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Chapter 1

Tracer transport in ICONAM

The transport package predicts the large-scale re-distribution of tracers (e.g. water substances,
trace gases) caused by air-motions. Mathematically (numerically) this is done by solving one
of the fundamental laws of physics, namely the equation of mass continuity for each tracer.

1.1 Tracer equation

In ICONAM a height-based coordinate system is applied. The continuity equation that is
solved numerically reads

∂ρmq

∂t
+∇ · (ρmq v) = Pρmq , (1.1)

where ρm denotes the density of moist air, v is the 3D velocity vector (u, v, w)T , t is the
time, ∇· represents a multidimensional flux divergence, and q denotes the specific tracer
concentration which is defined as follows:

qχ =
mχ

md +mv
. (1.2)

mχ is the mass of the tracer species χ and md, mv denote the mass of dry air and water
vapour, respectively. By setting q = 1 in (1.1) we recover the continuity equation for moist
air

∂ρm
∂t

+∇ · (ρm v) = Pρm , (1.3)

The property of (1.1) to reduce to (1.3) for q = 1 is sometimes termed tracer and air mass
consistency. Care must be taken to retain this property in the discretization.

In the most recent version of ICONAM (version 1.2.2) we solve prognostic continuity
equations of type (1.1) for 5 water species: water vapour qv, cloud water qc, rain water qr,
cloud ice qi and snow qs.

In the following we will respectively use ρ and q to denote moist air density and the
specific tracer consentration. Moreover, since the focus of this documentation is on the
transport process itself, any sources or sinks will be neglected, i.e.

Pρq = 0 . (1.4)

The incorporation of a nonzero rhs is described in the physics documentation.
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2 Chapter 1. Tracer transport in ICONAM

1.2 Finite-Volume (FV) discretization

The numerical solution to the continuity equation (1.1) is based on so called space-time
finite volume methods. By space-time methods we refer to methods, where the temporal
and spacial discretizations are combined rather than separated. Space-time methods are also
known as cell-integrated semi-Lagrangian schemes. As will become clear, the applied schemes
are neither purely semi-Lagrangian, nor Eulerian in the classical sense. They are Eulerian in
the sense that we consider the flux of mass through the stationary cell walls. On the other
hand they are not Eulerian in the sense, that typically the space and time discretizations
are separated. They are semi-Lagrangian in the sense that trajectory calculations are needed
for flux computation. The schemes that will be presented could be termed flux form semi-
Lagrangian. They are partly based on work by Lauritzen et al. (2010), Harris and Lauritzen
(2010), Skamarock and Menchaca (2010), Miura (2007) and Colella and Woodward (1984).

1.2.1 Notation

In the recent version of ICONAM the continuity equation for tracer mass is discretized on the
triangular grid, thus assuming triangular control volumes (CVs). The normal velocities vn e,k

are given at edge midpoints and the specific concentration qik is given at cell circumcenters
(see Fig. ??). The index i denotes the grid-cell and the index k denotes the vertical (full)
level, numbered in top-to-bottom order. Thus k − 1/2 and k + 1/2 denote the upper and
lower vertical half-level, respectively. Note that q is considered as an average over a prismatic
cell rather than as discrete point value.

qnik =
1

∆Vi

∫∫∫
Vi

q(x, y, z, tn) dV (1.5)

Here, q(x, y, z, tn) denotes the (usually unknown) subgrid scale distribution of q and ∆Vi is
the volume of a prismatic cell. The superscript n denotes the time step tn and the overbar
denotes the (known) cell average.

1.2.2 Cell integrated version of the continuity equation

A cell-integrated solution to the continuity equation (1.1) can formally be derived, by inte-
grating (1.1) over the 3D control volume i and in time over the time interval [tn, tn+1], with
tn+1 − tn = ∆t.

tn+1∫
tn

∫∫
Ai

z
k− 1

2∫
z
k+1

2

∂(ρ q)

∂t
dt dAdz =−

tn+1∫
tn

∫∫
Ai

z
k− 1

2∫
z
k+1

2

∇h · (ρ qvh) dt dAdz (1.6)

−
tn+1∫
tn

∫∫
Ai

z
k− 1

2∫
z
k+1

2

∂

∂z
(ρ qw) dt dAdz

Here, Ai denotes the horizontal area of the prism (triangle) and ∆zk the prism thickness.
The index h indicates horizontal 2D operators and vectors. Commuting differentiation and
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integration on the lhs as well as applying Gauss-Theorem on the rhs leads to

(ρq∆A∆z)n+1
i,k − (ρq∆A∆z)ni,k =−

tn+1∫
tn

∮
∂Ai

(ρqvh
z)k · n∆zk dl dt (1.7)

−
tn+1∫
tn

[(
ρqwh

)
i,k− 1

2

−
(
ρqwh

)
i,k+ 1

2

]
∆Ai dt ,

where n is the outward pointing normal vector along the boundary of Ai and
z, h indicates

vertical and horizontal averages, respectively, for the given grid cell. Noting that the boundary
integral can be split into 3 integrals along the triangle edges and that ∆Ai is time independent
as well as independent of the vertical level k, equation (1.7) can be further simplified:

(ρq∆z)n+1
i,k = (ρq∆z)ni,k −

1

∆Ai

Ne∑
e=1

∫
le

tn+1∫
tn

(∆zρqvh
z · n)e,k dl dt (1.8)

−
tn+1∫
tn

[(
ρqwh

)
i,k− 1

2

−
(
ρqwh

)
i,k+ 1

2

]
dt ,

Ne is the number of edges (currently Ne = 3). Schematically the partial density ρqn+1
i,k at the

new time step n+ 1 is given by

ρqn+1
i,k = ρqni,k +∆t [H(qn) + V(qn)] , (1.9)

where H and V denote horizontal and vertical operators, with

H(qn) =− 1

∆t∆Ai∆zk

Ne∑
e=1

∫
le

tn+1∫
tn

(∆zρqvh
z · n)e,k dl dt (1.10)

V(qn) =− 1

∆t∆zk

tn+1∫
tn

[(
ρqwh

)
i,k− 1

2

−
(
ρqwh

)
i,k+ 1

2

]
dt . (1.11)

The operators H and V denote the horizontal and vertical flux divergence, respectively. As
will become clear, both operators only act on qn(x, y, z) and adopt the mass fluxes as provided
by the dynamical core. The solution procedure for equation (1.9) will be presented in the
following section.

