pyicon_tb.py 47.2 KB
Newer Older
1
#print('sys')
2
import sys, glob, os
3
4
import json
# --- calculations
5
import numpy as np
6
#print('scipy')
7
8
from scipy import interpolate
from scipy.spatial import cKDTree
9
# --- reading data 
10
from netCDF4 import Dataset, num2date, date2num
11
import datetime
12
# --- plotting
13
#print('matplotlib')
14
15
16
17
import matplotlib.pyplot as plt
import matplotlib
from matplotlib import ticker
#import my_toolbox as my
18
#print('cartopy')
nbruegge's avatar
nbruegge committed
19
import cartopy
20
import cartopy.crs as ccrs
nbruegge's avatar
nbruegge committed
21
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
22
import cmocean
23
# --- debugging
24
from ipdb import set_trace as mybreak  
25
#from importlib import reload
26
#print('xarray')
27
import xarray as xr
28
#print('done loading')
29

30
31
"""
pyicon
32
33
#  icon_to_regular_grid
#  icon_to_section
nbruegge's avatar
nbruegge committed
34
35
36
  apply_ckdtree
  ckdtree_hgrid
  ckdtree_section
37
  calc_ckdtree
nbruegge's avatar
nbruegge committed
38
39
  haversine_dist
  derive_section_points
40
41
42
43
44
  timing
  conv_gname
  identify_grid
  crop_tripolar_grid
  crop_regular_grid
nbruegge's avatar
nbruegge committed
45
46
47
  get_files_of_timeseries
  get_varnames
  get_timesteps
48
49
50
51
52
53
54
55
56

  ?load_data
  ?load_grid

  ?hplot
  ?update_hplot
  ?vplot
  ?update_vplot

nbruegge's avatar
nbruegge committed
57
  #IconDataFile
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

  IconData
  IP_hor_sec_rect

  QuickPlotWebsite

  IDa: Icon data set (directory of files)
    - info about tsteps
    - info about vars
    - info about grid
    - IGr: Icon grid
    - IVa: Icon variable if loaded
  IIn: Icon interpolator class

  IPl: Icon plot class

IDa = pyic.IconData(fpath or path)
IDa.load_grid()
IDa.show()

IPl = pyic.hplot(IDa, 'var', iz, tstep, IIn)

"""

82
83
84
85
86
87
88
89
class pyicon_configure(object):
  def __init__(self, fpath_config):
    with open(fpath_config) as file_json:
      Dsettings = json.load(file_json)
    for key in Dsettings.keys():
      setattr(self, key, Dsettings[key])
    return

90
#def icon_to_regular_grid(data, shape, distances=None, \
91
#                  inds=None, radius_of_influence=1000e3):
92
93
94
95
96
97
98
99
#  """
#  """
#  data_interpolated = apply_ckdtree(data, distances=distances, inds=inds, 
#                                    radius_of_influence=radius_of_influence)
#  data_interpolated = data_interpolated.reshape(shape)
#  return data_interpolated
#
#def icon_to_section(data, distances=None, \
100
#                  inds=None, radius_of_influence=1000e3):
101
102
103
104
105
106
#  """
#  """
#  data_interpolated = apply_ckdtree(data, distances=distances, inds=inds, 
#                                    radius_of_influence=radius_of_influence)
#  return data_interpolated

Nils Brüggemann's avatar
Nils Brüggemann committed
107
108
109
"""
Routines to apply interpolation weights
"""
110
def apply_ckdtree_base(data, inds, distances, radius_of_influence=1000e3):
Nils Brüggemann's avatar
Nils Brüggemann committed
111
112
113
  if distances.ndim == 1:
    #distances_ma = np.ma.masked_greater(distances, radius_of_influence)
    if data.ndim==1:
114
115
116
117
      if isinstance(data, xr.core.dataarray.DataArray):
        data_interpolated = data.load()[inds]
      else:
        data_interpolated = data[inds]
Nils Brüggemann's avatar
Nils Brüggemann committed
118
119
      data_interpolated[distances>=radius_of_influence] = np.nan
    elif data.ndim==2:
120
121
122
123
      if isinstance(data, xr.core.dataarray.DataArray):
        data_interpolated = data.load()[:,inds]
      else:
        data_interpolated = data[:,inds]
Nils Brüggemann's avatar
Nils Brüggemann committed
124
125
126
127
128
129
130
131
132
133
134
      data_interpolated[:,distances>=radius_of_influence] = np.nan
  else:
    #raise ValueError("::: distances.ndim>1 is not properly supported yet. :::")
    #distances_ma = np.ma.masked_greater(distances, radius_of_influence)
    weights = 1.0 / distances**2
    if data.ndim==1:
      data_interpolated = np.ma.sum(weights * data[inds], axis=1) / np.ma.sum(weights, axis=1)
      #data_interpolated[distances>=radius_of_influence] = np.nan
    elif data.ndim==2:
      data_interpolated = np.ma.sum(weights[np.newaxis,:,:] * data[:,inds], axis=2) / np.ma.sum(weights[np.newaxis,:,:], axis=2)
      #data_interpolated[:,distances>=radius_of_influence] = np.nan
135
  data_interpolated = np.ma.masked_invalid(data_interpolated)
Nils Brüggemann's avatar
Nils Brüggemann committed
136
137
  return data_interpolated

138
def apply_ckdtree(data, fpath_ckdtree, mask=None, coordinates='clat clon', radius_of_influence=1000e3):
nbruegge's avatar
nbruegge committed
139
  """
140
  * credits
141
    function modified from pyfesom (Nikolay Koldunov)
142
  """
143
  ddnpz = np.load(fpath_ckdtree)
144
  #if coordinates=='clat clon':
145
  if ('clon' in coordinates) or (coordinates==''):
146
147
    distances = ddnpz['dckdtree_c']
    inds = ddnpz['ickdtree_c'] 
148
149
  #elif coordinates=='elat elon':
  elif 'elon' in coordinates:
150
151
    distances = ddnpz['dckdtree_e']
    inds = ddnpz['ickdtree_e'] 
152
153
  #elif coordinates=='vlat vlon':
  elif 'vlon' in coordinates:
154
155
156
157
158
    distances = ddnpz['dckdtree_v']
    inds = ddnpz['ickdtree_v'] 
  else:
    raise ValueError('::: Error: Unsupported coordinates: %s! ::: ' % (coordinates))

159
160
161
162
163
164
165
166
167
  if mask is not None:
    #if data.ndim==1:
    #  data = data[mask]
    #elif data.ndim==2:
    #  data = data[:,mask]
    if inds.ndim==1:
      inds = inds[mask]
      distances = distances[mask]
    elif inds.ndim==2:
168
      #raise ValueError('::: Warning: This was never checked! Please check carefully and remove this warning.:::')
169
170
      inds = inds[:,mask]
      distances = distances[:,mask]
171

