From f7b58f8bb8e663f17ec3d4c948f2c1ac3d96dce2 Mon Sep 17 00:00:00 2001 From: aaronspring <aaron.spring@mpimet.mpg.de> Date: Tue, 3 Nov 2020 14:16:21 +0100 Subject: [PATCH] fix --- notebooks/CVDP_GE.ipynb | 767 +++++----------------------------------- 1 file changed, 85 insertions(+), 682 deletions(-) diff --git a/notebooks/CVDP_GE.ipynb b/notebooks/CVDP_GE.ipynb index 10c6020..8a3cfbd 100644 --- a/notebooks/CVDP_GE.ipynb +++ b/notebooks/CVDP_GE.ipynb @@ -2,11 +2,11 @@ "cells": [ { "cell_type": "code", - "execution_count": 60, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ - "import os, glob\n", + "#import os, glob\n", "import numpy as np\n", "import xarray as xr\n", "import matplotlib.pyplot as plt" @@ -21,7 +21,7 @@ }, { "cell_type": "code", - "execution_count": 61, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -30,7 +30,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -97,12 +97,12 @@ } ], "source": [ - "!cat /work/mh1007/MPI-GE_processed/README" + "!cat /work/mh1007/MPI-GE_processed/CVDP/README" ] }, { "cell_type": "code", - "execution_count": 62, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -112,35 +112,35 @@ }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "/work/bm1124/m300524/CVDP_GE/hist/hist0001.cvdp_data.amo.1850-2005.nc\n", - "/work/bm1124/m300524/CVDP_GE/hist/hist0001.cvdp_data.pdo.1850-2005.nc\n", - "/work/bm1124/m300524/CVDP_GE/hist/hist0001.cvdp_data.pr.mean_stddev.1850-2005.nc\n", - "/work/bm1124/m300524/CVDP_GE/hist/hist0001.cvdp_data.pr.trends_timeseries.1850-2005.nc\n", - "/work/bm1124/m300524/CVDP_GE/hist/hist0001.cvdp_data.psl.mean_stddev.1850-2005.nc\n", - "/work/bm1124/m300524/CVDP_GE/hist/hist0001.cvdp_data.psl.nam_nao.1850-2005.nc\n", - "/work/bm1124/m300524/CVDP_GE/hist/hist0001.cvdp_data.psl.nam_nao.ts.1850-2005.nc\n", - "/work/bm1124/m300524/CVDP_GE/hist/hist0001.cvdp_data.psl.pna_npo.1850-2005.nc\n", - "/work/bm1124/m300524/CVDP_GE/hist/hist0001.cvdp_data.psl.pna_npo.ts.1850-2005.nc\n", - "/work/bm1124/m300524/CVDP_GE/hist/hist0001.cvdp_data.psl.sam_psa.1850-2005.nc\n", - "/work/bm1124/m300524/CVDP_GE/hist/hist0001.cvdp_data.psl.sam_psa.ts.1850-2005.nc\n", - "/work/bm1124/m300524/CVDP_GE/hist/hist0001.cvdp_data.psl.sst.indices.tas.1850-2005.nc\n", - "/work/bm1124/m300524/CVDP_GE/hist/hist0001.cvdp_data.psl.trends.1850-2005.nc\n", - "/work/bm1124/m300524/CVDP_GE/hist/hist0001.cvdp_data.snd.mean_stddev.1850-2005.nc\n", - "/work/bm1124/m300524/CVDP_GE/hist/hist0001.cvdp_data.snd.trends.1850-2005.nc\n", - "/work/bm1124/m300524/CVDP_GE/hist/hist0001.cvdp_data.sst.indices.1850-2005.nc\n", - "/work/bm1124/m300524/CVDP_GE/hist/hist0001.cvdp_data.sst.indices.ppt.1850-2005.nc\n", - "/work/bm1124/m300524/CVDP_GE/hist/hist0001.cvdp_data.sst.indices.psl.1850-2005.nc\n", - "/work/bm1124/m300524/CVDP_GE/hist/hist0001.cvdp_data.sst.mean_stddev.1850-2005.nc\n", - "/work/bm1124/m300524/CVDP_GE/hist/hist0001.cvdp_data.sst.trends_timeseries.1850-2005.nc\n", - "/work/bm1124/m300524/CVDP_GE/hist/hist0001.cvdp_data.tas.mean_stddev.1850-2005.nc\n", - "/work/bm1124/m300524/CVDP_GE/hist/hist0001.cvdp_data.tas.trends_timeseries.1850-2005.nc\n" + "/work/mh1007/MPI-GE_processed/CVDP/hist/hist0001.cvdp_data.amo.1850-2005.nc\n", + "/work/mh1007/MPI-GE_processed/CVDP/hist/hist0001.cvdp_data.pdo.1850-2005.nc\n", + "/work/mh1007/MPI-GE_processed/CVDP/hist/hist0001.cvdp_data.pr.mean_stddev.1850-2005.nc\n", + "/work/mh1007/MPI-GE_processed/CVDP/hist/hist0001.cvdp_data.pr.trends_timeseries.1850-2005.nc\n", + "/work/mh1007/MPI-GE_processed/CVDP/hist/hist0001.cvdp_data.psl.mean_stddev.1850-2005.nc\n", + "/work/mh1007/MPI-GE_processed/CVDP/hist/hist0001.cvdp_data.psl.nam_nao.1850-2005.nc\n", + "/work/mh1007/MPI-GE_processed/CVDP/hist/hist0001.cvdp_data.psl.nam_nao.ts.1850-2005.nc\n", + "/work/mh1007/MPI-GE_processed/CVDP/hist/hist0001.cvdp_data.psl.pna_npo.1850-2005.nc\n", + "/work/mh1007/MPI-GE_processed/CVDP/hist/hist0001.cvdp_data.psl.pna_npo.ts.1850-2005.nc\n", + "/work/mh1007/MPI-GE_processed/CVDP/hist/hist0001.cvdp_data.psl.sam_psa.1850-2005.nc\n", + "/work/mh1007/MPI-GE_processed/CVDP/hist/hist0001.cvdp_data.psl.sam_psa.ts.1850-2005.nc\n", + "/work/mh1007/MPI-GE_processed/CVDP/hist/hist0001.cvdp_data.psl.sst.indices.tas.1850-2005.nc\n", + "/work/mh1007/MPI-GE_processed/CVDP/hist/hist0001.cvdp_data.psl.trends.1850-2005.nc\n", + "/work/mh1007/MPI-GE_processed/CVDP/hist/hist0001.cvdp_data.snd.mean_stddev.1850-2005.nc\n", + "/work/mh1007/MPI-GE_processed/CVDP/hist/hist0001.cvdp_data.snd.trends.1850-2005.nc\n", + "/work/mh1007/MPI-GE_processed/CVDP/hist/hist0001.cvdp_data.sst.indices.1850-2005.nc\n", + "/work/mh1007/MPI-GE_processed/CVDP/hist/hist0001.cvdp_data.sst.indices.ppt.1850-2005.nc\n", + "/work/mh1007/MPI-GE_processed/CVDP/hist/hist0001.cvdp_data.sst.indices.psl.1850-2005.nc\n", + "/work/mh1007/MPI-GE_processed/CVDP/hist/hist0001.cvdp_data.sst.mean_stddev.1850-2005.nc\n", + "/work/mh1007/MPI-GE_processed/CVDP/hist/hist0001.cvdp_data.sst.trends_timeseries.1850-2005.nc\n", + "/work/mh1007/MPI-GE_processed/CVDP/hist/hist0001.cvdp_data.tas.mean_stddev.1850-2005.nc\n", + "/work/mh1007/MPI-GE_processed/CVDP/hist/hist0001.cvdp_data.tas.trends_timeseries.1850-2005.nc\n" ] } ], @@ -151,7 +151,7 @@ }, { "cell_type": "code", - "execution_count": 65, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -161,7 +161,7 @@ "<IPython.core.display.Image object>" ] }, - "execution_count": 65, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -181,7 +181,7 @@ }, { "cell_type": "code", - "execution_count": 66, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -191,7 +191,7 @@ }, { "cell_type": "code", - "execution_count": 67, + "execution_count": 25, "metadata": {}, "outputs": [ { @@ -199,45 +199,18 @@ "output_type": "stream", "text": [ "<xarray.Dataset>\n", - "Dimensions: (frequency: 936, lat: 96, lon: 192, longitude: 86, member: 100, ncurves: 4, time: 1872, time_mon1: 29, time_mon2: 12)\n", + "Dimensions: (frequency: 936, lat: 96, lon: 192, member: 100, ncurves: 4, time: 1872)\n", "Coordinates:\n", - " * longitude (longitude) float32 120.0 121.875 ... 