pyicon_tb.py 38.4 KB
Newer Older
1
import sys, glob, os
2
3
import json
# --- calculations
4
5
6
import numpy as np
from scipy import interpolate
from scipy.spatial import cKDTree
7
8
9
# --- reading data 
from netCDF4 import Dataset, num2date
import datetime
10
11
12
13
14
# --- plotting
import matplotlib.pyplot as plt
import matplotlib
from matplotlib import ticker
#import my_toolbox as my
nbruegge's avatar
nbruegge committed
15
import cartopy
16
import cartopy.crs as ccrs
nbruegge's avatar
nbruegge committed
17
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
18
import cmocean
19
# --- debugging
20
from ipdb import set_trace as mybreak  
21
#from importlib import reload
22

23
24
"""
pyicon
25
26
#  icon_to_regular_grid
#  icon_to_section
nbruegge's avatar
nbruegge committed
27
28
29
  apply_ckdtree
  ckdtree_hgrid
  ckdtree_section
30
  calc_ckdtree
nbruegge's avatar
nbruegge committed
31
32
  haversine_dist
  derive_section_points
33
34
35
36
37
  timing
  conv_gname
  identify_grid
  crop_tripolar_grid
  crop_regular_grid
nbruegge's avatar
nbruegge committed
38
39
40
  get_files_of_timeseries
  get_varnames
  get_timesteps
41
42
43
44
45
46
47
48
49

  ?load_data
  ?load_grid

  ?hplot
  ?update_hplot
  ?vplot
  ?update_vplot

nbruegge's avatar
nbruegge committed
50
  #IconDataFile
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

  IconData
  IP_hor_sec_rect

  QuickPlotWebsite

  IDa: Icon data set (directory of files)
    - info about tsteps
    - info about vars
    - info about grid
    - IGr: Icon grid
    - IVa: Icon variable if loaded
  IIn: Icon interpolator class

  IPl: Icon plot class

IDa = pyic.IconData(fpath or path)
IDa.load_grid()
IDa.show()

IPl = pyic.hplot(IDa, 'var', iz, tstep, IIn)

"""

75
76
77
78
79
80
81
82
class pyicon_configure(object):
  def __init__(self, fpath_config):
    with open(fpath_config) as file_json:
      Dsettings = json.load(file_json)
    for key in Dsettings.keys():
      setattr(self, key, Dsettings[key])
    return

83
#def icon_to_regular_grid(data, shape, distances=None, \
84
#                  inds=None, radius_of_influence=1000e3):
85
86
87
88
89
90
91
92
#  """
#  """
#  data_interpolated = apply_ckdtree(data, distances=distances, inds=inds, 
#                                    radius_of_influence=radius_of_influence)
#  data_interpolated = data_interpolated.reshape(shape)
#  return data_interpolated
#
#def icon_to_section(data, distances=None, \
93
#                  inds=None, radius_of_influence=1000e3):
94
95
96
97
98
99
#  """
#  """
#  data_interpolated = apply_ckdtree(data, distances=distances, inds=inds, 
#                                    radius_of_influence=radius_of_influence)
#  return data_interpolated

Nils Brüggemann's avatar
Nils Brüggemann committed
100
101
102
"""
Routines to apply interpolation weights
"""
103
def apply_ckdtree_base(data, inds, distances, radius_of_influence=1000e3):
Nils Brüggemann's avatar
Nils Brüggemann committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
  if distances.ndim == 1:
    #distances_ma = np.ma.masked_greater(distances, radius_of_influence)
    if data.ndim==1:
      data_interpolated = data[inds]
      data_interpolated[distances>=radius_of_influence] = np.nan
    elif data.ndim==2:
      data_interpolated = data[:,inds]
      data_interpolated[:,distances>=radius_of_influence] = np.nan
  else:
    #raise ValueError("::: distances.ndim>1 is not properly supported yet. :::")
    #distances_ma = np.ma.masked_greater(distances, radius_of_influence)
    weights = 1.0 / distances**2
    if data.ndim==1:
      data_interpolated = np.ma.sum(weights * data[inds], axis=1) / np.ma.sum(weights, axis=1)
      #data_interpolated[distances>=radius_of_influence] = np.nan
    elif data.ndim==2:
      data_interpolated = np.ma.sum(weights[np.newaxis,:,:] * data[:,inds], axis=2) / np.ma.sum(weights[np.newaxis,:,:], axis=2)
      #data_interpolated[:,distances>=radius_of_influence] = np.nan
122
  data_interpolated = np.ma.masked_invalid(data_interpolated)
Nils Brüggemann's avatar
Nils Brüggemann committed
123
124
  return data_interpolated

125
def apply_ckdtree(data, fpath_ckdtree, coordinates='clat clon', radius_of_influence=1000e3):
nbruegge's avatar
nbruegge committed
126
  """
127
  * credits
128
    function modified from pyfesom (Nikolay Koldunov)
129
  """
130
  ddnpz = np.load(fpath_ckdtree)
131
132
  #if coordinates=='clat clon':
  if 'clon' in coordinates:
133
134
    distances = ddnpz['dckdtree_c']
    inds = ddnpz['ickdtree_c'] 
135
136
  #elif coordinates=='elat elon':
  elif 'elon' in coordinates:
137
138
    distances = ddnpz['dckdtree_e']
    inds = ddnpz['ickdtree_e'] 
139
140
  #elif coordinates=='vlat vlon':
  elif 'vlon' in coordinates:
141
142
143
144
145
    distances = ddnpz['dckdtree_v']
    inds = ddnpz['ickdtree_v'] 
  else:
    raise ValueError('::: Error: Unsupported coordinates: %s! ::: ' % (coordinates))

Nils Brüggemann's avatar
Nils Brüggemann committed
146
  data_interpolated = apply_ckdtree_base(data, inds, distances, radius_of_influence)
147
148
  return data_interpolated

Nils Brüggemann's avatar
Nils Brüggemann committed
149
150
151
152
def interp_to_rectgrid(data, fpath_ckdtree, coordinates='clat clon'):
  ddnpz = np.load(fpath_ckdtree)
  lon = ddnpz['lon'] 
  lat = ddnpz['lat'] 
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
  datai = apply_ckdtree(data, fpath_ckdtree, coordinates=coordinates)
  if datai.ndim==1:
    datai = datai.reshape([lat.size, lon.size])
  else:
    datai = datai.reshape([data.shape[0], lat.size, lon.size])
  datai[datai==0.] = np.ma.masked
  return lon, lat, datai

def interp_to_section(data, fpath_ckdtree, coordinates='clat clon'):
  ddnpz = np.load(fpath_ckdtree)
  lon_sec = ddnpz['lon_sec'] 
  lat_sec = ddnpz['lat_sec'] 
  dist_sec = ddnpz['dist_sec'] 
  datai = apply_ckdtree(data, fpath_ckdtree, coordinates=coordinates)
  datai[datai==0.] = np.ma.masked
  return lon_sec, lat_sec, dist_sec, datai
Nils Brüggemann's avatar
Nils Brüggemann committed
169

