Daystat 5.12 KB
Newer Older
Uwe Schulzweida's avatar
Uwe Schulzweida committed
1
2
3
4
5
6
@BeginModule
@NewPage
@Name      = Daystat
@Title     = Daily statistical values
@Section   = Statistical values
@Class     = Statistic
Uwe Schulzweida's avatar
Uwe Schulzweida committed
7
@Arguments = infile outfile
Uwe Schulzweida's avatar
Uwe Schulzweida committed
8
@Operators = daymin daymax dayrange daysum daymean dayavg daystd daystd1 dayvar dayvar1
Uwe Schulzweida's avatar
Uwe Schulzweida committed
9
10

@BeginDescription
Uwe Schulzweida's avatar
Uwe Schulzweida committed
11
This module computes statistical values over timesteps of the same day.
Uwe Schulzweida's avatar
Uwe Schulzweida committed
12
Depending on the chosen operator the minimum, maximum, range, sum, average, variance
Uwe Schulzweida's avatar
Uwe Schulzweida committed
13
14
or standard deviation of timesteps of the same day is written to @file{outfile}.
The time of @file{outfile} is determined by the time in the middle of all contributing timesteps of @file{infile}.
Uwe Schulzweida's avatar
Uwe Schulzweida committed
15
16
17
18
19
20
21
22
23
@EndDescription
@EndModule


@BeginOperator_daymin
@Title     = Daily minimum

@BeginDescription
@IfMan
Uwe Schulzweida's avatar
Uwe Schulzweida committed
24
For every adjacent sequence t_1, ...,t_n of timesteps of the same day it is:
Uwe Schulzweida's avatar
Uwe Schulzweida committed
25
26
27
28

o(t,x) = min{i(t',x), t_1<t'<=t_n}
@EndifMan
@IfDoc
Uwe Schulzweida's avatar
Uwe Schulzweida committed
29
For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same day it is: \\
Uwe Schulzweida's avatar
Uwe Schulzweida committed
30
@BeginMath
Uwe Schulzweida's avatar
Uwe Schulzweida committed
31
o(t,x) = \mbox{\textbf{min}}\{i(t',x), t_1 < t' \leq t_n\}
Uwe Schulzweida's avatar
Uwe Schulzweida committed
32
33
34
35
36
37
38
39
40
41
42
@EndMath
@EndifDoc
@EndDescription
@EndOperator


@BeginOperator_daymax
@Title     = Daily maximum

@BeginDescription
@IfMan
Uwe Schulzweida's avatar
Uwe Schulzweida committed
43
For every adjacent sequence t_1, ...,t_n of timesteps of the same day it is:
Uwe Schulzweida's avatar
Uwe Schulzweida committed
44
45
46
47

o(t,x) = max{i(t',x), t_1<t'<=t_n}
@EndifMan
@IfDoc
Uwe Schulzweida's avatar
Uwe Schulzweida committed
48
For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same day it is: \\
Uwe Schulzweida's avatar
Uwe Schulzweida committed
49
@BeginMath
Uwe Schulzweida's avatar
Uwe Schulzweida committed
50
o(t,x) = \mbox{\textbf{max}}\{i(t',x), t_1 < t' \leq t_n\}
Uwe Schulzweida's avatar
Uwe Schulzweida committed
51
52
53
54
55
56
@EndMath
@EndifDoc
@EndDescription
@EndOperator


Uwe Schulzweida's avatar
Uwe Schulzweida committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
@BeginOperator_dayrange
@Title     = Daily range

@BeginDescription
@IfMan
For every adjacent sequence t_1, ...,t_n of timesteps of the same day it is:

o(t,x) = range{i(t',x), t_1<t'<=t_n}
@EndifMan
@IfDoc
For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same day it is: \\
@BeginMath
o(t,x) = \mbox{\textbf{range}}\{i(t',x), t_1 < t' \leq t_n\}
@EndMath
@EndifDoc
@EndDescription
@EndOperator