277.5 279.375\n", - " * frequency (frequency) float32 0.00053418806 ... 0.5\n", - " * lat (lat) float32 -88.57217 -86.722534 ... 88.57217\n", - " * ncurves (ncurves) int32 0 1 2 3\n", - " * time (time) int64 0 28 59 89 ... 56855 56886 56916 56947\n", - " * time_mon1 (time_mon1) int32 0 1 2 3 4 5 ... 23 24 25 26 27 28\n", - " * lon (lon) float32 0.0 1.875 3.75 ... 356.25 358.125\n", - " * time_mon2 (time_mon2) int32 0 1 2 3 4 5 6 7 8 9 10 11\n", - " * member (member) int64 1 2 3 4 5 6 7 ... 95 96 97 98 99 100\n", + " * frequency (frequency) float32 0.00053418806 0.0010683761 ... 0.5\n", + " * time (time) int64 0 28 59 89 120 ... 56855 56886 56916 56947\n", + " * ncurves (ncurves) int32 0 1 2 3\n", + " * lon (lon) float32 -180.0 -178.125 -176.25 ... 176.25 178.125\n", + " * lat (lat) float32 -88.57217 -86.722534 ... 88.57217\n", + " * member (member) int64 1 2 3 4 5 6 7 8 ... 94 95 96 97 98 99 100\n", "Data variables:\n", - " date (member, time) int32 dask.array<chunksize=(100, 1872), meta=np.ndarray>\n", - " nino34 (member, time) float32 dask.array<chunksize=(100, 1872), meta=np.ndarray>\n", - " nino12 (member, time) float32 dask.array<chunksize=(100, 1872), meta=np.ndarray>\n", - " nino3 (member, time) float32 dask.array<chunksize=(100, 1872), meta=np.ndarray>\n", - " nino4 (member, time) float32 dask.array<chunksize=(100, 1872), meta=np.ndarray>\n", - " north_tropical_atlantic (member, time) float32 dask.array<chunksize=(100, 1872), meta=np.ndarray>\n", - " south_tropical_atlantic (member, time) float32 dask.array<chunksize=(100, 1872), meta=np.ndarray>\n", - " tropical_indian_ocean (member, time) float32 dask.array<chunksize=(100, 1872), meta=np.ndarray>\n", - " indian_ocean_dipole (member, time) float32 dask.array<chunksize=(100, 1872), meta=np.ndarray>\n", - " southern_ocean (member, time) float32 dask.array<chunksize=(100, 1872), meta=np.ndarray>\n", - " n34hov_elnino (member, time_mon1, longitude) float32 dask.array<chunksize=(100, 29, 86), meta=np.ndarray>\n", - " n34hov_lanina (member, time_mon1, longitude) float32 dask.array<chunksize=(100, 29, 86), meta=np.ndarray>\n", - " nino34spacomp_sst_jja0 (member, lat, lon) float32 dask.array<chunksize=(100, 96, 192), meta=np.ndarray>\n", - " nino34spacomp_sst_son0 (member, lat, lon) float32 dask.array<chunksize=(100, 96, 192), meta=np.ndarray>\n", - " nino34spacomp_sst_djf1 (member, lat, lon) float32 dask.array<chunksize=(100, 96, 192), meta=np.ndarray>\n", - " nino34spacomp_sst_mam1 (member, lat, lon) float32 dask.array<chunksize=(100, 96, 192), meta=np.ndarray>\n", - " nino34_runstddev (member, time) float32 dask.array<chunksize=(100, 1872), meta=np.ndarray>\n", - " nino34_spectra (member, ncurves, frequency) float32 dask.array<chunksize=(100, 4, 936), meta=np.ndarray>\n", - " nino34_monthly_stddev (member, time_mon2) float32 dask.array<chunksize=(100, 12), meta=np.ndarray>\n", - " nino34spacomp_ppt_jja0 (member, lat, lon) float32 dask.array<chunksize=(100, 96, 192), meta=np.ndarray>\n", - " nino34spacomp_ppt_son0 (member, lat, lon) float32 dask.array<chunksize=(100, 96, 192), meta=np.ndarray>\n", - " nino34spacomp_ppt_djf1 (member, lat, lon) float32 dask.array<chunksize=(100, 96, 192), meta=np.ndarray>\n", - " nino34spacomp_ppt_mam1 (member, lat, lon) float32 dask.array<chunksize=(100, 96, 192), meta=np.ndarray>\n", - " nino34spacomp_psl_jja0 (member, lat, lon) float32 dask.array<chunksize=(100, 96, 192), meta=np.ndarray>\n", - " nino34spacomp_psl_son0 (member, lat, lon) float32 dask.array<chunksize=(100, 96, 192), meta=np.ndarray>\n", - " nino34spacomp_psl_djf1 (member, lat, lon) float32 dask.array<chunksize=(100, 96, 192), meta=np.ndarray>\n", - " nino34spacomp_psl_mam1 (member, lat, lon) float32 dask.array<chunksize=(100, 96, 192), meta=np.ndarray>\n", + " amo_pattern_mon (member, lat, lon) float32 dask.array<chunksize=(100, 96, 192), meta=np.ndarray>\n", + " amo_timeseries_mon (member, time) float32 dask.array<chunksize=(100, 1872), meta=np.ndarray>\n", + " amo_spectra (member, ncurves, frequency) float32 dask.array<chunksize=(100, 4, 936), meta=np.ndarray>\n", "Attributes:\n", " source: NCAR Climate Analysis Section's Climate Variability Diagnos...