Nils Brüggemann's avatar
Nils Brüggemann committed
170
171
172
""" 
Routines for zonal averaging
"""
nbruegge's avatar
nbruegge committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
def zonal_average(fpath_data, var, basin='global', it=0, fpath_fx='', fpath_ckdtree=''):

  for fp in [fpath_data, fpath_fx, fpath_ckdtree]:
    if not os.path.exists(fp):
      raise ValueError('::: Error: Cannot find file %s! :::' % (fp))

  f = Dataset(fpath_fx, 'r')
  basin_c = f.variables['basin_c'][:]
  mask_basin = np.zeros(basin_c.shape, dtype=bool)
  if basin.lower()=='atlantic' or basin=='atl':
    mask_basin[basin_c==1] = True 
  elif basin.lower()=='pacific' or basin=='pac':
    mask_basin[basin_c==3] = True 
  elif basin.lower()=='southern ocean' or basin=='soc' or basin=='so':
    mask_basin[basin_c==6] = True 
  elif basin.lower()=='indian ocean' or basin=='ind' or basin=='io':
    mask_basin[basin_c==7] = True 
  elif basin.lower()=='global' or basin=='glob' or basin=='glo':
    mask_basin[basin_c!=0] = True 
  elif basin.lower()=='indopacific' or basin=='indopac':
    mask_basin[(basin_c==3) | (basin_c==7)] = True 
Nils Brüggemann's avatar
Nils Brüggemann committed
194
195
  elif basin.lower()=='indopacso':
    mask_basin[(basin_c==3) | (basin_c==7) | (basin_c==6)] = True 
nbruegge's avatar
nbruegge committed
196
197
198
199
200
201
202
203
204
205
  f.close()
  
  ddnpz = np.load(fpath_ckdtree)
  lon = ddnpz['lon'] 
  lat = ddnpz['lat'] 
  shape = [lat.size, lon.size]
  lat_sec = lat
  
  f = Dataset(fpath_data, 'r')
  nz = f.variables[var].shape[1]
206
  coordinates = f.variables[var].coordinates
nbruegge's avatar
nbruegge committed
207
208
  data_zave = np.ma.zeros((nz,lat_sec.size))
  for k in range(nz):
nbruegge's avatar
nbruegge committed
209
    #print('k = %d/%d'%(k,nz))
nbruegge's avatar
nbruegge committed
210
211
212
213
214
215
216
217
218
    # --- load data
    data = f.variables[var][it,k,:]
    # --- mask land points
    data[data==0] = np.ma.masked
    # --- mask not-this-basin points
    data[mask_basin==False] = np.ma.masked
    # --- go to normal np.array (not np.ma object)
    data = data.filled(0.)
    # --- interpolate to rectangular grid
219
220
    datai = apply_ckdtree(data, fpath_ckdtree, coordinates=coordinates)
    datai = datai.reshape(shape)
nbruegge's avatar
nbruegge committed
221
222
223
224
225
226
227
    # --- go back to masked array
    datai = np.ma.array(datai, mask=datai==0.)
    # --- do zonal average
    data_zave[k,:] = datai.mean(axis=1)
  f.close()
  return lat_sec, data_zave

228
def zonal_average_3d_data(data3d, basin='global', it=0, coordinates='clat clon', fpath_fx='', fpath_ckdtree=''):
nbruegge's avatar
nbruegge committed
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
  """ Like zonal_average but here data instead of path to data is given. This can only work if the whole data array fits into memory.
  """

  for fp in [fpath_fx, fpath_ckdtree]:
    if not os.path.exists(fp):
      raise ValueError('::: Error: Cannot find file %s! :::' % (fp))

  f = Dataset(fpath_fx, 'r')
  basin_c = f.variables['basin_c'][:]
  mask_basin = np.zeros(basin_c.shape, dtype=bool)
  if basin.lower()=='atlantic' or basin=='atl':
    mask_basin[basin_c==1] = True 
  elif basin.lower()=='pacific' or basin=='pac':
    mask_basin[basin_c==3] = True 
  elif basin.lower()=='southern ocean' or basin=='soc' or basin=='so':
    mask_basin[basin_c==6] = True 
  elif basin.lower()=='indian ocean' or basin=='ind' or basin=='io':
    mask_basin[basin_c==7] = True 
  elif basin.lower()=='global' or basin=='glob' or basin=='glo':
    mask_basin[basin_c!=0] = True 
  elif basin.lower()=='indopacific' or basin=='indopac':
    mask_basin[(basin_c==3) | (basin_c==7)] = True 
Nils Brüggemann's avatar
Nils Brüggemann committed
251
252
  elif basin.lower()=='indopacso':
    mask_basin[(basin_c==3) | (basin_c==7) | (basin_c==6)] = True 
nbruegge's avatar
nbruegge committed
253
254
255
  f.close()
  
  ddnpz = np.load(fpath_ckdtree)
256
257
  #dckdtree = ddnpz['dckdtree']
  #ickdtree = ddnpz['ickdtree'] 
nbruegge's avatar
nbruegge committed
258
259
260
261
262
263
264
265
  lon = ddnpz['lon'] 
  lat = ddnpz['lat'] 
  shape = [lat.size, lon.size]
  lat_sec = lat
  
  nz = data3d.shape[0]
  data_zave = np.ma.zeros((nz,lat_sec.size))
  for k in range(nz):
Nils Brüggemann's avatar
Nils Brüggemann committed
266
    data = 1.*data3d[k,:]
nbruegge's avatar
nbruegge committed
267
268
269
270
271
272
273
274
    #print('k = %d/%d'%(k,nz))
    # --- mask land points
    data[data==0] = np.ma.masked
    # --- mask not-this-basin points
    data[mask_basin==False] = np.ma.masked
    # --- go to normal np.array (not np.ma object)
    data = data.filled(0.)
    # --- interpolate to rectangular grid
275
276
    datai = apply_ckdtree(data, fpath_ckdtree, coordinates=coordinates)
    datai = datai.reshape(shape)
nbruegge's avatar
nbruegge committed
277
278
279
280
281
282
    # --- go back to masked array
    datai = np.ma.array(datai, mask=datai==0.)
    # --- do zonal average
    data_zave[k,:] = datai.mean(axis=1)
  return lat_sec, data_zave