1.2.3 Fractional step implementation

Instead of solving the unwieldy equation (1.9) in one sweep, the problem is splitted into two
simpler sub-problems, that are solved individually, using different numerical algorithms. As
already indicated by equation (1.9), instead of solving the fully 3D transport problem, we
individually solve one transport problem for the vertical and one for the horizontal direction.
This technique is known as directional splitting. Of course, replacing the equation

ρqn+1
i,k = ρqni,k +∆t [H(qn) + V(qn)] (1.12)
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by some approximation involving the two subproblems

ρqn+1
i,k = ρqni,k +∆tV(qn) (1.13)

ρqn+1
i,k = ρqni,k +∆tH(qn) (1.14)

will inevitably result in a residual error. This error is known as the splitting error.
We follow the formulation of Easter (1993), wherein the mass conservation equation (1.3)

is reintegrated using the mass fluxes provided by the dynamical core. The 3D algorithm is
as follows:

ρq∗i,k =ρqni,k +∆tV (qn) (1.15)

ρ∗i,k =ρni,k +∆tV (1) (1.16)

q∗i,k =
ρq∗i,k
ρ∗i,k

(1.17)

(1.18)

ρqn+1
i,k =ρq∗i,k +∆tH (q∗) (1.19)

ρn+1
i,k =ρ∗i,k +∆tH (1) (1.20)

qn+1
i,k =

ρqn+1
i,k

ρn+1
i,k

(1.21)

The splitting error of this so called Marchuk-splitting is of O (∆t). A Strang-splitting (which
results in an O

(
∆t2

)
approximation to (1.9)) can approximately be achieved by switching

the order each time step. A full Strang-splitting has been implemented, too. It is given by
the following sequence of operations:

ρq∗i,k =ρqni,k +∆t/2V (qn) (1.22)

ρ∗i,k =ρni,k +∆t/2V (1) (1.23)

q∗i,k =
ρq∗i,k
ρ∗i,k

(1.24)

(1.25)

ρq∗∗i,k =ρq∗i,k +∆tH (q∗) (1.26)

ρ∗∗i,k =ρ∗i,k +∆tH (1) (1.27)

q∗∗i,k =
ρq∗∗i,k
ρ∗∗i,k

(1.28)

(1.29)

ρqn+1
i,k =ρqni,k +∆t/2V (q∗∗) (1.30)

ρn+1
i,k =ρni,k +∆t/2V (1) (1.31)

qn+1
i,k =

ρq∗i,k
ρ∗i,k

(1.32)
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1.3 Horizontal transport

The horizontal transport scheme of ICON belongs to the class of so called Flux Form Semi-
Lagrangian (FFSL) schemes. Sometimes these schemes are alternatively termed Incremental
remapping schemes (Lipscomb and Ringler, 2005) or schemes based on the streamline subgrid
integration method (Yeh, 2007).

1.3.1 Cell integrated version of the tracer continuity equation

The current scheme is based on a finite volume (or cell integrated) version of the horizontal
tracer continuity equation in flux form

∂ρq

∂t
= −∇h · (ρqvh) , (1.33)

where ρ is the air density, q is the tracer mixing ratio and vh is the 2D horizontal velocity
vector. According to (1.8), the finite volume version of the horizontal tracer continuity
equation can be written as follows:

(ρq∆z)n+1
i − (ρq∆z)ni = − 1

∆Ai

Ne∑
e=1

∫
lei

tn+1∫
tn

(∆zρqvh
z · n)e dl dt (1.34)

In practice, ρ is replaced by its cell-height weighted counterpart ρ∆z. Here, for convenience,
we will simply drop ∆z. Furthermore we will drop the vertical averaging operator z.

Now we introduce our first approximation: We assume that ρ is constant along the edge
and constant over the time step ∆t. Or stated in another way: We assume that an appropriate
space-time averaged value of ρ is provided by the dycore). Thus we may shift ρ in front of
the integrals, as follows:

(
ρqn+1

i − ρqni
)
∆Ai = −

Ne∑
e=1

⟨ρei ⟩
∫
lei

tn+1∫
tn

(qvh · n)e dl dt (1.35)

Here we have introduced the operators e and ⟨ ⟩ which indicate averages along the edge
and in time, respectively. Note that the time integral may also be performed in space along
the trajectories terminating at the control volume edge, such that the scheme may finally be
cast into the following form

ρqn+1
i = ρqni − 1

∆Ai

Ne∑
e=1

sie Fie ,with Fie = ⟨ρei ⟩
∫∫
aei

qn(x, y) da . (1.36)

Fie defines the total mass crossing edge e during ∆t and aei denotes the so called departure
region area for the eth edge. The departure region is spanned by the edge e and the two
backward trajectories that end at the vertices belonging to that edge at tn+1. sei distinguishes
inward and outward directed fluxes and is defined as follows:

sei = Ne · ne
i =

{
1 : for outward directed fluxes

−1 : for inward directed fluxes
(1.37)

Here ne
i denotes the unit vector at edge e pointing in the outward normal direction of cell i

and Ne is the normal vector at edge e If we define ie as the cell sharing edge e with cell i,
Ne points from i to ie.

Comment: Re-write in such a way that the approximation regarding ρ comes afterwards.
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Figure 1.1: graphical interpretation of the FFSL scheme. Black solid lines show the primal grid, with
thick solid lines indicating the Eulerian control volume, grey area shows Lagrangian control volume
and yellow areas show departure regions for each edge.

1.3.2 Graphical interpretation

Figure 1.1 provides a graphical interpretation of the FFSL-scheme. Black solid lines show
the primal grid, with thick solid lines indicating the selected Eulerian control volume of area
∆Ai. Let us assume that we know the full time dependent velocity field such that we know
the trajectories of all the air parcels terminating at the control volume edges at the new
time tn+1. As an example, the trajectories of the air parcels which terminate at the control
volume vertices at the new time tn+1 are indicated by grey lines. Accordingly assume that we
know the starting points of those backward trajectories at time tn. With this information one
can construct the Lagrangian control volume, also known as ’departure cell’. It is depicted
in grey. This departure cell (at time tn) is mapped onto our control volume at time tn+1.
In a standard semi-Lagrangian scheme, in order to compute the updated value of ρ q for
the Eulerian control volume, one needs to compute the total mass inside the departure cell.
Since we apply the Eulerian instead of the semi-Lagrangian viewpoint, according to equation
(1.36), we need to compute the total tracer mass F that crosses each of the Eulerian control
volume edges during the time interval [t, t+∆t]. This mass is simply the material present in
the yellow regions, termed departure regions, shown in Figure 1.1. These regions are swept
across the eth edge by the corresponding eth edge of the Lagrangian control volume (departure
cell). For each edge the integration areas are highlighted in yellow.