\n", " notes: Data from hist0001 from 1850-2005\n", @@ -252,7 +225,7 @@ }, { "cell_type": "code", - "execution_count": 68, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -263,7 +236,7 @@ }, { "cell_type": "code", - "execution_count": 69, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -286,7 +259,7 @@ }, { "cell_type": "code", - "execution_count": 70, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -295,7 +268,7 @@ "Text(0.5, 1.0, 'nino34 standard deviation over time')" ] }, - "execution_count": 70, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" }, @@ -333,7 +306,7 @@ }, { "cell_type": "code", - "execution_count": 71, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -342,618 +315,41 @@ }, { "cell_type": "code", - "execution_count": 72, + "execution_count": 26, "metadata": {}, "outputs": [ { - "data": { - "text/html": [ - "<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n", - "<defs>\n", - "<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n", - "<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n", - "<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", - "<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", - "</symbol>\n", - "<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n", - "<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n", - "<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", - "<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", - "<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", - "</symbol>\n", - "</defs>\n", - "</svg>\n", - "<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n", - " *\n", - " */\n", - "\n", - ":root {\n", - " --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n", - " --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n", - " --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n", - " --xr-border-color: var(--jp-border-color2, #e0e0e0);\n", - " --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n", - " --xr-background-color: var(--jp-layout-color0, white);\n", - " --xr-background-color-row-even: var(--jp-layout-color1, white);\n", - " --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n", - "}\n", - "\n", - "html[theme=dark],\n", - "body.vscode-dark {\n", - " --xr-font-color0: rgba(255, 255, 255, 1);\n", - " --xr-font-color2: rgba(255, 255, 255, 0.54);\n", - " --xr-font-color3: rgba(255, 255, 255, 0.38);\n", - " --xr-border-color: #1F1F1F;\n", - " --xr-disabled-color: #515151;\n", - " --xr-background-color: #111111;\n", - " --xr-background-color-row-even: #111111;\n", - " --xr-background-color-row-odd: #313131;\n", - "}\n", - "\n", - ".xr-wrap {\n", - " display: block;\n", - " min-width: 300px;\n", - " max-width: 700px;\n", - "}\n", - "\n", - ".xr-text-repr-fallback {\n", - " /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n", - " display: none;\n", - "}\n", - "\n", - ".xr-header {\n", - " padding-top: 6px;\n", - " padding-bottom: 6px;\n", - " margin-bottom: 4px;\n", - " border-bottom: solid 1px var(--xr-border-color);\n", - "}\n", - "\n", - ".xr-header > div,\n", - ".xr-header > ul {\n", - " display: inline;\n", - " margin-top: 0;\n", - " margin-bottom: 0;\n", - "}\n", - "\n", - ".xr-obj-type,\n", - ".xr-array-name {\n", - " margin-left: 2px;\n", - " margin-right: 10px;\n", - "}\n", - "\n", - ".xr-obj-type {\n", - " color: var(--xr-font-color2);\n", - "}\n", - "\n", - ".xr-sections {\n", - " padding-left: 0 !important;\n", - " display: grid;\n", - " grid-template-columns: 150px auto auto 1fr 20px 20px;\n", - "}\n", - "\n", - ".xr-section-item {\n", - " display: contents;\n", - "}\n", - "\n", - ".xr-section-item input {\n", - " display: none;\n", - "}\n", - "\n", - ".xr-section-item input + label {\n", - " color: var(--xr-disabled-color);\n", - "}\n", - "\n", - ".xr-section-item input:enabled + label {\n", - " cursor: pointer;\n", - " color: var(--xr-font-color2);\n", - "}\n", - "\n", - ".xr-section-item input:enabled + label:hover {\n", - " color: var(--xr-font-color0);\n", - "}\n", - "\n", - ".xr-section-summary {\n", - " grid-column: 1;\n", - " color: var(--xr-font-color2);\n", - " font-weight: 500;\n", - "}\n", - "\n", - ".xr-section-summary > span {\n", - " display: inline-block;\n", - " padding-left: 0.5em;\n", - "}\n", - "\n", - ".xr-section-summary-in:disabled + label {\n", - " color: var(--xr-font-color2);\n", - "}\n", - "\n", - ".xr-section-summary-in + label:before {\n", - " display: inline-block;\n", - " content: 'â–º';\n", - " font-size: 11px;\n", - " width: 15px;\n", - " text-align: center;\n", - "}\n", - "\n", - ".xr-section-summary-in:disabled + label:before {\n", - " color: var(--xr-disabled-color);\n", - "}\n", - "\n", - ".xr-section-summary-in:checked + label:before {\n", - " content: 'â–¼';\n", - "}\n", - "\n", - ".xr-section-summary-in:checked + label > span {\n", - " display: none;\n", - "}\n", - "\n", - ".xr-section-summary,\n", - ".xr-section-inline-details {\n", - " padding-top: 4px;\n", - " padding-bottom: 4px;\n", - "}\n", - "\n", - ".xr-section-inline-details {\n", - " grid-column: 2 / -1;\n", - "}\n", - "\n", - ".xr-section-details {\n", - " display: none;\n", - " grid-column: 1 / -1;\n", - " margin-bottom: 5px;\n", - "}\n", - "\n", - ".xr-section-summary-in:checked ~ .xr-section-details {\n", - " display: contents;\n", - "}\n", - "\n", - ".xr-array-wrap {\n", - " grid-column: 1 / -1;\n", - " display: grid;\n", - " grid-template-columns: 20px auto;\n", - "}\n", - "\n", - ".xr-array-wrap > label {\n", - " grid-column: 1;\n", - " vertical-align: top;\n", - "}\n", - "\n", - ".xr-preview {\n", - " color: var(--xr-font-color3);\n", - "}\n", - "\n", - ".xr-array-preview,\n", - ".xr-array-data {\n", - " padding: 0 5px !important;\n", - " grid-column: 2;\n", - "}\n", - "\n", - ".xr-array-data,\n", - ".xr-array-in:checked ~ .xr-array-preview {\n", - " display: none;\n", - "}\n", - "\n", - ".xr-array-in:checked ~ .xr-array-data,\n", - ".xr-array-preview {\n", - " display: inline-block;\n", - "}\n", - "\n", - ".xr-dim-list {\n", - " display: inline-block !important;\n", - " list-style: none;\n", - " padding: 0 !important;\n", - " margin: 0;\n", - "}\n", - "\n", - ".xr-dim-list li {\n", - " display: inline-block;\n", - " padding: 