pyicon_tb.py 41.1 KB
Newer Older
1
import sys, glob, os
2
3
import json
# --- calculations
4
5
6
import numpy as np
from scipy import interpolate
from scipy.spatial import cKDTree
7
8
9
# --- reading data 
from netCDF4 import Dataset, num2date
import datetime
10
11
12
13
14
# --- plotting
import matplotlib.pyplot as plt
import matplotlib
from matplotlib import ticker
#import my_toolbox as my
nbruegge's avatar
nbruegge committed
15
import cartopy
16
import cartopy.crs as ccrs
nbruegge's avatar
nbruegge committed
17
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
18
import cmocean
19
# --- debugging
20
21
from ipdb import set_trace as mybreak  
from importlib import reload
22
#from file2 import *
23

24
25
"""
pyicon
26
27
#  icon_to_regular_grid
#  icon_to_section
nbruegge's avatar
nbruegge committed
28
29
30
  apply_ckdtree
  ckdtree_hgrid
  ckdtree_section
31
  calc_ckdtree
nbruegge's avatar
nbruegge committed
32
33
  haversine_dist
  derive_section_points
34
35
36
37
38
  timing
  conv_gname
  identify_grid
  crop_tripolar_grid
  crop_regular_grid
nbruegge's avatar
nbruegge committed
39
40
41
  get_files_of_timeseries
  get_varnames
  get_timesteps
42
43
44
45
46
47
48
49
50

  ?load_data
  ?load_grid

  ?hplot
  ?update_hplot
  ?vplot
  ?update_vplot

nbruegge's avatar
nbruegge committed
51
  #IconDataFile
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

  IconData
  IP_hor_sec_rect

  QuickPlotWebsite

  IDa: Icon data set (directory of files)
    - info about tsteps
    - info about vars
    - info about grid
    - IGr: Icon grid
    - IVa: Icon variable if loaded
  IIn: Icon interpolator class

  IPl: Icon plot class

IDa = pyic.IconData(fpath or path)
IDa.load_grid()
IDa.show()

IPl = pyic.hplot(IDa, 'var', iz, tstep, IIn)

"""

76
77
78
79
80
81
82
83
class pyicon_configure(object):
  def __init__(self, fpath_config):
    with open(fpath_config) as file_json:
      Dsettings = json.load(file_json)
    for key in Dsettings.keys():
      setattr(self, key, Dsettings[key])
    return

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#def icon_to_regular_grid(data, shape, distances=None, \
#                  inds=None, radius_of_influence=100e3):
#  """
#  """
#  data_interpolated = apply_ckdtree(data, distances=distances, inds=inds, 
#                                    radius_of_influence=radius_of_influence)
#  data_interpolated = data_interpolated.reshape(shape)
#  return data_interpolated
#
#def icon_to_section(data, distances=None, \
#                  inds=None, radius_of_influence=100e3):
#  """
#  """
#  data_interpolated = apply_ckdtree(data, distances=distances, inds=inds, 
#                                    radius_of_influence=radius_of_influence)
#  return data_interpolated

Nils Brüggemann's avatar
Nils Brüggemann committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
def apply_ckdtree_base(data, inds, distances, radius_of_influence=100e3):
  if distances.ndim == 1:
    #distances_ma = np.ma.masked_greater(distances, radius_of_influence)
    if data.ndim==1:
      data_interpolated = data[inds]
      data_interpolated[distances>=radius_of_influence] = np.nan
    elif data.ndim==2:
      data_interpolated = data[:,inds]
      data_interpolated[:,distances>=radius_of_influence] = np.nan
  else:
    #raise ValueError("::: distances.ndim>1 is not properly supported yet. :::")
    #distances_ma = np.ma.masked_greater(distances, radius_of_influence)
    weights = 1.0 / distances**2
    if data.ndim==1:
      data_interpolated = np.ma.sum(weights * data[inds], axis=1) / np.ma.sum(weights, axis=1)
      #data_interpolated[distances>=radius_of_influence] = np.nan
    elif data.ndim==2:
      data_interpolated = np.ma.sum(weights[np.newaxis,:,:] * data[:,inds], axis=2) / np.ma.sum(weights[np.newaxis,:,:], axis=2)
      #data_interpolated[:,distances>=radius_of_influence] = np.nan
    data_interpolated = np.ma.masked_invalid(data_interpolated)

  return data_interpolated

124
def apply_ckdtree(data, fpath_ckdtree, coordinates='clat clon', radius_of_influence=100e3):
nbruegge's avatar
nbruegge committed
125
  """
126
  * credits
127
    function modified from pyfesom (Nikolay Koldunov)
128
  """
129
  ddnpz = np.load(fpath_ckdtree)
130
131
  #if coordinates=='clat clon':
  if 'clon' in coordinates:
132
133
    distances = ddnpz['dckdtree_c']
    inds = ddnpz['ickdtree_c'] 
134
135
  #elif coordinates=='elat elon':
  elif 'elon' in coordinates:
136
137
    distances = ddnpz['dckdtree_e']
    inds = ddnpz['ickdtree_e'] 
138
139
  #elif coordinates=='vlat vlon':
  elif 'vlon' in coordinates:
140
141
142
143
144
    distances = ddnpz['dckdtree_v']
    inds = ddnpz['ickdtree_v'] 
  else:
    raise ValueError('::: Error: Unsupported coordinates: %s! ::: ' % (coordinates))

Nils Brüggemann's avatar
Nils Brüggemann committed
145
  data_interpolated = apply_ckdtree_base(data, inds, distances, radius_of_influence)
146
147
  return data_interpolated

