diff --git a/emissions/.ipynb_checkpoints/historical_emissions-checkpoint.ipynb b/emissions/.ipynb_checkpoints/historical_emissions-checkpoint.ipynb
index 363fcab7ed6e9634e198cf5555ceb88932c9a245..dbd69680df6842154e7d9d6f1ad22fb4b5630590 100644
--- a/emissions/.ipynb_checkpoints/historical_emissions-checkpoint.ipynb
+++ b/emissions/.ipynb_checkpoints/historical_emissions-checkpoint.ipynb
@@ -1,6 +1,898 @@
 {
- "cells": [],
- "metadata": {},
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "id": "14c2e348-a778-4c62-914f-740d8248493b",
+   "metadata": {},
+   "source": [
+    "# Historical emissions"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "id": "b5954e9e-dfcf-45d6-bd71-275eb1bbb845",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "import xarray as xr\n",
+    "import numpy as np\n",
+    "import matplotlib.pyplot as plt\n",
+    "import pandas as pd\n",
+    "import glob\n",
+    "from IPython.display import Image"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "id": "26750783-2379-4532-8520-736187905daf",
+   "metadata": {
+    "collapsed": true,
+    "jupyter": {
+     "outputs_hidden": true
+    },
+    "tags": []
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "['/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_192001-192912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_192001-192912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_176001-176912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_201001-201012.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_197001-197912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_195001-195912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_183001-183912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_200001-200912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_198001-198912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_193001-193912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_180001-180912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_185001-185912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_201401-201412.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_183001-183912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_201301-201312.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_193001-193912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_176001-176912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_175001-175912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_199001-199912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_194001-194912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_175001-175912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_186001-186912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_201101-201112.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_195001-195912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_185001-185912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_201401-201412.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_186001-186912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_198001-198912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_187001-187912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_177001-177912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_197001-197912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_184001-184912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_186001-186912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_189001-189912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_200001-200912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_195001-195912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_201001-201012.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_181001-181912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_180001-180912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_194001-194912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_187001-187912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_183001-183912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_179001-179912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_178001-178912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_200001-200912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_180001-180912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_191001-191912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_190001-190912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_175001-175912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_178001-178912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_187001-187912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_175001-175912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_184001-184912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_201101-201112.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_188001-188912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_190001-190912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_175001-201412.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_175001-201412.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_201301-201312.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_201201-201212.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_177001-177912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_191001-191912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_201201-201212.