0;\n", - " margin: 0;\n", - "}\n", - "\n", - ".xr-dim-list:before {\n", - " content: '(';\n", - "}\n", - "\n", - ".xr-dim-list:after {\n", - " content: ')';\n", - "}\n", - "\n", - ".xr-dim-list li:not(:last-child):after {\n", - " content: ',';\n", - " padding-right: 5px;\n", - "}\n", - "\n", - ".xr-has-index {\n", - " font-weight: bold;\n", - "}\n", - "\n", - ".xr-var-list,\n", - ".xr-var-item {\n", - " display: contents;\n", - "}\n", - "\n", - ".xr-var-item > div,\n", - ".xr-var-item label,\n", - ".xr-var-item > .xr-var-name span {\n", - " background-color: var(--xr-background-color-row-even);\n", - " margin-bottom: 0;\n", - "}\n", - "\n", - ".xr-var-item > .xr-var-name:hover span {\n", - " padding-right: 5px;\n", - "}\n", - "\n", - ".xr-var-list > li:nth-child(odd) > div,\n", - ".xr-var-list > li:nth-child(odd) > label,\n", - ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n", - " background-color: var(--xr-background-color-row-odd);\n", - "}\n", - "\n", - ".xr-var-name {\n", - " grid-column: 1;\n", - "}\n", - "\n", - ".xr-var-dims {\n", - " grid-column: 2;\n", - "}\n", - "\n", - ".xr-var-dtype {\n", - " grid-column: 3;\n", - " text-align: right;\n", - " color: var(--xr-font-color2);\n", - "}\n", - "\n", - ".xr-var-preview {\n", - " grid-column: 4;\n", - "}\n", - "\n", - ".xr-var-name,\n", - ".xr-var-dims,\n", - ".xr-var-dtype,\n", - ".xr-preview,\n", - ".xr-attrs dt {\n", - " white-space: nowrap;\n", - " overflow: hidden;\n", - " text-overflow: ellipsis;\n", - " padding-right: 10px;\n", - "}\n", - "\n", - ".xr-var-name:hover,\n", - ".xr-var-dims:hover,\n", - ".xr-var-dtype:hover,\n", - ".xr-attrs dt:hover {\n", - " overflow: visible;\n", - " width: auto;\n", - " z-index: 1;\n", - "}\n", - "\n", - ".xr-var-attrs,\n", - ".xr-var-data {\n", - " display: none;\n", - " background-color: var(--xr-background-color) !important;\n", - " padding-bottom: 5px !important;\n", - "}\n", - "\n", - ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n", - ".xr-var-data-in:checked ~ .xr-var-data {\n", - " display: block;\n", - "}\n", - "\n", - ".xr-var-data > table {\n", - " float: right;\n", - "}\n", - "\n", - ".xr-var-name span,\n", - ".xr-var-data,\n", - ".xr-attrs {\n", - " padding-left: 25px !important;\n", - "}\n", - "\n", - ".xr-attrs,\n", - ".xr-var-attrs,\n", - ".xr-var-data {\n", - " grid-column: 1 / -1;\n", - "}\n", - "\n", - "dl.xr-attrs {\n", - " padding: 0;\n", - " margin: 0;\n", - " display: grid;\n", - " grid-template-columns: 125px auto;\n", - "}\n", - "\n", - ".xr-attrs dt, dd {\n", - " padding: 0;\n", - " margin: 0;\n", - " float: left;\n", - " padding-right: 10px;\n", - " width: auto;\n", - "}\n", - "\n", - ".xr-attrs dt {\n", - " font-weight: normal;\n", - " grid-column: 1;\n", - "}\n", - "\n", - ".xr-attrs dt:hover span {\n", - " display: inline-block;\n", - " background: var(--xr-background-color);\n", - " padding-right: 10px;\n", - "}\n", - "\n", - ".xr-attrs dd {\n", - " grid-column: 2;\n", - " white-space: pre-wrap;\n", - " word-break: break-all;\n", - "}\n", - "\n", - ".xr-icon-database,\n", - ".xr-icon-file-text2 {\n", - " display: inline-block;\n", - " vertical-align: middle;\n", - " width: 1em;\n", - " height: 1.5em !important;\n", - " stroke-width: 0;\n", - " stroke: currentColor;\n", - " fill: currentColor;\n", - "}\n", - "</style><pre class='xr-text-repr-fallback'><xarray.Dataset>\n", - "Dimensions: (frequency: 936, lat: 96, lon: 192, member: 100, ncurves: 4, time: 1872)\n", - "Coordinates:\n", - " * frequency (frequency) float32 0.00053418806 0.0010683761 ... 0.5\n", - " * time (time) datetime64[ns] 1850-01-31 ... 2005-12-31\n", - " * ncurves (ncurves) int32 0 1 2 3\n", - " * lon (lon) float32 -180.0 -178.125 -176.25 ... 176.25 178.125\n", - " * lat (lat) float32 -88.57217 -86.722534 ... 88.57217\n", - " * member (member) int64 1 2 3 4 5 6 7 8 ... 94 95 96 97 98 99 100\n", - "Data variables:\n", - " amo_pattern_mon (member, lat, lon) float32 dask.array<chunksize=(100, 96, 192), meta=np.ndarray>\n", - " amo_timeseries_mon (member, time) float32 dask.array<chunksize=(100, 1872), meta=np.ndarray>\n", - " amo_spectra (member, ncurves, frequency) float32 dask.array<chunksize=(100, 4, 936), meta=np.ndarray>\n", - "Attributes:\n", - " source: NCAR Climate Analysis Section's Climate Variability Diagnos...\n", - " notes: Data from hist0001 from 1850-2005\n", - " climatology: 1850-2005 climatology removed prior to all calculations (ot...</pre><div class='xr-wrap' hidden><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-868fd248-1671-4db7-a8f3-183d9a5a0b42' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-868fd248-1671-4db7-a8f3-183d9a5a0b42' class='xr-section-summary' title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>frequency</span>: 936</li><li><span class='xr-has-index'>lat</span>: 96</li><li><span class='xr-has-index'>lon</span>: 192</li><li><span class='xr-has-index'>member</span>: 100</li><li><span class='xr-has-index'>ncurves</span>: 4</li><li><span class='xr-has-index'>time</span>: 1872</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-0b1fbccc-923c-4b51-af80-db0e3fd5b4e9' class='xr-section-summary-in' type='checkbox' checked><label for='section-0b1fbccc-923c-4b51-af80-db0e3fd5b4e9' class='xr-section-summary' >Coordinates: <span>(6)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>frequency</span></div><div class='xr-var-dims'>(frequency)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>0.00053418806 0.0010683761 ... 