pyicon_tb.py 56.4 KB
Newer Older
1
print('sys')
2
import sys, glob, os
3
print('json')
4
5
import json
# --- calculations
6
print('numpy')
7
import numpy as np
8
print('scipy')
9
10
from scipy import interpolate
from scipy.spatial import cKDTree
11
# --- reading data 
12
print('netcdf datetime')
13
from netCDF4 import Dataset, num2date, date2num
14
import datetime
15
# --- plotting
16
print('matplotlib')
17
import matplotlib.pyplot as plt
18
# --- debugging
19
print('mybreak')
20
#from ipdb import set_trace as mybreak  
21
22
print('pnadas')
import pandas as pd
23
print('xarray')
24
import xarray as xr
25
print('done xarray')
26

27
28
"""
pyicon
29
30
#  icon_to_regular_grid
#  icon_to_section
nbruegge's avatar
nbruegge committed
31
32
33
  apply_ckdtree
  ckdtree_hgrid
  ckdtree_section
34
  calc_ckdtree
nbruegge's avatar
nbruegge committed
35
36
  haversine_dist
  derive_section_points
37
38
39
40
41
  timing
  conv_gname
  identify_grid
  crop_tripolar_grid
  crop_regular_grid
nbruegge's avatar
nbruegge committed
42
43
44
  get_files_of_timeseries
  get_varnames
  get_timesteps
45
46
47
48
49
50
51
52
53

  ?load_data
  ?load_grid

  ?hplot
  ?update_hplot
  ?vplot
  ?update_vplot

nbruegge's avatar
nbruegge committed
54
  #IconDataFile
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

  IconData
  IP_hor_sec_rect

  QuickPlotWebsite

  IDa: Icon data set (directory of files)
    - info about tsteps
    - info about vars
    - info about grid
    - IGr: Icon grid
    - IVa: Icon variable if loaded
  IIn: Icon interpolator class

  IPl: Icon plot class

IDa = pyic.IconData(fpath or path)
IDa.load_grid()
IDa.show()

IPl = pyic.hplot(IDa, 'var', iz, tstep, IIn)

"""

79
80
81
82
83
84
85
86
class pyicon_configure(object):
  def __init__(self, fpath_config):
    with open(fpath_config) as file_json:
      Dsettings = json.load(file_json)
    for key in Dsettings.keys():
      setattr(self, key, Dsettings[key])
    return

87
#def icon_to_regular_grid(data, shape, distances=None, \
88
#                  inds=None, radius_of_influence=1000e3):
89
90
91
92
93
94
95
96
#  """
#  """
#  data_interpolated = apply_ckdtree(data, distances=distances, inds=inds, 
#                                    radius_of_influence=radius_of_influence)
#  data_interpolated = data_interpolated.reshape(shape)
#  return data_interpolated
#
#def icon_to_section(data, distances=None, \
97
#                  inds=None, radius_of_influence=1000e3):
98
99
100
101
102
103
#  """
#  """
#  data_interpolated = apply_ckdtree(data, distances=distances, inds=inds, 
#                                    radius_of_influence=radius_of_influence)
#  return data_interpolated

Nils Brüggemann's avatar
Nils Brüggemann committed
104
105
106
"""
Routines to apply interpolation weights
"""
107
def apply_ckdtree_base(data, inds, distances, radius_of_influence=1000e3):
Nils Brüggemann's avatar
Nils Brüggemann committed
108
109
110
  if distances.ndim == 1:
    #distances_ma = np.ma.masked_greater(distances, radius_of_influence)
    if data.ndim==1:
111
112
113
114
      if isinstance(data, xr.core.dataarray.DataArray):
        data_interpolated = data.load()[inds]
      else:
        data_interpolated = data[inds]
Nils Brüggemann's avatar
Nils Brüggemann committed
115
116
      data_interpolated[distances>=radius_of_influence] = np.nan
    elif data.ndim==2:
117
118
119
120
      if isinstance(data, xr.core.dataarray.DataArray):
        data_interpolated = data.load()[:,inds]
      else:
        data_interpolated = data[:,inds]
Nils Brüggemann's avatar
Nils Brüggemann committed
121
122
123
124
125
126
127
128
129
130
131
      data_interpolated[:,distances>=radius_of_influence] = np.nan
  else:
    #raise ValueError("::: distances.ndim>1 is not properly supported yet. :::")
    #distances_ma = np.ma.masked_greater(distances, radius_of_influence)
    weights = 1.0 / distances**2
    if data.ndim==1:
      data_interpolated = np.ma.sum(weights * data[inds], axis=1) / np.ma.sum(weights, axis=1)
      #data_interpolated[distances>=radius_of_influence] = np.nan
    elif data.ndim==2:
      data_interpolated = np.ma.sum(weights[np.newaxis,:,:] * data[:,inds], axis=2) / np.ma.sum(weights[np.newaxis,:,:], axis=2)
      #data_interpolated[:,distances>=radius_of_influence] = np.nan
132
  data_interpolated = np.ma.masked_invalid(data_interpolated)
Nils Brüggemann's avatar
Nils Brüggemann committed
133
134
  return data_interpolated

135
def apply_ckdtree(data, fpath_ckdtree, mask=None, coordinates='clat clon', radius_of_influence=1000e3):
nbruegge's avatar
nbruegge committed
136
  """
137
  * credits
138
    function modified from pyfesom (Nikolay Koldunov)
139
  """
140
  ddnpz = np.load(fpath_ckdtree)
141
  #if coordinates=='clat clon':
142
  if ('clon' in coordinates) or (coordinates==''):
143
144
    distances = ddnpz['dckdtree_c']
    inds = ddnpz['ickdtree_c'] 
145
146
  #elif coordinates=='elat elon':
  elif 'elon' in coordinates:
147
148
    distances = ddnpz['dckdtree_e']
    inds = ddnpz['ickdtree_e'] 
149
150
  #elif coordinates=='vlat vlon':
  elif 'vlon' in coordinates:
151
152
153
154
155
    distances = ddnpz['dckdtree_v']
    inds = ddnpz['ickdtree_v'] 
  else:
    raise ValueError('::: Error: Unsupported coordinates: %s! ::: ' % (coordinates))

156
157
158
159
160
161
162
163
164
  if mask is not None:
    #if data.ndim==1:
    #  data = data[mask]
    #elif data.ndim==2:
    #  data = data[:,mask]
    if inds.ndim==1:
      inds = inds[mask]
      distances = distances[mask]
    elif inds.ndim==2:
165
      #raise ValueError('::: Warning: This was never checked! Please check carefully and remove this warning.:::')
166
167
      inds = inds[:,mask]
      distances = distances[:,mask]
168

Nils Brüggemann's avatar
Nils Brüggemann committed
169
  data_interpolated = apply_ckdtree_base(data, inds, distances, radius_of_influence)
170
171
  return data_interpolated