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_191001-191912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_185001-185912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_188001-188912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_200001-200912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_183001-183912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_198001-198912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_196001-196912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_184001-184912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_179001-179912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_181001-181912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_182001-182912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_190001-190912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_178001-178912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_188001-188912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_184001-184912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_199001-199912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_182001-182912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_197001-197912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_201401-201412.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_201201-201212.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_177001-177912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_188001-188912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_201001-201012.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_181001-181912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_191001-191912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_199001-199912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_175001-201412.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_182001-182912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_175001-201412.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_193001-193912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_196001-196912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_189001-189912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_198001-198912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_201301-201312.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_189001-189912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_201001-201012.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_196001-196912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_190001-190912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_189001-189912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_196001-196912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_179001-179912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_178001-178912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_201101-201112.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_192001-192912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_180001-180912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_193001-193912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_201301-201312.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_186001-186912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_177001-177912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_195001-195912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_201101-201112.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_199001-199912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_197001-197912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_192001-192912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_176001-176912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_182001-182912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_187001-187912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_179001-179912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_194001-194912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_176001-176912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_201201-201212.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_185001-185912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_181001-181912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_201401-201412.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_194001-194912.nc']"
+      ]
+     },
+     "execution_count": 2,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "path_hist = '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/*DECK_road_*.nc'\n",
+    "files_hist = glob.glob(path_hist)\n",
+    "files_hist"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "id": "4eeb225e-79d7-4670-a0ba-74dd587fc28b",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "path_road_misc =  '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_175001-201412.nc'"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "id": "1a680b77-aeae-4651-b969-8f3ad062c545",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "seconds_in_year = 31536000.\n",
+    "area_earth = 5.1006447295*pow(10,14)\n",
+    "k_to_tera = pow(10, -9)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "id": "1f204678-097f-4519-96f3-22a871e553fe",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "data_road_misc = xr.open_dataset(path_road_misc)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "id": "0d8a2c7f-c613-46f6-ac2c-a27f9b2bb5bf",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
+       "<defs>\n",
+       "<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
