{i(t',x), t_1 < t' \leq t_n\}
@EndMath
......@@ -173,12 +173,12 @@ o(t,x) = \mbox{\bf std}\{i(t',x), t_1 < t' \leq t_n\}
@BeginDescription
@IfMan
Divisor is (n-1). For every adjacent sequence t_1, ...,t_n of timesteps of the same month it is
Normalize by (n-1). For every adjacent sequence t_1, ...,t_n of timesteps of the same month it is
o(t,x) = std1{i(t',x), t_1 < t' <= t_n}
@EndifMan
@IfDoc
Divisor is (n-1). For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same month it is: \\
Normalize by (n-1). For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same month it is: \\
@BeginMath
o(t,x) = \mbox{\bf std1}\{i(t',x), t_1 < t' \leq t_n\}
@EndMath
......
......@@ -106,7 +106,7 @@ o(t+(nts-1)/2,x) = \mbox{\bf avg}\{i(t,x), i(t+1,x), ..., i(t+nts-1,x)\}
@Parameter = nts
@BeginDescription
Divisor is n.
Normalize by n.
@IfMan
o(t+(nts-1)/2,x) = var{i(t,x), i(t+1,x), ..., i(t+nts-1,x)}
......@@ -125,7 +125,7 @@ o(t+(nts-1)/2,x) = \mbox{\bf var}\{i(t,x), i(t+1,x), ..., i(t+nts-1,x)\}
@Parameter = nts
@BeginDescription
Divisor is (n-1).
Normalize by (n-1).
@IfMan
o(t+(nts-1)/2,x) = var1{i(t,x), i(t+1,x), ..., i(t+nts-1,x)}
......@@ -144,7 +144,7 @@ o(t+(nts-1)/2,x) = \mbox{\bf var1}\{i(t,x), i(t+1,x), ..., i(t+nts-1,x)\}
@Parameter = nts
@BeginDescription
Divisor is n.
Normalize by n.
@IfMan
o(t+(nts-1)/2,x) = std{i(t,x), i(t+1,x), ..., i(t+nts-1,x)}
......@@ -163,7 +163,7 @@ o(t+(nts-1)/2,x) = \mbox{\bf std}\{i(t,x), i(t+1,x), ..., i(t+nts-1,x)\}
@Parameter = nts
@BeginDescription
Divisor is (n-1).
Normalize by (n-1).
@IfMan
o(t+(nts-1)/2,x) = std1{i(t,x), i(t+1,x), ..., i(t+nts-1,x)}
......
......@@ -123,12 +123,12 @@ o(t,x) = \mbox{\bf avg}\{i(t',x), t_1 < t' \le t_n\}
@BeginDescription
@IfMan
Divisor is n. For every adjacent sequence t_1, ...,t_n of timesteps of the same season it is
Normalize by n. For every adjacent sequence t_1, ...,t_n of timesteps of the same season it is
o(t,x) = var{i(t',x), t1 < t' <= tn}
@EndifMan
@IfDoc
Divisor is n. For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of
Normalize by n. For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of
the same season it is: \\
@BeginMath
o(t,x) = \mbox{\bf var}\{i(t',x), t_1 < t' \le t_n\}
......@@ -143,12 +143,12 @@ o(t,x) = \mbox{\bf var}\{i(t',x), t_1 < t' \le t_n\}
@BeginDescription
@IfMan
Divisor is (n-1). For every adjacent sequence t_1, ...,t_n of timesteps of the same season it is
Normalize by (n-1). For every adjacent sequence t_1, ...,t_n of timesteps of the same season it is
o(t,x) = var1{i(t',x), t1 < t' <= tn}
@EndifMan
@IfDoc
Divisor is (n-1). For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of
Normalize by (n-1). For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of
the same season it is: \\
@BeginMath
o(t,x) = \mbox{\bf var1}\{i(t',x), t_1 < t' \le t_n\}
......@@ -163,12 +163,12 @@ o(t,x) = \mbox{\bf var1}\{i(t',x), t_1 < t' \le t_n\}
@BeginDescription
@IfMan
Divisor is n. For every adjacent sequence t_1, ...,t_n of timesteps of the same season it is
Normalize by n. For every adjacent sequence t_1, ...,t_n of timesteps of the same season it is
o(t,x) = std{i(t',x), t1 < t' <= tn}
@EndifMan
@IfDoc
Divisor is n. For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of
Normalize by n. For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of
the same season it is: \\
@BeginMath
o(t,x) = \mbox{\bf std}\{i(t',x), t_1 < t' \le t_n\}
......@@ -183,12 +183,12 @@ o(t,x) = \mbox{\bf std}\{i(t',x), t_1 < t' \le t_n\}
@BeginDescription
@IfMan
Divisor is (n-1). For every adjacent sequence t_1, ...,t_n of timesteps of the same season it is
Normalize by (n-1). For every adjacent sequence t_1, ...,t_n of timesteps of the same season it is
o(t,x) = std1{i(t',x), t1 < t' <= tn}
@EndifMan
@IfDoc
Divisor is (n-1). For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of
Normalize by (n-1). For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of
the same season it is: \\
@BeginMath
o(t,x) = \mbox{\bf std1}\{i(t',x), t_1 < t' \le t_n\}
......