172
173
174
175
def interp_to_rectgrid(data, fpath_ckdtree, 
                       lon_reg=None, lat_reg=None,             # for new way of cropping
                       indx='all', indy='all', mask_reg=None,  # for old way of cropping
                       coordinates='clat clon'):
Nils Brüggemann's avatar
Nils Brüggemann committed
176
177
178
  ddnpz = np.load(fpath_ckdtree)
  lon = ddnpz['lon'] 
  lat = ddnpz['lat'] 
179
  # --- old way of cropping
180
181
182
  if not isinstance(indx, str):
    lon = lon[indx]
    lat = lat[indy]
183
184
185
186
187
188
189
190
191
192
  # --- prepare cropping the data to a region
  if lon_reg is not None:
    indx = np.where((lon>=lon_reg[0]) & (lon<lon_reg[1]))[0]
    indy = np.where((lat>=lat_reg[0]) & (lat<lat_reg[1]))[0]
    Lon, Lat = np.meshgrid(lon, lat) # full grid
    lon = lon[indx]
    lat = lat[indy]
    ind_reg = ((Lon>=lon_reg[0]) & (Lon<lon_reg[1]) & (Lat>=lat_reg[0]) & (Lat<lat_reg[1])).flatten()
    mask_reg = ind_reg
    Lon, Lat = np.meshgrid(lon, lat) # cropped grid
193
  datai = apply_ckdtree(data, fpath_ckdtree, mask=mask_reg, coordinates=coordinates)
194
  if datai.ndim==1:
195
    datai = datai.reshape(lat.size, lon.size)
196
197
198
199
200
  else:
    datai = datai.reshape([data.shape[0], lat.size, lon.size])
  datai[datai==0.] = np.ma.masked
  return lon, lat, datai

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
def interp_to_rectgrid_xr(arr, fpath_ckdtree, 
                          lon_reg=None, lat_reg=None,
                          coordinates='clat clon',
                          radius_of_influence=1000e3,
                          compute=True,
                          mask_out_of_range=True,
                          mask_out_of_range_before=False,
                         ):

  # --- load interpolation indices
  ds_ckdt = xr.open_dataset(fpath_ckdtree)
  if ('clon' in coordinates) or (coordinates==''):
    inds = ds_ckdt.ickdtree_c
    dist = ds_ckdt.dckdtree_c
  elif 'elon' in coordinates:
    inds = ds_ckdt.ickdtree_e
    dist = ds_ckdt.dckdtree_e
  elif 'vlon' in coordinates:
    inds = ds_ckdt.ickdtree_v
    dist = ds_ckdt.dckdtree_v
  else:
    raise ValueError('::: Error: Unsupported coordinates: %s! ::: ' % (coordinates))
  dist = dist.compute()
  inds = inds.compute().data.flatten()
  lon = ds_ckdt.lon.compute().data
  lat = ds_ckdt.lat.compute().data

  # --- interpolate by nearest neighbor
  arr_interp = arr.isel(ncells=inds)

  # --- reshape
  arr_interp = arr_interp.assign_coords(ncells=pd.MultiIndex.from_product([lat, lon], names=("lat", "lon"))
                                ).unstack()

  # --- mask values where nearest neighbor is too far away
  # (doing this after compute seems to be faster) FIXME check that!
  if mask_out_of_range_before:
    arr_interp = arr_interp.where(dist<radius_of_influence)

  # --- compute data otherwise a lazy object is returned
  if compute:
    arr_interp = arr_interp.compute()

  # --- mask values where nearest neighbor is too far away
  # (doing this after compute seems to be faster) FIXME check that!
  if mask_out_of_range:
    arr_interp = arr_interp.where(dist<radius_of_influence)

  return  arr_interp

251
252
253
254
255
256
257
258
def interp_to_section(data, fpath_ckdtree, coordinates='clat clon'):
  ddnpz = np.load(fpath_ckdtree)
  lon_sec = ddnpz['lon_sec'] 
  lat_sec = ddnpz['lat_sec'] 
  dist_sec = ddnpz['dist_sec'] 
  datai = apply_ckdtree(data, fpath_ckdtree, coordinates=coordinates)
  datai[datai==0.] = np.ma.masked
  return lon_sec, lat_sec, dist_sec, datai
Nils Brüggemann's avatar
Nils Brüggemann committed
259

Nils Brüggemann's avatar
Nils Brüggemann committed
260
261
262
""" 
Routines for zonal averaging
"""
nbruegge's avatar
nbruegge committed
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
def zonal_average(fpath_data, var, basin='global', it=0, fpath_fx='', fpath_ckdtree=''):

  for fp in [fpath_data, fpath_fx, fpath_ckdtree]:
    if not os.path.exists(fp):
      raise ValueError('::: Error: Cannot find file %s! :::' % (fp))

  f = Dataset(fpath_fx, 'r')
  basin_c = f.variables['basin_c'][:]
  mask_basin = np.zeros(basin_c.shape, dtype=bool)
  if basin.lower()=='atlantic' or basin=='atl':
    mask_basin[basin_c==1] = True 
  elif basin.lower()=='pacific' or basin=='pac':
    mask_basin[basin_c==3] = True 
  elif basin.lower()=='southern ocean' or basin=='soc' or basin=='so':
    mask_basin[basin_c==6] = True 
  elif basin.lower()=='indian ocean' or basin=='ind' or basin=='io':
    mask_basin[basin_c==7] = True 
  elif basin.lower()=='global' or basin=='glob' or basin=='glo':
    mask_basin[basin_c!=0] = True 
  elif basin.lower()=='indopacific' or basin=='indopac':
    mask_basin[(basin_c==3) | (basin_c==7)] = True 
Nils Brüggemann's avatar
Nils Brüggemann committed
284
285
  elif basin.lower()=='indopacso':
    mask_basin[(basin_c==3) | (basin_c==7) | (basin_c==6)] = True 
nbruegge's avatar
nbruegge committed
286
287
288
289
290
291
292
293
294
295
  f.close()
  
  ddnpz = np.load(fpath_ckdtree)
  lon = ddnpz['lon'] 
  lat = ddnpz['lat'] 
  shape = [lat.size, lon.size]
  lat_sec = lat
  
  f = Dataset(fpath_data, 'r')
  nz = f.variables[var].shape[1]
296
  coordinates = f.variables[var].coordinates
nbruegge's avatar
nbruegge committed
297
298
  data_zave = np.ma.zeros((nz,lat_sec.size))
  for k in range(nz):
nbruegge's avatar
nbruegge committed
299
    #print('k = %d/%d'%(k,nz))
nbruegge's avatar
nbruegge committed
300
301
302
303
304
305
306
    # --- load data
    data = f.variables[var][it,k,:]
    # --- mask land points
    data[data==0] = np.ma.masked
    # --- mask not-this-basin points
    data[mask_basin==False] = np.ma.masked
    # --- go to normal np.array (not np.ma object)
307
308
    if isinstance(data, np.ma.core.MaskedArray):
      data = data.filled(0.)
nbruegge's avatar
nbruegge committed
309
    # --- interpolate to rectangular grid
310
311
    datai = apply_ckdtree(data, fpath_ckdtree, coordinates=coordinates)
    datai = datai.reshape(shape)
nbruegge's avatar
nbruegge committed
312
313
314
315
316
317
318
    # --- go back to masked array
    datai = np.ma.array(datai, mask=datai==0.)
    # --- do zonal average
    data_zave[k,:] = datai.mean(axis=1)
  f.close()
  return lat_sec, data_zave