Nils Brüggemann's avatar
Nils Brüggemann committed
172
  data_interpolated = apply_ckdtree_base(data, inds, distances, radius_of_influence)
173
174
  return data_interpolated

175
176
177
178
def interp_to_rectgrid(data, fpath_ckdtree, 
                       lon_reg=None, lat_reg=None,             # for new way of cropping
                       indx='all', indy='all', mask_reg=None,  # for old way of cropping
                       coordinates='clat clon'):
Nils Brüggemann's avatar
Nils Brüggemann committed
179
180
181
  ddnpz = np.load(fpath_ckdtree)
  lon = ddnpz['lon'] 
  lat = ddnpz['lat'] 
182
  # --- old way of cropping
183
184
185
  if not isinstance(indx, str):
    lon = lon[indx]
    lat = lat[indy]
186
187
188
189
190
191
192
193
194
195
  # --- prepare cropping the data to a region
  if lon_reg is not None:
    indx = np.where((lon>=lon_reg[0]) & (lon<lon_reg[1]))[0]
    indy = np.where((lat>=lat_reg[0]) & (lat<lat_reg[1]))[0]
    Lon, Lat = np.meshgrid(lon, lat) # full grid
    lon = lon[indx]
    lat = lat[indy]
    ind_reg = ((Lon>=lon_reg[0]) & (Lon<lon_reg[1]) & (Lat>=lat_reg[0]) & (Lat<lat_reg[1])).flatten()
    mask_reg = ind_reg
    Lon, Lat = np.meshgrid(lon, lat) # cropped grid
196
  datai = apply_ckdtree(data, fpath_ckdtree, mask=mask_reg, coordinates=coordinates)
197
  if datai.ndim==1:
198
    datai = datai.reshape(lat.size, lon.size)
199
200
201
202
203
204
205
206
207
208
209
210
211
  else:
    datai = datai.reshape([data.shape[0], lat.size, lon.size])
  datai[datai==0.] = np.ma.masked
  return lon, lat, datai

def interp_to_section(data, fpath_ckdtree, coordinates='clat clon'):
  ddnpz = np.load(fpath_ckdtree)
  lon_sec = ddnpz['lon_sec'] 
  lat_sec = ddnpz['lat_sec'] 
  dist_sec = ddnpz['dist_sec'] 
  datai = apply_ckdtree(data, fpath_ckdtree, coordinates=coordinates)
  datai[datai==0.] = np.ma.masked
  return lon_sec, lat_sec, dist_sec, datai
Nils Brüggemann's avatar
Nils Brüggemann committed
212

Nils Brüggemann's avatar
Nils Brüggemann committed
213
214
215
""" 
Routines for zonal averaging
"""
nbruegge's avatar
nbruegge committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
def zonal_average(fpath_data, var, basin='global', it=0, fpath_fx='', fpath_ckdtree=''):

  for fp in [fpath_data, fpath_fx, fpath_ckdtree]:
    if not os.path.exists(fp):
      raise ValueError('::: Error: Cannot find file %s! :::' % (fp))

  f = Dataset(fpath_fx, 'r')
  basin_c = f.variables['basin_c'][:]
  mask_basin = np.zeros(basin_c.shape, dtype=bool)
  if basin.lower()=='atlantic' or basin=='atl':
    mask_basin[basin_c==1] = True 
  elif basin.lower()=='pacific' or basin=='pac':
    mask_basin[basin_c==3] = True 
  elif basin.lower()=='southern ocean' or basin=='soc' or basin=='so':
    mask_basin[basin_c==6] = True 
  elif basin.lower()=='indian ocean' or basin=='ind' or basin=='io':
    mask_basin[basin_c==7] = True 
  elif basin.lower()=='global' or basin=='glob' or basin=='glo':
    mask_basin[basin_c!=0] = True 
  elif basin.lower()=='indopacific' or basin=='indopac':
    mask_basin[(basin_c==3) | (basin_c==7)] = True 
Nils Brüggemann's avatar
Nils Brüggemann committed
237
238
  elif basin.lower()=='indopacso':
    mask_basin[(basin_c==3) | (basin_c==7) | (basin_c==6)] = True 
nbruegge's avatar
nbruegge committed
239
240
241
242
243
244
245
246
247
248
  f.close()
  
  ddnpz = np.load(fpath_ckdtree)
  lon = ddnpz['lon'] 
  lat = ddnpz['lat'] 
  shape = [lat.size, lon.size]
  lat_sec = lat
  
  f = Dataset(fpath_data, 'r')
  nz = f.variables[var].shape[1]
249
  coordinates = f.variables[var].coordinates
nbruegge's avatar
nbruegge committed
250
251
  data_zave = np.ma.zeros((nz,lat_sec.size))
  for k in range(nz):
nbruegge's avatar
nbruegge committed
252
    #print('k = %d/%d'%(k,nz))
nbruegge's avatar
nbruegge committed
253
254
255
256
257
258
259
    # --- load data
    data = f.variables[var][it,k,:]
    # --- mask land points
    data[data==0] = np.ma.masked
    # --- mask not-this-basin points
    data[mask_basin==False] = np.ma.masked
    # --- go to normal np.array (not np.ma object)
260
261
    if isinstance(data, np.ma.core.MaskedArray):
      data = data.filled(0.)
nbruegge's avatar
nbruegge committed
262
    # --- interpolate to rectangular grid
263
264
    datai = apply_ckdtree(data, fpath_ckdtree, coordinates=coordinates)
    datai = datai.reshape(shape)
nbruegge's avatar
nbruegge committed
265
266
267
268
269
270
271
    # --- go back to masked array
    datai = np.ma.array(datai, mask=datai==0.)
    # --- do zonal average
    data_zave[k,:] = datai.mean(axis=1)
  f.close()
  return lat_sec, data_zave

272
def zonal_average_3d_data(data3d, basin='global', it=0, coordinates='clat clon', fpath_fx='', fpath_ckdtree=''):
nbruegge's avatar
nbruegge committed
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
  """ Like zonal_average but here data instead of path to data is given. This can only work if the whole data array fits into memory.
  """

  for fp in [fpath_fx, fpath_ckdtree]:
    if not os.path.exists(fp):
      raise ValueError('::: Error: Cannot find file %s! :::' % (fp))

  f = Dataset(fpath_fx, 'r')
  basin_c = f.variables['basin_c'][:]
  mask_basin = np.zeros(basin_c.shape, dtype=bool)
  if basin.lower()=='atlantic' or basin=='atl':
    mask_basin[basin_c==1] = True 
  elif basin.lower()=='pacific' or basin=='pac':
    mask_basin[basin_c==3] = True 
  elif basin.lower()=='southern ocean' or basin=='soc' or basin=='so':
    mask_basin[basin_c==6] = True 
  elif basin.lower()=='indian ocean' or basin=='ind' or basin=='io':
    mask_basin[basin_c==7] = True 
  elif basin.lower()=='global' or basin=='glob' or basin=='glo':
    mask_basin[basin_c!=0] = True 
  elif basin.lower()=='indopacific' or basin=='indopac':
    mask_basin[(basin_c==3) | (basin_c==7)] = True 
Nils Brüggemann's avatar
Nils Brüggemann committed
295
296
  elif basin.lower()=='indopacso':
    mask_basin[(basin_c==3) | (basin_c==7) | (basin_c==6)] = True 
nbruegge's avatar
nbruegge committed
297
298
299
  f.close()
  