Uwe Schulzweida's avatar
Uwe Schulzweida committed
76
77
78
79
80
@BeginOperator_daysum
@Title     = Daily sum

@BeginDescription
@IfMan
Uwe Schulzweida's avatar
Uwe Schulzweida committed
81
For every adjacent sequence t_1, ...,t_n of timesteps of the same day it is:
Uwe Schulzweida's avatar
Uwe Schulzweida committed
82
83
84
85

o(t,x) = sum{i(t',x), t_1<t'<=t_n}
@EndifMan
@IfDoc
Uwe Schulzweida's avatar
Uwe Schulzweida committed
86
For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same day it is: \\
Uwe Schulzweida's avatar
Uwe Schulzweida committed
87
@BeginMath
Uwe Schulzweida's avatar
Uwe Schulzweida committed
88
o(t,x) = \mbox{\textbf{sum}}\{i(t',x), t_1 < t' \leq t_n\}
Uwe Schulzweida's avatar
Uwe Schulzweida committed
89
90
91
92
93
94
95
96
97
98
99
@EndMath
@EndifDoc
@EndDescription
@EndOperator


@BeginOperator_daymean
@Title     = Daily mean

@BeginDescription
@IfMan
Uwe Schulzweida's avatar
Uwe Schulzweida committed
100
For every adjacent sequence t_1, ...,t_n of timesteps of the same day it is:
Uwe Schulzweida's avatar
Uwe Schulzweida committed
101
102
103
104

o(t,x) = mean{i(t',x), t_1<t'<=t_n}
@EndifMan
@IfDoc
Uwe Schulzweida's avatar
Uwe Schulzweida committed
105
For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same day it is: \\
Uwe Schulzweida's avatar
Uwe Schulzweida committed
106
@BeginMath
Uwe Schulzweida's avatar
Uwe Schulzweida committed
107
o(t,x) = \mbox{\textbf{mean}}\{i(t',x), t_1 < t' \leq t_n\}
Uwe Schulzweida's avatar
Uwe Schulzweida committed
108
109
110
111
112
113
114
115
116
117
118
@EndMath
@EndifDoc
@EndDescription
@EndOperator


@BeginOperator_dayavg
@Title     = Daily average

@BeginDescription
@IfMan
Uwe Schulzweida's avatar
Uwe Schulzweida committed
119
For every adjacent sequence t_1, ...,t_n of timesteps of the same day it is:
Uwe Schulzweida's avatar
Uwe Schulzweida committed
120
121
122
123

o(t,x) = avg{i(t',x), t_1<t'<=t_n}
@EndifMan
@IfDoc
Uwe Schulzweida's avatar
Uwe Schulzweida committed
124
For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same day it is: \\
Uwe Schulzweida's avatar
Uwe Schulzweida committed
125
@BeginMath
Uwe Schulzweida's avatar
Uwe Schulzweida committed
126
o(t,x) = \mbox{\textbf{avg}}\{i(t',x), t_1 < t' \leq t_n\}
Uwe Schulzweida's avatar
Uwe Schulzweida committed
127
128
129
130
131
132
@EndMath
@EndifDoc
@EndDescription
@EndOperator


Uwe Schulzweida's avatar
Uwe Schulzweida committed
133
134
135
136
137
@BeginOperator_dayvar
@Title     = Daily variance

@BeginDescription
@IfMan
Uwe Schulzweida's avatar
Uwe Schulzweida committed
138
Normalize by n. For every adjacent sequence t_1, ...,t_n of timesteps of the same day it is:
Uwe Schulzweida's avatar
Uwe Schulzweida committed
139
140
141
142

o(t,x) = var{i(t',x), t_1<t'<=t_n}
@EndifMan
@IfDoc
Uwe Schulzweida's avatar
Uwe Schulzweida committed
143
Normalize by n. For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same day it is: \\
Uwe Schulzweida's avatar
Uwe Schulzweida committed
144
@BeginMath
Uwe Schulzweida's avatar
Uwe Schulzweida committed
145
o(t,x) = \mbox{\textbf{var}}\{i(t',x), t_1 < t' \leq t_n\}
Uwe Schulzweida's avatar
Uwe Schulzweida committed
146
147
148
149
150
151
@EndMath
@EndifDoc
@EndDescription
@EndOperator