Note that this Eulerian viewpoint is fully equivalent to the semi-Lagrangian viewpoint.
It can be shown (Lauritzen et al., 2011) that all areas involved in our quasi-Eulerian forecast
equation (1.36) sum up to the Lagrangian control volume.

1.3.3 Basic algorithm

The numerical algorithm solving (1.36) for a single Eulerian control volume proceeds in 4
major stages:

1. The departure regions aei for each edge are approximated with the help of backward
trajectories.

2. For each Eulerian control volume the unknown tracer subgrid distribution q(x, y, t0) is
estimated from the known cell averages qni of the CV itself and surrounding cells.

3. The total mass crossing the eth edge is estimated by evaluating the integral in (1.36).
I.e. the estimated subgrid distribution q(x, y, t0) is integrated over the approximated
departure region aei .
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4. Evaluate the sum on the right hand side of (1.36) (i.e. compute net mass gain/loss of
cell i) in order to arrive at an updated value of ρq.

1.3.4 Reconstruction

Least squares solution using SVD

The question we would like to answer is: What is the minimal length least squares solution
of the overdetermined system

A · x = b , (1.38)

where A is the m×n design matrix with m > n, x is the unknown solution vector (polynomial
coefficients) of dimension n and b (of dimension m) contains the known parameters to be
fitted. That means, we search for the vector x that minimizes the squared Euclidian norm
of the residual

r = b− A · x (1.39)

min
x

∥r∥22 = min
x

∥b− A · x∥22 (1.40)

This minimal length vector x can be found by using the so called Singular Value Decompo-
sition (SVD).

Theorem 1 (proof see Golub and Loan (1996)). Let A ∈ Rm×n with m > n be a matrix of
rank r. Then there exist orthogonal matrices U ∈ Rm×m and V ∈ Rn×n such that

A = UΣVT, Σ =

(
Σ1 0

0 0

)
,

where Σ ∈ Rm×n, Σ1 = diag (σ1, σ2, . . . , σr), and σ1 ≥ σ2 ≥ · · · ≥ σr > 0. The σi are called
the singular values of A.

Based in this theorum, equation (1.38) can be re-written as follows:(
UΣVT

)
· x = b (1.41)

Solving (1.41) for the unknown x gives

x = A+ b , with A+ = VΣ−1UT . (1.42)

A+ is called the pseudoinverse or Moore-Penrose inverse of A. The pseudoinverse always
exists whether or not A is a square matrix or has full rank. The nice thing about SVD is,
that (1.42) immediately provides the minimum norm least squares solution! For any b in
Rm, A+b is the minimum norm least squares solution to (1.38).

For SVD we use the lapack routine DGESDD. After the matrizes UΣVT are known, the
pseudoinverse is computed element-wise as follows:

A+
ij =

(
VΣ−1 UT

)
ij
=
∑
k

VT
kiΣ

−1
kk Ujk (1.43)

Since A+ is time independent and independent of the tracer fields, it is computed once during
startup and stored for future use.
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1.3.5 Flux imiter (Flux corrected transport)

The basic idea of the flux corrected transport (FCT) approach is to construct the transportive
flux for a given edge as the weighted average of a flux computed by a low order (monotone)
scheme and a flux computed by a high order scheme. The aim is to make use of the high
order flux to the greatest extent possible, without generating over- and undershoots in the
solution. FCT goes back to the poineering work of Boris and Book (1973) and was further
generalized by Zalesak (1979).

Monotone (MO) limiter

The implementation largely follows the general procedure described in Zalesak (1979).

1. For all edges in the domain, high order fluxes FH
e are computed by using the

FFSL-scheme as presented in Sec. 1.3.1.

FH
e = FM

e qa
e,n
i , (1.44)

where FM
e denotes the mass flux for edge e, which is provided by the dynamical core,

and qa
e,n
i denotes a higher order approximation of the tracer field averaged over the flux

region aei at time step n.

2. For all edges in the domain, low order fluxes FL
e are computed as

FL
e = FM

e qnu , (1.45)

where FM
e , again, denotes the mass flux for edge e, and qnu is the cell average of the

upwind cell at time step n.

3. Define anti-diffusive fluxes over all edges in the domain

Ae = FH
e − FL

e (1.46)

For each cell i these fluxes are grouped into fluxes going out (positive) and into (nega-
tive) the cell.

4. Compute a monotone estimate of the solution

qL n+1
i =

ρqni
ρn+1
i

− ∆t

ρn+1
i ∆Ai

Ne∑
e=1

sie l
e
i F

L
e (1.47)

5. Clip antidiffusive fluxes so that the following “antidiffusion” step does not generate
new extrema (maxima or minima), or amplifies existing ones.

Ac
e = CeAe 0 ≤ Ce ≤ 1 (1.48)

6. Construct the net transportive (limited) flux and compute the final solution

F c
e = FL

e +Ac
e (1.49)

= (1− Ce)F
L
e + CeF

H
e (1.50)

Note that the net transportive flux Fe equals the high order flux FH
e for Ce = 1, and

equals the low order flux FL
e for Ce = 0. The final solution qn+1 is computed outside

of the FCT-routine, using the limited fluxes F c
e .

The critical step is of course the computation of the Zalesak-Corrector Ce (step 5), which
will be described in the next paragraph.
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The Zalesak Corrector

For each cell i two different correctors C±
i are computed - one for outgoing (C−

i ) and one
for incoming (C+

i ) antidiffusive fluxes. When computing C−
i it is assumed that all incoming

antidiffusive fluxes are zero. The opposite assumption holds for C+
i . Note that this is a worst

case scenario. As a result the limiter is sub-optimal in the sense that antidiffusive fluxes
are limited more than necessary and the solution is overly damped. For a possible iterative
improvement of the Zalesak Correctors see (). The corrector for incoming fluxes is computed
as follows:

1. Compute the sum of all incoming antidiffusive fluxes for cell i

P+
i = −1

Ne∑
e=1

min
(
0, Ãe

)
(1.51)

Note, that incoming fluxes are negative, while outgoing fluxes are positive. Also note
that for convenience, Ae is replaced by Ãe which has been multiplied by a geometrical
factor, such that it has the dimensions of a mixing ratio [kg/kg] rather than a flux[
kg/(m2 s)

]
.