Nils Brüggemann's avatar
Nils Brüggemann committed
148
149
150
151
152
153
154
155
156
def interp_to_rectgrid(data, fpath_ckdtree, coordinates='clat clon'):
  ddnpz = np.load(fpath_ckdtree)
  lon = ddnpz['lon'] 
  lat = ddnpz['lat'] 
  data = apply_ckdtree(data, fpath_ckdtree, coordinates=coordinates)
  data = data.reshape([lat.size, lon.size])
  data[data==0.] = np.ma.masked
  return lon, lat, data

nbruegge's avatar
nbruegge committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
def zonal_average(fpath_data, var, basin='global', it=0, fpath_fx='', fpath_ckdtree=''):

  for fp in [fpath_data, fpath_fx, fpath_ckdtree]:
    if not os.path.exists(fp):
      raise ValueError('::: Error: Cannot find file %s! :::' % (fp))

  f = Dataset(fpath_fx, 'r')
  basin_c = f.variables['basin_c'][:]
  mask_basin = np.zeros(basin_c.shape, dtype=bool)
  if basin.lower()=='atlantic' or basin=='atl':
    mask_basin[basin_c==1] = True 
  elif basin.lower()=='pacific' or basin=='pac':
    mask_basin[basin_c==3] = True 
  elif basin.lower()=='southern ocean' or basin=='soc' or basin=='so':
    mask_basin[basin_c==6] = True 
  elif basin.lower()=='indian ocean' or basin=='ind' or basin=='io':
    mask_basin[basin_c==7] = True 
  elif basin.lower()=='global' or basin=='glob' or basin=='glo':
    mask_basin[basin_c!=0] = True 
  elif basin.lower()=='indopacific' or basin=='indopac':
    mask_basin[(basin_c==3) | (basin_c==7)] = True 
Nils Brüggemann's avatar
Nils Brüggemann committed
178
179
  elif basin.lower()=='indopacso':
    mask_basin[(basin_c==3) | (basin_c==7) | (basin_c==6)] = True 
nbruegge's avatar
nbruegge committed
180
181
182
183
184
185
186
187
188
189
  f.close()
  
  ddnpz = np.load(fpath_ckdtree)
  lon = ddnpz['lon'] 
  lat = ddnpz['lat'] 
  shape = [lat.size, lon.size]
  lat_sec = lat
  
  f = Dataset(fpath_data, 'r')
  nz = f.variables[var].shape[1]
190
  coordinates = f.variables[var].coordinates
nbruegge's avatar
nbruegge committed
191
192
  data_zave = np.ma.zeros((nz,lat_sec.size))
  for k in range(nz):
nbruegge's avatar
nbruegge committed
193
    #print('k = %d/%d'%(k,nz))
nbruegge's avatar
nbruegge committed
194
195
196
197
198
199
200
201
202
    # --- load data
    data = f.variables[var][it,k,:]
    # --- mask land points
    data[data==0] = np.ma.masked
    # --- mask not-this-basin points
    data[mask_basin==False] = np.ma.masked
    # --- go to normal np.array (not np.ma object)
    data = data.filled(0.)
    # --- interpolate to rectangular grid
203
204
    datai = apply_ckdtree(data, fpath_ckdtree, coordinates=coordinates)
    datai = datai.reshape(shape)
nbruegge's avatar
nbruegge committed
205
206
207
208
209
210
211
    # --- go back to masked array
    datai = np.ma.array(datai, mask=datai==0.)
    # --- do zonal average
    data_zave[k,:] = datai.mean(axis=1)
  f.close()
  return lat_sec, data_zave

212
def zonal_average_3d_data(data3d, basin='global', it=0, coordinates='clat clon', fpath_fx='', fpath_ckdtree=''):
nbruegge's avatar
nbruegge committed
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
  """ Like zonal_average but here data instead of path to data is given. This can only work if the whole data array fits into memory.
  """

  for fp in [fpath_fx, fpath_ckdtree]:
    if not os.path.exists(fp):
      raise ValueError('::: Error: Cannot find file %s! :::' % (fp))

  f = Dataset(fpath_fx, 'r')
  basin_c = f.variables['basin_c'][:]
  mask_basin = np.zeros(basin_c.shape, dtype=bool)
  if basin.lower()=='atlantic' or basin=='atl':
    mask_basin[basin_c==1] = True 
  elif basin.lower()=='pacific' or basin=='pac':
    mask_basin[basin_c==3] = True 
  elif basin.lower()=='southern ocean' or basin=='soc' or basin=='so':
    mask_basin[basin_c==6] = True 
  elif basin.lower()=='indian ocean' or basin=='ind' or basin=='io':
    mask_basin[basin_c==7] = True 
  elif basin.lower()=='global' or basin=='glob' or basin=='glo':
    mask_basin[basin_c!=0] = True 
  elif basin.lower()=='indopacific' or basin=='indopac':
    mask_basin[(basin_c==3) | (basin_c==7)] = True 
Nils Brüggemann's avatar
Nils Brüggemann committed
235
236
  elif basin.lower()=='indopacso':
    mask_basin[(basin_c==3) | (basin_c==7) | (basin_c==6)] = True 
nbruegge's avatar
nbruegge committed
237
238
239
  f.close()
  
  ddnpz = np.load(fpath_ckdtree)
240
241
  #dckdtree = ddnpz['dckdtree']
  #ickdtree = ddnpz['ickdtree'] 
nbruegge's avatar
nbruegge committed
242
243
244
245
246
247
248
249
  lon = ddnpz['lon'] 
  lat = ddnpz['lat'] 
  shape = [lat.size, lon.size]
  lat_sec = lat
  
  nz = data3d.shape[0]
  data_zave = np.ma.zeros((nz,lat_sec.size))
  for k in range(nz):
Nils Brüggemann's avatar
Nils Brüggemann committed
250
    data = 1.*data3d[k,:]
nbruegge's avatar
nbruegge committed
251
252
253
254
255
256
257
258
    #print('k = %d/%d'%(k,nz))
    # --- mask land points
    data[data==0] = np.ma.masked
    # --- mask not-this-basin points
    data[mask_basin==False] = np.ma.masked
    # --- go to normal np.array (not np.ma object)
    data = data.filled(0.)
    # --- interpolate to rectangular grid
259
260
    datai = apply_ckdtree(data, fpath_ckdtree, coordinates=coordinates)
    datai = datai.reshape(shape)
nbruegge's avatar
nbruegge committed
261
262
263
264
265
266
    # --- go back to masked array
    datai = np.ma.array(datai, mask=datai==0.)
    # --- do zonal average
    data_zave[k,:] = datai.mean(axis=1)
  return lat_sec, data_zave

