Cloudlayer.c 9.77 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
  This file is part of CDO. CDO is a collection of Operators to
  manipulate and analyse Climate model Data.

  Copyright (C) 2003-2010 Uwe Schulzweida, Uwe.Schulzweida@zmaw.de
  See COPYING file for copying and redistribution conditions.

  This program is free software; you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation; version 2 of the License.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.
*/

#include <ctype.h>

Ralf Mueller's avatar
Ralf Mueller committed
20
#include <cdi.h>
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
#include "cdo.h"
#include "cdo_int.h"
#include "pstream.h"
#include "vinterp.h"


#define  SCALESLP        (101325.0)


/* ================================================= */
/* LayerCloud calculates random overlap cloud cover */
/* ================================================= */

static
void layer_cloud(const double *cc, double *ll, long MaxLev, long MinLev, long dimgp)
{
  long i, k;
  double maxval, minval;
  double ZEPSEC;

  ZEPSEC = 1.-1.0e-12;

  for ( i = 0; i < dimgp; i++ ) ll[i] = 1. - cc[i+MaxLev*dimgp];

  //  printf("maxlev %d minlev %d\n", MaxLev, MinLev);

  for ( k = MaxLev + 1; k <= MinLev; k++ )
    {
      for ( i = 0; i < dimgp; i++ )
	{
	  maxval = MAX(cc[i+(k-1)*dimgp], cc[i+k*dimgp]);
	  minval = MIN(cc[i+(k-1)*dimgp], ZEPSEC);
	  ll[i] *= (1. - maxval) / (1. - minval);
	}
    }

  for ( i = 0; i < dimgp; i++ ) ll[i] = 1. - ll[i];
}

static
void vct2plev(const double *vct, double *plevs, long nlevs)
{
  long k;

  for ( k = 0; k < nlevs; k++ )
    plevs[k] = vct[k] + vct[k+nlevs] * SCALESLP;
  /*
  for ( k = 0; k < nlevs; k++ )
    printf("plevs %ld %g\n", k, plevs[k]);
  
  for ( k = 1; k < nlevs; k++ )
    printf("plevs %ld %g\n", k-1, (plevs[k]+plevs[k-1])/2);
  */
}

static
void hl_index(int *kmax, int *kmin, double pmax, double pmin, long nhlevs, double *pph)
{
  long k;
  long MaxLev, MinLev;
   
  for ( k = 0; k < nhlevs; k++ )
    if ( pph[k] > pmax ) break;
  
  MaxLev = k - 1;
  
  for ( k  = nhlevs - 1; k >= 0; k-- )
    if ( pph[k] < pmin ) break;
   
  MinLev = k;

  *kmax = MaxLev;
  *kmin = MinLev;
}

static
void pl_index(int *kmax, int *kmin, double pmax, double pmin, long nlevs, double *plevs)
{
  long k;
  long MaxLev = -1, MinLev = -1;
   
  for ( k = 0; k < nlevs; k++ )
    if ( plevs[k] >= pmax )
      {
	MaxLev = k;
	break;
      }
  
  for ( k  = nlevs - 1; k >= 0; k-- )
    if ( plevs[k] < pmin )
      {
	MinLev = k;
	break;
      }
   
  *kmax = MaxLev;
  *kmin = MinLev;
}


#define NVARS  3

void *Cloudlayer(void *argument)
{
Uwe Schulzweida's avatar
Uwe Schulzweida committed
125
  static const char *func = "Cloudlayer";
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
  int streamID1, streamID2;
  int vlistID1, vlistID2;
  int taxisID1, taxisID2;
  int gridID, zaxisID, tsID;
  int surfaceID;
  int nlevel, nhlev, nlevs, nrecs, recID, code;
  int varID, levelID;
  int zrev = FALSE;
  int nvars;
  int gridsize, i;
  int offset;
  int nmiss;
  int ngp = 0, ngrids;
  int aclcac_code;
  int aclcacID = -1;
141
  int nvars2 = 0;
142
143
144
145
146
147
148
  int kmin[NVARS], kmax[NVARS];
  char varname[128];
  double sfclevel = 0;
  double *plevs = NULL;
  double *aclcac = NULL;
  double *cloud[NVARS];
  double missval;
149
  double pmin = 0, pmax = 0;
150
151
152

  cdoInitialize(argument);

153
154
155
156
157
158
159
160
161
162
163
164
  if ( operatorArgc() > 0 )
    {
      operatorCheckArgc(2);
      nvars2 = 1;
      pmin = atof(operatorArgv()[0]);
      pmax = atof(operatorArgv()[1]);
    }
  else
    {
      nvars2 = NVARS;
    }