319
def zonal_average_3d_data(data3d, basin='global', it=0, coordinates='clat clon', fpath_fx='', fpath_ckdtree=''):
nbruegge's avatar
nbruegge committed
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
  """ Like zonal_average but here data instead of path to data is given. This can only work if the whole data array fits into memory.
  """

  for fp in [fpath_fx, fpath_ckdtree]:
    if not os.path.exists(fp):
      raise ValueError('::: Error: Cannot find file %s! :::' % (fp))

  f = Dataset(fpath_fx, 'r')
  basin_c = f.variables['basin_c'][:]
  mask_basin = np.zeros(basin_c.shape, dtype=bool)
  if basin.lower()=='atlantic' or basin=='atl':
    mask_basin[basin_c==1] = True 
  elif basin.lower()=='pacific' or basin=='pac':
    mask_basin[basin_c==3] = True 
  elif basin.lower()=='southern ocean' or basin=='soc' or basin=='so':
    mask_basin[basin_c==6] = True 
  elif basin.lower()=='indian ocean' or basin=='ind' or basin=='io':
    mask_basin[basin_c==7] = True 
  elif basin.lower()=='global' or basin=='glob' or basin=='glo':
    mask_basin[basin_c!=0] = True 
  elif basin.lower()=='indopacific' or basin=='indopac':
    mask_basin[(basin_c==3) | (basin_c==7)] = True 
Nils Brüggemann's avatar
Nils Brüggemann committed
342
343
  elif basin.lower()=='indopacso':
    mask_basin[(basin_c==3) | (basin_c==7) | (basin_c==6)] = True 
nbruegge's avatar
nbruegge committed
344
345
346
  f.close()
  
  ddnpz = np.load(fpath_ckdtree)
347
348
  #dckdtree = ddnpz['dckdtree']
  #ickdtree = ddnpz['ickdtree'] 
nbruegge's avatar
nbruegge committed
349
350
351
352
353
354
355
356
  lon = ddnpz['lon'] 
  lat = ddnpz['lat'] 
  shape = [lat.size, lon.size]
  lat_sec = lat
  
  nz = data3d.shape[0]
  data_zave = np.ma.zeros((nz,lat_sec.size))
  for k in range(nz):
Nils Brüggemann's avatar
Nils Brüggemann committed
357
    data = 1.*data3d[k,:]
nbruegge's avatar
nbruegge committed
358
359
360
361
362
363
    #print('k = %d/%d'%(k,nz))
    # --- mask land points
    data[data==0] = np.ma.masked
    # --- mask not-this-basin points
    data[mask_basin==False] = np.ma.masked
    # --- go to normal np.array (not np.ma object)
364
365
    if isinstance(data, np.ma.core.MaskedArray):
      data = data.filled(0.)
nbruegge's avatar
nbruegge committed
366
    # --- interpolate to rectangular grid
367
368
    datai = apply_ckdtree(data, fpath_ckdtree, coordinates=coordinates)
    datai = datai.reshape(shape)
nbruegge's avatar
nbruegge committed
369
370
371
372
373
374
    # --- go back to masked array
    datai = np.ma.array(datai, mask=datai==0.)
    # --- do zonal average
    data_zave[k,:] = datai.mean(axis=1)
  return lat_sec, data_zave

375
def zonal_average_atmosphere(data3d, ind_lev, fac, fpath_ckdtree='', coordinates='clat clon',):
376
377
378
379
380
  icall = np.arange(data3d.shape[1],dtype=int)
  datavi = data3d[ind_lev,icall]*fac+data3d[ind_lev+1,icall]*(1.-fac)
  lon, lat, datavihi = interp_to_rectgrid(datavi, fpath_ckdtree, coordinates=coordinates)
  data_zave = datavihi.mean(axis=2)
  return lat, data_zave
381

382
def zonal_section_3d_data(data3d, fpath_ckdtree, coordinates):
383
384
385
386
387
388
389
390
  """
  (
   lon_sec, lat_sec, dist_sec, data_sec 
  ) = pyic.zonal_section_3d_data(tbias, 
    fpath_ckdtree=path_ckdtree+'sections/r2b4_nps100_30W80S_30W80N.npz')
  """
  # --- load ckdtree
  ddnpz = np.load(fpath_ckdtree)
391
392
  #dckdtree = ddnpz['dckdtree']
  #ickdtree = ddnpz['ickdtree'] 
393
394
395
396
397
398
399
  lon_sec = ddnpz['lon_sec'] 
  lat_sec = ddnpz['lat_sec'] 
  dist_sec = ddnpz['dist_sec'] 

  nz = data3d.shape[0]
  data_sec = np.ma.zeros((nz,dist_sec.size))
  for k in range(nz):
400
    data_sec[k,:] = apply_ckdtree(data3d[k,:], fpath_ckdtree, coordinates=coordinates)
401
402
  return lon_sec, lat_sec, dist_sec, data_sec

403
404
405
406
407
408
409
410
411
412
413
def lonlat2str(lon, lat):
  if lon<0:
    lon_s = '%gW'%(-lon)
  else:
    lon_s = '%gE'%(lon)
  if lat<0:
    lat_s = '%gS'%(-lat)
  else:
    lat_s = '%gN'%(lat)
  return lon_s, lat_s

Nils Brüggemann's avatar
Nils Brüggemann committed
414
415
416
417
418
419
420
421
422
"""
Routines to calculate interpolation weights:

  | ckdtree_hgrid
  | ckdtree_section
  |-->| ckdtree_points
      |--> calc_ckdtree
"""

nbruegge's avatar
nbruegge committed
423
def ckdtree_hgrid(lon_reg, lat_reg, res, 
424
425
426
427
428
                 #fpath_grid_triangular='', 
                 fname_tgrid='',
                 path_tgrid='',
                 path_ckdtree='',
                 sname='',
Nils Brüggemann's avatar
Nils Brüggemann committed
429
                 gname='',
430
431
432
433
434
                 tgname='',
                 load_cgrid=True,
                 load_egrid=True,
                 load_vgrid=True,
                 n_nearest_neighbours=1,
435
                 n_jobs=1,
436
437
438
                 ):
  """
  """
439
440
441
  if tgname=='':
    Drgrid = identify_grid(path_tgrid, path_tgrid+fname_tgrid) 
    tgname = Drgrid['name']
442
443
444
  lon1str, lat1str = lonlat2str(lon_reg[0], lat_reg[0])
  lon2str, lat2str = lonlat2str(lon_reg[1], lat_reg[1])