283
def zonal_average_atmosphere(data3d, ind_lev, fac, fpath_ckdtree='', coordinates='clat clon',):
284
285
286
287
288
  icall = np.arange(data3d.shape[1],dtype=int)
  datavi = data3d[ind_lev,icall]*fac+data3d[ind_lev+1,icall]*(1.-fac)
  lon, lat, datavihi = interp_to_rectgrid(datavi, fpath_ckdtree, coordinates=coordinates)
  data_zave = datavihi.mean(axis=2)
  return lat, data_zave
289

290
def zonal_section_3d_data(data3d, fpath_ckdtree, coordinates):
291
292
293
294
295
296
297
298
  """
  (
   lon_sec, lat_sec, dist_sec, data_sec 
  ) = pyic.zonal_section_3d_data(tbias, 
    fpath_ckdtree=path_ckdtree+'sections/r2b4_nps100_30W80S_30W80N.npz')
  """
  # --- load ckdtree
  ddnpz = np.load(fpath_ckdtree)
299
300
  #dckdtree = ddnpz['dckdtree']
  #ickdtree = ddnpz['ickdtree'] 
301
302
303
304
305
306
307
  lon_sec = ddnpz['lon_sec'] 
  lat_sec = ddnpz['lat_sec'] 
  dist_sec = ddnpz['dist_sec'] 

  nz = data3d.shape[0]
  data_sec = np.ma.zeros((nz,dist_sec.size))
  for k in range(nz):
308
    data_sec[k,:] = apply_ckdtree(data3d[k,:], fpath_ckdtree, coordinates=coordinates)
309
310
  return lon_sec, lat_sec, dist_sec, data_sec

311
312
313
314
315
316
317
318
319
320
321
def lonlat2str(lon, lat):
  if lon<0:
    lon_s = '%gW'%(-lon)
  else:
    lon_s = '%gE'%(lon)
  if lat<0:
    lat_s = '%gS'%(-lat)
  else:
    lat_s = '%gN'%(lat)
  return lon_s, lat_s

Nils Brüggemann's avatar
Nils Brüggemann committed
322
323
324
325
326
327
328
329
330
"""
Routines to calculate interpolation weights:

  | ckdtree_hgrid
  | ckdtree_section
  |-->| ckdtree_points
      |--> calc_ckdtree
"""

nbruegge's avatar
nbruegge committed
331
def ckdtree_hgrid(lon_reg, lat_reg, res, 
332
333
334
335
336
                 #fpath_grid_triangular='', 
                 fname_tgrid='',
                 path_tgrid='',
                 path_ckdtree='',
                 sname='',
Nils Brüggemann's avatar
Nils Brüggemann committed
337
                 gname='',
338
339
340
341
342
                 tgname='',
                 load_cgrid=True,
                 load_egrid=True,
                 load_vgrid=True,
                 n_nearest_neighbours=1,
343
344
345
                 ):
  """
  """
346
347
348
  if tgname=='':
    Drgrid = identify_grid(path_tgrid, path_tgrid+fname_tgrid) 
    tgname = Drgrid['name']
349
350
351
  lon1str, lat1str = lonlat2str(lon_reg[0], lat_reg[0])
  lon2str, lat2str = lonlat2str(lon_reg[1], lat_reg[1])

352
353
354
355
  if n_nearest_neighbours==1:
    fname = '%s_res%3.2f_%s-%s_%s-%s.npz'%(tgname, res, lon1str, lon2str, lat1str, lat2str) 
  else:
    fname = '%s_res%3.2f_%dnn_%s-%s_%s-%s.npz'%(tgname, res, n_nearest_neighbours, lon1str, lon2str, lat1str, lat2str) 
356
  fpath_ckdtree = path_ckdtree+fname
Nils Brüggemann's avatar
Nils Brüggemann committed
357
  fpath_tgrid   = path_tgrid+fname_tgrid
358
359
360
361
362
363

  # --- make rectangular grid 
  lon = np.arange(lon_reg[0],lon_reg[1],res)
  lat = np.arange(lat_reg[0],lat_reg[1],res)
  Lon, Lat = np.meshgrid(lon, lat)

Nils Brüggemann's avatar
Nils Brüggemann committed
364
365
366
367
368
  lon_o = Lon.flatten()
  lat_o = Lat.flatten()
  
  # --- calculate ckdtree
  Dind_dist = ckdtree_points(fpath_tgrid, lon_o, lat_o, load_cgrid=load_cgrid, load_egrid=load_egrid, load_vgrid=load_vgrid, n_nearest_neighbours=n_nearest_neighbours)
nbruegge's avatar
nbruegge committed
369
370
371
372
373
374

  # --- save grid
  print('Saving grid file: %s' % (fpath_ckdtree))
  np.savez(fpath_ckdtree,
            lon=lon,
            lat=lat,
375
            sname=sname,
Nils Brüggemann's avatar
Nils Brüggemann committed
376
            gname=gname,
377
            tgname='test',
Nils Brüggemann's avatar
Nils Brüggemann committed
378
            **Dind_dist,
nbruegge's avatar
nbruegge committed
379
380
381
382
           )
  return

def ckdtree_section(p1, p2, npoints=101, 
383
384
385
386
                 fname_tgrid='',
                 path_tgrid='',
                 path_ckdtree='',
                 sname='auto',
Nils Brüggemann's avatar
Nils Brüggemann committed
387
                 gname='',
388
                 tgname='',
Nils Brüggemann's avatar
Nils Brüggemann committed
389
                 n_nearest_neighbours=1,
390
391
392
                 load_cgrid=True,
                 load_egrid=True,
                 load_vgrid=True,
nbruegge's avatar
nbruegge committed
393
394
395
                 ):
  """
  """
396
397
398
  if tgname=='':
    Drgrid = identify_grid(path_tgrid, path_tgrid+fname_tgrid) 
    tgname = Drgrid['name']
399
400
401
402
403
404
  lon1str, lat1str = lonlat2str(p1[0], p1[1])
  lon2str, lat2str = lonlat2str(p2[0], p2[1])

  if sname=='auto':
    sname = fpath_ckdtree.split('/')[-1][:-4]

