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1 Introduction

The ICON model comprises a general circulation model of the atmosphere, a land model, and
an ocean circulation model. It is developed at the Deutscher Wetterdienst (DWD), Offenbach
and the Max Planck Institute for Meteorology, Hamburg.

The general circulation of the atmosphere and the ocean are calculated on a triangular grid
derived from an icosahedron. All differential operators are calculated on this triangular grid.
Local refinements can be used for a higher resolution in certain regions of the globe (staggered
grids). The general circulation of the atmosphere is treated by a set of equations describing
a non—hydrostatic flow. There are several choices for the subgrid—scale physics aiming at the
specific needs of numerical weather prediction (NWP-physics), describing large eddies (LES—
physics), and the ECHAM6-physics suitable for climate simulations. This document focuses on
the description of the atmosphere using ECHAM6—physics and the land model.

The ECHAM6—physics comprises it’s own radiation scheme PSRAD that is based on the RRTMG
scheme that was already used in the ECHAM66 model. The distribution of aerosol optical
properties in space and time are completed by the very flexible “simple plume” model for
the description of the effect of the anthropogenic aerosols on radiation. Convection, vertical
diffusion, clouds, and gravity waves are parametrized as in ECHAM66.
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2 General model equations for ICONAM

2.1 Introduction

"When designing an atmospheric numerical model for the purpose of Numerical Weather Pre-
diction (NWP) and climate simulations, a careful formulation of the continuous model equa-
tions is obviously the first step to be done. Closely connected, the construction of a physically
adequate numerical scheme follows as the second step to form eventually a satisfactory dis-
crete analogue. The paper deals with both of these main points. First, we start formulating a
continuous model equation set, which is consistent with respect to energy, mass, and Ertel’s
(1942) potential vorticity (EPV) conservation. It is written in Poisson bracket form applying
elements from Névir's (1998, 2004) atmospheric energy-vorticity-theory and also the Hamil-
tonian description from Morrison (1998) for an ideal fluid. Second, we are going to propose
a method how to construct the discrete analogue of the Poisson brackets both in space and
time. This philosophy allows us to retain the continuous conservation properties as already
demonstrated impressively by Salmon (2004, 2005, 2007) concerning the spatial dicretisation.

From the point of view of theoretical meteorology the formulation of continuous model equa-
tions seems well established. Nevertheless, even today one becomes aware that notorious
problems emerge when essaying to use in NWP in a consistent manner what is available from
theory. In a recent paper Thuburn (2006) has carefully reviewed this dilemma how to design
atmospheric models under the aspect of conservation properties.

In the present paper, we take up this problem for the compressible nonhydrostatic equations.
This equation type became of common interest for modelling because of its suitability for at-
mospheric simulations over a wide range of meteorological phenomena from planetary down
to local scales. Different nonhydrostatic regional models exist meanwhile as research and op-
erational weather forecasting models. Concerning global modelling, a notable development
takes place in Japan (Satoh 2002, 2003), emphasizing the careful inclusion of moist processes
and conservative properties in the numerical scheme. Ultimately, this development is directed
towards a global climate model with improved cloud-radiation interaction. A particular exam-
ple of the application of compressible nonhydrostatic equations over the globe is the Unified
Model of the UK Met Office (Davies et al. 2005) based on a thorough research work with a
fairly general conception to use it as a global NWP-model, and for climate simulations as well.
In our case we are motivated to deal with this model type in a running project to develop also
a new global NWP and climate simulation model, called ICON (ICOsahedral Nonhydrostatic
general circulation) model.

In the following approach we take advantage of our experience with the compressible nonhy-
drostatic Lokal-Modell (LM) (Doms and Schéattler 2002, Gassmann and Herzog 2007), which
runs as a limited-area model operationally in the German Weather Service. The basic equa-
tions of the LM are on principle of rather general validity to use them also as a ground to

IThis chaper copies in a wide part Gassmann and Herzog (2008).



formulate a global model. Our demanding approach begins with an equation set considering
an atmosphere consisting of dry air and water vapour as gaseous components, with the ad-
dition of water in liquid and solid form (cloud drops, cloud ice, precipitating drops and ice
particles). The conceptual way to take into account a multi-component system is borrowed
from Wacker et al. (2006). Additionally, the complete equation system is written by applying
a mass-weighted turbulence averaging (known as Hesselberg averaging). With minute approx-
imations this equation set serves us as a reference model, having mass-, energy- and EPV
conservation.

Further, we introduce common approximations to arrive at realistic averaged model equations
available in a more meteorological form with temperature and pressure as model variables.
Molecular fluxes are neglected compared to the corresponding turbulent fluxes. In such a way,
the model equations are equations of averaged quantities, where the molecular dissipation
of kinetic energy is missed and should be replaced by turbulent dissipation as a remedy to
obtain energy conserving model equations. The mass conservation is simply fulfilled and it
is shown what mass control conditions for the partial mass budget equations of the multi-
component system are necessary to be considered (Wacker et al., 2006). It is shown that
the EPV is also a conservable quantity. On this way, we have found a full-physics model
equation set appropriate to apply the Hamiltonian tool. We invoke this theory, because to
the best of our belief a Poisson bracket form with its specific antisymmetric property offers an
interesting new way to find conservative numerical analogues (Salmon, 2004, 2005, 2007). We
will show that it is possible to find a turbulence-averaged compressible nonhydrostatic model
equation set in Poisson bracket form including all water constituents, precipitation fluxes,
and diabatic sources/sinks in such a way that in the limit case for an ideal fluid the bracket
form for a rotating atmosphere is exactly recovered. Hamiltonian theory for an ideal fluid is
actually applicable beyond this physical limitation. The bracket approach provides a compact
functional evolution equation from which it is easy to derive corresponding model equation
sets in a well-structured form using different reasonable model variables.

Salmon (2004, 2005, 2007) was inspired from the idea to retain the antisymmetry properties
of dynamic brackets during model discretisation, in particular for the shallow-water equations,
using the Poisson bracket formulation first, and then the more general Nambu bracket approach
to construct conservative spatial schemes. Later on, we show a method how to formulate a
numerical scheme both in space and time using the Poisson bracket form of the consistently
derived nonhydrostatic compressible equations. Thereby, we closely follow Salmon’s sugges-
tions representing global integrals by global sums, and considering the rule of integration by
parts in the spatial numerics. But here, the rule of integration by parts in the time scheme is
also required, if one of the brackets occurs in different prognostic model equations.

2.2 Reference equation set for a heterogeneous system

As a first point, we think of a quite general compressible nonhydrostatic equation set describing
a atmospheric heterogeneous flow regime. Heterogeneity means here a two-component system
consisting of dry air and water. Water is assumed to occur in all three phases including
precipitating drops and ice particles. With reference to Wacker et al. (2006) partial densities
0; are introduced and summed up to total density for this atmospheric mixture, o = > p;, where
the subscripts @ = d, v, [, f,r, p refer to dry air, water vapour, liquid and frozen cloud particles,
rain drops and precipitating ice particles (snow, graupel etc.), respectively. A reference velocity
vector is defined as a weighted mean, v = ¥p;v;/o. Due to this, an equation set for the mixture
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can be found, where the momentum equation, the continuity equation and the internal energy
equation in this system is formed each as a sum from its separate component equations. We
follow here the theoretical foundation of Wacker et al. (2006) who discuss the Cauchy form
conservation of the momentum equation for a multicomponent system in their Section 3 with
further supporting references as Gyarmati (1970) and Doms and Herbert (1985). Lange (2002)
presents the same problem in his textbook. An alternative foundation is given by Bannon
(2002) who considered a different reference velocity with respect to dry air. We do not pursue
this way. In a further procedure we carry out a turbulence (Reynolds-) averaging for these
equations, where a barycentric mean (Hesselberg, 1925) with respect to the total density is
used, 1& = 01/ 0, having ¢ = 1[1 + 1/1" for the considered variables. On this line we arrive at a
sufficiently general equation set. It may read

dA — G
@%:—Vﬁ—év¢—2ﬂx§\7+v-(£—gvv) (2.1)
do

do _ _ o.¢ 2.2
0 oV -V (2.2)
d\A 17 KT i — A - ./
@d—?:—ﬁv-f/—pv'v V- (W+od'vV)+E- Vv +F- Vv (2.3)
_(iqu - =