  ddnpz = np.load(fpath_ckdtree)
300
301
  #dckdtree = ddnpz['dckdtree']
  #ickdtree = ddnpz['ickdtree'] 
nbruegge's avatar
nbruegge committed
302
303
304
305
306
307
308
309
  lon = ddnpz['lon'] 
  lat = ddnpz['lat'] 
  shape = [lat.size, lon.size]
  lat_sec = lat
  
  nz = data3d.shape[0]
  data_zave = np.ma.zeros((nz,lat_sec.size))
  for k in range(nz):
Nils Brüggemann's avatar
Nils Brüggemann committed
310
    data = 1.*data3d[k,:]
nbruegge's avatar
nbruegge committed
311
312
313
314
315
316
    #print('k = %d/%d'%(k,nz))
    # --- mask land points
    data[data==0] = np.ma.masked
    # --- mask not-this-basin points
    data[mask_basin==False] = np.ma.masked
    # --- go to normal np.array (not np.ma object)
317
318
    if isinstance(data, np.ma.core.MaskedArray):
      data = data.filled(0.)
nbruegge's avatar
nbruegge committed
319
    # --- interpolate to rectangular grid
320
321
    datai = apply_ckdtree(data, fpath_ckdtree, coordinates=coordinates)
    datai = datai.reshape(shape)
nbruegge's avatar
nbruegge committed
322
323
324
325
326
327
    # --- go back to masked array
    datai = np.ma.array(datai, mask=datai==0.)
    # --- do zonal average
    data_zave[k,:] = datai.mean(axis=1)
  return lat_sec, data_zave

328
def zonal_average_atmosphere(data3d, ind_lev, fac, fpath_ckdtree='', coordinates='clat clon',):
329
330
331
332
333
  icall = np.arange(data3d.shape[1],dtype=int)
  datavi = data3d[ind_lev,icall]*fac+data3d[ind_lev+1,icall]*(1.-fac)
  lon, lat, datavihi = interp_to_rectgrid(datavi, fpath_ckdtree, coordinates=coordinates)
  data_zave = datavihi.mean(axis=2)
  return lat, data_zave
334

335
def zonal_section_3d_data(data3d, fpath_ckdtree, coordinates):
336
337
338
339
340
341
342
343
  """
  (
   lon_sec, lat_sec, dist_sec, data_sec 
  ) = pyic.zonal_section_3d_data(tbias, 
    fpath_ckdtree=path_ckdtree+'sections/r2b4_nps100_30W80S_30W80N.npz')
  """
  # --- load ckdtree
  ddnpz = np.load(fpath_ckdtree)
344
345
  #dckdtree = ddnpz['dckdtree']
  #ickdtree = ddnpz['ickdtree'] 
346
347
348
349
350
351
352
  lon_sec = ddnpz['lon_sec'] 
  lat_sec = ddnpz['lat_sec'] 
  dist_sec = ddnpz['dist_sec'] 

  nz = data3d.shape[0]
  data_sec = np.ma.zeros((nz,dist_sec.size))
  for k in range(nz):
353
    data_sec[k,:] = apply_ckdtree(data3d[k,:], fpath_ckdtree, coordinates=coordinates)
354
355
  return lon_sec, lat_sec, dist_sec, data_sec

356
357
358
359
360
361
362
363
364
365
366
def lonlat2str(lon, lat):
  if lon<0:
    lon_s = '%gW'%(-lon)
  else:
    lon_s = '%gE'%(lon)
  if lat<0:
    lat_s = '%gS'%(-lat)
  else:
    lat_s = '%gN'%(lat)
  return lon_s, lat_s

Nils Brüggemann's avatar
Nils Brüggemann committed
367
368
369
370
371
372
373
374
375
"""
Routines to calculate interpolation weights:

  | ckdtree_hgrid
  | ckdtree_section
  |-->| ckdtree_points
      |--> calc_ckdtree
"""

nbruegge's avatar
nbruegge committed
376
def ckdtree_hgrid(lon_reg, lat_reg, res, 
377
378
379
380
381
                 #fpath_grid_triangular='', 
                 fname_tgrid='',
                 path_tgrid='',
                 path_ckdtree='',
                 sname='',
Nils Brüggemann's avatar
Nils Brüggemann committed
382
                 gname='',
383
384
385
386
387
                 tgname='',
                 load_cgrid=True,
                 load_egrid=True,
                 load_vgrid=True,
                 n_nearest_neighbours=1,
388
                 n_jobs=1,
389
390
391
                 ):
  """
  """
392
393
394
  if tgname=='':
    Drgrid = identify_grid(path_tgrid, path_tgrid+fname_tgrid) 
    tgname = Drgrid['name']
395
396
397
  lon1str, lat1str = lonlat2str(lon_reg[0], lat_reg[0])
  lon2str, lat2str = lonlat2str(lon_reg[1], lat_reg[1])

398
399
400
401
  if n_nearest_neighbours==1:
    fname = '%s_res%3.2f_%s-%s_%s-%s.npz'%(tgname, res, lon1str, lon2str, lat1str, lat2str) 
  else:
    fname = '%s_res%3.2f_%dnn_%s-%s_%s-%s.npz'%(tgname, res, n_nearest_neighbours, lon1str, lon2str, lat1str, lat2str) 
402
  fpath_ckdtree = path_ckdtree+fname
Nils Brüggemann's avatar
Nils Brüggemann committed
403
  fpath_tgrid   = path_tgrid+fname_tgrid
404
405
406
407
408
409

  # --- make rectangular grid 
  lon = np.arange(lon_reg[0],lon_reg[1],res)
  lat = np.arange(lat_reg[0],lat_reg[1],res)
  Lon, Lat = np.meshgrid(lon, lat)

Nils Brüggemann's avatar
Nils Brüggemann committed
410
411
412
413
  lon_o = Lon.flatten()
  lat_o = Lat.flatten()
  
  # --- calculate ckdtree
414
415
  Dind_dist = ckdtree_points(fpath_tgrid, lon_o, lat_o, load_cgrid=load_cgrid, load_egrid=load_egrid, load_vgrid=load_vgrid,
                             n_nearest_neighbours=n_nearest_neighbours, n_jobs=n_jobs)
nbruegge's avatar
nbruegge committed
416
417
418
419
420
421