0.5</div><input id='attrs-14d539ff-3dd9-4377-8a26-075d35a7766c' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-14d539ff-3dd9-4377-8a26-075d35a7766c' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-45ec0a07-1cb7-47ed-ae3f-34ed2fb1d8c8' class='xr-var-data-in' type='checkbox'><label for='data-45ec0a07-1cb7-47ed-ae3f-34ed2fb1d8c8' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([0.000534, 0.001068, 0.001603, ..., 0.498932, 0.499466, 0.5 ],\n", - " dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>time</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>datetime64[ns]</div><div class='xr-var-preview xr-preview'>1850-01-31 ... 2005-12-31</div><input id='attrs-640d3940-cf30-49cc-b581-00fd86cc9fb6' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-640d3940-cf30-49cc-b581-00fd86cc9fb6' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-d39771d6-777e-48b5-b88f-6319ebff3ce7' class='xr-var-data-in' type='checkbox'><label for='data-d39771d6-777e-48b5-b88f-6319ebff3ce7' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(['1850-01-31T00:00:00.000000000', '1850-02-28T00:00:00.000000000',\n", - " '1850-03-31T00:00:00.000000000', ..., '2005-10-31T00:00:00.000000000',\n", - " '2005-11-30T00:00:00.000000000', '2005-12-31T00:00:00.000000000'],\n", - " dtype='datetime64[ns]')</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>ncurves</span></div><div class='xr-var-dims'>(ncurves)</div><div class='xr-var-dtype'>int32</div><div class='xr-var-preview xr-preview'>0 1 2 3</div><input id='attrs-bd19d180-2da3-4239-b909-4c15b1e4f388' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-bd19d180-2da3-4239-b909-4c15b1e4f388' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-e0537de4-b41f-4f54-9983-dcf0923ca265' class='xr-var-data-in' type='checkbox'><label for='data-e0537de4-b41f-4f54-9983-dcf0923ca265' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([0, 1, 2, 3], dtype=int32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>lon</span></div><div class='xr-var-dims'>(lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>-180.0 -178.125 ... 176.25 178.125</div><input id='attrs-5ab3b02f-318c-4974-b3ca-c89ec58a15ea' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-5ab3b02f-318c-4974-b3ca-c89ec58a15ea' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-9c13d93f-2108-4c5f-a37c-31afb606128c' class='xr-var-data-in' type='checkbox'><label for='data-9c13d93f-2108-4c5f-a37c-31afb606128c' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>axis :</span></dt><dd>X</dd><dt><span>units :</span></dt><dd>degrees_east</dd><dt><span>long_name :</span></dt><dd>longitude</dd><dt><span>standard_name :</span></dt><dd>longitude</dd></dl></div><div class='xr-var-data'><pre>array([-180. , -178.125, -176.25 , -174.375, -172.5 , -170.625, -168.75 ,\n", - " -166.875, -165. , -163.125, -161.25 , -159.375, -157.5 , -155.625,\n", - " -153.75 , -151.875, -150. , -148.125, -146.25 , -144.375, -142.5 ,\n", - " -140.625, -138.75 , -136.875, -135. , -133.125, -131.25 , -129.375,\n", - " -127.5 , -125.625, -123.75 , -121.875, -120. , -118.125, -116.25 ,\n", - " -114.375, -112.5 , -110.625, -108.75 , -106.875, -105. , -103.125,\n", - " -101.25 , -99.375, -97.5 , -95.625, -93.75 , -91.875, -90. ,\n", - " -88.125, -86.25 , -84.375, -82.5 , -80.625, -78.75 , -76.875,\n", - " -75. , -73.125, -71.25 , -69.375, -67.5 , -65.625, -63.75 ,\n", - " -61.875, -60. , -58.125, -56.25 , -54.375, -52.5 , -50.625,\n", - " -48.75 , -46.875, -45. , -43.125, -41.25 , -39.375, -37.5 ,\n", - " -35.625, -33.75 , -31.875, -30. , -28.125, -26.25 , -24.375,\n", - " -22.5 , -20.625, -18.75 , -16.875, -15. , -13.125, -11.25 ,\n", - " -9.375, -7.5 , -5.625, -3.75 , -1.875, 0. , 1.875,\n", - " 3.75 , 5.625, 7.5 , 9.375, 11.25 , 13.125, 15. ,\n", - " 16.875, 18.75 , 20.625, 22.5 , 24.375, 26.25 , 28.125,\n", - " 30. , 31.875, 33.75 , 35.625, 37.5 , 39.375, 41.25 ,\n", - " 43.125, 45. , 46.875, 48.75 , 50.625, 52.5 , 54.375,\n", - " 56.25 , 58.125, 60. , 61.875, 63.75 , 65.625, 67.5 ,\n", - " 69.375, 71.25 , 73.125, 75. , 76.875, 78.75 , 80.625,\n", - " 82.5 , 84.375, 86.25 , 88.125, 90. , 91.875, 93.75 ,\n", - " 95.625, 97.5 , 99.375, 101.25 , 103.125, 105. , 106.875,\n", - " 108.75 , 110.625, 112.5 , 114.375, 116.25 , 118.125, 120. ,\n", - " 121.875, 123.75 , 125.625, 127.5 , 129.375, 131.25 , 133.125,\n", - " 135. , 136.875, 138.75 , 140.625, 142.5 , 144.375, 146.25 ,\n", - " 148.125, 150. , 151.875, 153.75 , 155.625, 157.5 , 159.375,\n", - " 161.25 , 163.125, 165. , 166.875, 168.75 , 170.625, 172.5 ,\n", - " 174.375, 176.25 , 178.125], dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>lat</span></div><div class='xr-var-dims'>(lat)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>-88.57217 -86.722534 ... 