445
446
447
448
  if n_nearest_neighbours==1:
    fname = '%s_res%3.2f_%s-%s_%s-%s.npz'%(tgname, res, lon1str, lon2str, lat1str, lat2str) 
  else:
    fname = '%s_res%3.2f_%dnn_%s-%s_%s-%s.npz'%(tgname, res, n_nearest_neighbours, lon1str, lon2str, lat1str, lat2str) 
449
  fpath_ckdtree = path_ckdtree+fname
Nils Brüggemann's avatar
Nils Brüggemann committed
450
  fpath_tgrid   = path_tgrid+fname_tgrid
451
452
453
454
455
456

  # --- make rectangular grid 
  lon = np.arange(lon_reg[0],lon_reg[1],res)
  lat = np.arange(lat_reg[0],lat_reg[1],res)
  Lon, Lat = np.meshgrid(lon, lat)

Nils Brüggemann's avatar
Nils Brüggemann committed
457
458
459
460
  lon_o = Lon.flatten()
  lat_o = Lat.flatten()
  
  # --- calculate ckdtree
461
462
  Dind_dist = ckdtree_points(fpath_tgrid, lon_o, lat_o, load_cgrid=load_cgrid, load_egrid=load_egrid, load_vgrid=load_vgrid,
                             n_nearest_neighbours=n_nearest_neighbours, n_jobs=n_jobs)
nbruegge's avatar
nbruegge committed
463
464
465
466
467
468

  # --- save grid
  print('Saving grid file: %s' % (fpath_ckdtree))
  np.savez(fpath_ckdtree,
            lon=lon,
            lat=lat,
469
            sname=sname,
Nils Brüggemann's avatar
Nils Brüggemann committed
470
            gname=gname,
471
            tgname='test',
Nils Brüggemann's avatar
Nils Brüggemann committed
472
            **Dind_dist,
nbruegge's avatar
nbruegge committed
473
474
475
476
           )
  return

def ckdtree_section(p1, p2, npoints=101, 
477
478
479
480
                 fname_tgrid='',
                 path_tgrid='',
                 path_ckdtree='',
                 sname='auto',
Nils Brüggemann's avatar
Nils Brüggemann committed
481
                 gname='',
482
                 tgname='',
Nils Brüggemann's avatar
Nils Brüggemann committed
483
                 n_nearest_neighbours=1,
484
                 n_jobs=1,
485
486
487
                 load_cgrid=True,
                 load_egrid=True,
                 load_vgrid=True,
nbruegge's avatar
nbruegge committed
488
489
490
                 ):
  """
  """
491
492
493
  if tgname=='':
    Drgrid = identify_grid(path_tgrid, path_tgrid+fname_tgrid) 
    tgname = Drgrid['name']
494
495
496
497
498
499
  lon1str, lat1str = lonlat2str(p1[0], p1[1])
  lon2str, lat2str = lonlat2str(p2[0], p2[1])

  if sname=='auto':
    sname = fpath_ckdtree.split('/')[-1][:-4]

Nils Brüggemann's avatar
Nils Brüggemann committed
500
501
502
503
  fname = '%s_nps%d_%s%s_%s%s.npz'%(tgname, npoints, lon1str, lat1str, lon2str, lat2str) 
  fpath_ckdtree = path_ckdtree+fname
  fpath_tgrid   = path_tgrid+fname_tgrid

nbruegge's avatar
nbruegge committed
504
505
  # --- derive section points
  lon_sec, lat_sec, dist_sec = derive_section_points(p1, p2, npoints)
Nils Brüggemann's avatar
Nils Brüggemann committed
506
507
  lon_o = lon_sec
  lat_o = lat_sec
nbruegge's avatar
nbruegge committed
508

Nils Brüggemann's avatar
Nils Brüggemann committed
509
  # --- calculate ckdtree
510
511
  Dind_dist = ckdtree_points(fpath_tgrid, lon_o, lat_o, load_cgrid=load_cgrid, load_egrid=load_egrid, load_vgrid=load_vgrid, n_nearest_neighbours=n_nearest_neighbours,
                             n_jobs=n_jobs)
nbruegge's avatar
nbruegge committed
512
513
514
515
516
517
518

  # --- save grid
  print('Saving grid file: %s' % (fpath_ckdtree))
  np.savez(fpath_ckdtree,
            lon_sec=lon_sec,
            lat_sec=lat_sec,
            dist_sec=dist_sec,
519
            sname=sname,
Nils Brüggemann's avatar
Nils Brüggemann committed
520
            gname=gname,
Nils Brüggemann's avatar
Nils Brüggemann committed
521
            **Dind_dist
nbruegge's avatar
nbruegge committed
522
           )
Nils Brüggemann's avatar
Nils Brüggemann committed
523
524
  return Dind_dist['dckdtree_c'], Dind_dist['ickdtree_c'], lon_sec, lat_sec, dist_sec

525
def ckdtree_points(fpath_tgrid, lon_o, lat_o, load_cgrid=True, load_egrid=True, load_vgrid=True, n_nearest_neighbours=1, n_jobs=1):
Nils Brüggemann's avatar
Nils Brüggemann committed
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
  """
  """
  # --- load triangular grid
  f = Dataset(fpath_tgrid, 'r')
  if load_cgrid:
    clon = f.variables['clon'][:] * 180./np.pi
    clat = f.variables['clat'][:] * 180./np.pi
  if load_egrid:
    elon = f.variables['elon'][:] * 180./np.pi
    elat = f.variables['elat'][:] * 180./np.pi
  if load_vgrid:
    vlon = f.variables['vlon'][:] * 180./np.pi
    vlat = f.variables['vlat'][:] * 180./np.pi
  f.close()

  # --- ckdtree for cells, edges and vertices
  if load_cgrid:
    dckdtree_c, ickdtree_c = calc_ckdtree(lon_i=clon, lat_i=clat,
                                          lon_o=lon_o, lat_o=lat_o,
                                          n_nearest_neighbours=n_nearest_neighbours,
546
                                          n_jobs=n_jobs,
Nils Brüggemann's avatar
Nils Brüggemann committed
547
548
549
550
551
                                          )
  if load_egrid:
    dckdtree_e, ickdtree_e = calc_ckdtree(lon_i=elon, lat_i=elat,
                                          lon_o=lon_o, lat_o=lat_o,
                                          n_nearest_neighbours=n_nearest_neighbours,
552
                                          n_jobs=n_jobs,
Nils Brüggemann's avatar
Nils Brüggemann committed
553
554
555
556
557
                                          )
  if load_vgrid:
    dckdtree_v, ickdtree_v = calc_ckdtree(lon_i=vlon, lat_i=vlat,
                                          lon_o=lon_o, lat_o=lat_o,
                                          n_nearest_neighbours=n_nearest_neighbours,
558
                                          n_jobs=n_jobs,
Nils Brüggemann's avatar
Nils Brüggemann committed
559
560
561
562
563
564
565
566
567
568
569
570
571
572
                                          )