+       "<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
+       "<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
+       "<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
+       "</symbol>\n",
+       "<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
+       "<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
+       "<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
+       "<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
+       "<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
+       "</symbol>\n",
+       "</defs>\n",
+       "</svg>\n",
+       "<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
+       " *\n",
+       " */\n",
+       "\n",
+       ":root {\n",
+       "  --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
+       "  --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
+       "  --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
+       "  --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
+       "  --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
+       "  --xr-background-color: var(--jp-layout-color0, white);\n",
+       "  --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
+       "  --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
+       "}\n",
+       "\n",
+       "html[theme=dark],\n",
+       "body[data-theme=dark],\n",
+       "body.vscode-dark {\n",
+       "  --xr-font-color0: rgba(255, 255, 255, 1);\n",
+       "  --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
+       "  --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
+       "  --xr-border-color: #1F1F1F;\n",
+       "  --xr-disabled-color: #515151;\n",
+       "  --xr-background-color: #111111;\n",
+       "  --xr-background-color-row-even: #111111;\n",
+       "  --xr-background-color-row-odd: #313131;\n",
+       "}\n",
+       "\n",
+       ".xr-wrap {\n",
+       "  display: block !important;\n",
+       "  min-width: 300px;\n",
+       "  max-width: 700px;\n",
+       "}\n",
+       "\n",
+       ".xr-text-repr-fallback {\n",
+       "  /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
+       "  display: none;\n",
+       "}\n",
+       "\n",
+       ".xr-header {\n",
+       "  padding-top: 6px;\n",
+       "  padding-bottom: 6px;\n",
+       "  margin-bottom: 4px;\n",
+       "  border-bottom: solid 1px var(--xr-border-color);\n",
+       "}\n",
+       "\n",
+       ".xr-header > div,\n",
+       ".xr-header > ul {\n",
+       "  display: inline;\n",
+       "  margin-top: 0;\n",
+       "  margin-bottom: 0;\n",
+       "}\n",
+       "\n",
+       ".xr-obj-type,\n",
+       ".xr-array-name {\n",
+       "  margin-left: 2px;\n",
+       "  margin-right: 10px;\n",
+       "}\n",
+       "\n",
+       ".xr-obj-type {\n",
+       "  color: var(--xr-font-color2);\n",
+       "}\n",
+       "\n",
+       ".xr-sections {\n",
+       "  padding-left: 0 !important;\n",
+       "  display: grid;\n",
+       "  grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
+       "}\n",
+       "\n",
+       ".xr-section-item {\n",
+       "  display: contents;\n",
+       "}\n",
+       "\n",
+       ".xr-section-item input {\n",
+       "  display: none;\n",
+       "}\n",
+       "\n",
+       ".xr-section-item input + label {\n",
+       "  color: var(--xr-disabled-color);\n",
+       "}\n",
+       "\n",
+       ".xr-section-item input:enabled + label {\n",
+       "  cursor: pointer;\n",
+       "  color: var(--xr-font-color2);\n",
+       "}\n",
+       "\n",
+       ".xr-section-item input:enabled + label:hover {\n",
+       "  color: var(--xr-font-color0);\n",
+       "}\n",
+       "\n",
+       ".xr-section-summary {\n",
+       "  grid-column: 1;\n",
+       "  color: var(--xr-font-color2);\n",
+       "  font-weight: 500;\n",
+       "}\n",
+       "\n",
+       ".xr-section-summary > span {\n",
+       "  display: inline-block;\n",
+       "  padding-left: 0.5em;\n",
+       "}\n",
+       "\n",
+       ".xr-section-summary-in:disabled + label {\n",
+       "  color: var(--xr-font-color2);\n",
+       "}\n",
+       "\n",
+       ".xr-section-summary-in + label:before {\n",
+       "  display: inline-block;\n",
+       "  content: 'â–º';\n",
+       "  font-size: 11px;\n",
+       "  width: 15px;\n",
+       "  text-align: center;\n",
+       "}\n",
+       "\n",
+       ".xr-section-summary-in:disabled + label:before {\n",
+       "  color: var(--xr-disabled-color);\n",
+       "}\n",
+       "\n",
+       ".xr-section-summary-in:checked + label:before {\n",
+       "  content: 'â–¼';\n",
+       "}\n",
+       "\n",
+       ".xr-section-summary-in:checked + label > span {\n",
+       "  display: none;\n",
+       "}\n",
+       "\n",
+       ".xr-section-summary,\n",
+       ".xr-section-inline-details {\n",
+       "  padding-top: 4px;\n",
+       "  padding-bottom: 4px;\n",
+       "}\n",
+       "\n",
+       ".xr-section-inline-details {\n",
+       "  grid-column: 2 / -1;\n",
+       "}\n",
+       "\n",
+       ".xr-section-details {\n",
+       "  display: none;\n",
+       "  grid-column: 1 / -1;\n",
+       "  margin-bottom: 5px;\n",
+       "}\n",
+       "\n",
+       ".xr-section-summary-in:checked ~ .xr-section-details {\n",
+       "  display: contents;\n",
+       "}\n",
+       "\n",
+       ".xr-array-wrap {\n",
+       "  grid-column: 1 / -1;\n",
+       "  display: grid;\n",
+       "  grid-template-columns: 20px auto;\n",
+       "}\n",
+       "\n",
+       ".xr-array-wrap > label {\n",