Nils Brüggemann's avatar
Nils Brüggemann committed
405
406
407
408
  fname = '%s_nps%d_%s%s_%s%s.npz'%(tgname, npoints, lon1str, lat1str, lon2str, lat2str) 
  fpath_ckdtree = path_ckdtree+fname
  fpath_tgrid   = path_tgrid+fname_tgrid

nbruegge's avatar
nbruegge committed
409
410
  # --- derive section points
  lon_sec, lat_sec, dist_sec = derive_section_points(p1, p2, npoints)
Nils Brüggemann's avatar
Nils Brüggemann committed
411
412
  lon_o = lon_sec
  lat_o = lat_sec
nbruegge's avatar
nbruegge committed
413

Nils Brüggemann's avatar
Nils Brüggemann committed
414
415
  # --- calculate ckdtree
  Dind_dist = ckdtree_points(fpath_tgrid, lon_o, lat_o, load_cgrid=load_cgrid, load_egrid=load_egrid, load_vgrid=load_vgrid, n_nearest_neighbours=n_nearest_neighbours)
nbruegge's avatar
nbruegge committed
416
417
418
419
420
421
422

  # --- save grid
  print('Saving grid file: %s' % (fpath_ckdtree))
  np.savez(fpath_ckdtree,
            lon_sec=lon_sec,
            lat_sec=lat_sec,
            dist_sec=dist_sec,
423
            sname=sname,
Nils Brüggemann's avatar
Nils Brüggemann committed
424
            gname=gname,
Nils Brüggemann's avatar
Nils Brüggemann committed
425
            **Dind_dist
nbruegge's avatar
nbruegge committed
426
           )
Nils Brüggemann's avatar
Nils Brüggemann committed
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
  return Dind_dist['dckdtree_c'], Dind_dist['ickdtree_c'], lon_sec, lat_sec, dist_sec

def ckdtree_points(fpath_tgrid, lon_o, lat_o, load_cgrid=True, load_egrid=True, load_vgrid=True, n_nearest_neighbours=1):
  """
  """
  # --- load triangular grid
  f = Dataset(fpath_tgrid, 'r')
  if load_cgrid:
    clon = f.variables['clon'][:] * 180./np.pi
    clat = f.variables['clat'][:] * 180./np.pi
  if load_egrid:
    elon = f.variables['elon'][:] * 180./np.pi
    elat = f.variables['elat'][:] * 180./np.pi
  if load_vgrid:
    vlon = f.variables['vlon'][:] * 180./np.pi
    vlat = f.variables['vlat'][:] * 180./np.pi
  f.close()

  # --- ckdtree for cells, edges and vertices
  if load_cgrid:
    dckdtree_c, ickdtree_c = calc_ckdtree(lon_i=clon, lat_i=clat,
                                          lon_o=lon_o, lat_o=lat_o,
                                          n_nearest_neighbours=n_nearest_neighbours,
                                          )
  if load_egrid:
    dckdtree_e, ickdtree_e = calc_ckdtree(lon_i=elon, lat_i=elat,
                                          lon_o=lon_o, lat_o=lat_o,
                                          n_nearest_neighbours=n_nearest_neighbours,
                                          )
  if load_vgrid:
    dckdtree_v, ickdtree_v = calc_ckdtree(lon_i=vlon, lat_i=vlat,
                                          lon_o=lon_o, lat_o=lat_o,
                                          n_nearest_neighbours=n_nearest_neighbours,
                                          )

  # --- save dict
  Dind_dist = dict()
  if load_cgrid: 
    Dind_dist['dckdtree_c'] = dckdtree_c
    Dind_dist['ickdtree_c'] = ickdtree_c
  if load_egrid: 
    Dind_dist['dckdtree_e'] = dckdtree_e
    Dind_dist['ickdtree_e'] = ickdtree_e
  if load_vgrid: 
    Dind_dist['dckdtree_v'] = dckdtree_v
    Dind_dist['ickdtree_v'] = ickdtree_v
  return Dind_dist
nbruegge's avatar
nbruegge committed
474

475
def calc_ckdtree(lon_i, lat_i, lon_o, lat_o, n_nearest_neighbours=1):
nbruegge's avatar
nbruegge committed
476
477
  """
  """
478
  # --- do ckdtree
Nils Brüggemann's avatar
Nils Brüggemann committed
479
480
481
482
483
484
485
486
487
488
489
490
491
492
  if False:
    lzip_i = list(zip(lon_i, lat_i))
    tree = cKDTree(lzip_i)
    lzip_o = list(zip(lon_o, lat_o))
    dckdtree, ickdtree = tree.query(lzip_o , k=n_nearest_neighbours, n_jobs=1)
  else:
    #print('calc_ckdtree by cartesian distances')
    xi, yi, zi = spherical_to_cartesian(lon_i, lat_i)
    xo, yo, zo = spherical_to_cartesian(lon_o, lat_o)

    lzip_i = list(zip(xi, yi, zi))
    tree = cKDTree(lzip_i)
    lzip_o = list(zip(xo, yo, zo))
    dckdtree, ickdtree = tree.query(lzip_o , k=n_nearest_neighbours, n_jobs=1)
nbruegge's avatar
nbruegge committed
493
494
  return dckdtree, ickdtree

Nils Brüggemann's avatar
Nils Brüggemann committed
495
496
497
498
499
500
501
def calc_vertical_interp_weights(zdata, levs):
  """ Calculate vertical interpolation weights and indices.

Call example:
icall, ind_lev, fac = calc_vertical_interp_weights(zdata, levs)

Afterwards do interpolation like this:
502
datai = data[ind_lev,icall]*fac+data[ind_lev+1,icall]*(1.-fac)
Nils Brüggemann's avatar
Nils Brüggemann committed
503
504
505
506
507
508
509
510
511
512
513
514
515
  """
  nza = zdata.shape[0]
  # --- initializations
  ind_lev = np.zeros((levs.size,zdata.shape[1]),dtype=int)
  icall = np.arange(zdata.shape[1],dtype=int)
  icall = icall[np.newaxis,:]
  fac = np.ma.zeros((levs.size,zdata.shape[1]))
  for k, lev in enumerate(levs):
    #print(f'k = {k}')
    # --- find level below critical level
    ind_lev[k,:] = (zdata<levs[k]).sum(axis=0)-1
    ind_lev[k,ind_lev[k,:]==(nza-1)]=-1
    # --- zdata below and above lev 
516
517
518
519
    zd1 = zdata[ind_lev[k,:],icall]
    zd2 = zdata[ind_lev[k,:]+1,icall]
    # --- linear interpolation to get weight (fac=1 if lev=zd1)
    fac[k,:] = (0.-1.)/(zd2-zd1)*(levs[k]-zd1)+1.
Nils Brüggemann's avatar
Nils Brüggemann committed
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
  # --- mask values which are out of range
  fac[ind_lev==-1] = np.ma.masked 
  return icall, ind_lev, fac

"""
Routines to calculate grids and sections
"""

def derive_section_points(p1, p2, npoints=101,):
  # --- derive section points
  if p1[0]==p2[0]:
    lon_sec = p1[0]*np.ones((npoints)) 
    lat_sec = np.linspace(p1[1],p2[1],npoints)
  else:
    lon_sec = np.linspace(p1[0],p2[0],npoints)
    lat_sec = (p2[1]-p1[1])/(p2[0]-p1[0])*(lon_sec-p1[0])+p1[1]
  dist_sec = haversine_dist(lon_sec[0], lat_sec[0], lon_sec, lat_sec)
  return lon_sec, lat_sec, dist_sec

def calc_north_pole_interp_grid_points(lat_south=60., res=100e3):
  """
  Compute grid points optimized for plotting the North Pole area.