  # --- save grid
  print('Saving grid file: %s' % (fpath_ckdtree))
  np.savez(fpath_ckdtree,
            lon=lon,
            lat=lat,
422
            sname=sname,
Nils Brüggemann's avatar
Nils Brüggemann committed
423
            gname=gname,
424
            tgname='test',
Nils Brüggemann's avatar
Nils Brüggemann committed
425
            **Dind_dist,
nbruegge's avatar
nbruegge committed
426
427
428
429
           )
  return

def ckdtree_section(p1, p2, npoints=101, 
430
431
432
433
                 fname_tgrid='',
                 path_tgrid='',
                 path_ckdtree='',
                 sname='auto',
Nils Brüggemann's avatar
Nils Brüggemann committed
434
                 gname='',
435
                 tgname='',
Nils Brüggemann's avatar
Nils Brüggemann committed
436
                 n_nearest_neighbours=1,
437
                 n_jobs=1,
438
439
440
                 load_cgrid=True,
                 load_egrid=True,
                 load_vgrid=True,
nbruegge's avatar
nbruegge committed
441
442
443
                 ):
  """
  """
444
445
446
  if tgname=='':
    Drgrid = identify_grid(path_tgrid, path_tgrid+fname_tgrid) 
    tgname = Drgrid['name']
447
448
449
450
451
452
  lon1str, lat1str = lonlat2str(p1[0], p1[1])
  lon2str, lat2str = lonlat2str(p2[0], p2[1])

  if sname=='auto':
    sname = fpath_ckdtree.split('/')[-1][:-4]

Nils Brüggemann's avatar
Nils Brüggemann committed
453
454
455
456
  fname = '%s_nps%d_%s%s_%s%s.npz'%(tgname, npoints, lon1str, lat1str, lon2str, lat2str) 
  fpath_ckdtree = path_ckdtree+fname
  fpath_tgrid   = path_tgrid+fname_tgrid

nbruegge's avatar
nbruegge committed
457
458
  # --- derive section points
  lon_sec, lat_sec, dist_sec = derive_section_points(p1, p2, npoints)
Nils Brüggemann's avatar
Nils Brüggemann committed
459
460
  lon_o = lon_sec
  lat_o = lat_sec
nbruegge's avatar
nbruegge committed
461

Nils Brüggemann's avatar
Nils Brüggemann committed
462
  # --- calculate ckdtree
463
464
  Dind_dist = ckdtree_points(fpath_tgrid, lon_o, lat_o, load_cgrid=load_cgrid, load_egrid=load_egrid, load_vgrid=load_vgrid, n_nearest_neighbours=n_nearest_neighbours,
                             n_jobs=n_jobs)
nbruegge's avatar
nbruegge committed
465
466
467
468
469
470
471

  # --- save grid
  print('Saving grid file: %s' % (fpath_ckdtree))
  np.savez(fpath_ckdtree,
            lon_sec=lon_sec,
            lat_sec=lat_sec,
            dist_sec=dist_sec,
472
            sname=sname,
Nils Brüggemann's avatar
Nils Brüggemann committed
473
            gname=gname,
Nils Brüggemann's avatar
Nils Brüggemann committed
474
            **Dind_dist
nbruegge's avatar
nbruegge committed
475
           )
Nils Brüggemann's avatar
Nils Brüggemann committed
476
477
  return Dind_dist['dckdtree_c'], Dind_dist['ickdtree_c'], lon_sec, lat_sec, dist_sec

478
def ckdtree_points(fpath_tgrid, lon_o, lat_o, load_cgrid=True, load_egrid=True, load_vgrid=True, n_nearest_neighbours=1, n_jobs=1):
Nils Brüggemann's avatar
Nils Brüggemann committed
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
  """
  """
  # --- load triangular grid
  f = Dataset(fpath_tgrid, 'r')
  if load_cgrid:
    clon = f.variables['clon'][:] * 180./np.pi
    clat = f.variables['clat'][:] * 180./np.pi
  if load_egrid:
    elon = f.variables['elon'][:] * 180./np.pi
    elat = f.variables['elat'][:] * 180./np.pi
  if load_vgrid:
    vlon = f.variables['vlon'][:] * 180./np.pi
    vlat = f.variables['vlat'][:] * 180./np.pi
  f.close()

  # --- ckdtree for cells, edges and vertices
  if load_cgrid:
    dckdtree_c, ickdtree_c = calc_ckdtree(lon_i=clon, lat_i=clat,
                                          lon_o=lon_o, lat_o=lat_o,
                                          n_nearest_neighbours=n_nearest_neighbours,
499
                                          n_jobs=n_jobs,
Nils Brüggemann's avatar
Nils Brüggemann committed
500
501
502
503
504
                                          )
  if load_egrid:
    dckdtree_e, ickdtree_e = calc_ckdtree(lon_i=elon, lat_i=elat,
                                          lon_o=lon_o, lat_o=lat_o,
                                          n_nearest_neighbours=n_nearest_neighbours,
505
                                          n_jobs=n_jobs,
Nils Brüggemann's avatar
Nils Brüggemann committed
506
507
508
509
510
                                          )
  if load_vgrid:
    dckdtree_v, ickdtree_v = calc_ckdtree(lon_i=vlon, lat_i=vlat,
                                          lon_o=lon_o, lat_o=lat_o,
                                          n_nearest_neighbours=n_nearest_neighbours,
511
                                          n_jobs=n_jobs,
Nils Brüggemann's avatar
Nils Brüggemann committed
512
513
514
515
516
517
518
519
520
521
522
523
524
525
                                          )

  # --- save dict
  Dind_dist = dict()
  if load_cgrid: 
    Dind_dist['dckdtree_c'] = dckdtree_c
    Dind_dist['ickdtree_c'] = ickdtree_c
  if load_egrid: 
    Dind_dist['dckdtree_e'] = dckdtree_e
    Dind_dist['ickdtree_e'] = ickdtree_e
  if load_vgrid: 
    Dind_dist['dckdtree_v'] = dckdtree_v
    Dind_dist['ickdtree_v'] = ickdtree_v
  return Dind_dist
nbruegge's avatar
nbruegge committed
526

527
def calc_ckdtree(lon_i, lat_i, lon_o, lat_o, n_nearest_neighbours=1, n_jobs=1):
nbruegge's avatar
nbruegge committed
528
529
  """
  """
530
  # --- do ckdtree
Nils Brüggemann's avatar
Nils Brüggemann committed
531
532
533
534
535
536
537
538
539
540
541
542
543
  if False:
    lzip_i = list(zip(lon_i, lat_i))
    tree = cKDTree(lzip_i)
    lzip_o = list(zip(lon_o, lat_o))
    dckdtree, ickdtree = tree.query(lzip_o , k=n_nearest_neighbours, n_jobs=1)
  else:
    #print('calc_ckdtree by cartesian distances')
    xi, yi, zi = spherical_to_cartesian(lon_i, lat_i)
    xo, yo, zo = spherical_to_cartesian(lon_o, lat_o)

    lzip_i = list(zip(xi, yi, zi))
    tree = cKDTree(lzip_i)
    lzip_o = list(zip(xo, yo, zo))
544
    dckdtree, ickdtree = tree.query(lzip_o , k=n_nearest_neighbours, n_jobs=n_jobs)
nbruegge's avatar
nbruegge committed
545
546
  return dckdtree, ickdtree

Nils Brüggemann's avatar
Nils Brüggemann committed
547
548
549
550
551
552
553
def calc_vertical_interp_weights(zdata, levs):
  """ Calculate vertical interpolation weights and indices.