+       "  grid-column: 1;\n",
+       "  vertical-align: top;\n",
+       "}\n",
+       "\n",
+       ".xr-preview {\n",
+       "  color: var(--xr-font-color3);\n",
+       "}\n",
+       "\n",
+       ".xr-array-preview,\n",
+       ".xr-array-data {\n",
+       "  padding: 0 5px !important;\n",
+       "  grid-column: 2;\n",
+       "}\n",
+       "\n",
+       ".xr-array-data,\n",
+       ".xr-array-in:checked ~ .xr-array-preview {\n",
+       "  display: none;\n",
+       "}\n",
+       "\n",
+       ".xr-array-in:checked ~ .xr-array-data,\n",
+       ".xr-array-preview {\n",
+       "  display: inline-block;\n",
+       "}\n",
+       "\n",
+       ".xr-dim-list {\n",
+       "  display: inline-block !important;\n",
+       "  list-style: none;\n",
+       "  padding: 0 !important;\n",
+       "  margin: 0;\n",
+       "}\n",
+       "\n",
+       ".xr-dim-list li {\n",
+       "  display: inline-block;\n",
+       "  padding: 0;\n",
+       "  margin: 0;\n",
+       "}\n",
+       "\n",
+       ".xr-dim-list:before {\n",
+       "  content: '(';\n",
+       "}\n",
+       "\n",
+       ".xr-dim-list:after {\n",
+       "  content: ')';\n",
+       "}\n",
+       "\n",
+       ".xr-dim-list li:not(:last-child):after {\n",
+       "  content: ',';\n",
+       "  padding-right: 5px;\n",
+       "}\n",
+       "\n",
+       ".xr-has-index {\n",
+       "  font-weight: bold;\n",
+       "}\n",
+       "\n",
+       ".xr-var-list,\n",
+       ".xr-var-item {\n",
+       "  display: contents;\n",
+       "}\n",
+       "\n",
+       ".xr-var-item > div,\n",
+       ".xr-var-item label,\n",
+       ".xr-var-item > .xr-var-name span {\n",
+       "  background-color: var(--xr-background-color-row-even);\n",
+       "  margin-bottom: 0;\n",
+       "}\n",
+       "\n",
+       ".xr-var-item > .xr-var-name:hover span {\n",
+       "  padding-right: 5px;\n",
+       "}\n",
+       "\n",
+       ".xr-var-list > li:nth-child(odd) > div,\n",
+       ".xr-var-list > li:nth-child(odd) > label,\n",
+       ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
+       "  background-color: var(--xr-background-color-row-odd);\n",
+       "}\n",
+       "\n",
+       ".xr-var-name {\n",
+       "  grid-column: 1;\n",
+       "}\n",
+       "\n",
+       ".xr-var-dims {\n",
+       "  grid-column: 2;\n",
+       "}\n",
+       "\n",
+       ".xr-var-dtype {\n",
+       "  grid-column: 3;\n",
+       "  text-align: right;\n",
+       "  color: var(--xr-font-color2);\n",
+       "}\n",
+       "\n",
+       ".xr-var-preview {\n",
+       "  grid-column: 4;\n",
+       "}\n",
+       "\n",
+       ".xr-index-preview {\n",
+       "  grid-column: 2 / 5;\n",
+       "  color: var(--xr-font-color2);\n",
+       "}\n",
+       "\n",
+       ".xr-var-name,\n",
+       ".xr-var-dims,\n",
+       ".xr-var-dtype,\n",
+       ".xr-preview,\n",
+       ".xr-attrs dt {\n",
+       "  white-space: nowrap;\n",
+       "  overflow: hidden;\n",
+       "  text-overflow: ellipsis;\n",
+       "  padding-right: 10px;\n",
+       "}\n",
+       "\n",
+       ".xr-var-name:hover,\n",
+       ".xr-var-dims:hover,\n",
+       ".xr-var-dtype:hover,\n",
+       ".xr-attrs dt:hover {\n",
+       "  overflow: visible;\n",
+       "  width: auto;\n",
+       "  z-index: 1;\n",
+       "}\n",
+       "\n",
+       ".xr-var-attrs,\n",
+       ".xr-var-data,\n",
+       ".xr-index-data {\n",
+       "  display: none;\n",
+       "  background-color: var(--xr-background-color) !important;\n",
+       "  padding-bottom: 5px !important;\n",
+       "}\n",
+       "\n",
+       ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
+       ".xr-var-data-in:checked ~ .xr-var-data,\n",
+       ".xr-index-data-in:checked ~ .xr-index-data {\n",
+       "  display: block;\n",
+       "}\n",
+       "\n",
+       ".xr-var-data > table {\n",
+       "  float: right;\n",
+       "}\n",
+       "\n",
+       ".xr-var-name span,\n",
+       ".xr-var-data,\n",
+       ".xr-index-name div,\n",
+       ".xr-index-data,\n",
+       ".xr-attrs {\n",
+       "  padding-left: 25px !important;\n",
+       "}\n",
+       "\n",
+       ".xr-attrs,\n",
+       ".xr-var-attrs,\n",
+       ".xr-var-data,\n",
+       ".xr-index-data {\n",
+       "  grid-column: 1 / -1;\n",
+       "}\n",
+       "\n",
+       "dl.xr-attrs {\n",
+       "  padding: 0;\n",
+       "  margin: 0;\n",
+       "  display: grid;\n",
+       "  grid-template-columns: 125px auto;\n",
+       "}\n",
+       "\n",
+       ".xr-attrs dt,\n",
+       ".xr-attrs dd {\n",
+       "  padding: 0;\n",
+       "  margin: 0;\n",
+       "  float: left;\n",
+       "  padding-right: 10px;\n",
+       "  width: auto;\n",
+       "}\n",
+       "\n",
+       ".xr-attrs dt {\n",
+       "  font-weight: normal;\n",
+       "  grid-column: 1;\n",
+       "}\n",
+       "\n",
+       ".xr-attrs dt:hover span {\n",
+       "  display: inline-block;\n",
+       "  background: var(--xr-background-color);\n",
+       "  padding-right: 10px;\n",
+       "}\n",
+       "\n",
+       ".xr-attrs dd {\n",
+       "  grid-column: 2;\n",
+       "  white-space: pre-wrap;\n",
+       "  word-break: break-all;\n",
+       "}\n",
+       "\n",
+       ".xr-icon-database,\n",
+       ".xr-icon-file-text2,\n",
+       ".xr-no-icon {\n",
+       "  display: inline-block;\n",
+       "  vertical-align: middle;\n",
+       "  width: 1em;\n",
+       "  height: 1.5em !important;\n",
+       "  stroke-width: 0;\n",
+       "  stroke: currentColor;\n",