  Parameters:
  -----------
  lat_south : float
      Southern latitude of target grid.
  res : float
      resolution of target grid

  Returns:
  --------
  Lon_np, Lat_np: ndarray
      Longitude and latitude of target grid as 2d array.

  Examples:
  ---------
  Lon_np, Lat_np = calc_north_pole_interp_grid_points(lat_south=60., res=100e3)

  """
  R = 6371e3
  x1, y1, z1 = spherical_to_cartesian(  0., lat_south)
  x2, y2, z2 = spherical_to_cartesian( 90., lat_south)
  x3, y3, z3 = spherical_to_cartesian(180., lat_south)
  x4, y4, z4 = spherical_to_cartesian(270., lat_south)

  lon1, lat1 = cartesian_to_spherical(x1, y1, z1)
  lon2, lat2 = cartesian_to_spherical(x2, y2, z2)
  lon3, lat3 = cartesian_to_spherical(x3, y3, z3)
  lon4, lat4 = cartesian_to_spherical(x4, y4, z4)

  #x1 = R * np.cos(  0.*np.pi/180.) * np.cos(lat_south*np.pi/180.)
  #y1 = R * np.sin(  0.*np.pi/180.) * np.cos(lat_south*np.pi/180.)
  #z1 = R * np.sin(lat_south*np.pi/180.)
  #x2 = R * np.cos( 90.*np.pi/180.) * np.cos(lat_south*np.pi/180.)
  #y2 = R * np.sin( 90.*np.pi/180.) * np.cos(lat_south*np.pi/180.)
  #z2 = R * np.sin(lat_south*np.pi/180.)
  #x3 = R * np.cos(180.*np.pi/180.) * np.cos(lat_south*np.pi/180.)
  #y3 = R * np.sin(180.*np.pi/180.) * np.cos(lat_south*np.pi/180.)
  #z3 = R * np.sin(lat_south*np.pi/180.)
  #x4 = R * np.cos(270.*np.pi/180.) * np.cos(lat_south*np.pi/180.)
  #y4 = R * np.sin(270.*np.pi/180.) * np.cos(lat_south*np.pi/180.)
  #z4 = R * np.sin(lat_south*np.pi/180.)
  #
  #lat1 = np.arcsin(z1/np.sqrt(x1**2+y1**2+z1**2)) * 180./np.pi
  #lon1 = np.arctan2(y1,x1) * 180./np.pi
  #lat2 = np.arcsin(z2/np.sqrt(x2**2+y2**2+z2**2)) * 180./np.pi
  #lon2 = np.arctan2(y2,x2) * 180./np.pi
  #lat3 = np.arcsin(z3/np.sqrt(x3**2+y3**2+z3**2)) * 180./np.pi
  #lon3 = np.arctan2(y3,x3) * 180./np.pi
  #lat4 = np.arcsin(z4/np.sqrt(x4**2+y4**2+z4**2)) * 180./np.pi
  #lon4 = np.arctan2(y4,x4) * 180./np.pi
  
  xnp = np.arange(x3, x1+res, res)
  ynp = np.arange(y4, y2+res, res)
  
  Xnp, Ynp = np.meshgrid(xnp, ynp)
  Znp = R * np.sin(lat1*np.pi/180.) * np.ones((ynp.size,xnp.size))
  Lon_np = np.arctan2(Ynp,Xnp) * 180./np.pi
  Lat_np = np.arcsin(Znp/np.sqrt(Xnp**2+Ynp**2+Znp**2)) * 180./np.pi
  return Lon_np, Lat_np

"""
Routines related to spherical geometry
"""
nbruegge's avatar
nbruegge committed
605
606
607
608
609
610
611
612
613
614
615
616
617
618
def haversine_dist(lon_ref, lat_ref, lon_pts, lat_pts, degree=True):
  # for details see http://en.wikipedia.org/wiki/Haversine_formula
  r = 6378.e3
  if degree:
    lon_ref = lon_ref * np.pi/180.
    lat_ref = lat_ref * np.pi/180.
    lon_pts = lon_pts * np.pi/180.
    lat_pts = lat_pts * np.pi/180.
  arg = np.sqrt(   np.sin(0.5*(lat_pts-lat_ref))**2 
                 + np.sin(0.5*(lon_pts-lon_ref))**2
                 * np.cos(lat_ref)*np.cos(lat_pts) )
  dist = 2*r * np.arcsin(arg)
  return dist

Nils Brüggemann's avatar
Nils Brüggemann committed
619
620
621
622
623
624
625
626
627
628
629
def spherical_to_cartesian(lon, lat):
  earth_radius = 6371e3
  x = earth_radius * np.cos(lon*np.pi/180.) * np.cos(lat*np.pi/180.)
  y = earth_radius * np.sin(lon*np.pi/180.) * np.cos(lat*np.pi/180.)
  z = earth_radius * np.sin(lat*np.pi/180.)
  return x, y, z

def cartesian_to_spherical(x, y, z):
  lat = np.arcsin(z/np.sqrt(x**2+y**2+z**2)) * 180./np.pi
  lon = np.arctan2(y,x) * 180./np.pi
  return lon, lat
630

Nils Brüggemann's avatar
Nils Brüggemann committed
631
632
633
"""
Routines to load data
"""
634
635
636
637
638
639
640
641
642
643
644
645
def load_hsnap(fpath, var, it=0, iz=0, fpath_ckdtree=''):
  f = Dataset(fpath, 'r')
  print("Loading %s from %s" % (var, fpath))
  if f.variables[var].ndim==2:
    data = f.variables[var][it,:]
  else:
    data = f.variables[var][it,iz,:]
  f.close()

  data[data==0.] = np.ma.masked
  return data

Nils Brüggemann's avatar
Nils Brüggemann committed
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
def time_average(IcD, var, t1='none', t2='none', it_ave=[], iz='all', always_use_loop=False):
  it_ave = np.array(it_ave)
  # --- if no it_ave is given use t1 and t2 to determine averaging indices it_ave
  if it_ave.size==0:
    # --- if t2=='none' set t2=t1 and no time average will be applied
    if isinstance(t2, str) and t2=='none':
      t2 = t1