Ãe =
∆t le

∆Ai ρ
n+1
i

Ae (1.52)

2. Compute the maximum mass change ∆q+i that is allowed to be caused by the incoming
antidiffusive fluxes. Exceeding this change of mass will introduce new extrema in qn+1

i

which have not already been present in qni or the low order solution qL n+1
i . Define

Φa
i = max

(
qni , q

L n+1
i

)
(1.53)

to let

∆q+i = max (Φa
i ,Φ

a
n1,Φ

a
n2,Φ

a
n3)− qL n+1

i , (1.54)

where n1, n2, n3 indicate the direct neighbors of cell i. If P+
i > ∆q+i , the incoming

antidiffusive fluxes need to be rescaled (clipped) using the following factor:

C+
i =

 min
(
1,

∆q+i
(P+

i +ϵ)

)
: if P+

i > 0

0 : if P+
i = 0

(1.55)

The corresponding quantities for outgoing antidiffusive fluxes read:

P−
i =

Ne∑
e=1

max
(
0, Ãe

)
(1.56)

Φb
i = min

(
qni , q

L n+1
i

)
(1.57)

∆q−i = qL n+1
i −min

(
Φb
i ,Φ

b
n1,Φ

b
n2,Φ

b
n3

)
(1.58)

C−
i =

 min
(
1,

∆q−i
(P−

i +ϵ)

)
: if P−

i > 0

0 : if P−
i = 0

(1.59)
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In a last step, limit the antidiffusive flux Ae so that it neither produces overshoots in the
cell into which it is directed, nor undershoots in the cell out of which it flows. To this end,
the smallest Zalesak-Corrector needs to be selected from the cells upwind and downwind of
the given edge.

Ce = min
(
C−
u , C+

d

)
(1.60)

Here, the indices u, d indicate the cells upwind and downwind of the given edge.

Positive definite (PD) limiter

Our positive definite limiter is based on a modification/simplification of the monotone limiter
described in section 1.3.5. In order to render any high-order flux form scheme positive definite,
the following inequality must be fulfilled for each cell:

1

∆Ai

Ne∑
e=1

seiF
e
i ≤ ρ′q

n
i , (1.61)

It states that the mass lost by cell i during ∆t must be equal to or smaller than the total
mass within cell i at the previous time step n. If this constraint is violated for cell i, all
outgoing fluxes have to be re-scaled accordingly.

The PD-limiter is implemented as follows: For each cell i the sum of all outward fluxes
F e
i is computed.

P−
i =

1

∆Ai

Ne∑
e=1

max(0, seiF
e
i ) (1.62)

The maximum outward flux permitted is given by

Q−
i = ρ′q

n
i . (1.63)

Note that this is a worst case scenario, since it implies that P+
i = 0 i.e. that there is no inward

flux. As a result, the limiter is sub-optimal in the sense that outward fluxes are re-scaled
more than necessary and the solution is overly damped. As a next step a correction factor
R−

i is computed based on constraint (1.61).

R−
i =

 min
(
1,

Q−
i

(P−
i +ϵ)

)
: if P−

i > 0

1 : if P−
i = 0

(1.64)

Then the edge-based correction factor becomes

C−
e =

{
R−

i : if sgn(vnq
e) ≥ 0

R−
ie : if sgn(vnq

e) < 0
(1.65)

Note: As pointed out by Harris and Lauritzen (2010) and Thuburn and McIntyre (1997)
positive-definite methods do not preserve linear correlations.
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Figure 1.2: Error norms L1, L2 and L∞ for the C1 bell as a function of average grid spacing.
Numbers in legends correspond to empirically determined convergence rates L1, L2, L∞. Grey lines
correspond to the slopes of second and third-order convergence rates.

1.3.6 Results

Solid body advection

C1 Cosine bell

The initial condition is a cosine bell, defined as

Ψ(λ, θ) =

{
Ψ0
2 (1 + cos(πr/R)) if r < R

0 otherwise ,
(1.66)

where Ψ0 = 1, R = a/3 ist the bell radius, a is the radius of the sphere, and r is the
great-circle distance between (λ, θ) and the distribution center (λc, θc).

The initial condition has continous first order derivatives (i.e. is C1). The average Courant
number is about 0.25. The initial condition will be advected once around the sphere, using
φ = π/4, where φ is the rotation angle of the flow (0 for zonal flow, π/2 for flow over the
pole).

In Fig. 1.2 convergence rates of L1, L2 and L∞ are shown for a 1st order (linear), second
order (quadratic) and third order (cubic) reconstruction. For the quadratic and cubic case a
conservative reconstruction has been used, while the linear case is based on a non-conservative
reconstruction. The non-conservative linear reconstruction was found to slightly outperform
the conservative one. The test case was initialized by integrating the analytical function
(1.67) over each triangular element using a 4th order accurate Gauss-Legendre quadrature.

When initializing the testcases, care has to be taken that a sufficiently accurate estimate
of the cell averages is provided. As highlighted in Fig. 1.3, the results clearly depend on the
initialization procedure. If the tracer field is initialized using the point values evaluated at
cell circumcenters, then the convergence rates start to deviate from the expected convergence
rates as we go to higher resolutions. The higher the order of the polynomial reconstruction,
the larger the deviation. The results clearly show, that it is not sufficient to initialize the
model with point values evaluated at cell circumcenters. This merely gives a zeroth order
estimate of the cell average. A second order accurate estimate of the cell average seems to
be sufficient, even for a cubic reconstruction.

Figure 1.4 is the same as Fig. 1.2, but with the monotone flux limiter switched on.
Surprisingly, the 2nd order (quadratic) reconstruction performs best in this case. The cubic
reconstruction suffers from excessive damping, when using the monotone limiter. These
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Figure 1.3: L1 norm for the C1 bell as a function of average grid spacing. (a) linear, (b) quadratic, (c)
cubic reconstruction. Different colors refer to different initialization procedures of different accuracy.
blue: 0th order, red: 1st order, green: 3rd order accurate initialization.

Figure 1.4: Error norms L1, L2 and L∞ for the C1 bell as a function of average grid spacing. With
monotone flux limiter. Numbers in legends correspond to empirically determined convergence rates
L1, L2, L∞. Grey lines correspond to the slopes of second and third-order convergence rates.

results are based on a 4th order accurate initialization procedure. Again, the results change
only marginally if we apply a 2nd order accurate initialization procedure (not shown).

Figure 1.5 is the same as Fig. 1.4, but with the positive definite instead of the mono-
tone limiter switched on. The results are based on a 4th order accurate initialization pro-
cedure. Again, the 2nd order reconstruction performs best. The 1st order non-conservative
reconstruction slightly outperformed the conservative one (nor shown). In Fig. 1.5 only the
non-conservative one is shown.