152
@BeginOperator_dayvar1
Uwe Schulzweida's avatar
Uwe Schulzweida committed
153
@Title     = Daily variance (n-1)
154
155
156

@BeginDescription
@IfMan
Uwe Schulzweida's avatar
Uwe Schulzweida committed
157
Normalize by (n-1). For every adjacent sequence t_1, ...,t_n of timesteps of the same day it is:
158
159
160
161

o(t,x) = var1{i(t',x), t_1<t'<=t_n}
@EndifMan
@IfDoc
Uwe Schulzweida's avatar
Uwe Schulzweida committed
162
Normalize by (n-1). For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same day it is: \\
163
@BeginMath
Uwe Schulzweida's avatar
Uwe Schulzweida committed
164
o(t,x) = \mbox{\textbf{var1}}\{i(t',x), t_1 < t' \leq t_n\}
165
166
167
168
169
170
@EndMath
@EndifDoc
@EndDescription
@EndOperator


Uwe Schulzweida's avatar
Uwe Schulzweida committed
171
172
173
174
175
@BeginOperator_daystd
@Title     = Daily standard deviation

@BeginDescription
@IfMan
Uwe Schulzweida's avatar
Uwe Schulzweida committed
176
Normalize by n. For every adjacent sequence t_1, ...,t_n of timesteps of the same day it is:
Uwe Schulzweida's avatar
Uwe Schulzweida committed
177
178
179
180

o(t,x) = std{i(t',x), t_1<t'<=t_n}
@EndifMan
@IfDoc
Uwe Schulzweida's avatar
Uwe Schulzweida committed
181
Normalize by n. For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same day it is: \\
Uwe Schulzweida's avatar
Uwe Schulzweida committed
182
@BeginMath
Uwe Schulzweida's avatar
Uwe Schulzweida committed
183
o(t,x) = \mbox{\textbf{std}}\{i(t',x), t_1 < t' \leq t_n\}
Uwe Schulzweida's avatar
Uwe Schulzweida committed
184
185
186
187
188
189
@EndMath
@EndifDoc
@EndDescription
@EndOperator


190
@BeginOperator_daystd1
Uwe Schulzweida's avatar
Uwe Schulzweida committed
191
@Title     = Daily standard deviation (n-1)
192
193
194

@BeginDescription
@IfMan
Uwe Schulzweida's avatar
Uwe Schulzweida committed
195
Normalize by (n-1). For every adjacent sequence t_1, ...,t_n of timesteps of the same day it is:
196
197
198
199

o(t,x) = std1{i(t',x), t_1<t'<=t_n}
@EndifMan
@IfDoc
Uwe Schulzweida's avatar
Uwe Schulzweida committed
200
Normalize by (n-1). For every adjacent sequence \begin{math}t_1, ...,t_n\end{math} of timesteps of the same day it is: \\
201
@BeginMath
Uwe Schulzweida's avatar
Uwe Schulzweida committed
202
o(t,x) = \mbox{\textbf{std1}}\{i(t',x), t_1 < t' \leq t_n\}
203
204
205
206
207
208
@EndMath
@EndifDoc
@EndDescription
@EndOperator


Uwe Schulzweida's avatar
Uwe Schulzweida committed
209
@BeginExample
Uwe Schulzweida's avatar
Uwe Schulzweida committed
210
To compute the daily mean of a time series use:
Uwe Schulzweida's avatar
Uwe Schulzweida committed
211
@BeginVerbatim
Uwe Schulzweida's avatar
Uwe Schulzweida committed
212
   cdo daymean infile outfile
Uwe Schulzweida's avatar
Uwe Schulzweida committed
213
214
@EndVerbatim
@EndExample