Call example:
icall, ind_lev, fac = calc_vertical_interp_weights(zdata, levs)

Afterwards do interpolation like this:
554
datai = data[ind_lev,icall]*fac+data[ind_lev+1,icall]*(1.-fac)
Nils Brüggemann's avatar
Nils Brüggemann committed
555
556
557
558
559
560
561
562
563
564
565
566
567
  """
  nza = zdata.shape[0]
  # --- initializations
  ind_lev = np.zeros((levs.size,zdata.shape[1]),dtype=int)
  icall = np.arange(zdata.shape[1],dtype=int)
  icall = icall[np.newaxis,:]
  fac = np.ma.zeros((levs.size,zdata.shape[1]))
  for k, lev in enumerate(levs):
    #print(f'k = {k}')
    # --- find level below critical level
    ind_lev[k,:] = (zdata<levs[k]).sum(axis=0)-1
    ind_lev[k,ind_lev[k,:]==(nza-1)]=-1
    # --- zdata below and above lev 
568
569
570
571
    zd1 = zdata[ind_lev[k,:],icall]
    zd2 = zdata[ind_lev[k,:]+1,icall]
    # --- linear interpolation to get weight (fac=1 if lev=zd1)
    fac[k,:] = (0.-1.)/(zd2-zd1)*(levs[k]-zd1)+1.
Nils Brüggemann's avatar
Nils Brüggemann committed
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
  # --- mask values which are out of range
  fac[ind_lev==-1] = np.ma.masked 
  return icall, ind_lev, fac

"""
Routines to calculate grids and sections
"""

def derive_section_points(p1, p2, npoints=101,):
  # --- derive section points
  if p1[0]==p2[0]:
    lon_sec = p1[0]*np.ones((npoints)) 
    lat_sec = np.linspace(p1[1],p2[1],npoints)
  else:
    lon_sec = np.linspace(p1[0],p2[0],npoints)
    lat_sec = (p2[1]-p1[1])/(p2[0]-p1[0])*(lon_sec-p1[0])+p1[1]
  dist_sec = haversine_dist(lon_sec[0], lat_sec[0], lon_sec, lat_sec)
  return lon_sec, lat_sec, dist_sec

def calc_north_pole_interp_grid_points(lat_south=60., res=100e3):
  """
  Compute grid points optimized for plotting the North Pole area.

  Parameters:
  -----------
  lat_south : float
      Southern latitude of target grid.
  res : float
      resolution of target grid

  Returns:
  --------
  Lon_np, Lat_np: ndarray
      Longitude and latitude of target grid as 2d array.

  Examples:
  ---------
  Lon_np, Lat_np = calc_north_pole_interp_grid_points(lat_south=60., res=100e3)

  """
  R = 6371e3
  x1, y1, z1 = spherical_to_cartesian(  0., lat_south)
  x2, y2, z2 = spherical_to_cartesian( 90., lat_south)
  x3, y3, z3 = spherical_to_cartesian(180., lat_south)
  x4, y4, z4 = spherical_to_cartesian(270., lat_south)

  lon1, lat1 = cartesian_to_spherical(x1, y1, z1)
  lon2, lat2 = cartesian_to_spherical(x2, y2, z2)
  lon3, lat3 = cartesian_to_spherical(x3, y3, z3)
  lon4, lat4 = cartesian_to_spherical(x4, y4, z4)

  #x1 = R * np.cos(  0.*np.pi/180.) * np.cos(lat_south*np.pi/180.)
  #y1 = R * np.sin(  0.*np.pi/180.) * np.cos(lat_south*np.pi/180.)
  #z1 = R * np.sin(lat_south*np.pi/180.)
  #x2 = R * np.cos( 90.*np.pi/180.) * np.cos(lat_south*np.pi/180.)
  #y2 = R * np.sin( 90.*np.pi/180.) * np.cos(lat_south*np.pi/180.)
  #z2 = R * np.sin(lat_south*np.pi/180.)
  #x3 = R * np.cos(180.*np.pi/180.) * np.cos(lat_south*np.pi/180.)
  #y3 = R * np.sin(180.*np.pi/180.) * np.cos(lat_south*np.pi/180.)
  #z3 = R * np.sin(lat_south*np.pi/180.)
  #x4 = R * np.cos(270.*np.pi/180.) * np.cos(lat_south*np.pi/180.)
  #y4 = R * np.sin(270.*np.pi/180.) * np.cos(lat_south*np.pi/180.)
  #z4 = R * np.sin(lat_south*np.pi/180.)
  #
  #lat1 = np.arcsin(z1/np.sqrt(x1**2+y1**2+z1**2)) * 180./np.pi
  #lon1 = np.arctan2(y1,x1) * 180./np.pi
  #lat2 = np.arcsin(z2/np.sqrt(x2**2+y2**2+z2**2)) * 180./np.pi
  #lon2 = np.arctan2(y2,x2) * 180./np.pi
  #lat3 = np.arcsin(z3/np.sqrt(x3**2+y3**2+z3**2)) * 180./np.pi
  #lon3 = np.arctan2(y3,x3) * 180./np.pi
  #lat4 = np.arcsin(z4/np.sqrt(x4**2+y4**2+z4**2)) * 180./np.pi
  #lon4 = np.arctan2(y4,x4) * 180./np.pi
  
  xnp = np.arange(x3, x1+res, res)
  ynp = np.arange(y4, y2+res, res)
  
  Xnp, Ynp = np.meshgrid(xnp, ynp)
  Znp = R * np.sin(lat1*np.pi/180.) * np.ones((ynp.size,xnp.size))
  Lon_np = np.arctan2(Ynp,Xnp) * 180./np.pi
  Lat_np = np.arcsin(Znp/np.sqrt(Xnp**2+Ynp**2+Znp**2)) * 180./np.pi
  return Lon_np, Lat_np

"""
Routines related to spherical geometry
"""
nbruegge's avatar
nbruegge committed
657
658
659
660
661
662
663
664
665
666
667
668
669
670
def haversine_dist(lon_ref, lat_ref, lon_pts, lat_pts, degree=True):
  # for details see http://en.wikipedia.org/wiki/Haversine_formula
  r = 6378.e3
  if degree:
    lon_ref = lon_ref * np.pi/180.
    lat_ref = lat_ref * np.pi/180.
    lon_pts = lon_pts * np.pi/180.
    lat_pts = lat_pts * np.pi/180.
  arg = np.sqrt(   np.sin(0.5*(lat_pts-lat_ref))**2 
                 + np.sin(0.5*(lon_pts-lon_ref))**2
                 * np.cos(lat_ref)*np.cos(lat_pts) )
  dist = 2*r * np.arcsin(arg)
  return dist