C3 Cosine bell

The C1 bell does not provide a true estimate of the ’optimal’ convergence rate for the schemes
with quadratic and cubic reconstruction. Determining the order of accuracy for these two
schemes assumes a solution with at least smooth second and third order derivatives, re-
spectively. Therefore we reconducted the simulations using the following modified initial
condition:

Ψ(λ, θ) =

{
Ψ0
4 (1 + cos(πr/R))2 if r < R

0 otherwise ,
(1.67)
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Figure 1.5: Error norms L1, L2 and L∞ for the C1 bell as a function of average grid spacing. With
positive definite flux limiter. A non-conservative reconstruction was used for the first order one.
Numbers in legends correspond to empirically determined convergence rates L1, L2, L∞. Grey lines
correspond to the slopes of second and third-order convergence rates.

Figure 1.6: Error norms L1, L2 and L∞ for the C3 bell as a function of average grid spacing without
flux limiter. A non-conservative reconstruction was used for the first order one. Numbers in legends
correspond to empirically determined convergence rates L1, L2, L∞. Grey lines correspond to the
slopes of second and third-order convergence rates.

where Ψ0 = 1, R = a/3 ist the bell radius, a is the radius of the sphere, and r is the great-
circle distance between (λ, θ) and the distribution center (λc, θc). This initial condition has
continous second and third order derivatives. The average Courant number is the same as in
Sec. 1.3.6 (i.e. c = 0.25).

Figure 1.6 shows error norms for the C3 bell without any limiter. The linear and quadratic
scheme both show the expected second and third order convergence rates, respectively, in all
three error norms. This also holds for the conservative linear scheme, although the conser-
vative scheme, again, gives slightly higher absolute errors (not shown). The unlimited cubic
scheme, however, does not converge at the theoretically expected 4th order for very high
resolutions. This even holds, if we push the accuracy of the initialization procedure beyond
second order (the C3 bell may still be not smooth enough??). Nevertheless, the cubic scheme
gives the most accurate results in terms of absolute errors over the entire resolution range
tested.

Figure 1.7 shows the resolution dependency of the errors when the monotone limiter is
switched on. For the linear scheme, the rate of convergence and the absolute errors are barely
affected by the limiter. For the quadratic method converges at a slower rate (somewhat less
than third order), which is most notably pronounced for the L∞ error. For the cubic method
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Figure 1.7: Error norms L1, L2 and L∞ for the C3 bell as a function of average grid spacing with
monotone flux limiter. A non-conservative reconstruction was used for the first order one. Numbers
in legends correspond to empirically determined convergence rates L1, L2, L∞. Grey lines correspond
to the slopes of second and third-order convergence rates.

Figure 1.8: Error norms L1, L2 and L∞ for the C3 bell as a function of average grid spacing with
positive definite flux limiter. A non-conservative reconstruction was used for the first order one.
Numbers in legends correspond to empirically determined convergence rates L1, L2, L∞. Grey lines
correspond to the slopes of second and third-order convergence rates.

we see a dramatic decrease in the convergence rate of L∞ and L2, which drops towards 1st

and 2nd order, respectively.

The performance of the cubic scheme greatly improves, if the less restrictive positive
definite limiter is applied. This can be inferrred from Fig. 1.8. Independent of the applied
resonstruction order, the results closely resemble those of the unlimited scheme (compare
with Fig. 1.6).

C1 Cosine bell: Courant number dependency

To see how the error evolves with changing Courant numbers, the solid body advection test
has been repeated on the R2B5 grid using variable timesteps. Furthermore this will give
insight into the stability limit of the various schemes. The timestep ranges from 50 s < ∆t <
1620 s, which is equivalent to Courant numbers in the range 0.028 < c < 0.9.

In Fig. 1.9 L2 and L∞ error norms for first, second and third order reconstructions are
shown after a single revolution of the C1 cosine bell using a variable timestep. No limiter was
applied. The left figure shows results for a flow rotation angle of φ = π/4, while for the figure
on the right hand side φ = 0 was used. Let us have a closer look at the results for φ = π/4.
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Figure 1.9: L2 and L∞ error norms for first (blue), second (red) and third (green) order reconstruc-
tions after a single revolution of the C1 cosine bell using a variable timestep on the R2B5 grid. (a)
flow rotation angle φ = π/4, (b) flow rotation angle φ = 0.

For Courant numbers larger than about c ≈ 0.15, the linear scheme exhibits increasing erros
with increasing Courant numbers. The opposite holds for the quadratic scheme, whereas
the cubic scheme exhibits almost no Corant number dependency of the absolute error. Over
most of the investigated Courant number range, the linear scheme produces the largest errors,
followed by the quadratic scheme. The cubic scheme produces the lowest errors. Regarding
numerical stability, we see that the cubic scheme already becomes unstable for c & 0.45. The
linear scheme becomes unstable for c & 0.7 whereas the quadratic scheme remains stable up
to c . 0.8.

Similar results are shown in Fig. 1.10 but with the monotone limiter switched on. Note
that for the quadratic scheme, the absolute errors decrease for the partiular test case if the
limiter is switched on. The opposite is true for the cubic scheme.

To see how the error changes, if we change the path along which the tracer bell is advected,
the simulation has been reconducted using φ = 0 (see Fig. 1.9, right). We see, that for the
linear scheme the absolute error depends quite strongly on the path, which is not the case for
the quadratic and cubic scheme. This setup seems to be quite challenging, since the range of
stable CFL numbers shrinks for both the linear and cubic scheme. The cubic scheme already
becomes unstable for c & 0.25. The linear scheme becomes unstable for c & 0.5.

Deformational flow

Recently Nair and Lauritzen (2010) introduced a new deformational flow benchmark test for
advection schemes on the sphere. The flow is strongly deformational, nondivergent and the
scalar field follows highly complex trajectories. The flow reverses its course at half time T/2
and the tracer, ideally, returns back to its initial position and shape. There is the possibility
of cancellations of errors due to reversal of the flow along the same trajectories. This can be
avoided by adding a solid body rotation, such that the tracer follows new trajectories after
the flow reversal.



16 Chapter 1. Tracer transport in ICONAM

Figure 1.10: L2 and L∞ error norms for first (blue), second (red) and third (green) order recon-
structions after a single revolution of the C1 cosine bell using a variable timestep on the R2B5 grid.
A monotone flux limiter has been applied.

For air density the initial condition is ρ(t = 0) = 1kgm−3. For the tracer mixing ratio
Ψ two different initial conditions have been tested: a C1 cosine bell and an infinitely smooth
C∞ Gaussian hill.