    # --- convert to datetime64 objects if necessary
    if isinstance(t1, str):
      t1 = np.datetime64(t1)
    if isinstance(t2, str):
      t2 = np.datetime64(t2)

    # --- determine averaging interval
    it_ave = np.where( (IcD.times>=t1) & (IcD.times<=t2) )[0]
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

  if it_ave.size==0:
    raise ValueError(f'::: Could not find any time steps in interval t1={t1} and t2={t2}! :::')

  # --- get dimensions to allocate data
  f = Dataset(IcD.flist_ts[0], 'r')
  # FIXME: If == ('time', 'lat', 'lon') works well use it everywhere
  if f.variables[var].dimensions == ('time', 'lat', 'lon'):
    nt, nc, nx = f.variables[var].shape
    nz = 0
  elif f.variables[var].ndim==3:
    nt, nz, nc = f.variables[var].shape
  elif f.variables[var].ndim==2: # for 2D variables like zos and mld
    nt, nc = f.variables[var].shape
    nz = 0
  elif f.variables[var].ndim==4: # is the case for moc data
    nt, nz, nc, ndummy = f.variables[var].shape 
  f.close()

  # --- set iz to all levels
  if isinstance(iz,str) and iz=='all':
    iz = np.arange(nz)
  #else:
  #  iz = np.array([iz])

  # --- if all data is coming from one file take faster approach
  fpaths = np.unique(IcD.flist_ts[it_ave])
  if (fpaths.size==1) and not always_use_loop:
    f = Dataset(fpaths[0], 'r')
    if nz>0:
      data_ave = f.variables[var][IcD.its[it_ave],iz,:].mean(axis=0)
    else:
      data_ave = f.variables[var][IcD.its[it_ave],:].mean(axis=0)
    f.close()
  # --- otherwise loop ovar all files is needed
  else:
    # --- allocate data
    if isinstance(iz,int) or nz==0:
      data_ave = np.ma.zeros((nc))
    else:
      data_ave = np.ma.zeros((iz.size,nc))

    # --- average by looping over all files and time steps
    for l in it_ave:
      f = Dataset(IcD.flist_ts[l], 'r')
      if nz>0:
        data_ave += f.variables[var][IcD.its[l],iz,:]/it_ave.size
      else:
        data_ave += f.variables[var][IcD.its[l],:]/it_ave.size
      f.close()
  print(f'pyicon.time_average: var={var}: it_ave={it_ave}')
  return data_ave, it_ave

715
716
717
718
719
def timing(ts, string=''):
  if ts[0]==0:
    ts = np.array([datetime.datetime.now()])
  else:
    ts = np.append(ts, [datetime.datetime.now()])
720
    print(ts[-1]-ts[-2], ' ', (ts[-1]-ts[0]), ' '+string)
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
  return ts

def conv_gname(gname):
  gname = gname[:-4]

  ogrid = gname.split('_')[0]
  res = float(gname.split('_')[1][1:])

  lo1 = gname.split('_')[2]
  if lo1[-1]=='w':
    lo1 = -float(lo1[:-1])
  else:
    lo1 = float(lo1[:-1])
  lo2 = gname.split('_')[3]
  if lo2[-1]=='w':
    lo2 = -float(lo2[:-1])
  else:
    lo2 = float(lo2[:-1])

  la1 = gname.split('_')[4]
  if la1[-1]=='s':
    la1 = -float(la1[:-1])
  else:
    la1 = float(la1[:-1])
  la2 = gname.split('_')[5]
  if la2[-1]=='s':
    la2 = -float(la2[:-1])
  else:
    la2 = float(la2[:-1])

  lon_reg = [lo1, lo2]
  lat_reg = [la1, la2]
  return ogrid, res, lon_reg, lat_reg

Nils Brüggemann's avatar
Nils Brüggemann committed
755
756
757
"""
Grid related functions
"""
758
759
760
def identify_grid(path_grid, fpath_data):
  """ Identifies ICON grid in depending on clon.size in fpath_data.
  
Nils Brüggemann's avatar
Nils Brüggemann committed
761
762
763
764
765
766
  r2b4:  160km:    15117: OceanOnly_Icos_0158km_etopo40.nc
  r2b4a: 160km:    20480: /pool/data/ICON/grids/public/mpim/0013/icon_grid_0013_R02B04_G.nc
  r2b6:   40km:   327680: OCEANINP_pre04_LndnoLak_039km_editSLOHH2017_G.nc
  r2b8:   10km:  3729001: OceanOnly_Global_IcosSymmetric_0010km_rotatedZ37d_modified_srtm30_1min.nc
  r2b9:    5km: 14886338: OceanOnly_IcosSymmetric_4932m_rotatedZ37d_modified_srtm30_1min.nc
  r2b9a:   5km: 20971520: /pool/data/ICON/grids/public/mpim/0015/icon_grid_0015_R02B09_G.nc
767
768
769
770
771
772
773
774
775
776
  """
  
  Dgrid_list = dict()
  
  grid_name = 'r2b4'; Dgrid_list[grid_name] = dict()
  Dgrid_list[grid_name]['name'] = grid_name
  Dgrid_list[grid_name]['res'] = '160km'
  Dgrid_list[grid_name]['long_name'] = 'OceanOnly_Icos_0158km_etopo40'
  Dgrid_list[grid_name]['size'] = 15117
  Dgrid_list[grid_name]['fpath_grid'] = path_grid + Dgrid_list[grid_name]['long_name'] + '/' + Dgrid_list[grid_name]['long_name'] + '.nc'
Nils Brüggemann's avatar
Nils Brüggemann committed
777
778
779
780
781
782
783
784
 
  grid_name = 'r2b4a'; Dgrid_list[grid_name] = dict()
  Dgrid_list[grid_name]['name'] = grid_name
  Dgrid_list[grid_name]['res'] = '160km'
  Dgrid_list[grid_name]['long_name'] = 'icon_grid_0013_R02B04_G'
  Dgrid_list[grid_name]['size'] = 20480
  Dgrid_list[grid_name]['fpath_grid'] = path_grid + Dgrid_list[grid_name]['long_name'] + '/' + Dgrid_list[grid_name]['long_name'] + '.nc'