Nils Brüggemann's avatar
Nils Brüggemann committed
671
672
673
674
675
676
677
678
679
680
681
def spherical_to_cartesian(lon, lat):
  earth_radius = 6371e3
  x = earth_radius * np.cos(lon*np.pi/180.) * np.cos(lat*np.pi/180.)
  y = earth_radius * np.sin(lon*np.pi/180.) * np.cos(lat*np.pi/180.)
  z = earth_radius * np.sin(lat*np.pi/180.)
  return x, y, z

def cartesian_to_spherical(x, y, z):
  lat = np.arcsin(z/np.sqrt(x**2+y**2+z**2)) * 180./np.pi
  lon = np.arctan2(y,x) * 180./np.pi
  return lon, lat
682

Nils Brüggemann's avatar
Nils Brüggemann committed
683
684
685
"""
Routines to load data
"""
686
def load_hsnap(fpath, var, it=0, iz=0, iw=None, fpath_ckdtree='', verbose=True):
687
  f = Dataset(fpath, 'r')
688
689
  if verbose:
    print("Loading %s from %s" % (var, fpath))
690
691
692
693
  if f.variables[var].ndim==2:
    data = f.variables[var][it,:]
  else:
    data = f.variables[var][it,iz,:]
694
695
  if iw is not None:
    data = np.concatenate((data[:,iw:],data[:,:iw]),axis=1)
696
697
698
699
700
  f.close()

  data[data==0.] = np.ma.masked
  return data

701
702
703
704
705
706
def datetime64_to_float(dates):
  years  = (dates.astype('datetime64[Y]').astype(int) + 1970).astype(int)
  months = (dates.astype('datetime64[M]').astype(int) % 12 + 1).astype(int)
  days   = (dates - dates.astype('datetime64[M]') + 1).astype(int)
  return years, months, days

707
def time_average(IcD, var, t1='none', t2='none', it_ave=[], iz='all', always_use_loop=False, verbose=False, use_xr=False, load_xr_data=False):
Nils Brüggemann's avatar
Nils Brüggemann committed
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
  it_ave = np.array(it_ave)
  # --- if no it_ave is given use t1 and t2 to determine averaging indices it_ave
  if it_ave.size==0:
    # --- if t2=='none' set t2=t1 and no time average will be applied
    if isinstance(t2, str) and t2=='none':
      t2 = t1

    # --- convert to datetime64 objects if necessary
    if isinstance(t1, str):
      t1 = np.datetime64(t1)
    if isinstance(t2, str):
      t2 = np.datetime64(t2)

    # --- determine averaging interval
    it_ave = np.where( (IcD.times>=t1) & (IcD.times<=t2) )[0]
723
724
725
  else:
    t1 = IcD.times[it_ave[0]]
    t2 = IcD.times[it_ave[-1]]
726
727
728

  if it_ave.size==0:
    raise ValueError(f'::: Could not find any time steps in interval t1={t1} and t2={t2}! :::')
729
  
730
731
732
733
734
735
736
737
  ## --- decide whether the file consists of monthly or yearly averages (or something else)
  #dt1 = (IcD.times[it_ave][1]-IcD.times[it_ave][0]).astype(float)/(86400)
  #if dt1==365 or dt1==366:
  #  ave_mode = 'yearly'
  #elif dt1==28 or dt1==29 or dt1==30 or dt1==31:
  #  ave_mode = 'monthly'
  #else:
  #  ave_mode = 'unknown'
738
739
740
741
       
  dt64type = IcD.times[0].dtype
  time_bnds = IcD.times[it_ave]
  yy, mm, dd = datetime64_to_float(time_bnds[0])
742
743
744
745
746
747
748
749
750
751
752
753
754
755
  if t1!=t2:
    if IcD.output_freq=='yearly':
      time_bnds = np.concatenate(([np.datetime64(f'{yy-1:04d}-{mm:02d}-{dd:02d}').astype(dt64type)],time_bnds))
    elif IcD.output_freq=='monthly':
      if mm==1:
        yy += -1
        mm = 13
      time_bnds = np.concatenate(([np.datetime64(f'{yy:04d}-{mm-1:02d}-{dd:02d}').astype(dt64type)],time_bnds))
    elif IcD.output_freq=='unknown':
      time_bnds = np.concatenate(([time_bnds[0]-(time_bnds[1]-time_bnds[0])], time_bnds))
    dt = np.diff(time_bnds).astype(IcD.dtype)
  else:
    # load single time instance
    dt = np.array([1])
756
757
  #dt = np.ones((it_ave.size), dtype=IcD.dtype)
  #print('Warning dt set to ones!!!')
758
759
760
761

  # --- get dimensions to allocate data
  f = Dataset(IcD.flist_ts[0], 'r')
  # FIXME: If == ('time', 'lat', 'lon') works well use it everywhere
762
763
764
  load_hfl_type = False
  load_moc_type = False
  if f.variables[var].dimensions == ('time', 'lat', 'lon'): # e.g. for heat fluxes
765
766
    nt, nc, nx = f.variables[var].shape
    nz = 0
767
    load_hfl_type = True
768
  elif f.variables[var].dimensions == ('time', 'depth', 'lat', 'lon'): # e.g. for MOC 
769
770
    nt, nz, nc, ndummy = f.variables[var].shape 
    load_moc_type = True
771
772
  elif f.variables[var].ndim==3:
    nt, nz, nc = f.variables[var].shape
773
  elif f.variables[var].ndim==2: # e.g. for 2D variables like zos and mld
774
775
776
777
778
779
780
781
782
783
784
785
    nt, nc = f.variables[var].shape
    nz = 0
  f.close()

  # --- set iz to all levels
  if isinstance(iz,str) and iz=='all':
    iz = np.arange(nz)
  #else:
  #  iz = np.array([iz])