In order to spare writing the unaveraged multi-component equations originally assumed are
easily obtained by omitting the turbulence averaging symbols and all the turbulence flux terms
in the equations (1) - (4). The turbulence-averaged equations are the momentum equation (1),
the continuity equation (2), the budget equation for the mean internal (heat) energy, 4, (3),
and budget equations for the partial mass fractions, §; = ¢;/0, (4), having ¥¢; = 1. It is
important to note that as a mass control condition the sum of the §;-budget equations over
all i have to yield the continuity equation (2), which implies £Q; = 0 (Q; = 0) , ¥J; = 0

n_n

, Xog; v = 0. Further explanations of symbols and terms in these equations are given in
Table 2.1. In equation (3) and so in following equations the notation -- means the double
scalar product between tensors. Such atmospheric model equations do not govern, but rather
attempt to represent real processes in the atmosphere. Such forms will never be exact, and
approximations are unavoidable. These approximations must not violate the most important
conservation properties regarding mass, energy and EPV. This should be a guide, when we are
going to introduce further simplifications towards more practical model equations compared
to the reference equation set. Our model equations are to be valid for turbulence-averaged
variables with reference to (2.1)-(2.4). This is an adequate assumption in view of realistic
modelling accompanied by discretisations in space and time, where the turbulent flux terms
represent subgrid scale processes determined by parameterisations. We omit now as usual
the viscous friction tensor against the turbulent momentum flux tensor, —ov’v"’ > F, and
so the molecular heat flux against the turbulent heat flux, ou”v” > J,, from which we also
have W = R. In the ¢;-budget equations (2.4), however, the diffusion fluxes J; must not be

dropped against the turbulent fluxes gq;/V” in view of significant sedimentation (precipitation)
fluxes. From energetical reasoning it is acceptable to neglect in the heat energy equation (2.3)
the direct energy transformation from mean kinetic energy to mean internal energy compared
to the molecular dissipation term, F - -Vv” > F - -Vv.
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Table 2.1: Explanation of symbols.

Symbol Explanation

Vi velocity of i-th constituent

v;(@ .= v, — v | diffusion velocity of i-th constituent

Q angular velocity of the Earth

P geopotential

Q; source/sink-terms

J;, = givi(d) diffusion flux of i-th constituent

F viscous friction tensor

Ju heat diffusion flux vector

R radiation flux vector

wW=J,+R composed heat flux vector

ov'v’ turbulent momentum flux tensor

o'V turbulent heat flux vector

W turbulent vector flux of i-th partial
mass fraction

dit = % + Vv -V | av. individual time change operator

With this approximations the averaged equation system becomes

(ZA 17
@d—::—Vﬁ—g?VQJ—2Q><§\7+V~(—QVV) (2.5)
do .
28 . 2.6
7t oV - v (2.6)
_C/l\”l:\t = o _mr — A 1 7
Qa:_v.(R—|—guv)—pV*V—pv~V +F.- Vv (2.7)
7£qu —_ " ~
Qaz—v'(Jﬂre’qu ) + Qi- (2:8)

From the internal energy budget equation (2.7) and a mechanical energy budget equation
immediately derived from the momentum equation (2.5),

d(¥%/2+ @ . — T A — A — N
P2 G (v (o)) 4V Y- (V)T (20)

a consistency requirement for the conservation of total energy budget as the sum of (2.7) and
(2.9) can be inferred. Obviously, it reads

(—ov'V") - Vv +pV v/ —F-.VVv' =0. (2.10)

This requirement (2.10) can be interpreted as the equilibrium case of a rudimentary mean
turbulent kinetic energy equation formed from three terms which are shear production, buoy-
ancy production and molecular dissipation. With this reasoning we arrive eventually at an
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energy-consistent equation set, using the abbreviation ¢ = —pv'v' --VVv > 0,

@CL% =—Vp—0oVP -2 x oV —V:ov'Vv’ (2.11)
do
oY . 2.12
- AVERY (2.12)
,Ja _ N =Y T
QE:—pV-V—V'(R—FQUV)—FE (2.13)
_dgi — T A
QE:—V-(Ji—i—gqiv)—i—Qi, (2.14)

together with a closed total energy budget

,CZ ‘/\/2 2“‘@‘1’71 N 7NN 5 "1
QQ =V (pv+ov'v -v+R+ou'v").

dt

In addition to this, we formulate also the budget equation for the EPV from the present system
using (2.11) and (2.12) with known operations. It follows

d (@q-VV NV N L dd - _
— | —]=-V- - — Wy — R)|. 2.1
gdt< - ) \% l@b(V@XVp) a gy ¢(V>< )] (2.15)
For the vector R we have
o 1" 1 1 //2 1
R = _w _ inL =—-=-V. QV”V”7 (2.16)
0 0 2 0

and, furthermore, 1/3 is an arbitrary scalar turbulence-averaged function, w, = @ + 2Q =
V x v 4 2€ is the mean absolute vorticity vector, and w' =V x v is the turbulent vorticity
vector. As can be seen, the EPV is also a conservative quantity. It connects the vorticity
nature of the turbulent flow with the total mass conservation and the moist thermodynamics
(replacing 1[1 by a model-specific thermodynamic quantity which is still left open here).

2.3 Towards model equations applicable to a Poisson bracket form

In the following we are interested in a more meteorological form of the equation set (2.11)-(2.14)
aiming at the model variables v, T, p, §; instead of v, g, 4, §;. For that purpose the turbulence-
averaged specific enthalpy h is introduced due to its relation to pressure and specific internal
energy,

oh =00+ p. (2.17)

Here, we make use of the assumption that the equation of state and so the nonlinear relation
for the total specific enthalpy (2.20) are valid for averaged quantities as an analogue to the
unaveraged relations (cf. Herbert, 1975; Doms and Herbert, 1985)

P=RyoT (1+a). (2.18)

& means the averaged virtual increment,

. R A
a=<R”—1>qv—qz—qf—qr—qp (2.19)
d
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In a similar manner we yield for the nonlinear relation of the total specific enthalpy of the
assumed mixture
h = Shig;, (2.20)
with
h; = hy; + Cpi(T — T(]) (2.21)
for the specific enthalpy of the i-th component, and for the specific heat capacities we have
ép = Ecpi(ji N év = Ecm'(ji. (2.22)

By use of (2.17) - (2.22) we arrive after a straightforward analysis from (2.13) and (2.12) at the
desired prognostic equations for 7" and p. This so-called meteorological form of the consistent
equation set reads

dv —
@d—::—V}?—@VQ)—%]x@\?—V-QVV (2.23)
dT -
dp:—fppvvqt(f”—l) Qn + LQm (2.25)
dt Cy Cy Cy
g = T, A
g =V @i+ oV +Q (2.26)
P =RqoT(1+a). (2.27)

The thermal source function @, and the moisture source function Q,, are defined as follows

= N 7 2 _dA’L‘
Qh:—V-(R—i—qu)—Zhigd—qt—i—g (2.28)
_ . _dé

o =RyT2%2. 2.2
Qm =Rq o (2.29)

The derivation of the equation system (2.23)-(2.29) needs, however, some more attention con-
cerning mass conservation when sedimentation fluxes are incorporated in the water budget
equations (2.26). Invoking the approach of Wacker et al. (2006) (see also Catry et al. 2007),
mass control conditions are necessary to be taken into account. One of them, ©J; = 0, is
here of particular interest. Assuming diffusion fluxes given only in vertical direction, the pre-
cipitation fluxes (rain, snow etc.) are to be described by a common ansatz from Rogers and

A

Yau (1989), S; = —-J; = @q}VjT for j = r,p , where V; is a terminal fall velocity to be
parameterised. In order not to violate mass conservation it is important to consider the rest
of diffusion fluxes, too, which have to play a compensating role. In the most simple way, these
compensating fluxes may be read J; = g¢;w? for i = d,v,l, f , assuming the same vertical
diffusion velocity @@ instead of different ;(®. Thus we have

AT AT
w(d):%"‘/r +GpVp ’
l_qAT_qu

and the §; - budget equations (2.26) read more specific

,(Z(j N 8§qw(d) 3 -

Q?;:_quzv _#—’_QZa Z:d)valaf
A~ AT

_dq; —i—  00G;V; — .

Qdft]:—v'QQjV +#+Qj;]=7“,p
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The other mass control conditions are Y¢; = 1, Yog; v’ = 0, and XQ; = 0 with Q4 = 0.