88.57217</div><input id='attrs-14eb19e8-5bff-4212-a987-9d66f210cfc7' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-14eb19e8-5bff-4212-a987-9d66f210cfc7' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-f6c01d4a-1e94-4389-8346-592188ae9b2b' class='xr-var-data-in' type='checkbox'><label for='data-f6c01d4a-1e94-4389-8346-592188ae9b2b' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>latitude</dd><dt><span>long_name :</span></dt><dd>latitude</dd><dt><span>units :</span></dt><dd>degrees_north</dd><dt><span>axis :</span></dt><dd>Y</dd></dl></div><div class='xr-var-data'><pre>array([-88.57217 , -86.722534, -84.86197 , -82.99894 , -81.13498 , -79.27056 ,\n", - " -77.40589 , -75.54106 , -73.67613 , -71.811134, -69.94608 , -68.08099 ,\n", - " -66.21587 , -64.35073 , -62.48557 , -60.620396, -58.75521 , -56.89001 ,\n", - " -55.024807, -53.159595, -51.294376, -49.429153, -47.563927, -45.698692,\n", - " -43.833458, -41.96822 , -40.102978, -38.237736, -36.37249 , -34.507244,\n", - " -32.641994, -30.776745, -28.911493, -27.04624 , -25.180986, -23.315731,\n", - " -21.450476, -19.585218, -17.719961, -15.854704, -13.989446, -12.124187,\n", - " -10.258928, -8.393669, -6.528409, -4.66315 , -2.79789 , -0.93263 ,\n", - " 0.93263 , 2.79789 , 4.66315 , 6.528409, 8.393669, 10.258928,\n", - " 12.124187, 13.989446, 15.854704, 17.719961, 19.585218, 21.450476,\n", - " 23.315731, 25.180986, 27.04624 , 28.911493, 30.776745, 32.641994,\n", - " 34.507244, 36.37249 , 38.237736, 40.102978, 41.96822 , 43.833458,\n", - " 45.698692, 47.563927, 49.429153, 51.294376, 53.159595, 55.024807,\n", - " 56.89001 , 58.75521 , 60.620396, 62.48557 , 64.35073 , 66.21587 ,\n", - " 68.08099 , 69.94608 , 71.811134, 73.67613 , 75.54106 , 77.40589 ,\n", - " 79.27056 , 81.13498 , 82.99894 , 84.86197 , 86.722534, 88.57217 ],\n", - " dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>member</span></div><div class='xr-var-dims'>(member)</div><div class='xr-var-dtype'>int64</div><div class='xr-var-preview xr-preview'>1 2 3 4 5 6 ... 95 96 97 98 99 100</div><input id='attrs-d63559af-d37f-4ac3-9f6f-dcab8aa25c21' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-d63559af-d37f-4ac3-9f6f-dcab8aa25c21' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-ededf181-99d4-40b8-b886-dea9713a7b45' class='xr-var-data-in' type='checkbox'><label for='data-ededf181-99d4-40b8-b886-dea9713a7b45' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,\n", - " 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,\n", - " 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,\n", - " 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,\n", - " 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,\n", - " 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,\n", - " 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,\n", - " 99, 100])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-0a143401-e316-4ce7-ad2d-3d4c8be86f13' class='xr-section-summary-in' type='checkbox' checked><label for='section-0a143401-e316-4ce7-ad2d-3d4c8be86f13' class='xr-section-summary' >Data variables: <span>(3)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>amo_pattern_mon</span></div><div class='xr-var-dims'>(member, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(100, 96, 192), meta=np.ndarray></div><input id='attrs-8004acea-0324-4e75-bb5d-e3e15d6264cc' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-8004acea-0324-4e75-bb5d-e3e15d6264cc' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-8724bf51-689d-4cdc-b3a0-b21c584e9891' class='xr-var-data-in' type='checkbox'><label for='data-8724bf51-689d-4cdc-b3a0-b21c584e9891' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>eyear :</span></dt><dd>2005</dd><dt><span>syear :</span></dt><dd>1850</dd><dt><span>time :</span></dt><dd>0.0</dd><dt><span>anomaly_op_ncl :</span></dt><dd>Annual Cycle Removed: rmMonAnnCycTLL: contributed.ncl</dd><dt><span>long_name :</span></dt><dd>surface temperature</dd><dt><span>units :</span></dt><dd>C</dd><dt><span>code :</span></dt><dd>169</dd><dt><span>table :</span></dt><dd>128</dd><dt><span>lonFlip :</span></dt><dd>longitude coordinate variable has been reordered via lonFlip</dd></dl></div><div class='xr-var-data'><table>\n", - "<tr>\n", - "<td>\n", - "<table>\n", - " <thead>\n", - " <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n", - " </thead>\n", - " <tbody>\n", - " <tr><th> Bytes </th><td> 7.37 MB </td> <td> 7.37 MB </td></tr>\n", - " <tr><th> Shape </th><td> (100, 96, 192) </td> <td> (100, 96, 192) </td></tr>\n", - " <tr><th> Count </th><td> 2 Tasks </td><td> 1 Chunks </td></tr>\n", - " <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n", - " </tbody>\n", - "</table>\n", - "</td>\n", - "<td>\n", - "<svg width=\"216\" height=\"146\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", - "\n", - " <!-- Horizontal lines -->\n", - " <line x1=\"10\" y1=\"0\" x2=\"46\" y2=\"36\" style=\"stroke-width:2\" />\n", - " <line x1=\"10\" y1=\"60\" x2=\"46\" y2=\"96\" style=\"stroke-width:2\" />\n", - "\n", - " <!-- Vertical lines -->\n", - " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"60\" style=\"stroke-width:2\" />\n", - " <line x1=\"46\" y1=\"36\" x2=\"46\" y2=\"96\" style=\"stroke-width:2\" />\n", - "\n", - " <!-- Colored Rectangle -->\n", - " <polygon points=\"10.000000,0.000000 46.764706,36.764706 46.764706,96.764706 10.000000,60.000000\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", - "\n", - " <!-- Horizontal lines -->\n", - " <line x1=\"10\" y1=\"0\" x2=\"130\" y2=\"0\" style=\"stroke-width:2\" />\n", - " <line x1=\"46\" y1=\"36\" x2=\"166\" y2=\"36\" style=\"stroke-width:2\" />\n", - "\n", - " <!-- Vertical lines -->\n", - " <line x1=\"10\" y1=\"0\" x2=\"46\" y2=\"36\" style=\"stroke-width:2\" />\n", - " <line x1=\"130\" y1=\"0\" x2=\"166\" y2=\"36\" style=\"stroke-width:2\" />\n", - "\n", - " <!-- Colored Rectangle -->\n", - " <polygon points=\"10.000000,0.000000 130.000000,0.000000 166.764706,36.764706 46.764706,36.764706\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", - "\n", - " <!-- Horizontal lines -->\n", - " <line x1=\"46\" y1=\"36\" x2=\"166\" y2=\"36\" style=\"stroke-width:2\" />\n", - " <line x1=\"46\" y1=\"96\" x2=\"166\" y2=\"96\" style=\"stroke-width:2\" />\n", - "\n", - " <!