  # --- if all data is coming from one file take faster approach
  fpaths = np.unique(IcD.flist_ts[it_ave])
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
  if use_xr:
    #print(dt)
    if load_hfl_type:
      data_ave = (IcD.ds[var][it_ave,:,0]*dt[:,np.newaxis]).sum(axis=0, dtype='float64')/dt.sum()
    elif load_moc_type:
      data_ave = (IcD.ds[var][it_ave,:,:,0]*dt[:,np.newaxis,np.newaxis]).sum(axis=0, dtype='float64')/dt.sum()
    elif nz>0 and isinstance(iz,(int,np.integer)): # data has no depth dim afterwards
      #data_ave = (IcD.ds[var][it_ave,iz,:]*dt[:,np.newaxis]).sum(axis=0)/dt.sum()
      data_ave = (IcD.ds[var][it_ave,iz,:]*dt[:,np.newaxis]).sum(axis=0, dtype='float64')/dt.sum()
    elif nz>0 and not isinstance(iz,(int,np.integer)): # data has depth dim afterwards
      data_ave = (IcD.ds[var][it_ave,iz,:]*dt[:,np.newaxis,np.newaxis]).sum(axis=0, dtype='float64')/dt.sum()
    else:
      data_ave = (IcD.ds[var][it_ave,:]*dt[:,np.newaxis]).sum(axis=0, dtype='float64')/dt.sum()
    #dataxr = dsxr[var][it_ave,:,:].mean(axis=0)
    if load_xr_data:
      data_ave = data_ave.load().data
  elif (fpaths.size==1) and not always_use_loop:
803
    f = Dataset(fpaths[0], 'r')
804
    if load_hfl_type:
805
      data_ave = (f.variables[var][IcD.its[it_ave],:,0]*dt[:,np.newaxis]).sum(axis=0, dtype='float64')/dt.sum()
806
    elif load_moc_type:
807
      data_ave = (f.variables[var][IcD.its[it_ave],:,:,0]*dt[:,np.newaxis,np.newaxis]).sum(axis=0, dtype='float64')/dt.sum()
808
    elif nz>0 and isinstance(iz,(int,np.integer)): # data has no depth dim afterwards
809
      data_ave = (f.variables[var][IcD.its[it_ave],iz,:]*dt[:,np.newaxis]).sum(axis=0, dtype='float64')/dt.sum()
810
    elif nz>0 and not isinstance(iz,(int,np.integer)): # data has depth dim afterwards
811
      data_ave = (f.variables[var][IcD.its[it_ave],iz,:]*dt[:,np.newaxis,np.newaxis]).sum(axis=0, dtype='float64')/dt.sum()
812
    else:
813
      data_ave = (f.variables[var][IcD.its[it_ave],:]*dt[:,np.newaxis]).sum(axis=0, dtype='float64')/dt.sum()
814
815
816
817
    f.close()
  # --- otherwise loop ovar all files is needed
  else:
    # --- allocate data
818
    if isinstance(iz,(int,np.integer)) or nz==0:
819
      data_ave = np.ma.zeros((nc), dtype=IcD.dtype)
820
    else:
821
      data_ave = np.ma.zeros((iz.size,nc), dtype=IcD.dtype)
822
823

    # --- average by looping over all files and time steps
824
    for ll, it in enumerate(it_ave):
825
      f = Dataset(IcD.flist_ts[it], 'r')
826
      if load_hfl_type:
827
        data_ave += f.variables[var][IcD.its[it],:,0]*dt[ll]/dt.sum()
828
      elif load_moc_type:
829
        data_ave += f.variables[var][IcD.its[it],:,:,0]*dt[ll]/dt.sum()
830
      elif nz>0:
831
        data_ave += f.variables[var][IcD.its[it],iz,:]*dt[ll]/dt.sum()
832
      else:
833
        data_ave += f.variables[var][IcD.its[it],:]*dt[ll]/dt.sum()
834
      f.close()
835
  data_ave = data_ave.astype(IcD.dtype)
836
837
838
  if verbose:
    #print(f'pyicon.time_average: var={var}: it_ave={it_ave}')
    print(f'pyicon.time_average: var={var}: it_ave={IcD.times[it_ave]}')
839
840
  return data_ave, it_ave

841
def timing(ts, string='', verbose=True):
842
843
844
845
  if ts[0]==0:
    ts = np.array([datetime.datetime.now()])
  else:
    ts = np.append(ts, [datetime.datetime.now()])
846
847
    if verbose:
      print(ts[-1]-ts[-2], ' ', (ts[-1]-ts[0]), ' '+string)
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
  return ts

def conv_gname(gname):
  gname = gname[:-4]

  ogrid = gname.split('_')[0]
  res = float(gname.split('_')[1][1:])

  lo1 = gname.split('_')[2]
  if lo1[-1]=='w':
    lo1 = -float(lo1[:-1])
  else:
    lo1 = float(lo1[:-1])
  lo2 = gname.split('_')[3]
  if lo2[-1]=='w':
    lo2 = -float(lo2[:-1])
  else:
    lo2 = float(lo2[:-1])

  la1 = gname.split('_')[4]
  if la1[-1]=='s':
    la1 = -float(la1[:-1])
  else:
    la1 = float(la1[:-1])
  la2 = gname.split('_')[5]
  if la2[-1]=='s':
    la2 = -float(la2[:-1])
  else:
    la2 = float(la2[:-1])

  lon_reg = [lo1, lo2]
  lat_reg = [la1, la2]
  return ogrid, res, lon_reg, lat_reg

Nils Brüggemann's avatar
Nils Brüggemann committed
882
883
884
"""
Grid related functions
"""
885
886
887
def identify_grid(path_grid, fpath_data):
  """ Identifies ICON grid in depending on clon.size in fpath_data.
  
Nils Brüggemann's avatar
Nils Brüggemann committed
888
889
890
891
892
893
  r2b4:  160km:    15117: OceanOnly_Icos_0158km_etopo40.nc
  r2b4a: 160km:    20480: /pool/data/ICON/grids/public/mpim/0013/icon_grid_0013_R02B04_G.nc
  r2b6:   40km:   327680: OCEANINP_pre04_LndnoLak_039km_editSLOHH2017_G.nc
  r2b8:   10km:  3729001: OceanOnly_Global_IcosSymmetric_0010km_rotatedZ37d_modified_srtm30_1min.nc
  r2b9:    5km: 14886338: OceanOnly_IcosSymmetric_4932m_rotatedZ37d_modified_srtm30_1min.nc
  r2b9a:   5km: 20971520: /pool/data/ICON/grids/public/mpim/0015/icon_grid_0015_R02B09_G.nc
894
895
896
897
898
899
900
901
902
903
  """
  
  Dgrid_list = dict()
  
  grid_name = 'r2b4'; Dgrid_list[grid_name] = dict()
  Dgrid_list[grid_name]['name'] = grid_name
  Dgrid_list[grid_name]['res'] = '160km'
  Dgrid_list[grid_name]['long_name'] = 'OceanOnly_Icos_0158km_etopo40'
  Dgrid_list[grid_name]['size'] = 15117
  Dgrid_list[grid_name]['fpath_grid'] = path_grid + Dgrid_list[grid_name]['long_name'] + '/' + Dgrid_list[grid_name]['long_name'] + '.nc'
Nils Brüggemann's avatar
Nils Brüggemann committed
904
905
906
907
908
909
910
911
 
  grid_name = 'r2b4a'; Dgrid_list[grid_name] = dict()
  Dgrid_list[grid_name]['name'] = grid_name
  Dgrid_list[grid_name]['res'] = '160km'
  Dgrid_list[grid_name]['long_name'] = 'icon_grid_0013_R02B04_G'
  Dgrid_list[grid_name]['size'] = 20480
  Dgrid_list[grid_name]['fpath_grid'] = path_grid + Dgrid_list[grid_name]['long_name'] + '/' + Dgrid_list[grid_name]['long_name'] + '.nc'