267
def zonal_section_3d_data(data3d, fpath_ckdtree, coordinates):
268
269
270
271
272
273
274
275
  """
  (
   lon_sec, lat_sec, dist_sec, data_sec 
  ) = pyic.zonal_section_3d_data(tbias, 
    fpath_ckdtree=path_ckdtree+'sections/r2b4_nps100_30W80S_30W80N.npz')
  """
  # --- load ckdtree
  ddnpz = np.load(fpath_ckdtree)
276
277
  #dckdtree = ddnpz['dckdtree']
  #ickdtree = ddnpz['ickdtree'] 
278
279
280
281
282
283
284
  lon_sec = ddnpz['lon_sec'] 
  lat_sec = ddnpz['lat_sec'] 
  dist_sec = ddnpz['dist_sec'] 

  nz = data3d.shape[0]
  data_sec = np.ma.zeros((nz,dist_sec.size))
  for k in range(nz):
285
    data_sec[k,:] = apply_ckdtree(data3d[k,:], fpath_ckdtree, coordinates=coordinates)
286
287
  return lon_sec, lat_sec, dist_sec, data_sec

288
289
290
291
292
293
294
295
296
297
298
def lonlat2str(lon, lat):
  if lon<0:
    lon_s = '%gW'%(-lon)
  else:
    lon_s = '%gE'%(lon)
  if lat<0:
    lat_s = '%gS'%(-lat)
  else:
    lat_s = '%gN'%(lat)
  return lon_s, lat_s

nbruegge's avatar
nbruegge committed
299
def ckdtree_hgrid(lon_reg, lat_reg, res, 
300
301
302
303
304
                 #fpath_grid_triangular='', 
                 fname_tgrid='',
                 path_tgrid='',
                 path_ckdtree='',
                 sname='',
Nils Brüggemann's avatar
Nils Brüggemann committed
305
                 gname='',
306
307
308
309
310
                 tgname='',
                 load_cgrid=True,
                 load_egrid=True,
                 load_vgrid=True,
                 n_nearest_neighbours=1,
311
312
313
                 ):
  """
  """
314
315
316
  if tgname=='':
    Drgrid = identify_grid(path_tgrid, path_tgrid+fname_tgrid) 
    tgname = Drgrid['name']
317
318
319
  lon1str, lat1str = lonlat2str(lon_reg[0], lat_reg[0])
  lon2str, lat2str = lonlat2str(lon_reg[1], lat_reg[1])

320
321
322
323
  if n_nearest_neighbours==1:
    fname = '%s_res%3.2f_%s-%s_%s-%s.npz'%(tgname, res, lon1str, lon2str, lat1str, lat2str) 
  else:
    fname = '%s_res%3.2f_%dnn_%s-%s_%s-%s.npz'%(tgname, res, n_nearest_neighbours, lon1str, lon2str, lat1str, lat2str) 
324
325
  fpath_ckdtree = path_ckdtree+fname

326
  # --- load triangular grid
327
  f = Dataset(path_tgrid+fname_tgrid, 'r')
328
329
330
331
332
333
334
335
336
  if load_cgrid:
    clon = f.variables['clon'][:] * 180./np.pi
    clat = f.variables['clat'][:] * 180./np.pi
  if load_egrid:
    elon = f.variables['elon'][:] * 180./np.pi
    elat = f.variables['elat'][:] * 180./np.pi
  if load_vgrid:
    vlon = f.variables['vlon'][:] * 180./np.pi
    vlat = f.variables['vlat'][:] * 180./np.pi
337
338
339
340
341
342
343
  f.close()

  # --- make rectangular grid 
  lon = np.arange(lon_reg[0],lon_reg[1],res)
  lat = np.arange(lat_reg[0],lat_reg[1],res)
  Lon, Lat = np.meshgrid(lon, lat)

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
  # --- ckdtree for cells, edges and vertices
  if load_cgrid:
    dckdtree_c, ickdtree_c = calc_ckdtree(lon_i=clon, lat_i=clat,
                                          lon_o=Lon.flatten(), lat_o = Lat.flatten(),
                                          n_nearest_neighbours=n_nearest_neighbours,
                                          )
  if load_egrid:
    dckdtree_e, ickdtree_e = calc_ckdtree(lon_i=elon, lat_i=elat,
                                          lon_o=Lon.flatten(), lat_o = Lat.flatten(),
                                          n_nearest_neighbours=n_nearest_neighbours,
                                          )
  if load_vgrid:
    dckdtree_v, ickdtree_v = calc_ckdtree(lon_i=vlon, lat_i=vlat,
                                          lon_o=Lon.flatten(), lat_o = Lat.flatten(),
                                          n_nearest_neighbours=n_nearest_neighbours,
                                          )

  # --- save dict
  Dsave = dict()
  if load_cgrid: 
    Dsave['dckdtree_c'] = dckdtree_c
    Dsave['ickdtree_c'] = ickdtree_c
  if load_egrid: 
    Dsave['dckdtree_e'] = dckdtree_e
    Dsave['ickdtree_e'] = ickdtree_e
  if load_vgrid: 
    Dsave['dckdtree_v'] = dckdtree_v
    Dsave['ickdtree_v'] = ickdtree_v
nbruegge's avatar
nbruegge committed
372
373
374
375
376
377