Two symmetrically located cosine bells are defined as follows:

hi(λ, θ) =
hmax

2
[1 + cos (π ri/R)] if ri < R , (1.68)

where hmax = 1, R = 1/2 is the bell radius, and ri is the great-circle distance between (λ, θ)
and the specified center of the bell (λi, θi). The initial condition consists of a background
value b and two cosine bells with centers (λi, θi), i = 1, 2 generated using (1.68).

Ψ(λ, θ) =


b+ c h1(λ, θ) if r1 < R

b+ c h2(λ, θ) if r2 < R

0 otherwise ,

(1.69)

with b = 0 and c = 1.
The second initial condition is a smooth 2D Gaussian surface following Levy et al. (2007)

that can be defined as follows,

hi(λ, θ) = hmax exp
(
−b0

[
(x− xi)

2 + (y − yi)
2 + (z − zi)

2
])

, (1.70)

where (x, y, z) defines the 3D cartesian coordinates corresponding to the spherical coordinates
(λ, θ), hmax is the height of the hill and b0 = 5 defines the width. Again, the initial distribuiotn
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Figure 1.11: Error norms L1, L2 and L∞ for the C1 cosine bell as a function of average grid spacing
without limiter. A non-conservative reconstruction was used for the first order one. Numbers in
legends correspond to empirically determined convergence rates L1, L2, L∞. Grey lines correspond
to the slopes of second and third-order convergence rates.

consists of two hills h1 and h2 using (1.70),

Ψ(λ, θ) = h1(λ, θ) + h2(λ, θ) . (1.71)

The simulations with infinitely smooth (Gaussian hills) initial conditions should provide
a numerical estimate of the optimal convergence rate of the scheme. In Fig. 1.11 the reso-
lution dependency of the error is shown for the cosine bell initial condition. The red curve
shows results for a non-conservative linear reconstruction, blue for a conservative quadratic
and green for a conservative cubic one. The Courant number was set to c ≈ 0.31. The runs
were performed without any limiting/filtering. As for the solid body test case, the cubic
reconstruction, again, shows the smallest absolute error and largest convergence rate in all
norms. For L1 the convergence rate is slightly better than 2nd order, for L2 almost equal to
2nd order and for L∞ slightly worse than 2nd order. The linear and quadratic reconstruction
show very similar convergence rates, but at higher absolute errors. Surprisingly, the quadratic
reconstruction does not lead to reduced absolute errors when compared to the linear recon-
struction. At medium resolutions, the absolute errors are even slightly higher than for the
linear reconstruction. Only for very high resolutions, the quadratic reconstruction seems to
become superior compared to the linear reconstruction due to slightly better convergence
rates.

In Fig. 1.12 same results are shown, but for a conservative linear reconstruction. The
non-conservative linear reconstruction appears to be slightly superior to the conservative
counterpart. The Green-Gauss reconstruction has been tested as well. Its performance is
comparable the the non-conservative linear least squares reconstruction.

In Fig. 1.13 results are shown for the infinitely smooth (Gaussian hill) initial conditions.
For the linear reconstruction the theoretically expected 2nd order convergence rate is apparent
in all norms. For very high resolutions, the convergence rate for the quadratic reconstruction
tends towards third order. At medium resolution, the cubic reconstruction shows similar
convergence rate. For very highresolutions, the convergence rates of the cubic reconstruction
significantly degrade. The reason for that is not clear, yet. Anyhow, for the entire resolution
range testet, the cubic reconstuction exhibits by far the smallest absolute errors. Once again,
the quadratic reconstruction does not exhibit reduced absolute error when compared to the
linear reconstruction. Only for very high resolutions, the quadratic reconstruction becomes
superior in terms of absolute error.
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Figure 1.12: Error norms L1, L2 and L∞ for the C1 cosine bell as a function of average grid spacing
without limiter. A conservative reconstruction was used for the first order one. Numbers in legends
correspond to empirically determined convergence rates L1, L2, L∞. Grey lines correspond to the
slopes of second and third-order convergence rates.

Figure 1.13: Error norms L1, L2 and L∞ for the C∞ Gaussian hill as a function of average grid
spacing without limiter. A non-conservative reconstruction was used for the first order one. Numbers
in legends correspond to empirically determined convergence rates L1, L2, L∞. Grey lines correspond
to the slopes of second and third-order convergence rates.

Deformational flow: Courant number dependency

To see how the error evolves with varying Courant numbers, the deformational flow test case
(DF4) has been repeated on the R2B5 grid using variable timesteps. Furthermore, this test
will give insight into the stability limit of the various schemes. The timestep ranges from
40 s < ∆t < 800 s, which corresponds to Courant numbers in the range 0.052 < c < 1.034.

In Fig. 1.14 L2 and L∞ error norms for first, second and third order reconstructions
are shown after one period of the DF4-test case as a function of timestep ∆t. No limiter
was applied. Basically the same Courant-Number dependency is found as for the solid body
advection test (compare with Fig. 1.9). For Courant numbers larger than about c ≈ 0.2,
the linear scheme exhibits increasing erros with increasing Courant numbers. The opposite
holds for the quadratic scheme, which shows slightly decreasing errors for increasing Courant
numbers.. Almost no Corant number dependency is found for the cubic scheme. In contrast
to the solid body test case, now the quadratic scheme produces the largest errors, followed
by the linear scheme. Once again, the cubic scheme produces by far the lowest errors. The
comparatively high errors of the quadratic scheme may be related to the fact, that for large
parts of the total simulation time, the Courant numbers are significantly lower than the



1.3. Horizontal transport 19

Figure 1.14: L2 and L∞ error norms for first (blue), second (red) and third (green) order recon-
structions after one period of the deformational flow test case (DF4), using a variable timestep on the
R2B5 grid. No limiting/filtering has been applied.

maximum numbers given above. This is related to the time dependent velocity field and is
one of the mayor differences compared to the solid body test case. When combined with the
Courant number dependency of the quadratic scheme shown in Fig. 1.14 this may (to some
degree) explain the high errors of the quadratic scheme.