Nils Brüggemann's avatar
Nils Brüggemann committed
912
  grid_name = 'r2b6old'; Dgrid_list[grid_name] = dict()
913
914
915
916
917
918
  Dgrid_list[grid_name]['name'] = grid_name
  Dgrid_list[grid_name]['res'] = '40km'
  Dgrid_list[grid_name]['long_name'] = 'OCEANINP_pre04_LndnoLak_039km_editSLOHH2017_G'
  Dgrid_list[grid_name]['size'] = 327680
  Dgrid_list[grid_name]['fpath_grid'] = path_grid + Dgrid_list[grid_name]['long_name'] + '/' + Dgrid_list[grid_name]['long_name'] + '.nc'
  
919
920
921
922
923
924
925
  grid_name = 'r2b6'; Dgrid_list[grid_name] = dict()
  Dgrid_list[grid_name]['name'] = grid_name
  Dgrid_list[grid_name]['res'] = '40km'
  Dgrid_list[grid_name]['long_name'] = 'OceanOnly_Global_IcosSymmetric_0039km_rotatedZ37d_BlackSea_Greenland_modified_srtm30_1min'
  Dgrid_list[grid_name]['size'] = 235403 
  Dgrid_list[grid_name]['fpath_grid'] = path_grid + Dgrid_list[grid_name]['long_name'] + '/' + Dgrid_list[grid_name]['long_name'] + '.nc'

926
927
928
929
930
931
932
933
934
935
936
937
938
  grid_name = 'r2b8'; Dgrid_list[grid_name] = dict()
  Dgrid_list[grid_name]['name'] = grid_name
  Dgrid_list[grid_name]['res'] = '10km'
  Dgrid_list[grid_name]['long_name'] = 'OceanOnly_Global_IcosSymmetric_0010km_rotatedZ37d_modified_srtm30_1min'
  Dgrid_list[grid_name]['size'] = 3729001
  Dgrid_list[grid_name]['fpath_grid'] = path_grid + Dgrid_list[grid_name]['long_name'] + '/' + Dgrid_list[grid_name]['long_name'] + '.nc'
  
  grid_name = 'r2b9'; Dgrid_list[grid_name] = dict()
  Dgrid_list[grid_name]['name'] = grid_name
  Dgrid_list[grid_name]['res'] = '5km'
  Dgrid_list[grid_name]['long_name'] = 'OceanOnly_IcosSymmetric_4932m_rotatedZ37d_modified_srtm30_1min'
  Dgrid_list[grid_name]['size'] = 14886338
  Dgrid_list[grid_name]['fpath_grid'] = path_grid + Dgrid_list[grid_name]['long_name'] + '/' + Dgrid_list[grid_name]['long_name'] + '.nc'
Nils Brüggemann's avatar
Nils Brüggemann committed
939
940
941
942
943
944
945

  grid_name = 'r2b9a'; Dgrid_list[grid_name] = dict()
  Dgrid_list[grid_name]['name'] = grid_name
  Dgrid_list[grid_name]['res'] = '5km'
  Dgrid_list[grid_name]['long_name'] = 'icon_grid_0015_R02B09_G'
  Dgrid_list[grid_name]['size'] = 20971520
  Dgrid_list[grid_name]['fpath_grid'] = path_grid + Dgrid_list[grid_name]['long_name'] + '.nc'
946
947
948
949
950
951
952
953
  
  f = Dataset(fpath_data, 'r')
  gsize = f.variables['clon'].size
  f.close()
  for grid_name in Dgrid_list.keys():
    if gsize == Dgrid_list[grid_name]['size']:
      Dgrid = Dgrid_list[grid_name]
      break
Nils Brüggemann's avatar
Nils Brüggemann committed
954
  #fpath_grid = '/pool/data/ICON/oes/input/r0003/' + Dgrid['long_name'] +'/' + Dgrid['long_name'] + '.nc'
955
956
  return Dgrid

Nils Brüggemann's avatar
Nils Brüggemann committed
957
958
959
960
961
962
963
964
965
966
def mask_big_triangles(vlon, vertex_of_cell, Tri):
  mask_bt = (
      (np.abs(  vlon[vertex_of_cell[:,0]] 
              - vlon[vertex_of_cell[:,1]])>180.)
    | (np.abs(  vlon[vertex_of_cell[:,0]] 
              - vlon[vertex_of_cell[:,2]])>180.)
                )
  Tri.set_mask(mask_bt)
  return Tri, mask_bt

967
968
969
970
971
972
973
974
975
976
977
978
979
980
def crop_tripolar_grid(lon_reg, lat_reg,
                       clon, clat, vertex_of_cell, edge_of_cell):
  ind_reg = np.where(   (clon>lon_reg[0]) 
                      & (clon<=lon_reg[1]) 
                      & (clat>lat_reg[0]) 
                      & (clat<=lat_reg[1]) )[0]
  clon = clon[ind_reg]
  clat = clat[ind_reg]
  vertex_of_cell = vertex_of_cell[ind_reg,:]
  edge_of_cell   = edge_of_cell[ind_reg,:]
  ind_reg = ind_reg
  return clon, clat, vertex_of_cell, edge_of_cell, ind_reg

def crop_regular_grid(lon_reg, lat_reg, Lon, Lat):
981
982
983
  # this does not work since Lon[ind_reg].shape = (64800, 360)
  # cropping needs probably done by each dimension
  # in this case cropping function for data is used as well
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
  lon = Lon[0,:]
  lat = Lat[:,0]
  indx = np.where((lon>=lon_reg[0]) & (lon<lon_reg[1]))[0]
  indy = np.where((lat>=lat_reg[0]) & (lat<lat_reg[1]))[0]
  lon = lon[indx]
  lat = lat[indy]
  #ind_reg = np.where(   (Lon>=lon_reg[0]) 
  #                    & (Lon <lon_reg[1]) 
  #                    & (Lat>=lat_reg[0]) 
  #                    & (Lat <lat_reg[1]) )[0]
  ind_reg = ((Lon>=lon_reg[0]) & (Lon<lon_reg[1]) & (Lat>=lat_reg[0]) & (Lat<lat_reg[1])).flatten()
  Lon, Lat = np.meshgrid(lon, lat)
  #Lon = Lon[ind_reg]
  #Lat = Lat[ind_reg]
  return Lon, Lat, lon, lat, ind_reg, indx, indy
999

Nils Brüggemann's avatar
Nils Brüggemann committed
1000
"""
For faster browsing, not all history is shown. View entire blame