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
  streamID1 = streamOpenRead(cdoStreamName(0));
  if ( streamID1 < 0 ) cdiError(streamID1, "Open failed on %s", cdoStreamName(0));

  vlistID1 = streamInqVlist(streamID1);

  ngrids  = vlistNgrids(vlistID1);
  for ( i = 0; i < ngrids; i++ )
    {
      gridID = vlistGrid(vlistID1, i);
      if ( gridInqType(gridID) != GRID_SPECTRAL )
	{
	  ngp = gridInqSize(gridID);
	  break;
	}
    }

  /* check gridsize */
  for ( i = 0; i < ngrids; i++ )
    {
      gridID = vlistGrid(vlistID1, i);
      if ( gridInqType(gridID) != GRID_SPECTRAL )
	{
	  if ( ngp != gridInqSize(gridID) )
	    cdoAbort("Grids have different size!");
	}
    }

  aclcac_code = 223;

  nvars = vlistNvars(vlistID1);
  for ( varID = 0; varID < nvars; ++varID )
    {
      gridID   = vlistInqVarGrid(vlistID1, varID);
      zaxisID  = vlistInqVarZaxis(vlistID1, varID);
      gridsize = gridInqSize(gridID);
      nlevel   = zaxisInqSize(zaxisID);

      code = vlistInqVarCode(vlistID1, varID);

      if ( code <= 0 )
	{
	  vlistInqVarName(vlistID1, varID, varname);

	  strtolower(varname);

	  if ( strcmp(varname, "aclcac") == 0 ) code = 223;
	}

Uwe Schulzweida's avatar
Uwe Schulzweida committed
213
214
      if ( zaxisInqType(zaxisID) == ZAXIS_PRESSURE || zaxisInqType(zaxisID) == ZAXIS_HYBRID )
	if  ( code == aclcac_code ) aclcacID  = varID;
215
216
217
    }

  if ( aclcacID == -1 )
Uwe Schulzweida's avatar
Uwe Schulzweida committed
218
    cdoAbort("Cloud cover (code 223) not found on pressure or hybrid levels!");
219
220
221
222
223
224
225
226
227
228

  missval = vlistInqVarMissval(vlistID1, aclcacID);
  gridID  = vlistInqVarGrid(vlistID1, aclcacID);
  zaxisID = vlistInqVarZaxis(vlistID1, aclcacID);

  gridsize = gridInqSize(gridID);
  nlevel = zaxisInqSize(zaxisID);
  nhlev  = nlevel+1;

  aclcac = (double *) malloc(gridsize*nlevel*sizeof(double));
229
  for ( varID = 0; varID < nvars2; ++varID )
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
    cloud[varID] = (double *) malloc(gridsize*sizeof(double));

  if ( zaxisInqType(zaxisID) == ZAXIS_PRESSURE )
    {
      plevs = (double *) malloc(nlevel*sizeof(double));
      zaxisInqLevels(zaxisID, plevs);
      if ( plevs[0] > plevs[nlevel-1] )
	{
	  double ptmp;
	  zrev = TRUE;
	  for ( levelID = 0; levelID < nlevel/2; ++levelID )
	    {
	      ptmp = plevs[levelID];
	      plevs[levelID] = plevs[nlevel-1-levelID];
	      plevs[nlevel-1-levelID] = ptmp;
	    }
	}
      /*
      for ( levelID = 0; levelID < nlevel; ++levelID )
	{
	  printf("level %d %g\n", levelID, plevs[levelID]);
	}
      */
253
254
255
256
257
258
259
260
261
262
      if ( nvars2 == 1 )
	{
	  pl_index(&kmax[0], &kmin[0], pmin, pmax, nlevel, plevs);
	}
      else
	{
	  pl_index(&kmax[2], &kmin[2],  5000., 44000., nlevel, plevs);
	  pl_index(&kmax[1], &kmin[1], 46000., 73000., nlevel, plevs);
	  pl_index(&kmax[0], &kmin[0], 75000.,101300., nlevel, plevs);
	}
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282

      free(plevs);
    }
  else if ( zaxisInqType(zaxisID) == ZAXIS_HYBRID )
    {
      int nvct;

      nvct = zaxisInqVctSize(zaxisID);
      if ( nlevel == (nvct/2 - 1) )
	{
	  double *vct;

	  vct = (double *) malloc(nvct*sizeof(double));
	  memcpy(vct, zaxisInqVctPtr(zaxisID), nvct*sizeof(double));

	  nlevs = nlevel + 1;
	  plevs = (double *) malloc(nlevs*sizeof(double));
	  vct2plev(vct, plevs, nlevs);
	  free(vct);