......@@ -132,13 +132,13 @@ o(t,x) = \mbox{\bf avg}\{i(t',x), t_1 < t' \le t_n\}
@BeginDescription
@IfMan
Divisor is n. For every adjacent sequence t1, ...., tn of timesteps of the same
Normalize by n. For every adjacent sequence t1, ...., tn of timesteps of the same
selected time range it is
o(t,x) = var{i(t',x), t1 < t' <= tn}
@EndifMan
@IfDoc
Divisor is n. For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same
Normalize by n. For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same
selected time range it is: \\
@BeginMath
o(t,x) = \mbox{\bf var}\{i(t',x), t_1 < t' \le t_n\}
......@@ -154,13 +154,13 @@ o(t,x) = \mbox{\bf var}\{i(t',x), t_1 < t' \le t_n\}
@BeginDescription
@IfMan
Divisor is (n-1). For every adjacent sequence t1, ...., tn of timesteps of the same
Normalize by (n-1). For every adjacent sequence t1, ...., tn of timesteps of the same
selected time range it is
o(t,x) = var1{i(t',x), t1 < t' <= tn}
@EndifMan
@IfDoc
Divisor is (n-1). For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same
Normalize by (n-1). For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same
selected time range it is: \\
@BeginMath
o(t,x) = \mbox{\bf var1}\{i(t',x), t_1 < t' \le t_n\}
......@@ -176,13 +176,13 @@ o(t,x) = \mbox{\bf var1}\{i(t',x), t_1 < t' \le t_n\}
@BeginDescription
@IfMan
Divisor is n. For every adjacent sequence t1, ...., tn of timesteps of the same
Normalize by n. For every adjacent sequence t1, ...., tn of timesteps of the same
selected time range it is
o(t,x) = std{i(t',x), t1 < t' <= tn}
@EndifMan
@IfDoc
Divisor is n. For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same
Normalize by n. For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same
selected time range it is: \\
@BeginMath
o(t,x) = \mbox{\bf std}\{i(t',x), t_1 < t' \le t_n\}
......@@ -198,13 +198,13 @@ o(t,x) = \mbox{\bf std}\{i(t',x), t_1 < t' \le t_n\}
@BeginDescription
@IfMan
Divisor is (n-1). For every adjacent sequence t1, ...., tn of timesteps of the same
Normalize by (n-1). For every adjacent sequence t1, ...., tn of timesteps of the same
selected time range it is
o(t,x) = std1{i(t',x), t1 < t' <= tn}
@EndifMan
@IfDoc
Divisor is (n-1). For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same
Normalize by (n-1). For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same
selected time range it is: \\
@BeginMath
o(t,x) = \mbox{\bf std1}\{i(t',x), t_1 < t' \le t_n\}
......
......@@ -100,7 +100,7 @@ o(1,x) = \mbox{\bf avg}\{i(t',x), t_1 < t' \leq t_n\}
@Title = Time variance
@BeginDescription
Divisor is n.
Normalize by n.
@IfMan
o(1,x) = var{i(t',x), t_1<t'<=t_n}
......@@ -118,7 +118,7 @@ o(1,x) = \mbox{\bf var}\{i(t',x), t_1 < t' \leq t_n\}
@Title = Time variance (n-1)
@BeginDescription
Divisor is (n-1).
Normalize by (n-1).
@IfMan
o(1,x) = var1{i(t',x), t_1<t'<=t_n}
......@@ -136,7 +136,7 @@ o(1,x) = \mbox{\bf var1}\{i(t',x), t_1 < t' \leq t_n\}
@Title = Time standard deviation
@BeginDescription
Divisor is n.
Normalize by n.
@IfMan
o(1,x) = std{i(t',x), t_1<t'<=t_n}
......@@ -154,7 +154,7 @@ o(1,x) = \mbox{\bf std}\{i(t',x), t_1 < t' \leq t_n\}
@Title = Time standard deviation (n-1)
@BeginDescription
Divisor is (n-1).
Normalize by (n-1).
@IfMan
o(1,x) = std1{i(t',x), t_1<t'<=t_n}
......
......@@ -64,7 +64,7 @@ For every gridpoint the layer weighted average over all levels is computed.
@Title = Vertical variance
@BeginDescription
For every gridpoint the variance over all levels is computed. Divisor is n.
For every gridpoint the variance over all levels is computed. Normalize by n.
@EndDescription
@EndOperator
......@@ -73,7 +73,7 @@ For every gridpoint the variance over all levels is computed. Divisor is n.
@Title = Vertical variance (n-1)
@BeginDescription
For every gridpoint the variance over all levels is computed. Divisor is (n-1).
For every gridpoint the variance over all levels is computed. Normalize by (n-1).
@EndDescription
@EndOperator
......@@ -82,7 +82,7 @@ For every gridpoint the variance over all levels is computed. Divisor is (n-1).
@Title = Vertical standard deviation
@BeginDescription
For every gridpoint the standard deviation over all levels is computed. Divisor is n.