  # --- save dict
  Dind_dist = dict()
  if load_cgrid: 
    Dind_dist['dckdtree_c'] = dckdtree_c
    Dind_dist['ickdtree_c'] = ickdtree_c
  if load_egrid: 
    Dind_dist['dckdtree_e'] = dckdtree_e
    Dind_dist['ickdtree_e'] = ickdtree_e
  if load_vgrid: 
    Dind_dist['dckdtree_v'] = dckdtree_v
    Dind_dist['ickdtree_v'] = ickdtree_v
  return Dind_dist
nbruegge's avatar
nbruegge committed
573

574
def calc_ckdtree(lon_i, lat_i, lon_o, lat_o, n_nearest_neighbours=1, n_jobs=1, use_npconcatenate=True):
nbruegge's avatar
nbruegge committed
575
576
  """
  """
577
  # --- do ckdtree
Nils Brüggemann's avatar
Nils Brüggemann committed
578
579
580
581
582
583
584
585
586
587
  if False:
    lzip_i = list(zip(lon_i, lat_i))
    tree = cKDTree(lzip_i)
    lzip_o = list(zip(lon_o, lat_o))
    dckdtree, ickdtree = tree.query(lzip_o , k=n_nearest_neighbours, n_jobs=1)
  else:
    #print('calc_ckdtree by cartesian distances')
    xi, yi, zi = spherical_to_cartesian(lon_i, lat_i)
    xo, yo, zo = spherical_to_cartesian(lon_o, lat_o)

588
589
590
591
592
593
594
    if not use_npconcatenate:
      lzip_i = list(zip(xi, yi, zi))
      lzip_o = list(zip(xo, yo, zo))
    else:
      # This option seems to be much faster but needs to be tested also for big grids
      lzip_i = np.concatenate((xi[:,np.newaxis],yi[:,np.newaxis],zi[:,np.newaxis]), axis=1)
      lzip_o = np.concatenate((xo[:,np.newaxis],yo[:,np.newaxis],zo[:,np.newaxis]), axis=1) 
Nils Brüggemann's avatar
Nils Brüggemann committed
595
    tree = cKDTree(lzip_i)
596
    dckdtree, ickdtree = tree.query(lzip_o , k=n_nearest_neighbours, n_jobs=n_jobs)
nbruegge's avatar
nbruegge committed
597
598
  return dckdtree, ickdtree

Nils Brüggemann's avatar
Nils Brüggemann committed
599
600
601
602
603
604
605
def calc_vertical_interp_weights(zdata, levs):
  """ Calculate vertical interpolation weights and indices.

Call example:
icall, ind_lev, fac = calc_vertical_interp_weights(zdata, levs)

Afterwards do interpolation like this:
606
datai = data[ind_lev,icall]*fac+data[ind_lev+1,icall]*(1.-fac)
Nils Brüggemann's avatar
Nils Brüggemann committed
607
608
609
610
611
612
613
614
615
616
617
618
619
  """
  nza = zdata.shape[0]
  # --- initializations
  ind_lev = np.zeros((levs.size,zdata.shape[1]),dtype=int)
  icall = np.arange(zdata.shape[1],dtype=int)
  icall = icall[np.newaxis,:]
  fac = np.ma.zeros((levs.size,zdata.shape[1]))
  for k, lev in enumerate(levs):
    #print(f'k = {k}')
    # --- find level below critical level
    ind_lev[k,:] = (zdata<levs[k]).sum(axis=0)-1
    ind_lev[k,ind_lev[k,:]==(nza-1)]=-1
    # --- zdata below and above lev 
620
621
622
623
    zd1 = zdata[ind_lev[k,:],icall]
    zd2 = zdata[ind_lev[k,:]+1,icall]
    # --- linear interpolation to get weight (fac=1 if lev=zd1)
    fac[k,:] = (0.-1.)/(zd2-zd1)*(levs[k]-zd1)+1.
Nils Brüggemann's avatar
Nils Brüggemann committed
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
  # --- mask values which are out of range
  fac[ind_lev==-1] = np.ma.masked 
  return icall, ind_lev, fac

"""
Routines to calculate grids and sections
"""

def derive_section_points(p1, p2, npoints=101,):
  # --- derive section points
  if p1[0]==p2[0]:
    lon_sec = p1[0]*np.ones((npoints)) 
    lat_sec = np.linspace(p1[1],p2[1],npoints)
  else:
    lon_sec = np.linspace(p1[0],p2[0],npoints)
    lat_sec = (p2[1]-p1[1])/(p2[0]-p1[0])*(lon_sec-p1[0])+p1[1]
  dist_sec = haversine_dist(lon_sec[0], lat_sec[0], lon_sec, lat_sec)
  return lon_sec, lat_sec, dist_sec

def calc_north_pole_interp_grid_points(lat_south=60., res=100e3):
  """
  Compute grid points optimized for plotting the North Pole area.

  Parameters:
  -----------
  lat_south : float
      Southern latitude of target grid.
  res : float
      resolution of target grid

  Returns:
  --------
  Lon_np, Lat_np: ndarray
      Longitude and latitude of target grid as 2d array.

  Examples:
  ---------
  Lon_np, Lat_np = calc_north_pole_interp_grid_points(lat_south=60., res=100e3)

  """
  R = 6371e3
  x1, y1, z1 = spherical_to_cartesian(  0., lat_south)
  x2, y2, z2 = spherical_to_cartesian( 90., lat_south)
  x3, y3, z3 = spherical_to_cartesian(180., lat_south)
  x4, y4, z4 = spherical_to_cartesian(270., lat_south)

  lon1, lat1 = cartesian_to_spherical(x1, y1, z1)
  lon2, lat2 = cartesian_to_spherical(x2, y2, z2)
  lon3, lat3 = cartesian_to_spherical(x3, y3, z3)
  lon4, lat4 = cartesian_to_spherical(x4, y4, z4)