Nils Brüggemann's avatar
Nils Brüggemann committed
785
  grid_name = 'r2b6old'; Dgrid_list[grid_name] = dict()
786
787
788
789
790
791
  Dgrid_list[grid_name]['name'] = grid_name
  Dgrid_list[grid_name]['res'] = '40km'
  Dgrid_list[grid_name]['long_name'] = 'OCEANINP_pre04_LndnoLak_039km_editSLOHH2017_G'
  Dgrid_list[grid_name]['size'] = 327680
  Dgrid_list[grid_name]['fpath_grid'] = path_grid + Dgrid_list[grid_name]['long_name'] + '/' + Dgrid_list[grid_name]['long_name'] + '.nc'
  
792
793
794
795
796
797
798
  grid_name = 'r2b6'; Dgrid_list[grid_name] = dict()
  Dgrid_list[grid_name]['name'] = grid_name
  Dgrid_list[grid_name]['res'] = '40km'
  Dgrid_list[grid_name]['long_name'] = 'OceanOnly_Global_IcosSymmetric_0039km_rotatedZ37d_BlackSea_Greenland_modified_srtm30_1min'
  Dgrid_list[grid_name]['size'] = 235403 
  Dgrid_list[grid_name]['fpath_grid'] = path_grid + Dgrid_list[grid_name]['long_name'] + '/' + Dgrid_list[grid_name]['long_name'] + '.nc'

799
800
801
802
803
804
805
806
807
808
809
810
811
  grid_name = 'r2b8'; Dgrid_list[grid_name] = dict()
  Dgrid_list[grid_name]['name'] = grid_name
  Dgrid_list[grid_name]['res'] = '10km'
  Dgrid_list[grid_name]['long_name'] = 'OceanOnly_Global_IcosSymmetric_0010km_rotatedZ37d_modified_srtm30_1min'
  Dgrid_list[grid_name]['size'] = 3729001
  Dgrid_list[grid_name]['fpath_grid'] = path_grid + Dgrid_list[grid_name]['long_name'] + '/' + Dgrid_list[grid_name]['long_name'] + '.nc'
  
  grid_name = 'r2b9'; Dgrid_list[grid_name] = dict()
  Dgrid_list[grid_name]['name'] = grid_name
  Dgrid_list[grid_name]['res'] = '5km'
  Dgrid_list[grid_name]['long_name'] = 'OceanOnly_IcosSymmetric_4932m_rotatedZ37d_modified_srtm30_1min'
  Dgrid_list[grid_name]['size'] = 14886338
  Dgrid_list[grid_name]['fpath_grid'] = path_grid + Dgrid_list[grid_name]['long_name'] + '/' + Dgrid_list[grid_name]['long_name'] + '.nc'
Nils Brüggemann's avatar
Nils Brüggemann committed
812
813
814
815
816
817
818

  grid_name = 'r2b9a'; Dgrid_list[grid_name] = dict()
  Dgrid_list[grid_name]['name'] = grid_name
  Dgrid_list[grid_name]['res'] = '5km'
  Dgrid_list[grid_name]['long_name'] = 'icon_grid_0015_R02B09_G'
  Dgrid_list[grid_name]['size'] = 20971520
  Dgrid_list[grid_name]['fpath_grid'] = path_grid + Dgrid_list[grid_name]['long_name'] + '.nc'
819
820
821
822
823
824
825
826
  
  f = Dataset(fpath_data, 'r')
  gsize = f.variables['clon'].size
  f.close()
  for grid_name in Dgrid_list.keys():
    if gsize == Dgrid_list[grid_name]['size']:
      Dgrid = Dgrid_list[grid_name]
      break
Nils Brüggemann's avatar
Nils Brüggemann committed
827
  #fpath_grid = '/pool/data/ICON/oes/input/r0003/' + Dgrid['long_name'] +'/' + Dgrid['long_name'] + '.nc'
828
829
  return Dgrid

Nils Brüggemann's avatar
Nils Brüggemann committed
830
831
832
833
834
835
836
837
838
839
def mask_big_triangles(vlon, vertex_of_cell, Tri):
  mask_bt = (
      (np.abs(  vlon[vertex_of_cell[:,0]] 
              - vlon[vertex_of_cell[:,1]])>180.)
    | (np.abs(  vlon[vertex_of_cell[:,0]] 
              - vlon[vertex_of_cell[:,2]])>180.)
                )
  Tri.set_mask(mask_bt)
  return Tri, mask_bt

840
841
842
843
844
845
846
847
848
849
850
851
852
853
def crop_tripolar_grid(lon_reg, lat_reg,
                       clon, clat, vertex_of_cell, edge_of_cell):
  ind_reg = np.where(   (clon>lon_reg[0]) 
                      & (clon<=lon_reg[1]) 
                      & (clat>lat_reg[0]) 
                      & (clat<=lat_reg[1]) )[0]
  clon = clon[ind_reg]
  clat = clat[ind_reg]
  vertex_of_cell = vertex_of_cell[ind_reg,:]
  edge_of_cell   = edge_of_cell[ind_reg,:]
  ind_reg = ind_reg
  return clon, clat, vertex_of_cell, edge_of_cell, ind_reg

def crop_regular_grid(lon_reg, lat_reg, Lon, Lat):
854
855
856
857
858
  # this does not work since Lon[ind_reg].shape = (64800, 360)
  # cropping needs probably done by each dimension
  # in this case cropping function for data is used as well
  print(Lon.shape)
  ind_reg = np.where(   (Lon>=lon_reg[0]) 
859
                      & (Lon<=lon_reg[1]) 
860
                      & (Lat>=lat_reg[0]) 
861
862
863
864
865
866
867
868
                      & (Lat<=lat_reg[1]) )[0]
  Lon = Lon[ind_reg]
  Lat = Lat[ind_reg]
  lon = Lon[0,:] 
  lat = Lat[:,0] 
  ind_reg = ind_reg
  return Lon, Lat, lon, lat, ind_reg

Nils Brüggemann's avatar
Nils Brüggemann committed
869
870
871
"""
Routines related to time steps of data set
"""
872
873
def get_files_of_timeseries(path_data, fname):
  flist = np.array(glob.glob(path_data+fname))
nbruegge's avatar
nbruegge committed
874
875
  flist.sort()
  times_flist = np.zeros(flist.size, dtype='datetime64[s]')
nbruegge's avatar
nbruegge committed
876
877
878
879
  #for l, fpath in enumerate(flist):
  #  tstr = fpath.split('/')[-1].split('_')[-1][:-4]
  #  times_flist[l] = '%s-%s-%sT%s:%s:%s' % ( (tstr[:4], tstr[4:6], tstr[6:8], 
  #                                      tstr[9:11], tstr[11:13], tstr[13:15]))
Nils Brüggemann's avatar
Nils Brüggemann committed
880
  if flist.size==0:
881
    raise ValueError('::: Error: No file found matching %s!:::' % (path_data+fname))
nbruegge's avatar
nbruegge committed
882
883
  return times_flist, flist