For every gridpoint the standard deviation over all levels is computed. Normalize by n.
@EndDescription
@EndOperator
......@@ -91,7 +91,7 @@ For every gridpoint the standard deviation over all levels is computed. Divisor
@Title = Vertical standard deviation (n-1)
@BeginDescription
For every gridpoint the standard deviation over all levels is computed. Divisor is (n-1).
For every gridpoint the standard deviation over all levels is computed. Normalize by (n-1).
@EndDescription
@EndOperator
......
......@@ -129,7 +129,7 @@ o(\mbox{366},x) = \mbox{\bf avg}\{i(t,x), \mbox{day}(i(t)) = \mbox{366}\} \\
@Title = Multi-year daily variance
@BeginDescription
Divisor is n.
Normalize by n.
@IfMan
o(001,x) = var{i(t,x), day(i(t)) = 001}
......@@ -153,7 +153,7 @@ o(\mbox{366},x) = \mbox{\bf var}\{i(t,x), \mbox{day}(i(t)) = \mbox{366}\} \\
@Title = Multi-year daily variance (n-1)
@BeginDescription
Divisor is (n-1).
Normalize by (n-1).
@IfMan
o(001,x) = var1{i(t,x), day(i(t)) = 001}
......@@ -177,7 +177,7 @@ o(\mbox{366},x) = \mbox{\bf var1}\{i(t,x), \mbox{day}(i(t)) = \mbox{366}\} \\
@Title = Multi-year daily standard deviation
@BeginDescription
Divisor is n.
Normalize by n.
@IfMan
o(001,x) = std{i(t,x), day(i(t)) = 001}
......@@ -201,7 +201,7 @@ o(\mbox{366},x) = \mbox{\bf std}\{i(t,x), \mbox{day}(i(t)) = \mbox{366}\} \\
@Title = Multi-year daily standard deviation (n-1)
@BeginDescription
Divisor is (n-1).
Normalize by (n-1).
@IfMan
o(001,x) = std1{i(t,x), day(i(t)) = 001}
......
......@@ -142,7 +142,7 @@ o(\mbox{366},x) = \mbox{\bf avg}\{i(t,x), i(t+1,x), ..., i(t+nts-1,x); \mbox{day
@Parameter = nts
@BeginDescription
Divisor is n.
Normalize by n.
@IfMan
o(001,x) = var{i(t,x), i(t+1,x), ..., i(t+nts-1,x); day[(i(t+(nts-1)/2)] = 001}
......@@ -167,7 +167,7 @@ o(\mbox{366},x) = \mbox{\bf var}\{i(t,x), i(t+1,x), ..., i(t+nts-1,x); \mbox{day
@Parameter = nts
@BeginDescription
Divisor is (n-1).
Normalize by (n-1).
@IfMan
o(001,x) = var1{i(t,x), i(t+1,x), ..., i(t+nts-1,x); day[(i(t+(nts-1)/2)] = 001}
......@@ -192,7 +192,7 @@ o(\mbox{366},x) = \mbox{\bf var1}\{i(t,x), i(t+1,x), ..., i(t+nts-1,x); \mbox{da
@Parameter = nts
@BeginDescription
Divisor is n.
Normalize by n.
@IfMan
o(001,x) = std{i(t,x), i(t+1,x), ..., i(t+nts-1,x); day[i(t+(nts-1)/2)] = 001}
......@@ -217,7 +217,7 @@ o(\mbox{366},x) = \mbox{\bf std}\{i(t,x), i(t+1,x), ..., i(t+nts-1,x); \mbox{day
@Parameter = nts
@BeginDescription
Divisor is (n-1).
Normalize by (n-1).
@IfMan
o(001,x) = std1{i(t,x), i(t+1,x), ..., i(t+nts-1,x); day[i(t+(nts-1)/2)] = 001}
......
......@@ -116,12 +116,12 @@ o(t,x) = \mbox{\bf avg}\{i(t',x), t_1 < t' \leq t_n\}
@BeginDescription
@IfMan
Divisor is n. For every adjacent sequence t_1, ...,t_n of timesteps of the same year it is
Normalize by n. For every adjacent sequence t_1, ...,t_n of timesteps of the same year it is
o(t,x) = var{i(t',x), t_1 < t' <= t_n}
@EndifMan
@IfDoc
Divisor is n. For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same year it is: \\
Normalize by n. For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same year it is: \\
@BeginMath
o(t,x) = \mbox{\bf var}\{i(t',x), t_1 < t' \leq t_n\}
@EndMath
......@@ -135,12 +135,12 @@ o(t,x) = \mbox{\bf var}\{i(t',x), t_1 < t' \leq t_n\}
@BeginDescription
@IfMan
Divisor is (n-1). For every adjacent sequence t_1, ...,t_n of timesteps of the same year it is
Normalize by (n-1). For every adjacent sequence t_1, ...,t_n of timesteps of the same year it is
o(t,x) = var1{i(t',x), t_1 < t' <= t_n}
@EndifMan
@IfDoc
Divisor is (n-1). For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same year it is: \\