283
284
285
286
287
288
289
290
291
292
	  if ( nvars2 == 1 )
	    {
	      hl_index(&kmax[0], &kmin[0], pmin, pmax, nhlev, plevs);
	    }
	  else
	    {
	      hl_index(&kmax[2], &kmin[2],  5000., 44000., nhlev, plevs);
	      hl_index(&kmax[1], &kmin[1], 46000., 73000., nhlev, plevs);
	      hl_index(&kmax[0], &kmin[0], 75000.,101300., nhlev, plevs);
	    }
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307

	  free(plevs);
 	}
      else
	cdoAbort("Unsupported vertical coordinate table format!");
   }
  else
    cdoAbort("Unsupported Z-Axis type!");


  surfaceID = zaxisCreate(ZAXIS_SURFACE, 1);
  zaxisDefLevels(surfaceID, &sfclevel);

  vlistID2 = vlistCreate();

308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
  if ( nvars2 == 1 )
    {
      varID = vlistDefVar(vlistID2, gridID, surfaceID, TIME_VARIABLE);
      vlistDefVarCode(vlistID2, varID, 33);
      vlistDefVarName(vlistID2, varID, "cld_lay");
      vlistDefVarLongname(vlistID2, varID, "cloud layer");
      vlistDefVarMissval(vlistID2, varID, missval);
    }
  else
    {
      varID = vlistDefVar(vlistID2, gridID, surfaceID, TIME_VARIABLE);
      vlistDefVarCode(vlistID2, varID, 34);
      vlistDefVarName(vlistID2, varID, "low_cld");
      vlistDefVarLongname(vlistID2, varID, "low cloud");
      vlistDefVarMissval(vlistID2, varID, missval);

      varID = vlistDefVar(vlistID2, gridID, surfaceID, TIME_VARIABLE);
      vlistDefVarCode(vlistID2, varID, 35);
      vlistDefVarName(vlistID2, varID, "mid_cld");
      vlistDefVarLongname(vlistID2, varID, "mid cloud");
      vlistDefVarMissval(vlistID2, varID, missval);

      varID = vlistDefVar(vlistID2, gridID, surfaceID, TIME_VARIABLE);
      vlistDefVarCode(vlistID2, varID, 36);
      vlistDefVarName(vlistID2, varID, "hih_cld");
      vlistDefVarLongname(vlistID2, varID, "high cloud");
      vlistDefVarMissval(vlistID2, varID, missval);
    }
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

  taxisID1 = vlistInqTaxis(vlistID1);
  taxisID2 = taxisDuplicate(taxisID1);
  vlistDefTaxis(vlistID2, taxisID2);

  streamID2 = streamOpenWrite(cdoStreamName(1), cdoFiletype());
  if ( streamID2 < 0 ) cdiError(streamID2, "Open failed on %s", cdoStreamName(1));

  streamDefVlist(streamID2, vlistID2);

  tsID = 0;
  while ( (nrecs = streamInqTimestep(streamID1, tsID)) )
    {
      taxisCopyTimestep(taxisID2, taxisID1);

      streamDefTimestep(streamID2, tsID);
     
      for ( recID = 0; recID < nrecs; recID++ )
	{
	  streamInqRecord(streamID1, &varID, &levelID);

	  if ( zrev )
	    offset = (nlevel-1-levelID)*gridsize;
	  else
	    offset = levelID*gridsize;

	  if ( varID == aclcacID )
	    {
	      streamReadRecord(streamID1, aclcac+offset, &nmiss);
	      if ( nmiss != 0 ) cdoAbort("missing values unsupported!");
	    }
	}

369
      for ( varID = 0; varID < nvars2; ++varID )
370
371
372
373
	{
	  for ( i = 0; i < gridsize; i++ ) cloud[varID][i] = missval;
	}

374
      for ( varID = 0; varID < nvars2; ++varID )
375
376
377
378
379
	{
	  if ( kmax[varID] != -1 && kmin[varID] != -1 )
	    layer_cloud(aclcac, cloud[varID], kmax[varID], kmin[varID], gridsize);
	}

380
      for ( varID = 0; varID < nvars2; ++varID )
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
	{
	  nmiss = 0;
	  for ( i = 0; i < gridsize; i++ )
	    if ( DBL_IS_EQUAL(cloud[varID][i], missval) ) nmiss++;

	  streamDefRecord(streamID2, varID, 0);
	  streamWriteRecord(streamID2, cloud[varID], nmiss);
	}

      tsID++;
    }

  streamClose(streamID2);
  streamClose(streamID1);
 
  vlistDestroy(vlistID2);

  free(aclcac);
399
  for ( varID = 0; varID < nvars2; ++varID )
400
401
402
403
404
405
    free(cloud[varID]);

  cdoFinish();

  return (0);
}