Regarding numerical stability, the quadratic scheme, again, shows the largest stability
range, followed closely by the linear scheme. The quadratic scheme becomes unstable for
cmax & 0.95 and the linear scheme for cmax & 0.85. As for the solid body rotation test caes,
the cubic scheme shows the smallest stability range. It becomes unstable for cmax & 0.52.
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1.4 Vertical transport

1.4.1 MUSCL

Mathematical formulation

Table 1.1 compares the second order vertical advection scheme for ICOHAM and ICONAM.
The Courant number independent version is shown in Table 1.2.
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By introducing the coefficient C̃, with

C̃ =


1 if hydrostatic

−1 if non-hydrostatic

(1.72)

the two distinct formulations in table 1.1 can be condensed into one. Thus the same source
code can be applied for both the height-based and pressure-based vertical coordinate system.
The generalized transport scheme is given in table 1.3.. Serveral new variables have been
introduced, i.e. ∆ξnk , F̃

n+α
ξ k− 1

2

, wn+α
ξ k− 1

2

. Their meaning depends on the applied dyamical core.

Table 1.4 provides a definition of those variables.

Table 1.3: Unified vertical MUSCL scheme for ICOHAM and
ICONAM

part ICOHAM and ICONAM

Time discretization qn+1
k = qnk

ρ̂n
k

ρ̂n+1
k

− C̃ ∆t
ρ̂n+1
k

[
Fn
k+ 1

2

− Fn
k− 1

2

]
cell height ∆ξnk = C̃(ξn

k+ 1
2

− ξn
k− 1

2

)

Fluxes

physical upwelling: wη < 0, w > 0

Fn
k− 1

2

= F̃n+α
ξ k− 1

2

[
qnk − C̃ 1

2
∂q
∂ξ

∣∣∣n
k
∆ξnk

(
1− C+

k− 1
2

)]
C+

k− 1
2

=

∣∣∣∣wn+α

ξ k− 1
2

∣∣∣∣∆t

∆ξnk

physical downwelling: wη > 0, w < 0

Fn
k− 1

2

= F̃n+α
ξ k− 1

2

[
qnk−1 + C̃ 1

2
∂q
∂ξ

∣∣∣n
k−1

∆ξnk−1

(
1− C−

k− 1
2

)]
C−

k− 1
2

=

∣∣∣∣wn+α

ξ k− 1
2

∣∣∣∣∆t

∆ξnk−1

vertical gradient ∂q
∂ξ

∣∣∣n
k
= C̃

(
qn
k+1

2
−qn

k− 1
2

∆ξnk

)
linear interpolation
from fl to hl

qn
k− 1

2

= α+
k− 1

2

qnk + α−
k− 1

2

qnk−1

α+
k− 1

2

=
ξ
k− 1

2
−ξk−1

ξk−ξk−1
α−
k− 1

2

=
ξk−ξ

k− 1
2

ξk−ξk−1

α+
k− 1

2

+ α−
k− 1

2

= 1
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Table 1.4: Definition of various variables which are introduced for the generalized vertical transport
scheme

Variable ICOHAM units ICONAM units

ξ p Pa z m

mass flux F̃ (η̇ ∂p
∂η )

n+α Pa s−1 ρn+1/2wn+1/2 kgm−2 s−1

vertical velocity wξ (η̇ ∂p
∂η )

n+α Pa s−1 wn+1/2 ms−1

density ρ̂ ∆p N m−2 ρ∆z kgm−2

1.4.2 Piecewise parabolic method (PPM)

The Piecwise parabolic method has been developed by Colella and Woodward (1984). It
uses a piecewise parabolic function to approximate the unknown subgrid distribution of a 1D
scalar field q(z). The function is forced to be continuous between cells. Its construction is
based on the known cell averages qk.

Mathematical formulation

Table 1.5 compares the third order vertical advection scheme for ICOHAM and ICONAM.
The computation of the interface values qnk−1/2 is not presented. The computation follows the

paper of Colella and Woodward (1984) and is done in the same way for both the height and
pressure-based vertical coordinate system. An enhanced version, which is stable for CFL > 1
is presendet in table 1.6. Unified versions that work for both the pressure-based and hight-
based vertical coordinate system are presented in 1.7 and 1.9. As for the vertical MUSCL
scheme, the coefficient C̃ equals 1 in the hydrostatic and −1 in the nonhydrostatic model.
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Table 1.7: Unified vertical PPM scheme for ICOHAM and ICONAM

part ICOHAM and ICONAM

Time discretization qn+1
k = qnk

ρ̂n
k

ρ̂n+1
k

− C̃ ∆t
ρ̂n+1
k

[
Fn
k+ 1

2

− Fn
k− 1

2

]
cell height ∆ξnk = C̃(ξn

k+ 1
2

− ξn
k− 1

2

)

Fluxes

physical upwelling: wη < 0, w > 0

Fn
k− 1

2

= F̃n+α
ξ k− 1

2

[
qnk − C̃

1

2
∆qk

(
1− C+

k−1/2

)
− 1

6
a6,k

(
1− 3C+

k−1/2 + 2C+ 2
k−1/2

)]

C+
k− 1

2

=

∣∣∣∣wn+α

ξ k− 1
2

∣∣∣∣∆t

∆ξnk

physical downwelling: wη > 0, w < 0

Fn
k− 1

2

= F̃n+α
ξ k− 1

2

[
qnk−1 + C̃

1

2
∆qk−1

(
1− C−

k−1/2

)
− 1

6
a6,k−1

(
1− 3C−

k−1/2 + 2C− 2
k−1/2

)]

C−
k− 1

2

=

∣∣∣∣wn+α

ξ k− 1
2

∣∣∣∣∆t

∆ξnk−1

∆q ∆qnk = C̃
(
qn
k+ 1

2

− qn
k− 1

2

)
a6,k a6,k = 6

(
qnk − 1

2

(
qk+1/2 + qk−1/2

))
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Table 1.8: Definition of various variables which are introduced for the generalized vertical transport
scheme

Variable ICOHAM units ICONAM units

ξ p Pa z m

mass flux F̃ (η̇ ∂p
∂η )

n+α Pa s−1 ρn+1/2wn+1/2 kgm−2 s−1

vertical velocity wξ (η̇ ∂p
∂η )

n+α Pa s−1 wn+1/2 ms−1

density ρ̂ ∆p N m−2 ρ∆z kgm−2

Table 1.9: Unified Courant number independent vertical PPM scheme for ICOHAM and ICONAM

part ICOHAM and ICONAM

Time discretization qn+1
k = qnk

∆mn
k

∆mn+1
k

− C̃ ∆t
∆mn+1

k

[
Fn
k+ 1

2

− Fn
k− 1

2

]
cell height ∆ξnk = C̃(ξn

k+ 1
2

− ξn
k− 1

2

)

Fluxes

physical upwelling: F̃η < 0, F̃z > 0

Fn
k− 1

2

= −C̃
1

∆t

s (s>0)∑
l=1

(∆mn qn)k+l−1 + F frac
k− 1

2+s(q
n)