  # --- save grid
  print('Saving grid file: %s' % (fpath_ckdtree))
  np.savez(fpath_ckdtree,
            lon=lon,
            lat=lat,
378
            sname=sname,
Nils Brüggemann's avatar
Nils Brüggemann committed
379
            gname=gname,
380
381
382
383
384
385
386
387
            tgname='test',
            **Dsave,
            #dckdtree_c=dckdtree_c,
            #ickdtree_c=ickdtree_c,
            #dckdtree_e=dckdtree_e,
            #ickdtree_e=ickdtree_e,
            #dckdtree_v=dckdtree_v,
            #ickdtree_v=ickdtree_v,
nbruegge's avatar
nbruegge committed
388
389
390
391
           )
  return

def ckdtree_section(p1, p2, npoints=101, 
392
393
394
395
                 fname_tgrid='',
                 path_tgrid='',
                 path_ckdtree='',
                 sname='auto',
Nils Brüggemann's avatar
Nils Brüggemann committed
396
                 gname='',
397
                 tgname='',
nbruegge's avatar
nbruegge committed
398
399
400
                 ):
  """
  """
401
402
403
  if tgname=='':
    Drgrid = identify_grid(path_tgrid, path_tgrid+fname_tgrid) 
    tgname = Drgrid['name']
404
405
406
407
408
  lon1str, lat1str = lonlat2str(p1[0], p1[1])
  lon2str, lat2str = lonlat2str(p2[0], p2[1])

  fname = '%s_nps%d_%s%s_%s%s.npz'%(tgname, npoints, lon1str, lat1str, lon2str, lat2str) 
  fpath_ckdtree = path_ckdtree+fname
nbruegge's avatar
nbruegge committed
409
410

  # --- load triangular grid
411
  f = Dataset(path_tgrid+fname_tgrid, 'r')
nbruegge's avatar
nbruegge committed
412
413
  clon = f.variables['clon'][:] * 180./np.pi
  clat = f.variables['clat'][:] * 180./np.pi
414
415
416
417
  elon = f.variables['elon'][:] * 180./np.pi
  elat = f.variables['elat'][:] * 180./np.pi
  vlon = f.variables['vlon'][:] * 180./np.pi
  vlat = f.variables['vlat'][:] * 180./np.pi
nbruegge's avatar
nbruegge committed
418
419
  f.close()

420
421
422
  if sname=='auto':
    sname = fpath_ckdtree.split('/')[-1][:-4]

nbruegge's avatar
nbruegge committed
423
424
425
  # --- derive section points
  lon_sec, lat_sec, dist_sec = derive_section_points(p1, p2, npoints)

426
427
428
429
430
431
432
  # --- ckdtree for cells, edges and vertices
  dckdtree_c, ickdtree_c = calc_ckdtree(lon_i=clon, lat_i=clat,
                                        lon_o=lon_sec, lat_o=lat_sec)
  dckdtree_e, ickdtree_e = calc_ckdtree(lon_i=elon, lat_i=elat,
                                        lon_o=lon_sec, lat_o=lat_sec)
  dckdtree_v, ickdtree_v = calc_ckdtree(lon_i=vlon, lat_i=vlat,
                                        lon_o=lon_sec, lat_o=lat_sec)
nbruegge's avatar
nbruegge committed
433
434
435
436

  # --- save grid
  print('Saving grid file: %s' % (fpath_ckdtree))
  np.savez(fpath_ckdtree,
437
438
439
440
441
442
            dckdtree_c=dckdtree_c,
            ickdtree_c=ickdtree_c,
            dckdtree_e=dckdtree_e,
            ickdtree_e=ickdtree_e,
            dckdtree_v=dckdtree_v,
            ickdtree_v=ickdtree_v,
nbruegge's avatar
nbruegge committed
443
444
445
            lon_sec=lon_sec,
            lat_sec=lat_sec,
            dist_sec=dist_sec,
446
            sname=sname,
Nils Brüggemann's avatar
Nils Brüggemann committed
447
            gname=gname,
nbruegge's avatar
nbruegge committed
448
           )
449
  return dckdtree_c, ickdtree_c, lon_sec, lat_sec, dist_sec
nbruegge's avatar
nbruegge committed
450

451
def calc_ckdtree(lon_i, lat_i, lon_o, lat_o, n_nearest_neighbours=1):
nbruegge's avatar
nbruegge committed
452
453
  """
  """
454
  # --- initialize timing
455
456
#  tims = np.array([0])
#  tims = timing(tims)
457
  # --- do ckdtree
458
#  tims = timing(tims, 'CKD: define reg grid')
nbruegge's avatar
nbruegge committed
459
  lzip_i = list(zip(lon_i, lat_i))
460
#  tims = timing(tims, 'CKD: zip orig grid')
nbruegge's avatar
nbruegge committed
461
  tree = cKDTree(lzip_i)
462
#  tims = timing(tims, 'CKD: CKDgrid')
nbruegge's avatar
nbruegge committed
463
  lzip_o = list(zip(lon_o, lat_o))
464
465
466
#  tims = timing(tims, 'CKD: zip reg grid')
  dckdtree, ickdtree = tree.query(lzip_o , k=n_nearest_neighbours, n_jobs=1)
#  tims = timing(tims, 'CKD: tree query')
nbruegge's avatar
nbruegge committed
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
  return dckdtree, ickdtree

def haversine_dist(lon_ref, lat_ref, lon_pts, lat_pts, degree=True):
  # for details see http://en.wikipedia.org/wiki/Haversine_formula
  r = 6378.e3
  if degree:
    lon_ref = lon_ref * np.pi/180.
    lat_ref = lat_ref * np.pi/180.
    lon_pts = lon_pts * np.pi/180.
    lat_pts = lat_pts * np.pi/180.
  arg = np.sqrt(   np.sin(0.5*(lat_pts-lat_ref))**2 
                 + np.sin(0.5*(lon_pts-lon_ref))**2
                 * np.cos(lat_ref)*np.cos(lat_pts) )
  dist = 2*r * np.arcsin(arg)
  return dist

def derive_section_points(p1, p2, npoints=101,):
  # --- derive section points
  if p1[0]==p2[0]:
    lon_sec = p1[0]*np.ones((npoints)) 
    lat_sec = np.linspace(p1[1],p2[1],npoints)
  else:
    lon_sec = np.linspace(p1[0],p2[0],npoints)
    lat_sec = (p2[1]-p1[1])/(p2[0]-p1[0])*(xsec-p1[0])+p1[1]
  dist_sec = haversine_dist(lon_sec[0], lat_sec[0], lon_sec, lat_sec)
  return lon_sec, lat_sec, dist_sec
493