In a further step the 'meteorological’ system (2.23)-(2.29) is now transformed into an obliging
form in view of a Poisson bracket construction on the base of these equations. The works of
Morrison (1998) and of Névir (1998) serve us as an example for the following analysis, though
both authors have treated an ideal fluid compared to our much more realistic equation set.
The treatment of Névir is from the meteorological point of view more interesting, because
he includes the Coriolis effects, while Morrison has discussed a nonrotating system. For the
following we switch to the Eulerian form of our equation set, and we take into account density
o0 and virtual potential temperature G, as prognostic variables instead of T and p in the
previous set?. An important point is here the formulation of the momentum equation, where
the advection term is identically reformulated due to the so-called Lamb transformation,

1
v -Vv=uwXx V—I—V(§V2). (2.30)

We have decided to split off the advection term into a rotational term plus gradient of kinetic
energy in order to unveil the ubiquitous vorticity process due to the rotational term, which
otherwise would remain hidden. It is convenient to incorporate the Coriolis terms into one
rotational term. In this point we follow the philosophy of Névir (1998). Moreover, the equation
set is to be formulated in such a manner that in the limit case the equations for an ideal fluid
are exactly recovered. The equation system equivalent to (2.23)-(2.29) may be written in the
following form

o = @axV-V( ¥4 a) - 0,V (cpall) + R (2.31)
do .
d(ab, -
) — v (.09 + Q) (2.33)
9(0qi
20) V(@ + 3+ oV + @ 234
p =R, (2.35)
i)
b, =T, (p(ﬂo) R (2.36)
D 1I

IT is the Exner function as usual. The source function Q) in the f,-equation (2.33) is defined
by

. Cpa(l4+ &) —¢é,\ =
+ (cpd Ll td) =6 ) Qm
Ry Co

n <de(1+co‘)_cp) (—pV - 9). (2.37)

Strictly speaking, Q) is not a pure diabatic source function, because the third term on the
RHS is actually a moist adiabatic term. Bannon (2002) found a similar form (his equation

(7.5)).

2The reason why we have chosen 6, is to arrive in (2.31) at a tractable form of the pressure gradient term,
and so to obtain simple functional derivatives in (2.41) for the envisaged construction of a Poisson bracket
form.
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From the equations (2.31) - (2.33) the associated EPV budget equation may now be derived.
With reference to the more general form (2.15) we specify here ©» = 6,. This is the most
suitable choice as discussed by Schubert et al. (2001). We obtain

0
ot

where the EPV is defined by

(oll,) = —V - {@Ha\? — ©,Q) — g, (v x ﬁ)} , (2.38)

I, = (& - V8,)/0. (2.39)

2.4 Poisson bracket description

Next we show how a Poisson bracket form can be found from the equation set (2.31)-(2.37).
The Poisson formulation is here meant in a more limited sense. It concerns deliberately only
those parts of the given full-physics equation set which correspond in the limit case to an ideal
fluid. The turbulent friction terms in the momentum equation and the heat- and moisture
source terms will be left away from such a bracket form. They are considered as additional
"dissipative’ forcing terms added to the 'ideal-fluid’ part. Making the notation simple enough,
from now on the averaging symbols over all model variables will be dropped. We differ here
from Névir (1998) in employing density times virtual potential temperature, 0, = 00, as
a pressure-like variable instead of an entropy-like variable. We are going through the well-
known Hamiltonian formulation. Here we quote a contribution from Bannon (2003), who has
described a Hamiltonian form of an idealised binary geophysical fluid. Compared to him we
introduce a more simplified Hamilton functional H, which is not the complete Hamiltonian of
the given system, but is it in the dry limit case with T;,, — T'. It reads

1
Hu] = /V <29V2 + 00+ chdTv) dr, (2.40)

where we have defined the vector u = (v, 0, 02,). The functional derivations of H with respect
to the variables v, g, 6, are then

oH oH 1 V2 oH
E_QV’T 5V +‘I’»E—deﬂv (2.41)
to form the Hamiltonian form of the system (2.31)-(2.37)

ov wa OH H H =

0o 0H

at \ ov (2.43)

90, 5H
v _wlp 2t (6)

==V (ev = > + 0QU), (2.44)

Here, the 'physical’ terms R and Q) are assumed to be prescribed, and we note that the
budget equations for the water constituents g; are really not lost in this subsystem, because
their summed effect is implied in the continuity equation for total density.

We can obviously rewrite the given system to obtain in compact form a general evolution
equation for a functional F [u]. Thus we have
OF [u]
ot

= {71} + (F.R) + (£,Q"). (2.45)
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Here, the noncanonical Poisson bracket reads

oy == [ (21 ) ar (2.46)

0
0F 57—( oH OF
0F oH oH OF
AR OR e A I

and in the present case real-fluid 'physical’ brackets are added in (2.45) due to turbulent
frictional and diverse moist and diabatic processes involved in R and Q(®):

(F.R) = /V ‘;f Rdr (2.47)
(F.Q")) = 59~ 7 Q@ (2.48)

The upgrading process to come from (2.42)-(2.44) to (2.45) may be made more transparent by
a formal transition 6F/du < 6(r — r') with F < u, and by use of the generalised chain rule
of differentiation,

OF [ [ 0F Ou
Fraiall B el ad (2.49)

By interchanging F and ‘H the antisymmetric property of the Poisson bracket is obvious,
{F,H} = —{H, F}. As discussed by Morrison (1998, p.490), the direct relation between
the Poisson bracket (2.46) and the equations (2.42)-(2.44) is hidden and becomes only obvious
after performing some integrations by parts, and associated boundary terms must vanish (see
also Bannon 2003). Concerning the latter, we have assumed

/Vv (if?;) =0, / ( 5'7:57f>d7:(), (2.50)

or the alternative form with interchanging F and H. For a further discussion of the bracket
form (2.46) four functionals, a mass functional M, a theta functional ©,, and a EPV-functional
P, are introduced. They are

Mz/ng , @Uz/évdf , Pa:/gﬂadT. (2.51)
14 |4 \%4

We do not follow Névir (1998) and introduce a helicity functional

1
= f/ Wq - Va dT, (2.52)
2 Jv

where v, = v + € x r. This functional is only conserved if the flow is incompressible, and
thus does not serve as a constraint for the dynamics in the compressible case. Nevertheless,
we follow Névir, in breaking the Poisson bracket (2.46) into three parts and handle them
separately. The first integral in the bracket (2.46) can be rewritten as

{FHYy, = — / ‘;f (“;“ ?j)dr (2.53)

and is referred to as the vortex bracket, it is simply antisymmetric even though the scalar
triple product would allow formally for a second permutation. The two other integral terms
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Table 2.2: Bracket evaluation according to (2.57) for diffent functionals F.

FI{FHN | {FH), {F. "}, (F.R) (F,Q())
H 0 0 0 Jyov- Rdr % cpalloQ(%)dr
M 0 0 0 0 0

O, 0 0 0 0 Jyy Q) dr
11, 0 0 0 0 0

vV | —wexv | =V(3v+d) —0,V (cpall) R 0

0 0 -V - (ov) 0 0 0

0, 0 0 -V - (Byov) 0 0Q(v)

I 0 0 L 2V - (B,0v) 0 L oQ(®)
p 0 0 2BV - (Buov) 0 22 oQ®)
0, 0 LV(ov) | =5V (buov) 0 Q)

T, 0 LY (ov) 2127 . (6,0v) 0 e 0Q)

are here defined as mass bracket and theta-bracket, which are simply antisymmetric:

o0F 0H &H oOF
AR e A AL
OF OH &H 0F
0F 0H,. O&H 0F
R A 2 A 21k
S e A P (2.55)
v Lov 80, Ov 56,

As can be seen, for each of these two brackets an alternative form is possible, which is a
‘divergence’-form or a ’gradient’-form, already valid in (2.46). This duality of gradient and
divergence rests on the assumption of vanishing boundary values due to the assumption of
Jyy V- (...)dT = 0 for arguments under the divergence operator as already discussed above.