-- Vertical lines -->\n", - " <line x1=\"46\" y1=\"36\" x2=\"46\" y2=\"96\" style=\"stroke-width:2\" />\n", - " <line x1=\"166\" y1=\"36\" x2=\"166\" y2=\"96\" style=\"stroke-width:2\" />\n", - "\n", - " <!-- Colored Rectangle -->\n", - " <polygon points=\"46.764706,36.764706 166.764706,36.764706 166.764706,96.764706 46.764706,96.764706\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", - "\n", - " <!-- Text -->\n", - " <text x=\"106.764706\" y=\"116.764706\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >192</text>\n", - " <text x=\"186.764706\" y=\"66.764706\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,186.764706,66.764706)\">96</text>\n", - " <text x=\"18.382353\" y=\"98.382353\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,18.382353,98.382353)\">100</text>\n", - "</svg>\n", - "</td>\n", - "</tr>\n", - "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>amo_timeseries_mon</span></div><div class='xr-var-dims'>(member, time)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(100, 1872), meta=np.ndarray></div><input id='attrs-819d24e3-8c97-4fb5-b396-8fa85990a594' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-819d24e3-8c97-4fb5-b396-8fa85990a594' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-018d0503-3a76-4966-8e65-4fafe7221b09' class='xr-var-data-in' type='checkbox'><label for='data-018d0503-3a76-4966-8e65-4fafe7221b09' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>C</dd></dl></div><div class='xr-var-data'><table>\n", - "<tr>\n", - "<td>\n", - "<table>\n", - " <thead>\n", - " <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n", - " </thead>\n", - " <tbody>\n", - " <tr><th> Bytes </th><td> 748.80 kB </td> <td> 748.80 kB </td></tr>\n", - " <tr><th> Shape </th><td> (100, 1872) </td> <td> (100, 1872) </td></tr>\n", - " <tr><th> Count </th><td> 2 Tasks </td><td> 1 Chunks </td></tr>\n", - " <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n", - " </tbody>\n", - "</table>\n", - "</td>\n", - "<td>\n", - "<svg width=\"170\" height=\"84\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", - "\n", - " <!-- Horizontal lines -->\n", - " <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", - " <line x1=\"0\" y1=\"34\" x2=\"120\" y2=\"34\" style=\"stroke-width:2\" />\n", - "\n", - " <!-- Vertical lines -->\n", - " <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"34\" style=\"stroke-width:2\" />\n", - " <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"34\" style=\"stroke-width:2\" />\n", - "\n", - " <!-- Colored Rectangle -->\n", - " <polygon points=\"0.000000,0.000000 120.000000,0.000000 120.000000,34.905530 0.000000,34.905530\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", - "\n", - " <!-- Text -->\n", - " <text x=\"60.000000\" y=\"54.905530\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >1872</text>\n", - " <text x=\"140.000000\" y=\"17.452765\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.452765)\">100</text>\n", - "</svg>\n", - "</td>\n", - "</tr>\n", - "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>amo_spectra</span></div><div class='xr-var-dims'>(member, ncurves, frequency)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(100, 4, 936), meta=np.ndarray></div><input id='attrs-d5ade626-458c-4fe3-9a60-01e3f3bb3475' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-d5ade626-458c-4fe3-9a60-01e3f3bb3475' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-b505721f-8636-44b3-afe5-01877b96a8a7' class='xr-var-data-in' type='checkbox'><label for='data-b505721f-8636-44b3-afe5-01877b96a8a7' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>info :</span></dt><dd>(0,:)=spectrum,(1,:)=Markov red noise spectrum, (2,:)=0.95% confidence bound for Markhov, (3,:)=0.99% confidence bound for Markhov</dd><dt><span>units :</span></dt><dd>1/df</dd><dt><span>units_info :</span></dt><dd>df refers to frequency interval; data are standardized so there are no physical units</dd></dl></div><div class='xr-var-data'><table>\n", - "<tr>\n", - "<td>\n", - "<table>\n", - " <thead>\n", - " <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n", - " </thead>\n", - " <tbody>\n", - " <tr><th> Bytes </th><td> 1.50 MB </td> <td> 1.50 MB </td></tr>\n", - " <tr><th> Shape </th><td> (100, 4, 936) </td> <td> (100, 4, 936) </td></tr>\n", - " <tr><th> Count </th><td> 2 Tasks </td><td> 1 Chunks </td></tr>\n", - " <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n", - " </tbody>\n", - "</table>\n", - "</td>\n", - "<td>\n", - "<svg width=\"202\" height=\"98\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", - "\n", - " <!-- Horizontal lines -->\n", - " <line x1=\"10\" y1=\"0\" x2=\"32\" y2=\"22\" style=\"stroke-width:2\" />\n", - " <line x1=\"10\" y1=\"25\" x2=\"32\" y2=\"48\" style=\"stroke-width:2\" />\n", - "\n", - " <!-- Vertical lines -->\n", - " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"25\" style=\"stroke-width:2\" />\n", - " <line x1=\"32\" y1=\"22\" x2=\"32\" y2=\"48\" style=\"stroke-width:2\" />\n", - "\n", - " <!-- Colored Rectangle -->\n", - " <polygon points=\"10.000000,0.000000 32.917712,22.917712 32.917712,48.330328 10.000000,25.412617\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", - "\n", - " <!-- Horizontal lines -->\n", - " <line x1=\"10\" y1=\"0\" x2=\"130\" y2=\"0\" style=\"stroke-width:2\" />\n", - " <line x1=\"32\" y1=\"22\" x2=\"152\" y2=\"22\" style=\"stroke-width:2\" />\n", - "\n", - " <!