494
495
496
497
498
499
500
501
502
503
504
505
def load_hsnap(fpath, var, it=0, iz=0, fpath_ckdtree=''):
  f = Dataset(fpath, 'r')
  print("Loading %s from %s" % (var, fpath))
  if f.variables[var].ndim==2:
    data = f.variables[var][it,:]
  else:
    data = f.variables[var][it,iz,:]
  f.close()

  data[data==0.] = np.ma.masked
  return data

506
507
508
509
510
def timing(ts, string=''):
  if ts[0]==0:
    ts = np.array([datetime.datetime.now()])
  else:
    ts = np.append(ts, [datetime.datetime.now()])
511
    print(ts[-1]-ts[-2], ' ', (ts[-1]-ts[0]), ' '+string)
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
  return ts

def conv_gname(gname):
  gname = gname[:-4]

  ogrid = gname.split('_')[0]
  res = float(gname.split('_')[1][1:])

  lo1 = gname.split('_')[2]
  if lo1[-1]=='w':
    lo1 = -float(lo1[:-1])
  else:
    lo1 = float(lo1[:-1])
  lo2 = gname.split('_')[3]
  if lo2[-1]=='w':
    lo2 = -float(lo2[:-1])
  else:
    lo2 = float(lo2[:-1])

  la1 = gname.split('_')[4]
  if la1[-1]=='s':
    la1 = -float(la1[:-1])
  else:
    la1 = float(la1[:-1])
  la2 = gname.split('_')[5]
  if la2[-1]=='s':
    la2 = -float(la2[:-1])
  else:
    la2 = float(la2[:-1])

  lon_reg = [lo1, lo2]
  lat_reg = [la1, la2]
  return ogrid, res, lon_reg, lat_reg

546
547
548
549
550
551
552
def identify_grid(path_grid, fpath_data):
  """ Identifies ICON grid in depending on clon.size in fpath_data.
  
  r2b4: 160km:    15117: OceanOnly_Icos_0158km_etopo40.nc
  r2b6:  40km:   327680: OCEANINP_pre04_LndnoLak_039km_editSLOHH2017_G.nc
  r2b8:  10km:  3729001: OceanOnly_Global_IcosSymmetric_0010km_rotatedZ37d_modified_srtm30_1min.nc
  r2b9:   5km: 14886338: OceanOnly_IcosSymmetric_4932m_rotatedZ37d_modified_srtm30_1min.nc
Nils Brüggemann's avatar
Nils Brüggemann committed
553
  r2b9a:  5km: 20971520: /pool/data/ICON/grids/public/mpim/0015/icon_grid_0015_R02B09_G.nc
554
555
556
557
558
559
560
561
562
563
564
  """
  
  Dgrid_list = dict()
  
  grid_name = 'r2b4'; Dgrid_list[grid_name] = dict()
  Dgrid_list[grid_name]['name'] = grid_name
  Dgrid_list[grid_name]['res'] = '160km'
  Dgrid_list[grid_name]['long_name'] = 'OceanOnly_Icos_0158km_etopo40'
  Dgrid_list[grid_name]['size'] = 15117
  Dgrid_list[grid_name]['fpath_grid'] = path_grid + Dgrid_list[grid_name]['long_name'] + '/' + Dgrid_list[grid_name]['long_name'] + '.nc'
  
Nils Brüggemann's avatar
Nils Brüggemann committed
565
  grid_name = 'r2b6old'; Dgrid_list[grid_name] = dict()
566
567
568
569
570
571
  Dgrid_list[grid_name]['name'] = grid_name
  Dgrid_list[grid_name]['res'] = '40km'
  Dgrid_list[grid_name]['long_name'] = 'OCEANINP_pre04_LndnoLak_039km_editSLOHH2017_G'
  Dgrid_list[grid_name]['size'] = 327680
  Dgrid_list[grid_name]['fpath_grid'] = path_grid + Dgrid_list[grid_name]['long_name'] + '/' + Dgrid_list[grid_name]['long_name'] + '.nc'
  
572
573
574
575
576
577
578
  grid_name = 'r2b6'; Dgrid_list[grid_name] = dict()
  Dgrid_list[grid_name]['name'] = grid_name
  Dgrid_list[grid_name]['res'] = '40km'
  Dgrid_list[grid_name]['long_name'] = 'OceanOnly_Global_IcosSymmetric_0039km_rotatedZ37d_BlackSea_Greenland_modified_srtm30_1min'
  Dgrid_list[grid_name]['size'] = 235403 
  Dgrid_list[grid_name]['fpath_grid'] = path_grid + Dgrid_list[grid_name]['long_name'] + '/' + Dgrid_list[grid_name]['long_name'] + '.nc'

579
580
581
582
583
584
585
586
587
588
589
590
591
  grid_name = 'r2b8'; Dgrid_list[grid_name] = dict()
  Dgrid_list[grid_name]['name'] = grid_name
  Dgrid_list[grid_name]['res'] = '10km'
  Dgrid_list[grid_name]['long_name'] = 'OceanOnly_Global_IcosSymmetric_0010km_rotatedZ37d_modified_srtm30_1min'
  Dgrid_list[grid_name]['size'] = 3729001
  Dgrid_list[grid_name]['fpath_grid'] = path_grid + Dgrid_list[grid_name]['long_name'] + '/' + Dgrid_list[grid_name]['long_name'] + '.nc'
  
  grid_name = 'r2b9'; Dgrid_list[grid_name] = dict()
  Dgrid_list[grid_name]['name'] = grid_name
  Dgrid_list[grid_name]['res'] = '5km'
  Dgrid_list[grid_name]['long_name'] = 'OceanOnly_IcosSymmetric_4932m_rotatedZ37d_modified_srtm30_1min'
  Dgrid_list[grid_name]['size'] = 14886338
  Dgrid_list[grid_name]['fpath_grid'] = path_grid + Dgrid_list[grid_name]['long_name'] + '/' + Dgrid_list[grid_name]['long_name'] + '.nc'
Nils Brüggemann's avatar
Nils Brüggemann committed
592
593
594
595
596
597
598

  grid_name = 'r2b9a'; Dgrid_list[grid_name] = dict()
  Dgrid_list[grid_name]['name'] = grid_name
  Dgrid_list[grid_name]['res'] = '5km'
  Dgrid_list[grid_name]['long_name'] = 'icon_grid_0015_R02B09_G'
  Dgrid_list[grid_name]['size'] = 20971520
  Dgrid_list[grid_name]['fpath_grid'] = path_grid + Dgrid_list[grid_name]['long_name'] + '.nc'
599
600
601
602
603
604
605
606
  