Thus, we consider the Poisson bracket as the sum of a vortex bracket plus a mass bracket and
a theta-bracket with reference to (2.46) , (2.53) , (2.54) and (2.55) ,

{F,H} = {f,H}V—l—{f,H}g-l-{}_,H}(;v. (2.56)
Due to (2.56) the evolution equation (2.45) is considered in the form
a]:[l,I] . = (6y)
e {F Hyy +{F Hyy +{F, H}g + (F,R) + (F, Q™). (2.57)

It describes in compact form our full-physics model system. Though mass-, energy- and EPV
conservation has already been shown, the bracket form (2.57) confirms these conservation
properties in an elegant way once again. These brackets can easily be evaluated by substituting
H, M, ©,, II, for the general functional F. The upper part of Table II shows the result for

18



each bracket. From the evolution equation (2.57) follows then:

OH - oH*

oH N )} _ IH* _

5 (H.R) - (1.Q%)) = 5 =0 (2.58)
% = 0, (2.59)
00,

v = /V 0Q®)dr (2.60)
a;“ =0 . (2.61)

The relation (2.58) shows the energy conservation. It indicates that H is not the Hamilton
functional of our full-physics system, but H* = [, (%sz + 0P + gu) dr. From a practical
point of view, we remain, however, to use the bracket form expressed by H for our model de-
velopment. The mass conservation expressed by (2.59) is a trivial result, and so the functional
P, is according to (2.61) a conservable quantity which can also be inferred from the given
brackets. According to (2.60), O, is not conservative due to the global sum of the general
source Q%). We would refer to the fluid to be an ideal fluid, if these Q) contributions
vanish everywhere.

The reason why we get through the Poisson bracket description is that the formulation of
model equations becomes well-structured. The given brackets, namely the vortex bracket, the
mass bracket, and the theta bracket, determine the structural position and the role of each
term due to its association to one of these three brackets. This opens then a conception how
to construct a numerical scheme. In this context we start generating diverse model equations
from the general form (2.57) by setting F as a function of an appropriate model variable
according to (2.49). This is contained in the second part of Table II. In all three cases of
temperature variables, F = (6, ; T ; 0, = 00,), we observe that the vortex bracket and the
turbulent frictional bracket do not occur. In the case F = 6, the mass bracket is absent, too.
The latter indicates that the variable 6, = o, is a masked pressure variable (00, ~ pCud/ ‘pd),
Thus, the result is similar to the pressure variables p and II.

One can speculate from Table II how to make a reasonable composite of model equations to
form a full equation set. The momentum equation is covered by all three brackets (helicity-,
mass-, and theta-bracket). The continuity equation should be involved, which is constituted
solely by the mass bracket. The system should then be completed by a pressure-like equation
choosing the prognostic variables 0, = 00,, p, or II. Each of these equations is represented by
the theta-bracket and not by the mass bracket, too, which is already governing the continuity
equation. This allows to describe the equation set by a minimal number of brackets, while in
case of a T,- or 6,- equation the mass bracket also participates, which might be redundant
concerning the computational effort. As we will later find when searching for a energetically
consistent time integration scheme, it turns out to be advantageous to chose both, 6, and II
as prognostic variables,

a0,

5 = —-V- (évgv>
oIl Ry 11 ~
ot = —iav‘ (QvQV> )

the second equation might be thought of a special form of the equation of state.

The following discretisation process on the base of the antisymmetric properties of these brack-
ets as a guide line must not approximate the same bracket type in the various equations dif-
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ferently. The structure of the mass and theta bracket suggests that their discretisation is con-
centrated on the discretisation of the divergence and gradient operator which must be treated
consistently as dual operators. The discretisation of the vortex bracket will be a particulary
intricate matter with its specific property not producing kinetic energy but anisotropically
redistributing it. Seen as a working hypothesis, the explicit representation of this bracket is
a concession to the ubiquitous vorticity nature in the atmosphere, which might help better
simulating smaller scale structures like convective structures etc.. For each of the three brack-
ets we are in view of the discretisation process confronted with their inherently nonlinear and
three-dimensional structure.

2.5 Concept for the numerical discretisation of the Poisson brackets

2.5.1 Preliminaries to bracket discretisations

In the previous sections we dealt with the careful formulation of the continuous model equations
conserving mass, energy and EPV. The particular point of view was to find out a bracket form
of those model equations, which provides a new approach to construct the discrete analogue of
the model equations taking advantage of the inherent structural properties of Poisson brackets.
This follows as the second part of our treatment belonging seamlessly to our analysis before.
Here, we concentrate on demonstrating methods rather than showing many details and already
final results.

Salmon (2005, 2007) was the first, who proposed a general method to construct discretised
Poisson and Nambu brackets. Before adopting this method to our three dimensional flow
equations, we have to specify the circumstances in which we want to apply it. Every discreti-
sation requires to specify some properties in advance. These are the grid, some basis functions
— if working with Galerkin methods — and some basic operators. Bracket discretisations are
applicable within a variety of approaches concerning these fundamental decisions. Salmon
and Talley (1989) already pointed out that their ansatz for the Jacobian, which is actually a
discretised Nambu bracket, "applies to finite-difference, finite elements, spectral truncations,
or to any other general method of producing discrete approximations”. Since we have already
a certain model application in mind, namely the ICON model, we restrict our investigations
to the Arakawa-C/Lorenz grid staggering, which is widely used in NWP models. Even though
the ICON model will use a triangular mesh and the derivations will be given with a wide gen-
erality, we will discuss the results by way of example employing a more common quadrilateral
mesh. is

We now closely follow the approach given by Salmon and Talley (1989), and by Salmon (2004,
2005, 2007), who replaced the functional integrals and the bracket integrals by sums over grid
boxes. The discrete form of the chain rule of differentiation (2.49) yields then

oFu] L (6F ouy
o :Z(éu-at)iw (2.62)

i=1

The discrete analogue of the functional derivative §F /du just selects individual grid points with
a factor 1/V; (V; is the i-th grid box volume) and vanishes otherwise. With that approach,
our method turns out to be similar to finite difference methods.
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Figure 2.1: Pairs of primal (solid line borders) and dual (dashed line borders) grids for
quadrilateral and triangular primal meshes — horizontal projection of grid cell volumes. Further
explanations are given in the text.

2.5.2 Discrete operators

First, we have to specify the spatial operators on the grid. We can interpret the grid as an
arrangement of two grid types, a primal and a dual grid (Bonaventura and Ringler, 2005),
which is shown in Figure 2.1 for a pair of quadrilateral meshes and a pair of triangular and
hexagonal grids. For the ICON model, the triangular grid is referred to as the primal grid, but
the opposite choice is also possible (Thuburn 2008, Thuburn et al. 2009, Torsvik et al. 2005),
and implemented as in option in I[CON. Each edge of a primal cell is orthogonal to one edge of a
dual cell. We use here a horizontal C-grid arrangement, for which the normal wind component
locations n are defined at the centers of the primal grid edges (faces in three dimensions)
and point normal to them. Their direction is thought of as pointing outwards with respect
to the primal cell center i. The scalar quantities are to be found at the cell centers i. In
three dimensions, we combine a horizontal C-grid with a vertical L-grid. Then, the vorticity
components are placed at the edge centers of the primal grid box and point tangential to this
edge.

The generalized Gauss theorem is invoked for evaluating the vorticity components on the grid

/vadrz—j{vxds. (2.63)
v S

The RHS of this equation is discretely represented by a sum over the faces of a dual grid box.
The divergence operator is similarly defined via the Gauss theorem

/ V. gdr = 7{ g - ds, (2.64)
\% S

where g is an arbitrary flux. The discretized version ends up in a sum over the faces of a

primal grid box for the RHS that uses contravariant base vectors for the surface elements and

covariant ones for the fluxes?.

2.5.3 Spatial discretisation of the brackets

For the discretisation of the Poisson and Nambu brackets, the divergence and the rotation
operators are the only ones needed. In particular, the gradient operator follows as the dual

3Refer to Bonavetura and Ringler (2005) for details on the use of integral theorems for the discretisation in
the ICON model.
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counterpart of the divergence operator. This duality is connected with the foundation on
which the two previously introduced Poisson brackets are built, namely the rule of integration
by parts. That rule is also the background of the Arakawa Jacobian (cf. Salmon and Talley,
1989; and Salmon, 2007). The discretised form of the mass bracket reads

{F, H}y = (2.65)

M
OF oH oH OF
2 {@m(v'av%‘agm(v'av)m} Vin

M
¥a oH 0F oM
= L5l O R) ()

where the boundary conditions as in the analytical case are tacitly taken into account. Con-
sequently, the divergence and the gradient operators obey a discrete version of

/V YV - gdr = — /V g - Vipdr (2.66)

for arbitrary vector fluxes g and scalars ¥. The consequence for the model designer is that
the divergence operator defines already the gradient operator. There is no direct reference to
the gradient operator. It will be created automatically when writing down the equations for
the prognostic variables for which §F/év does not vanish.

We assumed so far, that the functional derivatives 6H/dp are located in the center i of the
primal grid box and that those of JH/dv are defined as normal vector components at the
faces j. But we have not yet defined the Hamiltonian on the grid, so that our assumptions
are initially speculative. For the evaluation of the Hamiltonian, especially its kinetic energy
part, we need the definition of an inner product at the center point of the primal grid. This is
obtained by inspecting the role of the inner product in V - Vi = Aq. Illustratively and with
direct reference to Figure 2.1, we restrict ourselves again to a plane and find

1 (Yo —ti)n 1 L (o —i)j Njdj
v'vw‘Z_Ai]%A’ iy _Ajzcsj/Q 5 2’

(2.67)
Jj€t
where A; is the area of the primal grid surrounded by the edges j, A\; and d; are the lengths
of the primal edges and the dual edges, respectively. The v, values refer to the outer (neigh-
bouring) 1 values. Thus, the sought-for inner product on a plane is

Aej

1
A-Bli=—> ajb—2L, (2.68)
Ai 45 2

where A.; = J;); is refered to as the elemental area (the grey area in Figure 2.1), and a;
and b; are the nomal components of the vectors at the edges. Similar considerations hold for
three dimensional volume boxes V; and elemental volumes V, ;, where one could easily include
terrain following coordinates.
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3 Terrain-following coordinates for ICONAM

3.1 Definition of the terrain following coordinate system

For the nonhydrostatic formulation of the model equations we need the divergence, gradient,
and rotation operators in terrain following coordinates. The problem we are faced with in our
special case of the ICON grid is the lack of boxes with quadrilateral faces, which are generally
needed when considering different coordinate systems, such as the contravariant and covariant
systems which are contragredient to each other. The proposal to overcome this problem is thus
to define quadrilateral boxes as base entities additionally to the main triangular, quadrilateral
or hexagonale/pentagonal grid boxes. This seems unsuitable at first glance, but you will
quickly appreciate the advantages of this proceeding.

SOOI
BRRILRRLRKL
REERLKKS

Figure 3.1: Horizontal shapes of possible main grid boxes and examples of associated edge
volumes.

Look at Figure 3.1 and observe that each lateral interface of the main grid box is represented
by a rectangular domain. Each edge velocity point has such an associated quadrilateral box
as the local control volume and possesses its local metrics which is required for the numeri-
cal computations of the divergence (for the flux through the triangle interfaces) and rotation
operator (for the definition of the boundaries which enclose the vortex lines in a certain di-
rection). All the following derivations are in principle suitable for triangular, hexagonal and
quadrilateral grids.

We now add a third vertical dimension on the quadrilateral edge surfaces in Figure 3.2. The
three-dimensional edge control volume is sketched with black lines. In the following, all nu-
merical operators will be defined using a similar three-dimensional box, but the box might be
shifted in the vertical to match with the actual local position where we need it. We should be
aware that the box may be inclined because of the varying terrain height. The terrain height
z in the model turns out to be best defined at the centers of the main box vertical interface
points, that is where the vertical velocity w is defined on a Lorenz grid, and on the corners of
these surfaces. Than, the slope of the box may only be felt in two directions: namely that hor-
izontal direction which connects the height points at the centers of the triangles, quadrilaterals
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1:=k-1/2

1:=k-1/2

Figure 3.2: Example of a 3 dimensional control volume element

or hexagons, which is later needed for the metric terms of the velocity fields, and that horizon-
tal direction which connects the corner points, so that the metric terms are later defined for
the vortex vector fields. As naming convention we refer to the former sloping direction with
index n as this direction is normal to the main box interfaces, and to the latter horizontal
direction with the index t as it is tangential along the main box horizontal interfaces.

We follow now closely the textbook of Zdunkowski and Bott (2003) in defining reciprocal coor-
dinate systems that lead us through the derivations of all essential differential operators. This
concept exploits that any vector may be represented with any kind of a linearly independent
vector basis. Two different vector bases chosen to possess certain ’reciprocal’ properties fa-
cilitate our derivations in particular. To become familiar with that concept, we exemplarily
draw the covariant and contravariant base vectors q; and q! in the center of the quadrilateral
box in Figure 3.2. The covariant base vectors are defined to be tangential to the coordinate
lines, which are here defined as the lines connecting the height points. As the contragredient
(reciprocal) representation we find the contravariant base vectors to be defined perpendicular
to the coordinate surfaces, which is achieved by the main definition of reciprocal coordinate
systems

qi “Qk = 5,@. (3.1)

As we do our measurements of actual heights, winds and vorticities in an orthogonal spherical
coordinate system attached to the Earth we need a relationship between the orthogonal unit
base vectors ey, ey, e, and the covariant and contravariant base vectors attached to a local
terrain-following coordinate system. We assume here, that the first step in that coordinate
transformation has already achieved, namely that part, that converts horizontal spherical unit
vectors to orthogonal unit vectors at the lateral interfaces of the main grid boxes. Thus,
we assume to have already access to orthogonal unit vectors e, and e; at the mentioned
positions. The second step of the transformation is thus introduced in the following. The
coordinate surfaces in the covariant coordinate system are naturally given as surfaces with
constant contravariant measure numbers ¢°. The vertical surfaces of constant ¢” = x,, and
¢* = x; do not change when changing from the orthogonal to the terrain following coordinate
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system. The horizontal surface of constant vertical contravariant coordinate ¢*
4 = ¢ (xn, 21, 2)

crosses the horizontal surface of constant z in the orthogonal coordinate system. The gradient
of the contravariant coordinate surfaces is perpendicular to surfaces of constant ¢* and gives
thus the contravariant base vectors

By employing the gradient in the orthogonal system as V = en0;, + €40y, + €,0, and (3.1)
we observe the following relationships

q" =en q* = ey Q" =5Le, + L en + Gl e

Qn = €p + aaTiez qi = e + %ez dz = ngzez (3.2)
€n =Qn t g%qu et = q¢ + %qz €z = %q: qz '
en=q" et =q" e = 5 + o q™ + 52t

Additionally, we find the functional determinant of the system as

0z 1
V9 = [dn;qt,92z) = dn - (At X qz) = o = q" = —q¢ X qz.

V9

General volumes and covariant areas are given by

dr = +/9dq"dq'dg*
dsn, = +/gdd'dq*

ds; = +/9dq"dq*
ds, = \/gdqndqtv

other important measures are the two terrain slopes, that we abbreviate with J, = 0z/0x,
and J; = 0z/0xy, respectively.

We may now express the velocity vector in the three different coordinate systems by using the
relationships so far. In the C-grid, only normal velocity components are available. Tangential
winds may not directly be accessed, and thus play no role for the current step of our description.

vV = Ipen+ we,
. oq® . Oz
v = ann+5(w*$n67$n)qz
= {"dn+4°qs
v = (a'cn—i-w;ai)qn—i-wg;qz
= ¢9" +¢.9"

Here, ¢* are called the contravariant wind components, ¢; are referred to as the covariant wind
components and &, Z;, w denote the orthogonal wind components.

For the representation of the vorticity vector, we encounter the opposite situation: normal
components are not needed, rather the tangential vorticity components are automatically
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given in the C-grid

b= étet + Szez

. . 8qz . . Oz

o = &qi+ E(fz - ft@)‘lz
= wtqt + d)qu

. 20z . 0z,

w = (gt + gz 833t)q + 52 8qzq
= wtqt + wzqz

Later, we need some transformations between the covariant, contravariant and orthogonal
measure numbers

§" = iy, o = @ +wdy & =

q-z:(w_g'gnjn)/\/g §- = w\/g fzzwz\/§+tht

At the moment, these expressions are to be regarded as symbolically written because there is
no position in the grid where those relationships may be taken literally.

(3.3)

Closing this first section we mention the geometric measures needed in our model as the
horizontal distance between the box midpoints: the dual arc lengths § = dqg", the length of
the edges: the primal arc lengths A = dg’, and the vertical distance between two main grid
box centers Az = /g, so that d¢* = 1. From now on, all differentials will be used as finite
differences in our manuscript.

Before we devote ourselves to the numerical operators on the grid, the labeling of the grid
points should be introduced as alredy indicated in Figure 3.2. For convenience with traditional
modeling style, the index counter increases from to to bottom. The vertical labels of the
grid points are denoted with k for entities in vertical layers (full levels) and the conventional
indexing of the upper adjacent interface height (half levels) k¥ — 1/2 will in the following be
replaced by [~. The main grid boxes are counted with the index 7 and the lateral interface
positions conventionally labeled with ¢ + 1/2 labels will be counted with j indices. When
referring to the lateral faces of a grid box we write j € ¢, and when referring to the top/bottom
faces we use the [ € k notation.

3.2 Divergence operator

The divergence of a flux F = ¢pv is given by the Gauss theorem

/V-FdT:/F-ds.
14 S

When computing this on a numerical grid, the RHS and LHS are determined at different
positions (center and interfaces), and take advantage of the character of the contragredient
coordinate systems

dripgV-F = D fMang - dsnja™ | + [D foldz - ds.iq®!
jei L Liek ;
= D fMdsny| + | fPldsay| (3.4)
jei L Liek ;
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o The LHS refers to the main grid box (either triangular, quadrilateral or hexagonal)
with
drie = Aik/9; 599° = Ai kG, -

The horizontal area A, j is formed by the summation of the subtriangle areas shown in
Figure 3.1 at the layer height

zik = (zig+ + 2i0-)/2,

which is by definition the arithmetic mean of the two adjacent level heights. This phi-
losophy was already pursued in the COSMO. The thickness of the box is given by

\/gi,k = Zi,l* — Zi,l+ > 0.

¢ The RHS refers to the grid box interfaces.
Here we pose the question on how much air leaves the main grid box through the in-
terfaces. As the associated outwards pointing surface vectors ds are then required with
contravariant base vectors (cf. Figure 3.2) and thus covariant measure numbers, we need
according to (3.1) contravariant measure numbers for the representation of the flux F.
Let us now distinguish lateral interfaces j and bottom/top interfaces I

— lateral interfaces, where the normal components n of the velocity (or flux) are
defined

S dsy g0y = 1" V9g dqqut’]%(i) =f"'g dqt’]’Yj(i)
Note here that the horizontal averaging is not automatically a one half weighting if
the grid is not equilateral in the horizontal

S vg,da"Y

€]

1
dqn7]

77 =

where the ~ indicates that the distances between the main box midpoint and the
interface are measured. We have to consider furthermore the local outward normal
direction with respect to both adjacent main boxes by means of

ol =1 > i) = 0.
1€]

v takes a positive or negative sign depending on whether the wind component points
locally outwards or inwards with respect to the main box.

The contravariant velocity measure number ¢" as defined in (3.3) is to be obtained
from the orthogonal components without further additional computations, ¢ = &,.

— top/bottom interfaces

z z —=l
fAlds.. = f2'\/g A (3.5)

According to the mentioned concept that the layer heights are the arithmetic means
from the interface levels, the height averaging in the previous formula is

%l = Z\/gk/Q

kel

Differently from the lateral interface case, the definition of the inward and outward
direction is simpler: () is positive when used as the top interface and negative
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when used as the bottom interface, because we use a positive upward coordinate
direction everywhere.

The contravariant vertical velocity as defined in (3.3) must be obtained by some
transformational computations, using the definition of the inner product on the
triangular, quadrilateral or hexagonal mesh

]
3

s 1 . —~n,j(i),k . —l
qz,z,l = [(w — 2, J, )/f]zl = | Wil — m an,j,kjn,j,kqu dgti-k /\/51'717
(3.6)
where the metric term is vertically averaged and given as
i _
(3.7)

fAz kel 2

3.3 Hamiltonian, functional derivatives and Poisson brackets

As already introduced in the previous chapter, we want to pose our problem on the Poisson
structure of the dynamics. Thus, we first have to specify the Hamiltonian using the orthogonal
measure numbers for the velocity. It reads

H o= > 0ik (Pig + coalip+

2

k Wi
qu )k Qk\[k ’] +Y A : Ai kG, i
zkfzk jeEi e ’ % lek 2 2 "

H o= > 0ip(Pig+ coalin + Kik)Aik/9;

in which the definition of the specific kinetic energy K becomes obvious. We may rewrite the
kinetic energy part of the Hamiltonian as to be built up from a sum over all j and [ interfaces

_ fU Z l
Hk’zn - § dq] kquk ] kgg k 7]7 + AZ l\/§Z l 2Z Q’ZLZ
gk

Performing this transformation we find immediately the averaging rules for the density to the
interfaces

O= > oidaly O =— Z@m
A4y ics 9y kel

Note, that those averaging rule is not exactly equivalent to the averagings introduced for /g
or for the metric term in (3.7).

Further, we need functional derivatives with respect to the orthogonal measure numbers, which
can be easily found to give

oH .. oH

— =0 w

5, 2 n ow ¢
The other functional derivatives needed for the Poisson bracket evaluations do not touch vectors
and thus yield the same results as in the continuous case

OH OH

5@ =K+ 50, Cpd
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The Poisson brackets for our dynamical problem are written as

OH O0H_ OF
= —§: — V) A, .
7 (60 ov (5Qv (5V>i,k kY (38)
oH oH OF
= 277 (05) 77 (0F)) A @9

for arbitrary F. If we choose F as to represent Delta functionals of local values of the prognostic
variables, we find

O(F = dnjip1) _ 1 if j1 =4 and k1 = k
dikn, dqm-itkldgtit kl\[ 1,k1
= 0 otherwise
5(F = w, 1
(F . winn) ~—ifil=iand il =1
w A9 1
= 0 otherwise
8(F = o; 1
(F =o0im) _ if il =i and k1 = k
do Ai1 i 9i1,k1

= 0 otherwise

S(F =0, 1
(7 =Ovirpr) _ if il =i and k1 = k
66, A kv 3
= 0 otherwise .

3.4 Gradient operator

From the definition of the divergence and the Poisson bracket, we may now derive the gradient
operator, which is the dual of the divergence. The vertical gradients needed in the vertical
velocity equation are found if F = wjj ;1 is inserted into both Poisson brackets, (3.8) and (3.9).
For the example (3.8) we find by using (3.4), (3.5) and (3.6)

SH oOF
{(F=winun, Hyy = Z szlezk HVlR) 5

{j::wil,ll?H}Q = Z Zﬁ}/zk

il ol kel

K g1 — K;
{f: wiLll,H}Q — _ Zl,kl 1l ’Ll,k)l — _aZK

\/§i1,z1

A similar derivation is found for the contribution of the Poisson bracket (3.9)

Al
{F =win, Hyg, = —cpaby ;,0:11,

where the actual vertical reconstruction of éf”l is left open at the moment, it will be defined
later in the advection scheme for scalars.

The horizontal gradient operator contains also a metric correction term, which stems from the
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contravariant correction part in (3.6) of the divergence

. OH
{F=2njim, H}y = Z 5o Z 533 Jk dg"? k7 j(4),k
i Z k jel 'I’L‘],
k —~n,j(i),k j
Z Z’Yzl k)il Z Z Z 5 7] kd dqt%k
00 ik ek 9y kel jei
{f: x.n,jl,klaH}g = Z 5 fj kdq ’JkZKZ E7Vi(5
n]7 26]
0OF ; k\f k
25 Tnjkdd"* Y dg"" Yoik Z—z > Yk Kik
gk Ok i€j lek V9, kel
. 1
{F=dnjir, "} = dgriLkl Z Kik17igj1) k1
1€71
Inj1 k1 —n,i(j1),k1 V/9; 1 1
e LY 5 D T D k()
dq o \/§ i1,k1 ’LE]l lekl \/?Ll kel
{f::tn,jl,klaH}Q = _anK+Jn8zK

From this result, we derive vertical

Z IR (3.10)

lek

and horizontal averaging rules

P = dq" (3.11)
dg™ ”\f zeg: Ve

for general scalars. The horizontal pressure gradient term defined via (3.9) yields via a similar
procedure

. —l
{f = -’tn,jl,klaH}év = _deejann + Jncpdelazﬂ ;

where the already known averaging rules (3.10) and (3.11) apply.

3.5 Rotation operator

To compute the rotation of a vector, we originate from the Gauss theorem and assume that the
flux vector F could have been obtained by the vector multiplication of two vectors F = V¢' x v.
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That yields

/V-FdT /F ds
%

/Vv-(vqixv)df /vq X v) - ds
/V[_ti‘(v><V)+V-(V><ti)]d7' /vq x v) - ds
/V—ti'(vxv)dT - /S(quxv).ds
/V—qi-(va)dT - /S(qixv)-ds
/ti.(va)dT - f/s(qixV).ds

/ti-(va)dT _ /Sv~(qi><ds)

From the RHS we recognise that the outward pointing ds = 3", ds;q' is a vector in the con-
travariant system. Thus, v = 3, ¢;q! is also needed in that system so as to evaluate the scalar
triple product most easily. The resulting vector V x v on the LHS comes in the covariant
system as & = 3, w'q;. Significant contributions to the RHS occur only for specific ' if the
vector product does not vanish and points into a direction for that we have a vector component
of v available:

q” x dStqt = —dSth/\@
qt X dann = _danz/\/§
qt X dquz = dszqn/\/.a

These three cases will now be investigated separately

e q% x dsyq®: Then, the RHS integral contributions become
v (q® x dsiq%) = —4nq™ - andsi/\/g = —n dq"dq” = —ip dq"

which are summed up for the dual horizontal grid m which is a hexagon/pentagon if the
main grid box has triangular shape and a rhombus, if the main grid box has hexagonal
shape. Finally, the contravariant vertical vorticity is obtained via

1 . )
wz%k = o am Z Qnsjk dqn7]7k7j(m),k
Ach gm,k jEM

where 7j(,,) 1, gives the sign convention for the positive mathematical sense. The area
Am & is again determined by summing up the subtriangles forming the dual surface. The
\f averaging an arbitrary area weighting. This volumar measure appears here at the
first glance unexpectedly, as we would have anticipated to divide only by an area. But
if we transform the contravariant w? into an orthogonal measure according to (3.3), this
weighting disappears again.

As the normal covariant measure numbers enter the computation of the contravariant
vorticity component, we have to specify them via (3.3)

. . . —J
qn,jk = [xn + an]j,k = Tnjk + wi,lk Jn,j,ka

where the previously derived vertical (3.10) and horizontal (3.11) averaging rules apply.
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e q' x ds,q™: Then, the RHS integral contributions become

v (q* X dspq®) = —4.q% - Qudsn/\/g = —d. d¢'dq® = —¢. dq'.

Note, the surface measure invoked here calls for vertical slices positioned with their
centers at the vertical velocity (height) points. But there, we only have information
about their vertical extents, but not about their horizontal lengths dg’. Thus, we must
assume that each dq' at the height points is the same as at the horizontal interface
between the two considered height points. Finally, the prorated rotation contribution at
7,1 1is
w;l % Z QZ,z,ldq Yi(4),1 — Z QZ,LZ'YZ )L
dqtd%zxf ’z i€ jz\[ ’z i€

where 7;(;); gives the sign convention for the positive mathematical sense. Naturally the
. . . . . . —l
covariant vertical wind component is given by ¢, ;1 = w; /9, -

e q' x ds.q? Then, the RHS integral contributions become

v (q® x ds,q”) = ¢,q™ - Ands./\/9 = dndq'dq"

Here, the areas ds, may be different at different height and we may not cancel any of
the lengths involved. Thus, the prorated contribution to the rotation at j,l yields

1
Wit =7 > nij kA0 Y00
dq] ldq] l\/>J 1 kel

where 7; () gives the sign convention for the positive mathematical sense.

The last two points together give the full tangential vorticity component

1
t
W= > deitvig + d > Gnijrda}rdd’ 1 v500)-
qjlf]lZE] q]l q]lf]lkel

Later, if we want to evaluate the vorticity flux term, we need the orthogonal vorticities ac-
cording to (3.3). The horizontal component does not need a transformational calculation, but
the vertical vorticity component required the calculation of

1

tj(m)l"

fz,m,k = [\/ng + (.UtJt]m,k — \/§m7ka7m k‘ A ; Z th lJt ldq 3Js ldq
m,

jeEM
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4 Vortex bracket

4.1 Introduction

w _ 6 t

Figure 4.1: Grid structure for the vortex bracket. The two sketches to the left are the top
views for the triangular and the hexagonal option, the right sketch represents the side view.
Main boxes are indicated with blue lines and secondary boxes with black lines. The main
vertical layer variables are marked green and the top interface variables red.

The vortex bracket is defined according to Névir (1998) as

OF (&, OH
{f,H}v = —/V 67V . <Q X (5V> dT, (41)

where &, is the absolute vortex vector. The numerical discretisation of that bracket turns
out to be tricky. The scalar triple product may only be computed if the vectors are all
reconstructed at the same positions in the grid. Because the compliance with the full two-fold
antisymmetry of the scalar triple product requires an overwhelming amount of reconstructions
and averagings, we restrict ourselves to the case, when only F and ‘H permute, which gives at
least energy conservation. This is in accordance with physical reasoning, which states that the
full two-fold antisymmetry of a helicity bracket is not needed in compressible flows, helicity is
not conserved in this case.

For the hexagonal grid, the vector reconstruction procedure for the vorticity flux term, which
is one part of the vortex bracket, was for a long time in the history unclear until Thuburn
(2008) could show how it must be defined in a linearised sense on an equilateral grid. But still,
such kinds of reconstructions were obtained without employing any kind of bracket philosphy.
As Thuburn’s reconstruction proved as the unique possiblitity to obtain undisturbed wave
propagation, it must be recovered when linearizing an eventually found bracket discretisation.

Before we devote ourselves to the reconstruction of the velocity, we decompose the problem into
two parts, were we distinguish the vertical and the horizontal vortex vector parts. Formally,
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we rewrite (4.1) as

0F [&haen 5H) / 0F (fz a€z 5H>
v=— : d : d 4.2
71} / ov < 0 v )T v ov 0 ov ) 4T (4.2)

Applying this separation to our discretised problem, we find that the vertical vorticity part
asks for horizontal vector reconstructions on a triangular, quadrilateral or hexagonal mesh,
whereas the horizontal vorticity part considers vertical slices which deal always with some
kind of quadrilateral mesh.

Generally, the scalar triple product evaluation might be cast in either of the three coordinate
systems: orthogonal, contravariant or covariant. As the vorticities come naturally with con-
travariant measure numbers and the vortex term generates the vorticity flux term in a further
derivable vorticity equation, where the contravariant fluxes are needed, one is tempted to pose
the problem with covariant base vectors. On the other hand, the reconstruction of vectors
gathers different local coordinate systems with different orographic slopes, so that is it not
straightforward to select an actual coordinate system for the reconstructed vectors. Therefore,
the evaluation of the of the vortex bracket is done in the orthogonal system and the vorticities
are first transformed into the orthogonal components.

4.1.1 Horizontal vorticity part

The horizontal vorticity part is discretised in a vertical plane, as given in the right panel
of Figure 4.1. As the tangential vorticity component is automatically given at the vertical
interface points [, we rewrite the vortex backet part as

0H

(SV gl i

§t,a, ‘,let,j,l
{]:’H}v—- Z(SVJZ. ]Q]l

Due to the orthogonality of the coordinate system, and the fact, that all horizontal velocity
vector components are given as normal components on the grid, we find two possible cases for
the scalar triple product, which do not vanish

a) ~€n;j - (et;j x eZ) = n;j * €n;j = -1
b)  —eq- (e X eny) = gy - €4y = 1,

The vector reconstruction is obtained as an volumar weighting of the components in the box
over which & is defined. The quadrature points for the reconstruction have to be exactly those,
which enter the evaluation of &. As one can show, only this measure prevents the occurence of
a symmetric internal instablility (Hollingsworth et al., 1983). Thus, we define the discretised
bracket as

V5 0F
va v = - ) ik . €n -
{ } Z \/'ale ’jal kel 2 o 5xn’jyk B
§t,a,j.l DLOH
sy e X —_— ez . A ;
?l t \/§ dq 7][ % \/>Zl q 5'11) ’i,l \/aj,l ev.jvl
nz(] 1OF
V9,4 €z
Z f] ldq ’],l ; 'L 5’[1)2,[
Stagle 1 Vi 4,50 o) Vg, A
€,7, . j €750
@jl V954l g 2 " 0,k o
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Here, the usual averaging rules (3.7) and (3.11) are again used. The tendency for the horizontal
velocity equation for F = &y, j1 11 reads then using (3.10)

. —
Oty j1 k1 7 &tal
Thnglbl _ | G’ il
Lkl

ot o

Similarly, the tendency for the vertical velocity tendency equation for F = w;q ;1 yields

Owinn 1 > &En,j(il)ﬁlldqt,j,ll Ej‘ilft,a,j,l

= ... Ty
ot Ann &= =t
31,01 jeil Q] in

4.1.2 Vertical vorticity part

The vertical vorticity part is different for the possible horizontal grids in ICON, because the vor-
ticity resides naturally at different positions. As already mentioned, to avoid the Hollingsworth
instability, the vector reconstructions should use the same points which are used in the com-
putation of the vertical vorticity, and the stencil of the kinetic energy discretisation must be
appropriately chosen with an approximately similar number of grid points. Thus, we distin-
guish three possible cases in ICON

o Triangular grid. The dual grid on which the vorticity resides is hexagonal /pentagonal
grid.

¢ Quadrilateral grid. The dual grid on which the vorticity resides is a quadrilateral grid.

o Hexagonal grid. The dual grid on which the vorticity resides is a rhomboidal grid. This
seems not to suit to the general conception, that the dual of a hexagon is a triangle. But
changing the viewpoint to the focus on the trivariate coordinate system, which spans the
hexagonal grid, it is obvious that there are three possibilities to represent the vorticity,
which are identical in the continuous equations, because the constraints are met which
restrict the overspecified coordinate system. If those vorticities are discretised, they
come to lie on the edges of the hexgons in the center of rhombi. The reconstruction
of the velocities again is needed on the same stencil as the vorticities are defined, but
additionally, vector reconstructions on hexagons are needed to match with the constrains
of the trivariate overspecified coordinate system.

We first consider the general case, in which the vector reconstruction and the vorticity are
defined on the dual grid. The scalar triple product accounts for

—€nj1 - (eg X en,jz) = €n,j1 * €t,j2,

where the edges j1 and j2 are to be found at different locations and the belonging local
orthogonal coordinate systems have different orientations so that a vector projection has to be
performed. The natural position for the vorticity is on the dual point m on the main level k.
The vortex backet reads now

1 0F

g td(m) k
FHyy = e S e N dghitdy G 2T e 43
§z.amk 1 k5 ti(m)k oH
; A, dqn7]7 dq g ———€4; A k g
om z Am,k’\/gm,k ];n \f],k&vn’j’k n,j m, \fm,k
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Inserting now F = &, ;1 51 into the vortex bracket, we find immediately

ain,jl,kl m(j), kﬁzamk
— = Do dg T ey
— i1 -
ot dq 7]1»]]‘5 el Q mJ
1 1 —t,5(m),k1 ;
n7j7k1 k ’ -7 % . .
A 51T Z dq dq \/gj,mgj,klxw,kletg
m, m,kl jEm

In case of the hexagonal grid, we encounter the fact, that three vorticities are defined on the
grid. They cover rhombi which are each formed by a pair out of the three coordinate lines.
Thuburn (2008) could show, that only a special form of vector reconstruction could deliver an
acceptable form of the dispersion relation for inertial gravity waves. We find that a certain
form of the vortex bracket can recover this rule if linearized. It reads

1 1
{F, H}V = 5{]:’ H}v,hexagon + 6{]:’ H}v,rhombusv

where the bracket for the rhombi is evaluated as given in (4.3). The edges which are comprised
in one rhombus are those of the two triangles that form the rhombus. Thus, the edge summa-
tion j € m counts 6 edges. The hexagonal bracket {F,H}v hezagon differs from the rhombus
bracket, because there is no vorticity defined in the center of the hexagon. To account for
energy conservation which is achieved by the permutability of F and F in the bracket, we
divide the hexagon bracket into two parts

{F, H}v hezagon = - Z o kfm 5 j;n dq"’J’k@t:j(m)’k\[j ) 5;5:'; k fz;j,y L
( — ]%; aqitdg " g MjﬁjkeJ Ai/Go s
% ; i k\fm 5 J;L dqmj’k@t’j(m)’k\/gj,k%en,j
" A k\fm k J%:n dqn,jjk@mm)’k\/gf "“59?:5 k &ZJ% on3 | Amkv G

where the vorticity contribution is once used in connection with F and another time in con-
nection with H. Consequently, by permuting F and H the antisymmetry of the bracket is
guaranteed. One could have used this very approach also in the rhombus bracket. Experimen-
tation with the hydrostatic model suggests that this alternative is not as stable as the method
documented here. The reason seems to be related to the occurence of the Hollingsworth in-
stability. This instability can probably not be prevented completely, but the current version
performs best under all methods tested so far (which were: (i) use the hexagon bracket ap-
proach also for the rhombus brackets, (i) average 6 rhombus vorticities to the center of the
hexagon and use the hexagon bracket similarly to the rhombus bracket).
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5 Special treatment for the triangular grid

We encountered widespread difficulties with the triangular C-grid. They can be cast under
different statements

e The horizontal divergence operator turns out to be only first order accurate and exhibits
a checkerboard error pattern. The error is especially pronounced for deformational flow
fields.

e The simple kinetic energy has to be composed in a way to avoid the Hollingsworth
instability.

Trying to bypass those problems, obviously the first attempt is to create a second order hor-
izontal divergence operator, which is achieved by averaging the divergences. This would lead
to the renouncement of the nice C-grid properties, namely the non-zero frequency for the
shortest resolvable traveling gravity waves. Grid scale noise can easily amplify, because no
operator ’sees’ it. Unfortunately, we can not see this, because the noise is in the grid scale
wind field, which is not a direct output variable. RBF-interpolation of the wind vector for
output masks the problem. Thus, we are in an obvious dilemma, as the triangular grid was
our strategy during the whole development time of the ICON model, because it also delivered
some advantages

o Before Thuburn (2008) solved the problem of the dispersion relation for the hexagonal
grid, no way was seen to use an alternative grid structure, although heavily investigated
in the thesis of William Swayer (2006) under the supervision of Luca Bonaventura.

e The triangular grid seems to be best suited for grid refinement.

o There were already other small scale ocean models (but not a global one) around that
successfully used the triangular C-grid .

Although the main problems were finally solved for the alternative hexagonal grid, there was
not yet enough time to investigate it’s capabilities in the vicinity of boundaries, which is essen-
tial for the ocean, and the strategy for grid refinement was not yet tackled. The hexagonal grid,
at least, does not show problems with energy conservation, as straightforward discretisations
for divergence and gradient are both of second order accuracy.

Thus, we must live with the triangular grid and hide its deficiencies as far as possible.

After a long time of experimentation with the hydrostatic model, a mix of smoothing methods
for the horizontal divergence was eventually found.

We use a bilinear averaging on 4 triangles to remove the checkerboard in the divergence.
Because the bilinear averaging removes mass consistency, an iterative procedure is taken to
restore it again. The same averaging procedure might serve as to average inner products
that naturally occur on triangles. That occurs for the evaluation of the kinetic energy and
the metric correction terms in the contravariant vertical velocity and the orthogonal vertical
vorticity.
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Another measure to remove noise in model fields, is to apply diffusion to the normal velocity
equation as Hui Wan showed in her thesis (2009), the numerical error in the 4rth order Lapla-
cian might serve as to remove the checkerboard noise in each time step when it is produced.
Unfortunately, the required diffusion coefficient is such that the characteristic damping time
is of the order of one time step. Even though until now no degradation of the model results
seems to show up, the amount of smoothing needed to keep the model results stable, stays
alarming, and we do not yet know how the model reacts if full physics comes into play.
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6 Land

The documentation for JSBACH is in progress. Most of the JSBACH components can be
found in (?) and under http://www.mpimet.mpg.de/wissenschaft /land-im-erdsystem /globale-
vegetationsmodellierung /jsbach-publikationen.html. For further information please contact
Christian Reick (christian.reick@zmaw.de).
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7 Slab Ocean and Sea Ice
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8 Atmosphere surface coupling

The documentation for JSBACH is in progress. Most of the JSBACH components can be
found in (?) and under http://www.mpimet.mpg.de/wissenschaft /land-im-erdsystem /globale-
vegetationsmodellierung /jsbach-publikationen.html. For further information please contact
Christian Reick (christian.reick@zmaw.de).
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9 Model resolutions and resolution dependent
parameters
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10 External data
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