Fn frac
k− 1

2+s
= ∆mn

k+sµ
+ frac
k− 1

2

[
qnk+s − C̃

1

2
∆qnk+s

(
1− µ+ frac

k− 1
2

)
− 1

6
a6,k+s

(
1− 3µ+ frac

k− 1
2

+ 2µ+ frac 2
k− 1

2

)]

continued on the next page
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Table 1.9: Unified Courant number independent vertical PPM scheme for ICOHAM and ICONAM

part ICOHAM and ICONAM

physical downwelling: F̃η > 0, F̃z < 0

Fn
k− 1

2

= C̃
1

∆t

s (s>0)∑
l=1

(∆mn qn)k−l + F frac
k− 1

2−s(q
n)


Fn frac
k− 1

2−s
= ∆mn

k−1−sµ
− frac
k− 1

2

[
qnk−1−s + C̃

1

2
∆qnk−1−s

(
1− µ− frac

k− 1
2

)
− 1

6
a6,k−1−s

(
1− 3µ− frac

k− 1
2

+ 2µ− frac 2
k− 1

2

)]

Courant number µ+ frac
k− 1

2

=
|F̃ |

n+1
2

k− 1
2

∆t−
s (s>0)∑

l=1

∆mn
k+l−1

∆mn
k+s

Courant number µ− frac
k− 1

2

=
|F̃ |

n+1
2

k− 1
2

∆t−
s (s>0)∑

l=1

∆mn
k−l

∆mn
k−s−1

∆q ∆qnk = C̃
(
qn
k+ 1

2

− qn
k− 1

2

)
a6,k a6,k = 6

(
qnk − 1

2

(
qk+1/2 + qk−1/2

))

Table 1.10: Definition of various variables which are introduced for the generalized vertical transport
scheme

Variable ICOHAM units ICONAM units

ξ p Pa z m

mass flux F̃k− 1
2

(η̇ ∂p
∂η )

n+α
k− 1

2

Pa s−1 ρ
n+1/2

k− 1
2

w
n+1/2

k− 1
2

kgm−2 s−1

1D cell mass ∆mk ∆pk N m−2 ρk∆zk kgm−2
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1.5 Reduced calling frequency

Assuming explicit time stepping (as it is the case in ICONAM), the continuity equation for
air and the momentum equation must obey the maximum allowable time-step restrictions
imposed by the fastest waves in the system (i.e. sound waves). While the continuity equation
for air is inherently coupled to the momentum equations, passive tracer transport equations
can be solved in isolation given prescribed winds and air densities. Continutiy equations for
passive tracers lack fast wave modes (sound and gravity waves) and, thus, have less restrictive
time step limitations. Given the large number of passive tracers in state of the art climate
and NWP models, significant computational cost savings can be obtained by sub-cycling
the solution of the density and momentum equation with respect to the tracer equations.
Stated in another way, the tracer equations can be integrated with a much larger time step
compared to the density and momentum equation. In doing so, care has to be taken in order
to maintain the desired tracer-mass consistency.

In the following we neglect the fact that, for stability reasons, divergence averaging is
applied to the continuity equation of air mass. Let us start with the continuity equation for
air mass in FFSL-form. The solution ρn+1

i (i.e. after 1 sub-timestep) is formally given by

ρn+1
i = ρni − 1

∆Ai

3∑
e=1

sei ×
∫∫

aei

ρn(x, y) dA (1.73)

with sei = sgn(v⃗ · n⃗) indicating in- or outflow. Assuming msub sub-timesteps ∆t for the
dynamics, the solution at n+msub can be written as follows

ρn+msub
i = ρni − 1

∆Ai

3∑
e=1

msub∑
m=0

δρe,n+m
i , (1.74)

where δρe n+m
i denotes the flux of air mass across edge e during one sub-timestep ∆t. Ac-

cordingly

msub∑
m=0

δρe,n+m
i (1.75)

denotes the total, accumulated flux of air mass across edge e during msub∆t. δρe n+m
i is

shorthand for

δρe,n+m
i = se,n+m

i ×
∫∫

ae,n+m
i

ρ(x, y)n+m dA (1.76)

with ae,n+m
i denoting the departure region for timestep n + m. In ICONAM δρe n+m

i is
computed as

δρe,n+m
i = se,n+m

i ×
(
∆t lei v

e,x
n,i ρ

e,y
i

)
(1.77)

where ∆t is the sub-timestep, lei denotes the length of edge e for cell i, ven,i denotes the normal
velocity component at edge e and ρei denotes the density interpolated to edge e. x and y are
placeholder for not yet specified points in time, which depend on the time-integration scheme
chosen for dynamics.
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Now let’s have a closer look at the continuity equation for a passive tracer. Assuming the
same sub-timestep as for the air mass, the solution ρqn+1

i is formally given by

ρqn+1
i = ρqni +

1

∆Ai

3∑
e=1

1

∆aei

∫∫
aei

qn(x, y) dA δρe,ni (1.78)

Here we assume that the mass flux is provided by the dynamical core. When updating
tracers on the long time step msub∆t, tracer-mass consistency can be ensured when using
time accumulated mass fluxes and time averaged wind fields. Thus, the solution of the
transport equation over the long time step msub∆t is given by

ρqn+msub
i = ρqni +

1

∆Ai

3∑
e=1

⟨qn⟩e
msub∑
m=1

δρe,n+m
i (1.79)

The average ⟨qn⟩e of the mixing ratio qn is estimated over the long time-step msub∆ for each
edge e.

⟨qn⟩e = 1

∆⟨aei ⟩

∫∫
⟨aei ⟩

qn(x, y) dA. (1.80)

Note that ⟨aei ⟩ differs from aei . The latter denotes the departure region corresponding to the
sub-timestep ∆t, while the former is the departure region corresponding to the full timestep
msub∆t. For the computation of ⟨aei ⟩ the time-averaged wind field

vn =
1

mstep

msteps−1∑
m=0

vn±x+m
n (1.81)

is used.
If q = 1, then (1.79) reduces to the equation for air mass (1.74) and, thus, tracer-mass

consistency will be maintained.
For ICON it is planned to use mstep = 4. For the time being it is only implemented for

the triangular version of ICONAM.
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Chapter 2

Tracer transport in ICOHAM
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Chapter 3

Transport

3.1 Argument lists

Argument lists of the following subroutines are documented below:

• step advection (table 3.1)

• vert upwind flux (table 3.2)

• hor upwind flux (table 3.3)

39
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