  f = Dataset(fpath_data, 'r')
  gsize = f.variables['clon'].size
  f.close()
  for grid_name in Dgrid_list.keys():
    if gsize == Dgrid_list[grid_name]['size']:
      Dgrid = Dgrid_list[grid_name]
      break
Nils Brüggemann's avatar
Nils Brüggemann committed
607
  #fpath_grid = '/pool/data/ICON/oes/input/r0003/' + Dgrid['long_name'] +'/' + Dgrid['long_name'] + '.nc'
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
  return Dgrid

def crop_tripolar_grid(lon_reg, lat_reg,
                       clon, clat, vertex_of_cell, edge_of_cell):
  ind_reg = np.where(   (clon>lon_reg[0]) 
                      & (clon<=lon_reg[1]) 
                      & (clat>lat_reg[0]) 
                      & (clat<=lat_reg[1]) )[0]
  clon = clon[ind_reg]
  clat = clat[ind_reg]
  vertex_of_cell = vertex_of_cell[ind_reg,:]
  edge_of_cell   = edge_of_cell[ind_reg,:]
  ind_reg = ind_reg
  return clon, clat, vertex_of_cell, edge_of_cell, ind_reg

def crop_regular_grid(lon_reg, lat_reg, Lon, Lat):
624
625
626
627
628
  # this does not work since Lon[ind_reg].shape = (64800, 360)
  # cropping needs probably done by each dimension
  # in this case cropping function for data is used as well
  print(Lon.shape)
  ind_reg = np.where(   (Lon>=lon_reg[0]) 
629
                      & (Lon<=lon_reg[1]) 
630
                      & (Lat>=lat_reg[0]) 
631
632
633
634
635
636
637
638
                      & (Lat<=lat_reg[1]) )[0]
  Lon = Lon[ind_reg]
  Lat = Lat[ind_reg]
  lon = Lon[0,:] 
  lat = Lat[:,0] 
  ind_reg = ind_reg
  return Lon, Lat, lon, lat, ind_reg

639
640
def get_files_of_timeseries(path_data, fname):
  flist = np.array(glob.glob(path_data+fname))
nbruegge's avatar
nbruegge committed
641
642
  flist.sort()
  times_flist = np.zeros(flist.size, dtype='datetime64[s]')
nbruegge's avatar
nbruegge committed
643
644
645
646
  #for l, fpath in enumerate(flist):
  #  tstr = fpath.split('/')[-1].split('_')[-1][:-4]
  #  times_flist[l] = '%s-%s-%sT%s:%s:%s' % ( (tstr[:4], tstr[4:6], tstr[6:8], 
  #                                      tstr[9:11], tstr[11:13], tstr[13:15]))
Nils Brüggemann's avatar
Nils Brüggemann committed
647
  if flist.size==0:
648
    raise ValueError('::: Error: No file found matching %s!:::' % (path_data+fname))
nbruegge's avatar
nbruegge committed
649
650
651
652
653
654
655
656
657
658
659
  return times_flist, flist

def get_varnames(fpath, skip_vars=[]):
  f = Dataset(fpath, 'r')
  varnames = f.variables.keys()
  f.close()
  #varnames = [var for var in varnames if not var.startswith('clon')]
  for skip_var in skip_vars:
    varnames = [var for var in varnames if not var.startswith(skip_var)]
  return varnames

Nils Brüggemann's avatar
Nils Brüggemann committed
660
661
662
663
664
665
666
667
668
669
def nctime2numpy(ncv):
  np_time = num2date(ncv[:], units=ncv.units, calendar=ncv.calendar
                  ).astype("datetime64[s]")
  return np_time


def get_timesteps(flist, time_mode='num2date'):
  #f = Dataset(flist[0], 'r')
  #nt = f.variables['time'].size 
  #f.close()
670
  #times = np.zeros((len(flist)*nt))
Nils Brüggemann's avatar
Nils Brüggemann committed
671
672
673
674
675
676
  #times = np.array(['2010']*(len(flist)*nt), dtype='datetime64[s]')
  #its = np.zeros((len(flist)*nt), dtype='int')
  #flist_ts = np.zeros((len(flist)*nt), dtype='<U200')
  times = np.array([], dtype='datetime64[s]')
  its = np.array([], dtype='int')
  flist_ts = np.array([], dtype='<U200')
nbruegge's avatar
nbruegge committed
677
678
  for nn, fpath in enumerate(flist):
    f = Dataset(fpath, 'r')
679
    ncv = f.variables['time']
Nils Brüggemann's avatar
Nils Brüggemann committed
680
681
    nt = f.variables['time'].size 
    if time_mode=='num2date':
682
      np_time = num2date(ncv[:], units=ncv.units, calendar=ncv.calendar
683
                      ).astype("datetime64[s]")
Nils Brüggemann's avatar
Nils Brüggemann committed
684
    elif time_mode=='float2date':
685
686
687
688
689
690
691
692
693
694
695
696
      tps = ncv[:]
      secs_tot = np.round(86400.*(tps-np.floor(tps)))
      hours = np.floor(secs_tot/3600.)
      mins = np.floor((secs_tot-hours*3600.)/60.) 
      secs = secs_tot - hours*3600. - mins*60.
      tstrs = [0]*tps.size
      for l in range(tps.size):
        tp = tps[l]
        tstr = '%s-%s-%sT%02d:%02d:%02d' % (str(tp)[:4], str(tp)[4:6], str(tp)[6:8], hours[l], mins[l], secs[l]) 
        tstrs[l] = tstr
      np_time = np.array(tstrs, dtype='datetime64')
    else:
Nils Brüggemann's avatar
Nils Brüggemann committed
697
698
699
700
701
702
703
704
      raise ValueError('::: Error: Wrong time_mode %s in get_timesteps! :::' % time_mode)
    #mybreak()
    #times[nn*nt:(nn+1)*nt] = np_time
    #flist_ts[nn*nt:(nn+1)*nt] = np.array([fpath]*nt)
    #its[nn*nt:(nn+1)*nt] = np.arange(nt)
    times    = np.concatenate((times, np_time))
    flist_ts = np.concatenate((flist_ts, np.array([fpath]*nt).astype('<U200')))
    its      = np.concatenate((its, np.arange(nt, dtype='int')))
nbruegge's avatar
nbruegge committed
705
706
707
    f.close()
  return times, flist_ts, its