-- Vertical lines -->\n", - " <line x1=\"10\" y1=\"0\" x2=\"32\" y2=\"22\" style=\"stroke-width:2\" />\n", - " <line x1=\"130\" y1=\"0\" x2=\"152\" y2=\"22\" style=\"stroke-width:2\" />\n", - "\n", - " <!-- Colored Rectangle -->\n", - " <polygon points=\"10.000000,0.000000 130.000000,0.000000 152.917712,22.917712 32.917712,22.917712\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", - "\n", - " <!-- Horizontal lines -->\n", - " <line x1=\"32\" y1=\"22\" x2=\"152\" y2=\"22\" style=\"stroke-width:2\" />\n", - " <line x1=\"32\" y1=\"48\" x2=\"152\" y2=\"48\" style=\"stroke-width:2\" />\n", - "\n", - " <!-- Vertical lines -->\n", - " <line x1=\"32\" y1=\"22\" x2=\"32\" y2=\"48\" style=\"stroke-width:2\" />\n", - " <line x1=\"152\" y1=\"22\" x2=\"152\" y2=\"48\" style=\"stroke-width:2\" />\n", - "\n", - " <!-- Colored Rectangle -->\n", - " <polygon points=\"32.917712,22.917712 152.917712,22.917712 152.917712,48.330328 32.917712,48.330328\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", - "\n", - " <!-- Text -->\n", - " <text x=\"92.917712\" y=\"68.330328\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >936</text>\n", - " <text x=\"172.917712\" y=\"35.624020\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,172.917712,35.624020)\">4</text>\n", - " <text x=\"11.458856\" y=\"56.871472\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,11.458856,56.871472)\">100</text>\n", - "</svg>\n", - "</td>\n", - "</tr>\n", - "</table></div></li></ul></div></li><li class='xr-section-item'><input id='section-5f91bce1-7911-46d9-8e6c-dac6de7580e5' class='xr-section-summary-in' type='checkbox' checked><label for='section-5f91bce1-7911-46d9-8e6c-dac6de7580e5' class='xr-section-summary' >Attributes: <span>(3)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'><dt><span>source :</span></dt><dd>NCAR Climate Analysis Section's Climate Variability Diagnostics Package v4.0.0</dd><dt><span>notes :</span></dt><dd>Data from hist0001 from 1850-2005</dd><dt><span>climatology :</span></dt><dd>1850-2005 climatology removed prior to all calculations (other than means)</dd></dl></div></li></ul></div></div>" - ], - "text/plain": [ - "<xarray.Dataset>\n", - "Dimensions: (frequency: 936, lat: 96, lon: 192, member: 100, ncurves: 4, time: 1872)\n", - "Coordinates:\n", - " * frequency (frequency) float32 0.00053418806 0.0010683761 ... 0.5\n", - " * time (time) datetime64[ns] 1850-01-31 ... 2005-12-31\n", - " * ncurves (ncurves) int32 0 1 2 3\n", - " * lon (lon) float32 -180.0 -178.125 -176.25 ... 176.25 178.125\n", - " * lat (lat) float32 -88.57217 -86.722534 ... 88.57217\n", - " * member (member) int64 1 2 3 4 5 6 7 8 ... 94 95 96 97 98 99 100\n", - "Data variables:\n", - " amo_pattern_mon (member, lat, lon) float32 dask.array<chunksize=(100, 96, 192), meta=np.ndarray>\n", - " amo_timeseries_mon (member, time) float32 dask.array<chunksize=(100, 1872), meta=np.ndarray>\n", - " amo_spectra (member, ncurves, frequency) float32 dask.array<chunksize=(100, 4, 936), meta=np.ndarray>\n", - "Attributes:\n", - " source: NCAR Climate Analysis Section's Climate Variability Diagnos...\n", - " notes: Data from hist0001 from 1850-2005\n", - " climatology: 1850-2005 climatology removed prior to all calculations (ot..." - ] - }, - "execution_count": 72, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "<xarray.Dataset>\n", + "Dimensions: (frequency: 936, lat: 96, lon: 192, member: 100, ncurves: 4, time: 1872)\n", + "Coordinates:\n", + " * frequency (frequency) float32 0.00053418806 0.0010683761 ... 0.5\n", + " * time (time) datetime64[ns] 1850-01-31 ... 2005-12-31\n", + " * ncurves (ncurves) int32 0 1 2 3\n", + " * lon (lon) float32 -180.0 -178.125 -176.25 ... 176.25 178.125\n", + " * lat (lat) float32 -88.57217 -86.722534 ... 88.57217\n", + " * member (member) int64 1 2 3 4 5 6 7 8 ... 94 95 96 97 98 99 100\n", + "Data variables:\n", + " amo_pattern_mon (member, lat, lon) float32 dask.array<chunksize=(100, 96, 192), meta=np.ndarray>\n", + " amo_timeseries_mon (member, time) float32 dask.array<chunksize=(100, 1872), meta=np.ndarray>\n", + " amo_spectra (member, ncurves, frequency) float32 dask.array<chunksize=(100, 4, 936), meta=np.ndarray>\n", + "Attributes:\n", + " source: NCAR Climate Analysis Section's Climate Variability Diagnos...\n", + " notes: Data from hist0001 from 1850-2005\n", + " climatology: 1850-2005 climatology removed prior to all calculations (ot...\n" + ] } ], "source": [ "ds = xr.open_mfdataset(f'{base}/{exp}/{exp}.cvdp_data.{index}*.nc')\n", - "ds" + "print(ds)" ] }, { "cell_type": "code", - "execution_count": 73, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -967,10 +363,10 @@ { "data": { "text/plain": [ - "<matplotlib.collections.QuadMesh at 0x2b1aa9b04cd0>" + "<matplotlib.collections.QuadMesh at 0x2b859c24d790>" ] }, - "execution_count": 73, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" }, @@ -993,7 +389,7 @@ }, { "cell_type": "code", - "execution_count": 74, + "execution_count": 17, "metadata": {}, "outputs": [ { @@ -1007,10 +403,10 @@ { "data": { "text/plain": [ - "<matplotlib.collections.QuadMesh at 0x2b1aa9d4cbd0>" + "<matplotlib.collections.QuadMesh at 0x2b859c8a6dd0>" ] }, - "execution_count": 74, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" }, @@ -1033,7 +429,7 @@ }, { "cell_type": "code", - "execution_count": 79, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -1068,6 +464,13 @@ "outputs": [], "source": [] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "metadata": {}, -- GitLab