  #x1 = R * np.cos(  0.*np.pi/180.) * np.cos(lat_south*np.pi/180.)
  #y1 = R * np.sin(  0.*np.pi/180.) * np.cos(lat_south*np.pi/180.)
  #z1 = R * np.sin(lat_south*np.pi/180.)
  #x2 = R * np.cos( 90.*np.pi/180.) * np.cos(lat_south*np.pi/180.)
  #y2 = R * np.sin( 90.*np.pi/180.) * np.cos(lat_south*np.pi/180.)
  #z2 = R * np.sin(lat_south*np.pi/180.)
  #x3 = R * np.cos(180.*np.pi/180.) * np.cos(lat_south*np.pi/180.)
  #y3 = R * np.sin(180.*np.pi/180.) * np.cos(lat_south*np.pi/180.)
  #z3 = R * np.sin(lat_south*np.pi/180.)
  #x4 = R * np.cos(270.*np.pi/180.) * np.cos(lat_south*np.pi/180.)
  #y4 = R * np.sin(270.*np.pi/180.) * np.cos(lat_south*np.pi/180.)
  #z4 = R * np.sin(lat_south*np.pi/180.)
  #
  #lat1 = np.arcsin(z1/np.sqrt(x1**2+y1**2+z1**2)) * 180./np.pi
  #lon1 = np.arctan2(y1,x1) * 180./np.pi
  #lat2 = np.arcsin(z2/np.sqrt(x2**2+y2**2+z2**2)) * 180./np.pi
  #lon2 = np.arctan2(y2,x2) * 180./np.pi
  #lat3 = np.arcsin(z3/np.sqrt(x3**2+y3**2+z3**2)) * 180./np.pi
  #lon3 = np.arctan2(y3,x3) * 180./np.pi
  #lat4 = np.arcsin(z4/np.sqrt(x4**2+y4**2+z4**2)) * 180./np.pi
  #lon4 = np.arctan2(y4,x4) * 180./np.pi
  
  xnp = np.arange(x3, x1+res, res)
  ynp = np.arange(y4, y2+res, res)
  
  Xnp, Ynp = np.meshgrid(xnp, ynp)
  Znp = R * np.sin(lat1*np.pi/180.) * np.ones((ynp.size,xnp.size))
  Lon_np = np.arctan2(Ynp,Xnp) * 180./np.pi
  Lat_np = np.arcsin(Znp/np.sqrt(Xnp**2+Ynp**2+Znp**2)) * 180./np.pi
  return Lon_np, Lat_np

"""
Routines related to spherical geometry
"""
nbruegge's avatar
nbruegge committed
709
710
711
712
713
714
715
716
717
718
719
720
721
722
def haversine_dist(lon_ref, lat_ref, lon_pts, lat_pts, degree=True):
  # for details see http://en.wikipedia.org/wiki/Haversine_formula
  r = 6378.e3
  if degree:
    lon_ref = lon_ref * np.pi/180.
    lat_ref = lat_ref * np.pi/180.
    lon_pts = lon_pts * np.pi/180.
    lat_pts = lat_pts * np.pi/180.
  arg = np.sqrt(   np.sin(0.5*(lat_pts-lat_ref))**2 
                 + np.sin(0.5*(lon_pts-lon_ref))**2
                 * np.cos(lat_ref)*np.cos(lat_pts) )
  dist = 2*r * np.arcsin(arg)
  return dist

Nils Brüggemann's avatar
Nils Brüggemann committed
723
724
725
726
727
728
729
730
731
732
733
def spherical_to_cartesian(lon, lat):
  earth_radius = 6371e3
  x = earth_radius * np.cos(lon*np.pi/180.) * np.cos(lat*np.pi/180.)
  y = earth_radius * np.sin(lon*np.pi/180.) * np.cos(lat*np.pi/180.)
  z = earth_radius * np.sin(lat*np.pi/180.)
  return x, y, z

def cartesian_to_spherical(x, y, z):
  lat = np.arcsin(z/np.sqrt(x**2+y**2+z**2)) * 180./np.pi
  lon = np.arctan2(y,x) * 180./np.pi
  return lon, lat
734

Nils Brüggemann's avatar
Nils Brüggemann committed
735
736
737
"""
Routines to load data
"""
738
def load_hsnap(fpath, var, it=0, iz=0, iw=None, fpath_ckdtree='', verbose=True):
739
  f = Dataset(fpath, 'r')
740
741
  if verbose:
    print("Loading %s from %s" % (var, fpath))
742
743
744
745
  if f.variables[var].ndim==2:
    data = f.variables[var][it,:]
  else:
    data = f.variables[var][it,iz,:]
746
747
  if iw is not None:
    data = np.concatenate((data[:,iw:],data[:,:iw]),axis=1)
748
749
750
751
752
  f.close()

  data[data==0.] = np.ma.masked
  return data

753
754
755
756
757
758
def datetime64_to_float(dates):
  years  = (dates.astype('datetime64[Y]').astype(int) + 1970).astype(int)
  months = (dates.astype('datetime64[M]').astype(int) % 12 + 1).astype(int)
  days   = (dates - dates.astype('datetime64[M]') + 1).astype(int)
  return years, months, days

759
def time_average(IcD, var, t1='none', t2='none', it_ave=[], iz='all', always_use_loop=False, verbose=False, use_xr=False, load_xr_data=False, dimension_from_file='first'):
Nils Brüggemann's avatar
Nils Brüggemann committed
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
  it_ave = np.array(it_ave)
  # --- if no it_ave is given use t1 and t2 to determine averaging indices it_ave
  if it_ave.size==0:
    # --- if t2=='none' set t2=t1 and no time average will be applied
    if isinstance(t2, str) and t2=='none':
      t2 = t1

    # --- convert to datetime64 objects if necessary
    if isinstance(t1, str):
      t1 = np.datetime64(t1)
    if isinstance(t2, str):
      t2 = np.datetime64(t2)

    # --- determine averaging interval
    it_ave = np.where( (IcD.times>=t1) & (IcD.times<=t2) )[0]
775
776
777
  else:
    t1 = IcD.times[it_ave[0]]
    t2 = IcD.times[it_ave[-1]]
778
779
780

  if it_ave.size==0:
    raise ValueError(f'::: Could not find any time steps in interval t1={t1} and t2={t2}! :::')
781
  
782
783
784
785
786
787
788
789
  ## --- decide whether the file consists of monthly or yearly averages (or something else)
  #dt1 = (IcD.times[it_ave][1]-IcD.times[it_ave][0]).astype(float)/(86400)
  #if dt1==365 or dt1==366:
  #  ave_mode = 'yearly'
  #elif dt1==28 or dt1==29 or dt1==30 or dt1==31:
  #  ave_mode = 'monthly'
  #else:
  #  ave_mode = 'unknown'
790
791
792
793
       
  dt64type = IcD.times[0].dtype
  time_bnds = IcD.times[it_ave]
  yy, mm, dd = datetime64_to_float(time_bnds[0])
794
795
796
797
798
799
800
801
802
803
804
805
806
807
  if t1!=t2:
    if IcD.output_freq=='yearly':
      time_bnds = np.concatenate(([np.datetime64(f'{yy-1:04d}-{mm:02d}-{dd:02d}').astype(dt64type)],time_bnds))
    elif IcD.output_freq=='monthly':
      if mm==1:
        yy += -1
        mm = 13
      time_bnds = np.concatenate(([np.datetime64(f'{yy:04d}-{mm-1:02d}-{dd:02d}').astype(dt64type)],time_bnds))
    elif IcD.output_freq=='unknown':
      time_bnds = np.concatenate(([time_bnds[0]-(time_bnds[1]-time_bnds[0])], time_bnds))
    dt = np.diff(time_bnds).astype(IcD.dtype)
  else:
    # load single time instance
    dt = np.array([1])
808
809
  #dt = np.ones((it_ave.size), dtype=IcD.dtype)
  #print('Warning dt set to ones!!!')
810
811