708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
#def nc_info(fpath):
#  if not os.path.isfile(fpath):
#    print("::: Error: file %s does not exist! :::" %(fpath))
#    sys.exit()
#  
#  ##ds = xr.open_dataset(fpath)
#  f = Dataset(fpath, 'r')
#  header =  "{code:<5}: {name:<30}: {long_name:<30}: {units:<20}: {shape:<20}".format(code='code', name='name', long_name='long_name', units='units', shape='shape')
#  print header
#  print '-'*len(header)
#  ##for var in ds.variables.keys():
#  for var in f.variables.keys():
#    ##name = ds[var].name
#    nv = f.variables[var]
#    name = "{:<30}: ".format(var[:29])
#    try:
#      ##lname = ds[var].long_name
#      lname = nv.long_name
#      lname = "{:<30}: ".format(lname[:29])
#    except:
#      lname = " "*30+": "
#    try:
#      units = nv.units
#      units = "{:<20}: ".format(units[:19])
#    except:
#      units = " "*20+": "
#    try:
#      ##code = ds[var].code
#      code = nv.code
#      code = "% 5d: "%(code)
#    except:
#      code = "     : "
#    ##shape = str(ds[var].shape)
#    shape = str(nv.shape)
#    shape = "{:<20}: ".format(shape[:19])
#    print code+name+lname+units+shape
#  f.close()
#  return Dfinf

747

748
749
750
# //////////////////////////////////////////////////////////////////////////////// 
# //////////////////////////////////////////////////////////////////////////////// 
# ---- classes and methods necessary for Jupyter data viewer
751

nbruegge's avatar
nbruegge committed
752
# ////////////////////////////////////////
753
class IP_hor_sec_rect(object):
754
755
756
757
758
759
  """
  To do:
  * similar to qp_hor_plot, see if we need both
  * try to use hplot_base
  """

760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
  def __init__(self, 
               IcD, ax='', cax='',
               var='', clim='auto', nc=1, cmap='viridis',
               transform=None, lon_reg='auto', lat_reg='auto',
               title='auto',
               time_string='auto',
               depth_string='auto',
               edgecolor='none',
               ):
    self.ax=ax
    self.cax=cax
    self.var=var

    data = getattr(IcD, var)
    if IcD.use_tgrid:
775
      self.hpc = shade(IcD.Tri, 
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
                           data, ax=ax, cax=cax, 
                           clim=clim, cmap=cmap, transform=transform,
                           edgecolor=edgecolor,
                            )
      lon_reg = IcD.lon_reg
      lat_reg = IcD.lat_reg
    else:
      self.hpc = shade(IcD.lon, IcD.lat,
                           data, ax=ax, cax=cax, 
                           clim=clim, cmap=cmap, transform=transform,
                         ) 

      if isinstance(lon_reg, str) and lon_reg=='auto':
        lon_reg = [IcD.lon[0], IcD.lon[-1]]
      if isinstance(lat_reg, str) and lat_reg=='auto':
        lat_reg = [IcD.lat[0], IcD.lat[-1]]

    ax.set_xticks( np.linspace(lon_reg[0], lon_reg[1], 5) )
    ax.set_yticks( np.linspace(lat_reg[0], lat_reg[1], 5) )
    ax.set_xlim(*lon_reg)
    ax.set_ylim(*lat_reg)

    #ax.add_feature(cfeature.LAND, facecolor='0.7', zorder=3)
    ax.coastlines()

    if title=='auto':
      self.htitle = ax.set_title(IcD.long_name[var]+' ['+IcD.units[var]+']')
    else:
      self.htitle = ax.set_title(title)

    if time_string!='none':
      self.htstr = ax.text(0.05, 0.025, IcD.times[IcD.step_snap], 
                           transform=plt.gcf().transFigure)
    if depth_string!='none':
      self.hdstr = ax.text(0.05, 0.08, 'depth = %4.1fm'%(IcD.depth[IcD.iz]), 
                           transform=plt.gcf().transFigure)
    return
  
  def update(self, data, IcD, title='none', 
             time_string='auto', depth_string='auto'):
    if IcD.use_tgrid:
      data_nomasked_vals = data[IcD.maskTri==False]
      #print self.hpc[0].get_array.shape()
      self.hpc[0].set_array(data_nomasked_vals)
      #print self.hpc[0].get_array.shape()
      print('hello world')
    else:
      self.hpc[0].set_array(data[1:,1:].flatten())
    if title!='none':
      self.htitle.set_text(title) 
    if time_string!='none':
      self.htstr.set_text(IcD.times[IcD.step_snap])
    if depth_string!='none':
      self.hdstr.set_text('depth = %4.1fm'%(IcD.depth[IcD.iz]))
    return

nbruegge's avatar
nbruegge committed
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
##class IP_ver_sec(object):
##  def __init__(self, 
##               IcD, ax='', cax='',
##               var='', clim='auto', nc=1, cmap='viridis',
##               title='auto',
##               time_string='auto',
##               depth_string='auto',
##               edgecolor='none',
##               ):
##    self.ax=ax
##    self.cax=cax
##    self.var=var
##
##    data = getattr(IcD, var)
##    self.hpc = shade(IcD.dist_sec, IcD.depth,
##                         data, ax=ax, cax=cax, 
##                         clim=clim, cmap=cmap,
##                       ) 
##
##    ax.set_ylim(IcD.depth.max(),0)
##
##    if title=='auto':
##      self.htitle = ax.set_title(IcD.long_name[var]+' ['+IcD.units[var]+']')
##    else:
##      self.htitle = ax.set_title(title)
##
##    if time_string!='none':
##      self.htstr = ax.text(0.05, 0.025, IcD.times[IcD.step_snap], 
##                           transform=plt.gcf().transFigure)
##    #if depth_string!='none':
##    #  self.hdstr = ax.text(0.05, 0.08, 'depth = %4.1fm'%(IcD.depth[IcD.iz]), 
##    #                       transform=plt.gcf().transFigure)
##    return
##  
##  def update(self, data, IcD, title='none', 
##             time_string='auto', depth_string='auto'):
##    if IcD.use_tgrid:
##      data_nomasked_vals = data[IcD.maskTri==False]
##      #print self.hpc[0].get_array.shape()
##      self.hpc[0].set_array(data_nomasked_vals)
##      #print self.hpc[0].get_array.shape()
##      print('hello world')
##    else:
##      self.hpc[0].set_array(data[1:,1:].flatten())
##    if title!='none':
##      self.htitle.set_text(title) 
##    if time_string!='none':
##      self.htstr.set_text(IcD.times[IcD.step_snap])
##    if depth_string!='none':
##      self.hdstr.set_text('depth = %4.1fm'%(IcD.depth[IcD.iz]))
##    return
883

884
# ================================================================================ 
885
# Quick Plots
886
887
# ================================================================================ 

888
889
890
# --------------------------------------------------------------------------------
# Horizontal plots
# --------------------------------------------------------------------------------
nbruegge's avatar
nbruegge committed
891
892
893
894
def qp_hplot(fpath, var, IcD='none', depth=-1e33, iz=0, it=0,
              rgrid_name="orig",
              path_ckdtree="",
              clim='auto', cincr=-1., cmap='auto',
895
              xlim=[-180,180], ylim=[-90,90], projection='none',
896
897
              crs_features=True,
              adjust_axlims=False,
nbruegge's avatar
nbruegge committed
898
              sasp=0.543,
899
900
              title='auto', xlabel='', ylabel='',
              verbose=1,
nbruegge's avatar
nbruegge committed
901
902
              ax='auto', cax='auto',
              logplot=False,
903
904
905
              ):


nbruegge's avatar
nbruegge committed
906
907
908
909
910
911
912
913
914
915
916
  for fp in [fpath]:
    if not os.path.exists(fp):
      raise ValueError('::: Error: Cannot find file %s! :::' % (fp))

  # get fname and path_data from fpath
  fname = fpath.split('/')[-1]
  path_data = ''
  for el in fpath.split('/')[1:-1]:
    path_data += '/'
    path_data += el
  path_data += '/'
917
918

  # --- set-up grid and region if not given to function
Nils Brüggemann's avatar
Nils Brüggemann committed
919
  if isinstance(IcD,str) and IcD=='none':
nbruegge's avatar
nbruegge committed
920
    IcD = IconData(
921
                   fname   = fname,
nbruegge's avatar
nbruegge committed
922
923
                   path_data    = path_data,
                   path_ckdtree = path_ckdtree,
Nils Brüggemann's avatar
Nils Brüggemann committed
924
925
                   rgrid_name   = rgrid_name,
                   omit_last_file = False,
nbruegge's avatar
nbruegge committed
926
                  )
Nils Brüggemann's avatar
Nils Brüggemann committed
927
928
  else:
    print('Using given IcD!')
nbruegge's avatar
nbruegge committed
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945

  if depth!=-1e33:
    iz = np.argmin((IcD.depthc-depth)**2)
  IaV = IcD.vars[var]
  step_snap = it

  # synchronize with Jupyter update_fig
  # --- load data 
  IaV.load_hsnap(fpath=IcD.flist_ts[step_snap], 
                      it=IcD.its[step_snap], 
                      iz=iz,
                      step_snap = step_snap
                     ) 
  # --- interpolate data 
  if not IcD.use_tgrid:
    IaV.interp_to_rectgrid(fpath_ckdtree=IcD.rgrid_fpath)
  # --- crop data
946

nbruegge's avatar
nbruegge committed
947
948
949
950
951
  # --- cartopy projection
  if projection=='none':
    ccrs_proj = None
  else:
    ccrs_proj = getattr(ccrs, projection)()
952

nbruegge's avatar
nbruegge committed
953
954
955
956
957
958
959
960
961
  # --- do plotting
  (ax, cax, 
   mappable,
   Dstr
  ) = hplot_base(
              IcD, IaV, 
              ax=ax, cax=cax,
              clim=clim, cmap=cmap, cincr=cincr,
              xlim=xlim, ylim=ylim,
962
              adjust_axlims=adjust_axlims,
nbruegge's avatar
nbruegge committed
963
964
              title='auto', 
              projection=projection,
965
              crs_features=crs_features,
Nils Brüggemann's avatar
Nils Brüggemann committed
966
              #use_tgrid=IcD.use_tgrid,
nbruegge's avatar
nbruegge committed
967
968
969
              logplot=logplot,
              sasp=sasp,
             )
970
971
972
973
974


  # --- output
  FigInf = dict()
  FigInf['fpath'] = fpath
nbruegge's avatar
nbruegge committed
975
  FigInf['long_name'] = IaV.long_name
nbruegge's avatar
nbruegge committed
976
  #FigInf['IcD'] = IcD
977
978
  return FigInf

nbruegge's avatar
nbruegge committed
979
980
981
982
983
984
985
986
987
988
989
990
def qp_vplot(fpath, var, IcD='none', it=0,
              sec_name="specify_sec_name",
              path_ckdtree="",
              var_fac=1.,
              clim='auto', cincr=-1., cmap='auto',
              xlim=[-180,180], ylim=[-90,90], projection='none',
              sasp=0.543,
              title='auto', xlabel='', ylabel='',
              verbose=1,
              ax='auto', cax='auto',
              logplot=False,
              log2vax=False,
nbruegge's avatar
nbruegge committed
991
              mode_load='normal',
nbruegge's avatar
nbruegge committed
992
993
994
995
996
997
998
999
1000
              ):


  for fp in [fpath]:
    if not os.path.exists(fp):
      raise ValueError('::: Error: Cannot find file %s! :::' % (fp))

  # get fname and path_data from fpath
  fname = fpath.split('/')[-1]
For faster browsing, not all history is shown. View entire blame