Nils Brüggemann's avatar
Nils Brüggemann committed
884
885
886
887
888
def nctime2numpy(ncv):
  np_time = num2date(ncv[:], units=ncv.units, calendar=ncv.calendar
                  ).astype("datetime64[s]")
  return np_time

889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
def nctime_to_datetime64(ncv_time, time_mode='num2date'):
  if time_mode=='num2date':
    np_time = num2date(ncv_time[:], units=ncv_time.units, calendar=ncv_time.calendar
                    ).astype("datetime64[s]")
  elif time_mode=='float2date':
    tps = ncv_time[:]
    secs_tot = np.round(86400.*(tps-np.floor(tps)))
    hours = np.floor(secs_tot/3600.)
    mins = np.floor((secs_tot-hours*3600.)/60.) 
    secs = secs_tot - hours*3600. - mins*60.
    tstrs = [0]*tps.size
    for l in range(tps.size):
      tp = tps[l]
      tstr = '%s-%s-%sT%02d:%02d:%02d' % (str(tp)[:4], str(tp)[4:6], str(tp)[6:8], hours[l], mins[l], secs[l]) 
      tstrs[l] = tstr
    np_time = np.array(tstrs, dtype='datetime64')
  else:
    raise ValueError('::: Error: Wrong time_mode %s in get_timesteps! :::' % time_mode)
  return np_time
  

Nils Brüggemann's avatar
Nils Brüggemann committed
910
911
912
913
def get_timesteps(flist, time_mode='num2date'):
  #f = Dataset(flist[0], 'r')
  #nt = f.variables['time'].size 
  #f.close()
914
  #times = np.zeros((len(flist)*nt))
Nils Brüggemann's avatar
Nils Brüggemann committed
915
916
917
918
919
920
  #times = np.array(['2010']*(len(flist)*nt), dtype='datetime64[s]')
  #its = np.zeros((len(flist)*nt), dtype='int')
  #flist_ts = np.zeros((len(flist)*nt), dtype='<U200')
  times = np.array([], dtype='datetime64[s]')
  its = np.array([], dtype='int')
  flist_ts = np.array([], dtype='<U200')
nbruegge's avatar
nbruegge committed
921
922
  for nn, fpath in enumerate(flist):
    f = Dataset(fpath, 'r')
923
    ncv_time = f.variables['time']
Nils Brüggemann's avatar
Nils Brüggemann committed
924
    nt = f.variables['time'].size 
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
    np_time = nctime_to_datetime64(ncv_time, time_mode=time_mode)
    ##if time_mode=='num2date':
    ##  np_time = num2date(ncv[:], units=ncv.units, calendar=ncv.calendar
    ##                  ).astype("datetime64[s]")
    ##elif time_mode=='float2date':
    ##  tps = ncv[:]
    ##  secs_tot = np.round(86400.*(tps-np.floor(tps)))
    ##  hours = np.floor(secs_tot/3600.)
    ##  mins = np.floor((secs_tot-hours*3600.)/60.) 
    ##  secs = secs_tot - hours*3600. - mins*60.
    ##  tstrs = [0]*tps.size
    ##  for l in range(tps.size):
    ##    tp = tps[l]
    ##    tstr = '%s-%s-%sT%02d:%02d:%02d' % (str(tp)[:4], str(tp)[4:6], str(tp)[6:8], hours[l], mins[l], secs[l]) 
    ##    tstrs[l] = tstr
    ##  np_time = np.array(tstrs, dtype='datetime64')
    ##else:
    ##  raise ValueError('::: Error: Wrong time_mode %s in get_timesteps! :::' % time_mode)
Nils Brüggemann's avatar
Nils Brüggemann committed
943
944
945
946
947
948
949
    #mybreak()
    #times[nn*nt:(nn+1)*nt] = np_time
    #flist_ts[nn*nt:(nn+1)*nt] = np.array([fpath]*nt)
    #its[nn*nt:(nn+1)*nt] = np.arange(nt)
    times    = np.concatenate((times, np_time))
    flist_ts = np.concatenate((flist_ts, np.array([fpath]*nt).astype('<U200')))
    its      = np.concatenate((its, np.arange(nt, dtype='int')))
nbruegge's avatar
nbruegge committed
950
951
952
    f.close()
  return times, flist_ts, its

Nils Brüggemann's avatar
Nils Brüggemann committed
953
954
955
956
957
958
959
960
961
def get_varnames(fpath, skip_vars=[]):
  f = Dataset(fpath, 'r')
  varnames = f.variables.keys()
  f.close()
  #varnames = [var for var in varnames if not var.startswith('clon')]
  for skip_var in skip_vars:
    varnames = [var for var in varnames if not var.startswith(skip_var)]
  return varnames

962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#def nc_info(fpath):
#  if not os.path.isfile(fpath):
#    print("::: Error: file %s does not exist! :::" %(fpath))
#    sys.exit()
#  
#  ##ds = xr.open_dataset(fpath)
#  f = Dataset(fpath, 'r')
#  header =  "{code:<5}: {name:<30}: {long_name:<30}: {units:<20}: {shape:<20}".format(code='code', name='name', long_name='long_name', units='units', shape='shape')
#  print header
#  print '-'*len(header)
#  ##for var in ds.variables.keys():
#  for var in f.variables.keys():
#    ##name = ds[var].name
#    nv = f.variables[var]
#    name = "{:<30}: ".format(var[:29])
#    try:
#      ##lname = ds[var].long_name
#      lname = nv.long_name
#      lname = "{:<30}: ".format(lname[:29])
#    except:
#      lname = " "*30+": "
#    try:
#      units = nv.units
#      units = "{:<20}: ".format(units[:19])
#    except:
#      units = " "*20+": "
#    try:
#      ##code = ds[var].code
#      code = nv.code
#      code = "% 5d: "%(code)
#    except:
#      code = "     : "
#    ##shape = str(ds[var].shape)
#    shape = str(nv.shape)
#    shape = "{:<20}: ".format(shape[:19])
#    print code+name+lname+units+shape
#  f.close()
#  return Dfinf

For faster browsing, not all history is shown. View entire blame