  # --- get dimensions to allocate data
812
813
814
815
816
  if dimension_from_file=='first':
    dimension_from_file = IcD.flist_ts[0]
  elif dimension_from_file=='last':
    dimension_from_file = IcD.flist_ts[-1]
  f = Dataset(dimension_from_file, 'r')
817
  # FIXME: If == ('time', 'lat', 'lon') works well use it everywhere
818
819
820
  load_hfl_type = False
  load_moc_type = False
  if f.variables[var].dimensions == ('time', 'lat', 'lon'): # e.g. for heat fluxes
821
822
    nt, nc, nx = f.variables[var].shape
    nz = 0
823
    load_hfl_type = True
824
  elif f.variables[var].dimensions == ('time', 'depth', 'lat', 'lon'): # e.g. for MOC 
825
826
    nt, nz, nc, ndummy = f.variables[var].shape 
    load_moc_type = True
827
828
  elif f.variables[var].ndim==3:
    nt, nz, nc = f.variables[var].shape
829
  elif f.variables[var].ndim==2: # e.g. for 2D variables like zos and mld
830
831
832
833
834
835
836
837
838
839
840
841
    nt, nc = f.variables[var].shape
    nz = 0
  f.close()

  # --- set iz to all levels
  if isinstance(iz,str) and iz=='all':
    iz = np.arange(nz)
  #else:
  #  iz = np.array([iz])

  # --- if all data is coming from one file take faster approach
  fpaths = np.unique(IcD.flist_ts[it_ave])
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
  if use_xr:
    #print(dt)
    if load_hfl_type:
      data_ave = (IcD.ds[var][it_ave,:,0]*dt[:,np.newaxis]).sum(axis=0, dtype='float64')/dt.sum()
    elif load_moc_type:
      data_ave = (IcD.ds[var][it_ave,:,:,0]*dt[:,np.newaxis,np.newaxis]).sum(axis=0, dtype='float64')/dt.sum()
    elif nz>0 and isinstance(iz,(int,np.integer)): # data has no depth dim afterwards
      #data_ave = (IcD.ds[var][it_ave,iz,:]*dt[:,np.newaxis]).sum(axis=0)/dt.sum()
      data_ave = (IcD.ds[var][it_ave,iz,:]*dt[:,np.newaxis]).sum(axis=0, dtype='float64')/dt.sum()
    elif nz>0 and not isinstance(iz,(int,np.integer)): # data has depth dim afterwards
      data_ave = (IcD.ds[var][it_ave,iz,:]*dt[:,np.newaxis,np.newaxis]).sum(axis=0, dtype='float64')/dt.sum()
    else:
      data_ave = (IcD.ds[var][it_ave,:]*dt[:,np.newaxis]).sum(axis=0, dtype='float64')/dt.sum()
    #dataxr = dsxr[var][it_ave,:,:].mean(axis=0)
    if load_xr_data:
      data_ave = data_ave.load().data
  elif (fpaths.size==1) and not always_use_loop:
859
    f = Dataset(fpaths[0], 'r')
860
    if load_hfl_type:
861
      data_ave = (f.variables[var][IcD.its[it_ave],:,0]*dt[:,np.newaxis]).sum(axis=0, dtype='float64')/dt.sum()
862
    elif load_moc_type:
863
      data_ave = (f.variables[var][IcD.its[it_ave],:,:,0]*dt[:,np.newaxis,np.newaxis]).sum(axis=0, dtype='float64')/dt.sum()
864
    elif nz>0 and isinstance(iz,(int,np.integer)): # data has no depth dim afterwards
865
      data_ave = (f.variables[var][IcD.its[it_ave],iz,:]*dt[:,np.newaxis]).sum(axis=0, dtype='float64')/dt.sum()
866
    elif nz>0 and not isinstance(iz,(int,np.integer)): # data has depth dim afterwards
867
      data_ave = (f.variables[var][IcD.its[it_ave],iz,:]*dt[:,np.newaxis,np.newaxis]).sum(axis=0, dtype='float64')/dt.sum()
868
    else:
869
      data_ave = (f.variables[var][IcD.its[it_ave],:]*dt[:,np.newaxis]).sum(axis=0, dtype='float64')/dt.sum()
870
871
872
873
    f.close()
  # --- otherwise loop ovar all files is needed
  else:
    # --- allocate data
874
    if isinstance(iz,(int,np.integer)) or nz==0:
875
      data_ave = np.ma.zeros((nc), dtype=IcD.dtype)
876
    else:
877
      data_ave = np.ma.zeros((iz.size,nc), dtype=IcD.dtype)
878
879

    # --- average by looping over all files and time steps
880
    for ll, it in enumerate(it_ave):
881
      f = Dataset(IcD.flist_ts[it], 'r')
882
      if load_hfl_type:
883
        data_ave += f.variables[var][IcD.its[it],:,0]*dt[ll]/dt.sum()
884
      elif load_moc_type:
885
        data_ave += f.variables[var][IcD.its[it],:,:,0]*dt[ll]/dt.sum()
886
      elif nz>0:
887
        data_ave += f.variables[var][IcD.its[it],iz,:]*dt[ll]/dt.sum()
888
      else:
889
        data_ave += f.variables[var][IcD.its[it],:]*dt[ll]/dt.sum()
890
      f.close()
891
  data_ave = data_ave.astype(IcD.dtype)
892
893
894
  if verbose:
    #print(f'pyicon.time_average: var={var}: it_ave={it_ave}')
    print(f'pyicon.time_average: var={var}: it_ave={IcD.times[it_ave]}')
895
896
  return data_ave, it_ave

897
def timing(ts, string='', verbose=True):
898
899
900
901
  if ts[0]==0:
    ts = np.array([datetime.datetime.now()])
  else:
    ts = np.append(ts, [datetime.datetime.now()])
902
903
    if verbose:
      print(ts[-1]-ts[-2], ' ', (ts[-1]-ts[0]), ' '+string)
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
  return ts

def conv_gname(gname):
  gname = gname[:-4]

  ogrid = gname.split('_')[0]
  res = float(gname.split('_')[1][1:])

  lo1 = gname.split('_')[2]
  if lo1[-1]=='w':
    lo1 = -float(lo1[:-1])
  else:
    lo1 = float(lo1[:-1])
  lo2 = gname.split('_')[3]
  if lo2[-1]=='w':
    lo2 = -float(lo2[:-1])
  else:
    lo2 = float(lo2[:-1])

  la1 = gname.split('_')[4]
  if la1[-1]=='s':
    la1 = -float(la1[:-1])
  else:
    la1 = float(la1[:-1])
  la2 = gname.split('_')[5]
  if la2[-1]=='s':
    la2 = -float(la2[:-1])
  else:
    la2 = float(la2[:-1])

  lon_reg = [lo1, lo2]
  lat_reg = [la1, la2]
  return ogrid, res, lon_reg, lat_reg

Nils Brüggemann's avatar
Nils Brüggemann committed
938
939
940
"""
Grid related functions
"""
941
942
943
def identify_grid(path_grid, fpath_data):
  """ Identifies ICON grid in depending on clon.size in fpath_data.
  
