Commit 2db4a26c authored by Mathis Rosenhauer's avatar Mathis Rosenhauer
Browse files from old wiki

parent a1d5e30b
# libaec - Adaptive Entropy Coding library
Libaec provides fast lossless compression of 1 up to 32 bit wide
signed or unsigned integers (samples). The library achieves best
results for low entropy data as often encountered in space imaging
instrument data or numerical model output from weather or climate
simulations. While floating point representations are not directly
supported, they can also be efficiently coded by grouping exponents
and mantissa.
Libaec implements
"Golomb-Rice": coding as
defined in the Space Data System Standard documents [121.0-B-2][1] and
## Patents
In [doc/license.txt] a clarification on potentially applying
intellectual property rights is given.
## Installation
See [INSTALL] for details.
## SZIP Compatibility
[Libaec can replace SZIP][README.SZIP].
## Encoding
In this context efficiency refers to the size of the encoded
data. Performance refers to the time it takes to encode data.
Suppose you have an array of 32 bit signed integers you want to
compress. The pointer pointing to the data shall be called *source,
output goes into *dest.
#include <libaec.h>
struct aec_stream strm;
int32_t *source;
unsigned char *dest;
/* input data is 32 bits wide */
strm.bits_per_sample = 32;
/* define a block size of 16 */
strm.block_size = 16;
/* the reference sample interval is set to 128 blocks */
strm.rsi = 128;
/* input data is signed and needs to be preprocessed */
/* pointer to input */
strm.next_in = (unsigned char *)source;
/* length of input in bytes */
strm.avail_in = source_length * sizeof(int32_t);
/* pointer to output buffer */
strm.next_out = dest;
/* length of output buffer in bytes */
strm.avail_out = dest_length;
/* initialize encoding */
if (aec_encode_init(&strm) != AEC_OK)
return 1;
/* Perform encoding in one call and flush output. */
/* In this example you must be sure that the output */
/* buffer is large enough for all compressed output */
if (aec_encode(&strm, AEC_FLUSH) != AEC_OK)
return 1;
/* free all resources used by encoder */
block_size can vary from 8 to 64 samples. Smaller blocks allow the
compression to adapt more rapidly to changing source
statistics. Larger blocks create less overhead but can be less
efficient if source statistics change across the block.
rsi sets the reference sample interval. A large RSI will improve
performance and efficiency. It will also increase memory requirements
since internal buffering is based on RSI size. A smaller RSI may be
desirable in situations where each RSI will be packetized and possible
error propagation has to be minimized.
### Flags:
* AEC_DATA_SIGNED: input data are signed integers. Specifying this
correctly increases compression efficiency. Default is unsigned.
* AEC_DATA_PREPROCESS: preprocessing input will improve compression
efficiency if data samples are correlated. It will only cost
performance for no gain in efficiency if the data is already
* AEC_DATA_MSB: input data is stored most significant byte first
i.e. big endian. You have to specify AEC_DATA_MSB even if your host
architecture is big endian. Default is little endian on all
* AEC_DATA_3BYTE: the 17 to 24 bit input data is stored in three
bytes. This flag has no effect for other sample sizes.
* AEC_RESTRICTED: use a restricted set of code options. This option is
only valid for bits_per_sample <= 4.
* AEC_PAD_RSI: assume that the encoded RSI is padded to the next byte
boundary while decoding. The preprocessor macro ENABLE_RSI_PADDING
needs to be defined while compiling for the encoder to honour this
### Data size:
The following rules apply for deducing storage size from sample size
|_. sample size |_. storage size|
| 1 - 8 bits | 1 byte|
| 9 - 16 bits | 2 bytes|
|17 - 24 bits | 3 bytes (only if AEC_DATA_3BYTE is set)|
|25 - 32 bits | 4 bytes (if AEC_DATA_3BYTE is set)|
|17 - 32 bits | 4 bytes (if AEC_DATA_3BYTE is not set)|
If a sample requires less bits than the storage size provides, then
you have to make sure that unused bits are not set. Libaec does not
check this for performance reasons and will produce undefined output
if unused bits are set. All input data must be a multiple of the
storage size in bytes. Remaining bytes which do not form a complete
sample will be ignored.
Libaec accesses next_in and next_out buffers only bytewise. There are
no alignment requirements for these buffers.
### Flushing:
aec_encode can be used in a streaming fashion by chunking input and
output and specifying AEC_NO_FLUSH. The function will return if either
the input runs empty or the output buffer is full. The calling
function can check avail_in and avail_out to see what occurred. The
last call to aec_encode() must set AEC_FLUSH to drain all
output. aec.c is an example of streaming usage of encoding and
### Output:
Encoded data will be written to the buffer submitted with
next_out. The length of the compressed data is total_out.
See libaec.h for a detailed description of all relevant structure
members and constants.
## Decoding
Using decoding is very similar to encoding, only the meaning of input
and output is reversed.
#include <libaec.h>
struct aec_stream strm;
/* this is now the compressed data */
unsigned char *source;
/* here goes the uncompressed result */
int32_t *dest;
strm.bits_per_sample = 32;
strm.block_size = 16;
strm.rsi = 128;
strm.next_in = source;
strm.avail_in = source_length;
strm.next_out = (unsigned char *)dest;
strm.avail_out = dest_lenth * sizeof(int32_t);
if (aec_decode_init(&strm) != AEC_OK)
return 1;
if (aec_decode(&strm, AEC_FLUSH) != AEC_OK)
return 1;
It is strongly recommended that the size of the output buffer
(next_out) is a multiple of the storage size in bytes. If the buffer
is not a multiple of the storage size and the buffer gets filled to
the last sample, the error code AEC_MEM_ERROR is returned.
It is essential for decoding that parameters like bits_per_sample,
block_size, rsi, and flags are exactly the same as they were for
encoding. Libaec does not store these parameters in the coded stream
so it is up to the calling program to keep the correct parameters
between encoding and decoding.
The actual values of coding parameters are in fact only relevant for
efficiency and performance. Data integrity only depends on consistency
of the parameters.
## References
[Consultative Committee for Space Data Systems. Lossless Data
Compression. Recommendation for Space Data System Standards, CCSDS
121.0-B-2. Blue Book. Issue 2. Washington, D.C.: CCSDS, May 2012.][1]
[Consultative Committee for Space Data Systems. Lossless Data
Compression. Recommendation for Space Data System Standards, CCSDS
120.0-G-3. Green Book. Issue 3. Washington, D.C.: CCSDS, April 2013.][2]
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment