
Max-Planck-Institut
 für Meteorologie

Max-Planck-Institut für Meteorologie
Bundesstr. 53

D-20146 Hamburg

Deutscher Wetterdienst
Frankfurter Str. 135
D-63067 Offenbach

ICON Programming Standard

Luca Bonaventura1, Monika Esch1, Helmut Frank2, Marco Giorgetta1,
Thomas Heinze2, Peter Korn1, Luis Kornblueh1, Detlev Majewski2,

Andreas Rhodin2, Pilar Ŕıpodas2, Bodo Ritter2, Daniel Reinert2, and Uwe
Schulzweida1

1Max-Planck-Institut für Meteorologie, Bundesstr. 53, D-20146 Hamburg, Germany
2Deutscher Wetterdienst, Frankfurter Str. 135, D-63067 Offenbach, Germany

December 7, 2012



2



Contents

Contents

I ICON programming standard 4

1 Introduction 4

2 Programming language 4

3 Rules, conventions, and recommendations 4
3.1 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Naming convention 8
4.1 Pre- and suffixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Automatic documentation 9

6 Parallelization issues 9
6.1 Fine-grained parallelism using OpenMP . . . . . . . . . . . . . . . . . . . . . . . . 10
6.2 Parallelism using MPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

7 Literature 11

II Appendix 13

A Template Fortran files 13

B Kind specifiers for REALs and INTEGERs 13

C Constants 13

D Editor customization 13
D.1 Emacs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
D.2 Vim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

E Preprocessor directives 14

3



1 Introduction

Part I

ICON programming standard

1 Introduction

Programming standards have been developed earlier to support the development of big software
packages following some technical standards and to increase readability. Examples are the Rules
for Interchange of Physical Parametrizations by Kalnay et al. (1989) or the European Standards
For Writing and Documenting Exchangeable Fortran 90 Code by Phillip et al. (1995) . The ICON
programming standard is inspired by such standards. It is tailored for the development of the
Fortran codes of the ICON models, which will be used on a wide variety of computer systems,
Unix or Linux related operating systems, and compilers. The goal of this programming standard
is to contribute to a stable, technically up-to-date and well readable code. This concerns:

• writing of readable/comprehensive source code

• modularizing of code with well structured dependencies between MODULEs

• standardizing the look and usage of MODULEs

• avoiding semantical errors

• reducing the maintenance cost

• creating machine independent source code

• well defined exception/error handling

• version control

• quality management and control

2 Programming language

Codes shall generally be written in Fortran 2003. Excellent textbooks are given by Metcalf et
al. (2004) and Adams et al. (2009). However, some relevant compilers do not comply with the
full standard, so that not all Fortran 2003 features can be used for ICON codes. Depreciated or
obsolete features of Fortran 2003 shall not be used. Vendor specific extensions are not allowed.
In cases, where Fortran 2003 is insufficient, e.g. for including libraries written in C, ANSI C with
POSIX extensions can be used. This type of code should be stored in a separate directory.

3 Rules, conventions, and recommendations

The general objective behind a style guide is to write portable code that is easily readable and has
a common style that can be maintained by a team of developers. Many rules follow common sense
and should be obvious. We note, that many of the formatting suggestions are easily achieved if
you use the GNU emacs (or xemacs) editor in Fortran 90 mode. The ICON coding standard
comprises three sections:

• Rules comprise style features, which can be checked or diagnosed by scripts or compiler
warnings. Some features may even be adjusted by scripts.

• Conventions comprise style features, which cannot be checked by a script but are highly
recommended to follow.

4



3 Rules, conventions, and recommendations

• Recommendations refer to style features, which are mostly helpful but not necessarily are
applicable in all cases.

3.1 Rules

• Use free format syntax.

• Characters

– Keywords in upper case
– Declared names (subroutines, functions, types, variables, etc.) in lower case
– Do not use tab characters in your code: this ensures that the code looks as intended,

independent of local tab definitions.

• Line continuation

– Lines have a maximum length of 99 characters. This is convenient for viewing and
printing.

– Continuation lines start with the ”&” sign.
– Split equation so that the operator (”+”, ”-”, ...) follows the ”&” sign on the following

line.
– Align the end-of-the-line ”&” of a continuation block.
– Align the beginning-of-the-line ”&” of a continuation block.

• Variables, constants , and operands

– Variable declarations always with ”::” syntax
– Variable declarations always without DIMENSION attribute
– Variables and numbers of type REAL are declared with an explicit kind specifier to be

used from module mo kind, see Appendix.
– Use the working precision wp.
– No implicit casting, i.e. all operands of an equation must be of the same kind.

Example for the use of wp:

USE mo_kind, ONLY: wp
IMPLICIT NONE
! Declaration of a constant of type REAL
REAL(wp), PARAMETER :: a_hour = 3600._wp ! 1 hour in seconds
! Declaration of a constant of type INTEGER
INTEGER, PARAMETER :: two = 2
! Declaration of a 2d field
REAL(wp), POINTER :: z_snowcover(:,:)
! Declaration of a local variable
REAL(wp) :: z
! make all operands of the same type as the variable z
z = 4.0_wp * REAL(two,wp)

– Names of types start with t

– Variables used as constants should be declared with the PARAMETER attribute and used
always without copying to local variables. This prevents from using different values for
the same constant.

• Indentation

– Comments have to be aligned with the source code.
– Indentation by 2 blanks has to happen when scope changes.

5



3 Rules, conventions, and recommendations

– The leading ”&” character of continuation lines is indented by 2 characters w.r.t. the
very beginning of the continued line. Text following the leading ”&” character should
be vertically aligned across the continuation lines belonging together.

• Do not use

– STOP! Instead use subroutine finish of mo exception (The only exception is mo mpi)
– PRINT and WRITE! Instead use subroutine message of mo exception.

• Intrinsics, programs, functions and subroutines

– Use generic intrinsic functions only
– USE statements of a Fortran module are collected in a block directly following the
MODULE or PROGRAM statement.

– USE statements are always used as USE @module, ONLY:@ with an explicit list of the
used items.

– Each Fortran module or program contains a single IMPLICIT NONE statement, fol-
lowing directly the USE block, if existing, or otherwise following directly the MODULE
statement.

– Each Fortran module contains a single PRIVATE or PUBLIC statement, following di-
rectly the IMPLICIT NONE statement. This PRIVATE or PUBLIC statement defines
the default external accessibility of the items (parameters, variables, procedures, ...)
defined in this module. (It is generally safer to use PRIVATE as default.)

– The default PRIVATE (or PUBLIC) statement is followed by a PUBLIC :: ... (or
PRIVATE :: ...) statement listing all items for which the default setting does not
hold.

– Subroutines and functions must follow a CONTAINS statement, i.e. they must be
embedded in Fortran modules.

– Arguments of subroutines, which are not of type POINTER, are declared with
INTENT(in|out|inout)

– Arguments of functions, which are not of type POINTER, are declared with INTENT(in)

3.2 Conventions

• All new Fortran codes are based on the ICON Fortran template files

• Like the templates suggest always name program units and always use the END PROGRAM;
END SUBROUTINE; END INTERFACE; END MODULE; etc constructs, again specifying the
name of the program unit. This helps finding the end of the current program entity. RETURN
is obsolete and so not necessary at the end of program units.

• Programming and commenting in English. Use readable and meaningful English variable
names.

• Never use a Fortran 2003 keyword as a name of a routine or variable!

• CPP keys are only used for:

– Differentiating codes in relation to computer architecture and compiler properties
– Controlling the access to external codes (e.g. MPI and CDI library).

• Documentation of almost all used compiler directives can be found in the following manuals.
The list is not complete, because NEC refuses to publish it’s compiler documentation to the
general public.

– Standard pre-defined C/C++ Compiler Macros

6



3 Rules, conventions, and recommendations

– Intel compiler documentation
– Sun compiler documentation
– PGI compiler documentation
– NAG compiler documentation
– IBM compiler documentation
– GCC compiler documentation
– OpenMP specification

• CHARACTER(len=*) , PARAMETER :: ’ $ module subroutine name $ID: n/a$
´, needs a script for the existing code and ..., use it with message and finish. Unify current
usage.

• Separate the information to be output from the formatting information on how to output
it on I/O statements. E.g. don’t put text inside the brackets of the I/O statement.

3.3 Recommendations

• In general subroutines or functions should not exceed a few hundred lines and each pro-
gramming unit should begin with a header explaining the given sections.

• Any date follows the ISO 8601 standard. That is: YYYY-MM-DD HH:MM:SS. Depending
on the case, time information HH:MM:SS or its SS portion can be omitted.

• Use blank space, in the horizontal and vertical, to improve readability. In particular try to
align related code into columns. For example, instead of:

! Initialize Variables
i=1
z_meaningfulname=3.0_wp
z_SillyName=2.0_wp

write:

! Initialize variables
i = 1
z_meaningfulname = 3.0_wp
z_silly_name = 2.0_wp

• Try to avoid using transcendental functions (EXP, SIN, COS, ...). If possibel use tables
and interpolations, or use linearized versions.

• Try to prevent IF’s in a loop, instead of IF use, if possible, SELECT CASE, or MERGE

• Avoid passing strings in the argument list (except for passing file names - special treatment
would be fine)

• Array notation should be used whenever possible. This should help optimization regardless
what machine architecture is used (at least in theory) and will reduce the number of lines of
code required. To improve readability the array’s shape should be shown in brackets, e.g.:

onedarraya(:) = onedarrayb(:) + onedarrayc(:)
twodarray(:, :) = scalar * anothertwodarray(:, :)

• Use of >, >=, ==, <, <=, /= instead of .GT., .GE., .EQ., .LT., .LE., .NE. in logical
comparisons is recommended. The new syntax, being closer to standard mathematical
notation, should be clearer.

7



4 Naming convention

• We recommend against the use of recursive routines for efficiency reasons for computational
intensive routine.

• When an error condition occurs inside a package, a message describing what went wrong
will be printed. The name of the routine in which the error occurred must be included. It
is acceptable to terminate execution within a package, but the developer may instead wish
to return an error flag through the argument list. If the user wishes to terminate execution
within the package, a generic ICON coupler termination routine finish must be called
instead of issuing a Fortran STOP. Otherwise a message-passing version of the model could
hang.

4 Naming convention

In order to have a readable an easily understandable code, we decided on a naming convention
for files as well as for variables, prefixes and so on.

4.1 Pre- and suffixes

• Fortran files

– driver programs: atm master.f90, oce master.f90, cpl master.f90, ...
– module files: mo <name>.f90

– utility interface files: util <name>.c => mo util <name>.f90

• include files for namelists

– collect in icon-dev/include/

– fortran include files are named <atm|oce|lnd|cpl> <name> ctl.inc

• functions/subroutines

– init ...: allocating and setting time invariant variables, done once only at the begin-
ning of the model run

– setup ...: set default values for namelists, read namelists, consistency checks, ...
– prepare ...: within the time loop, set time variant fields/switches
– clean ...: deallocate variables, ...

• types: t <name>

• optional prefixes

– derivatives
∗ ddt : temporal dervatives
∗ ddxn : horizontal derivatives in normal direction
∗ ddxt : horizontal derivatives in tangential direction
∗ ddz : physical space vertical derivative (height coords.)
∗ ddp : physical space vertical derivative (pressure coords.)

– fluxes
∗ flx

• optional suffixes: order: <process><time> <vertical pos.><horizontal pos.>

– processes: <name> rad etc.
– 2m: 2m

– surface: sfc

8



5 Automatic documentation

– snow: snow

– ice: ice

– horizontal position
∗ c: cell center
∗ e: edge
∗ v: vertex

– vertical position
∗ m: main level/mid level/full level
∗ i: interface between layers/half levels

– time position
∗ old
∗ now
∗ new

– vector representations
∗ o: orthogonal
∗ q: contravariant
∗ p: covariant

– There should be as few as possible suffixes (as many as necessary). If there are more
than one suffixes needed, their ordering follows the list sequence above.

• constants

– dp, sp floating point convention

The important variables with global scope are supposed to follow the CF-Conventions as they are
adopted as well for PRISM, ESMF, and other international projects. The tables can be found at:
http://www.cgd.ucar.edu/cms/eaton/cf-metadata/index.html

5 Automatic documentation

Each function, subroutine, or module based on the template files (see Appendix) includes a
prologue instrumented for use with the Doxygen documentation tool (http://www.doxygen.org).
Doxygen can extract information on the structure of the code and compile lists of the declared ob-
jects, as for example types, variables, routines, modules,, and can show dependencies. In addition
Doxygen can compile texts embedded as comments in Fortran codes if marked by appropriate
formatting instructions. Running make doc in the ICON base directory (after the Makefile has
been generated by ./configure) generates an HTML formatted Doxygen documentation.

6 Parallelization issues

ICON models are parallelized by MPI and/or OpenMP parallelization. MPI parallelization means
that separate model executables are running on sub-domains and communicating with each other
following the MPI standard. Following the MPI standard each such model is named a process.
A MPI parallelized ICON model is hence split into a number of processes numprocs, or for short
nprocs. OpenMP parallelization means that the workload of a single model executable is shared
by a number of processors or so-called threads. If both methods are combined, the total workload
is shared by num procs * num threads ”CPUs”. The naming convention used below is borrowed
from the terms and names used in the MPI and OpenMP standards. For variables in Fortran
codes, the convention is to use names with prefix ”p ”.

9



6 Parallelization issues

6.1 Fine-grained parallelism using OpenMP

Any OpenMP parallelization should be based on the most recent OpenMP 3.0 standard.
http://www.openmp.org/mp-documents/spec30.pdf
Here are the most important rules that we would ask you to adhere to, when implementing
OpenMP directives. Due to the fact that different components coupled in an MPMD fashion may
require different total numbers of threads, a single environment variable OMP NUM THREADS needs
later to be replaced by specific environment varaibles OMP ATM THREADS and OMP OCE THREADS.

Environment variables in shell
scripts

Name in For-
tran code

number of threads per process OMP NUM THREADS, later:
OMP ATM THREADS and
OMP OCE THREADS

p nthreads

ID of a single MPI process n.a. p threads

Table 1: OMP of ICON.

• All OpenMP compiler directives must start with the directive sentinel !$OMP when using
the (recommended) free format syntax.

• Do not use combined parallel worksharing constructs like !$OMP PARALLEL DO or !$OMP
PARALLEL WORKSHARE. Instead use the parallel construct (!$OMP PARALLEL) followed
by the desired worksharing construct (e.g. !$OMP DO). This will increase readability of the
code.

• Explicitly include loop control variables of a parallel DO loop or a sequential loop enclosed
in a parallel construct into a PRIVATE clause. Although those variables are PRIVATE by
default, please stick to this since it will increase readability.

• Be aware of Race-Conditions!
Definition: Two threads access the same shared variable and at least one thread modifies
the variable and the accesses are concurrent, i.e. unsynchronized.
Prototypical example:

a(1) = 0._wp
!$OMP PARALLEL
!$OMP DO
DO i=2, n

a(i) = 2.0_wp * i * (i-1)
b(i) = a(i) - a(i-1)

ENDDO
!$OMP END DO
!$OMP END PARALLEL

Note that this can lead to unexpected results. It is not ensured that a(i − 1) has already
been calculated, when accessed for the calculation of b(i).

ICON-specific example:

#ifdef TEST_OPENMP

10



7 Literature

!$OMP PARALLEL PRIVATE(i_startblk,i_endblk)
#endif
i_startblk = ptr_patch%cells%start_blk(rl_start,1)
i_endblk = ptr_patch%cells%end_blk(rl_end,i_nchdom)
#ifdef TEST_OPENMP
!$OMP DO PRIVATE(...)
#endif
.
Do some work

.
#ifdef TEST_OPENMP
!$OMP END DO
!$OMP END PARALLEL
#endif

Even in this case it is necessary to declare i startblk and i endblk as PRIVATE, al-
though each thread writes the same result to i startblk and i endblk. On the IBM-
machine writing to the same shared variable simultaneously leads to unexpected results.

• Check for strong sequential equivalence (i.e. bitwise identical results) of your parallelized
code whenever possible. If a reduction operator (reduction(operator; list)) is used,
strong sequential equivalence is unlikely to occur. Then, at least, check for weak sequential
equivalence (equivalent mathematically, but due to the quirks of floating point arithmetic,
not bitwise identical).

• Note: reduction operators as well as the WORKSHARE directive may still be computationally
inefficient depending on the compiler. Careful runtime testing is required if those constructs
are used.

6.2 Parallelism using MPI

Scripts may need to distinguish the number of processes used by different models, like the atmo-
sphere and ocean models, and the coupler. Fortran variables and subroutines/functions related
to MPI parallelization are named with a prefix ”p ”.

Variables in shell scripts Name in For-
tran code

number of threads per process NPROCS, later: ATM NPROCS,
OCE NPROCS and CPL NPROCS

p nprocs

ID of a single process n.a. p rank

Table 2: MPI of ICON.

7 Literature

Adams, J.C., W.S. Brainerd, R.A. Hendrickson, R.E. Maine, J.T. Martin, and B.T. Smith, The
Fortran 2003 Handbook, Springer, 712 p., 2009. Kalnay, E. et al., Rules for Interchange of Phys-
ical Parametrizations, Bull. A.M.S., 70 No. 6, p 620, 1989. Metcalf, M., J. Reid and M. Cohen,
Fortran 95/2003 explained, Oxford University Press, 412 p., 2004. Phillip, A., G. Cats, D. Dent,
M. Gertz, and J. L. Ricard, European Standards For Writing and Documenting Exchangeable

11



7 Literature

Fortran 90 Code, Version 1.1,1995.
http://www.meto.gov.uk/research/nwp/numerical/fortran90/f90 standards.html

12



A Template Fortran files

Part II

Appendix

A Template Fortran files

Template Fortran files are provided to support the programing following the programming style
described above:

• Main programs: src/templates/template main.f90

• Modules: src/templates/template module.f90

• Subroutines: src/templates/template subroutine.f90

• Functions: src/templates/template function.f90

B Kind specifiers for REALs and INTEGERs

All REAL numbers and variables must be defined or declared, respectively, with a specified REAL
kind. For integers this is advised for loop indices only. Kind specifiers are provided in:

• src/shared/mo kind.f90

mo kind provides the following kind specifiers:

REAL kind precission assumed number of bits
sp 6 digits 32
dp 12 digits 64

wp=dp working precission
INTEGER kind exp. range assumed number of bits

i4 4 32
i8 8 64

Note: The bit sizes given are not mandatory. The kind value is defined by the
precision/range, which results on current systems in these bit sizes. This may change
in future.

C Constants

Universal mathematical and physical constants are defined in modules. Such constants can be
used elsewhere by USE association, and they must not be defined locally.

• Mathematical constants: See file src/shared/mo math constants.f90

• Physical constants: See file src/shared/mo physical constants.f90

D Editor customization

Some editors support customized formatting for line indentation and adjustments of keyword
upper-case typing etc. This can be employed to facilitate programming in the style described
above. Find below settings for Emacs and Vim.

13



E Preprocessor directives

D.1 Emacs

Add the following lines to the ”.emacs” file in your Unix home directory to support the Fortran
programming following the standard described above.

(custom-set-variables
;; custom-set-variables was added by Custom.
;; If you edit it by hand, you could mess it up, so be careful.
;; Your init file should contain only one such instance.
;; If there is more than one, they won’t work right.

’(f90-mode-hook (quote (f90-add-imenu-menu)))
’(f90-auto-keyword-case (quote upcase-word))
’(f90-comment-region "!!$")
’(f90-directive-comment-re "![\\$hHdDcCoOI][oOpPiIdDcCB][mMfFrRiIlL]")
’(f90-indented-comment-re "!")
’(f90-program-indent 2)
’(f90-type-indent 2)
’(f90-associate-indent 2)
’(f90-do-indent 2)
’(f90-if-indent 2)
’(f90-continuation-indent 2)
’(f90-beginning-ampersand t)
’(f90-break-before-delimiters t)
’(f90-break-delimiters "[-+\\*/><=,% ]")
’(f90-smart-end (quote blink))
’(show-paren-mode t)
’(line-number-mode t)
’(column-number-mode t)
’(size-indication-mode t)

)
(custom-set-faces
;; custom-set-faces was added by Custom.
;; If you edit it by hand, you could mess it up, so be careful.
;; Your init file should contain only one such instance.
;; If there is more than one, they won’t work right.

)
(if (window-system)

(set-frame-width (selected-frame) 99)
)

D.2 Vim

Add the following lines to the Vim setup file in your Unix home directory::

set nocompatible
filetype plugin indent on
syntax enable
set shiftwidth=2
set smarttab
set autoindent
set expandtab

E Preprocessor directives

Preprocessor directives are most useful for distinguishing architectures and operating system
dependent code variants. However, they are usually not meant for selecting code options, with

14



E Preprocessor directives

the exception of debugging. Use preprocessor directives as seldom as possible and as often as
necessary! The following compiler predefined preprocessor macros are available:

IBM xlf, xlc xlC
NEC f90 SX
SUN f95 SUNPRO F95
GCC (≥ 4.3.0) GFORTRAN
PGI pgf95 PGI
Intel INTEL COMPILER

If you like to set groups, make that at the beginning of a source code file like:

#if defined (__PGI)
#define __ASYNC_GATHER 1
#define __ASYNC_GATHER_ANY 1
#endif
!
! Reshape is not that powerful implemented in some compiler
!
#if defined (__sun) || (__SX__) || defined (__PGI) || defined (__GFORTRAN__)
#define __REPLACE_RESHAPE 1
#endif
!
! Switch on explicit buffer packing and unpacking, allowing vectorization
!
#if defined (__SX__) || defined(__PGI) || (defined __xlC__)
#define __EXPLICIT 1
#endif
!
! Select communication type, if not defined NON BLOCKING is selected
!
#if defined (__PGI)
#define __SENDRECV 1
#endif

15