Nils Brüggemann's avatar
Nils Brüggemann committed
944
945
946
947
948
949
  r2b4:  160km:    15117: OceanOnly_Icos_0158km_etopo40.nc
  r2b4a: 160km:    20480: /pool/data/ICON/grids/public/mpim/0013/icon_grid_0013_R02B04_G.nc
  r2b6:   40km:   327680: OCEANINP_pre04_LndnoLak_039km_editSLOHH2017_G.nc
  r2b8:   10km:  3729001: OceanOnly_Global_IcosSymmetric_0010km_rotatedZ37d_modified_srtm30_1min.nc
  r2b9:    5km: 14886338: OceanOnly_IcosSymmetric_4932m_rotatedZ37d_modified_srtm30_1min.nc
  r2b9a:   5km: 20971520: /pool/data/ICON/grids/public/mpim/0015/icon_grid_0015_R02B09_G.nc
950
951
952
  """
  
  Dgrid_list = dict()
953
954
955
956
957
958
959
960

  grid_name = 'r2b4_oce_r0003'; Dgrid_list[grid_name] = dict()
  Dgrid_list[grid_name]['name'] = grid_name
  Dgrid_list[grid_name]['res'] = '160km'
  Dgrid_list[grid_name]['long_name'] = 'OceanOnly_Icos_0158km_etopo40'
  Dgrid_list[grid_name]['size'] = 15117
  #Dgrid_list[grid_name]['fpath_grid'] = path_grid + Dgrid_list[grid_name]['long_name'] + '/' + Dgrid_list[grid_name]['long_name'] + '.nc'
  Dgrid_list[grid_name]['fpath_grid'] = f'{path_grid}/{grid_name}/{grid_name}_tgrid.nc'
961
  
962
  grid_name = 'r2b4_oce_r0004'; Dgrid_list[grid_name] = dict()
963
964
965
  Dgrid_list[grid_name]['name'] = grid_name
  Dgrid_list[grid_name]['res'] = '160km'
  Dgrid_list[grid_name]['long_name'] = 'OceanOnly_Icos_0158km_etopo40'
966
967
968
  Dgrid_list[grid_name]['size'] = 15105
  #Dgrid_list[grid_name]['fpath_grid'] = path_grid + Dgrid_list[grid_name]['long_name'] + '/' + Dgrid_list[grid_name]['long_name'] + '.nc'
  Dgrid_list[grid_name]['fpath_grid'] = f'{path_grid}/{grid_name}/{grid_name}_tgrid.nc'
Nils Brüggemann's avatar
Nils Brüggemann committed
969
 
970
  grid_name = 'r2b4_atm_r0013'; Dgrid_list[grid_name] = dict()
Nils Brüggemann's avatar
Nils Brüggemann committed
971
972
973
974
  Dgrid_list[grid_name]['name'] = grid_name
  Dgrid_list[grid_name]['res'] = '160km'
  Dgrid_list[grid_name]['long_name'] = 'icon_grid_0013_R02B04_G'
  Dgrid_list[grid_name]['size'] = 20480
975
976
  #Dgrid_list[grid_name]['fpath_grid'] = path_grid + Dgrid_list[grid_name]['long_name'] + '/' + Dgrid_list[grid_name]['long_name'] + '.nc'
  Dgrid_list[grid_name]['fpath_grid'] = f'{path_grid}/{grid_name}/{grid_name}_tgrid.nc'
Nils Brüggemann's avatar
Nils Brüggemann committed
977

Nils Brüggemann's avatar
Nils Brüggemann committed
978
  grid_name = 'r2b6old'; Dgrid_list[grid_name] = dict()
979
980
981
982
  Dgrid_list[grid_name]['name'] = grid_name
  Dgrid_list[grid_name]['res'] = '40km'
  Dgrid_list[grid_name]['long_name'] = 'OCEANINP_pre04_LndnoLak_039km_editSLOHH2017_G'
  Dgrid_list[grid_name]['size'] = 327680
983
984
  #Dgrid_list[grid_name]['fpath_grid'] = path_grid + Dgrid_list[grid_name]['long_name'] + '/' + Dgrid_list[grid_name]['long_name'] + '.nc'
  Dgrid_list[grid_name]['fpath_grid'] = f'{path_grid}/{grid_name}/{grid_name}_tgrid.nc'
985
  
986
  grid_name = 'r2b6_oce_r0004'; Dgrid_list[grid_name] = dict()
987
988
989
990
  Dgrid_list[grid_name]['name'] = grid_name
  Dgrid_list[grid_name]['res'] = '40km'
  Dgrid_list[grid_name]['long_name'] = 'OceanOnly_Global_IcosSymmetric_0039km_rotatedZ37d_BlackSea_Greenland_modified_srtm30_1min'
  Dgrid_list[grid_name]['size'] = 235403 
991
992
  #Dgrid_list[grid_name]['fpath_grid'] = path_grid + Dgrid_list[grid_name]['long_name'] + '/' + Dgrid_list[grid_name]['long_name'] + '.nc'
  Dgrid_list[grid_name]['fpath_grid'] = f'{path_grid}/{grid_name}/{grid_name}_tgrid.nc'
993

994
  grid_name = 'r2b8_oce_r0004'; Dgrid_list[grid_name] = dict()
995
996
997
998
  Dgrid_list[grid_name]['name'] = grid_name
  Dgrid_list[grid_name]['res'] = '10km'
  Dgrid_list[grid_name]['long_name'] = 'OceanOnly_Global_IcosSymmetric_0010km_rotatedZ37d_modified_srtm30_1min'
  Dgrid_list[grid_name]['size'] = 3729001
999
1000
  #Dgrid_list[grid_name]['fpath_grid'] = path_grid + Dgrid_list[grid_name]['long_name'] + '/' + Dgrid_list[grid_name]['long_name'] + '.nc'
  Dgrid_list[grid_name]['fpath_grid'] = f'{path_grid}/{grid_name}/{grid_name}_tgrid.nc'
For faster browsing, not all history is shown. View entire blame