+       "  fill: currentColor;\n",
+       "}\n",
+       "</style><pre class='xr-text-repr-fallback'>&lt;xarray.Dataset&gt;\n",
+       "Dimensions:    (lon: 720, bnds: 2, lat: 360, lev: 1, time: 3180)\n",
+       "Coordinates:\n",
+       "  * lon        (lon) float64 -179.8 -179.2 -178.8 -178.2 ... 178.8 179.2 179.8\n",
+       "  * lat        (lat) float64 -89.75 -89.25 -88.75 -88.25 ... 88.75 89.25 89.75\n",
+       "  * lev        (lev) float64 45.0\n",
+       "  * time       (time) object 1750-01-16 00:00:00 ... 2014-12-16 00:00:00\n",
+       "Dimensions without coordinates: bnds\n",
+       "Data variables:\n",
+       "    lon_bnds   (lon, bnds) float64 ...\n",
+       "    lat_bnds   (lat, bnds) float64 ...\n",
+       "    time_bnds  (time, bnds) object ...\n",
+       "    CO_flux    (time, lev, lat, lon) float32 ...\n",
+       "    NH3_flux   (time, lev, lat, lon) float32 ...\n",
+       "    NOx_flux   (time, lev, lat, lon) float32 ...\n",
+       "    SO2_flux   (time, lev, lat, lon) float32 ...\n",
+       "Attributes: (12/39)\n",
+       "    CDI:                         Climate Data Interface version 1.7.0 (http:/...\n",
+       "    Conventions:                 CF-1.6\n",
+       "    history:                     Tue Aug 28 23:02:02 2018: cdo -O -Q copy /sc...\n",
+       "    source:                      CEDS-2017-08-30: Community Emissions Data Sy...\n",
+       "    institution:                 Pacific Northwest National Laboratory - Join...\n",
+       "    reference1:                  Lamarque et al.(2010), doi:10.5194/acp-10-70...\n",
+       "    ...                          ...\n",
+       "    data_usage_tips:             Note that these are monthly average fluxes.\n",
+       "    reporting_unit:              Mass flux of BC, reported as carbon mass\n",
+       "    nominal_resolution:          50 km\n",
+       "    source_id:                   CEDS-2017-08-30\n",
+       "    tracking_id:                 hdl:21.14100/649247a5-afc6-4e25-b777-9d7a77a...\n",
+       "    CDO:                         Climate Data Operators version 1.7.0 (http:/...</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-77f1f66e-c792-4e41-a448-da3e9ae9b53a' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-77f1f66e-c792-4e41-a448-da3e9ae9b53a' class='xr-section-summary'  title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>lon</span>: 720</li><li><span>bnds</span>: 2</li><li><span class='xr-has-index'>lat</span>: 360</li><li><span class='xr-has-index'>lev</span>: 1</li><li><span class='xr-has-index'>time</span>: 3180</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-f78c4356-6d08-48f1-ab33-89cf21ce7f35' class='xr-section-summary-in' type='checkbox'  checked><label for='section-f78c4356-6d08-48f1-ab33-89cf21ce7f35' class='xr-section-summary' >Coordinates: <span>(4)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>lon</span></div><div class='xr-var-dims'>(lon)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>-179.8 -179.2 ... 179.2 179.8</div><input id='attrs-6c2c25ef-6315-452a-b5a4-bbafefc65568' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-6c2c25ef-6315-452a-b5a4-bbafefc65568' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-f539ddc7-89f4-44f1-bde5-e5f41c16d347' class='xr-var-data-in' type='checkbox'><label for='data-f539ddc7-89f4-44f1-bde5-e5f41c16d347' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>longitude</dd><dt><span>long_name :</span></dt><dd>longitude</dd><dt><span>units :</span></dt><dd>degrees_east</dd><dt><span>axis :</span></dt><dd>X</dd><dt><span>bounds :</span></dt><dd>lon_bnds</dd></dl></div><div class='xr-var-data'><pre>array([-179.75, -179.25, -178.75, ...,  178.75,  179.25,  179.75])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>lat</span></div><div class='xr-var-dims'>(lat)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>-89.75 -89.25 ... 89.25 89.75</div><input id='attrs-1d860e80-ec72-43c8-8987-36fb1ded1597' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-1d860e80-ec72-43c8-8987-36fb1ded1597' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-d827efa2-8100-42db-848e-bde75a7d83cc' class='xr-var-data-in' type='checkbox'><label for='data-d827efa2-8100-42db-848e-bde75a7d83cc' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>latitude</dd><dt><span>long_name :</span></dt><dd>latitude</dd><dt><span>units :</span></dt><dd>degrees_north</dd><dt><span>axis :</span></dt><dd>Y</dd><dt><span>bounds :</span></dt><dd>lat_bnds</dd></dl></div><div class='xr-var-data'><pre>array([-89.75, -89.25, -88.75, ...,  88.75,  89.25,  89.75])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>lev</span></div><div class='xr-var-dims'>(lev)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>45.0</div><input id='attrs-f96042ec-e032-474d-b87f-9d7d3df5cafd' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-f96042ec-e032-474d-b87f-9d7d3df5cafd' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-8803bd28-7f36-449a-bee9-5fed68e3933b' class='xr-var-data-in' type='checkbox'><label for='data-8803bd28-7f36-449a-bee9-5fed68e3933b' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>meters</dd><dt><span>axis :</span></dt><dd>Z</dd></dl></div><div class='xr-var-data'><pre>array([45.])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>time</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>1750-01-16 00:00:00 ... 2014-12-...</div><input id='attrs-5bc1b61d-4bc5-4d0c-b8c9-7a178fc5013c' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-5bc1b61d-4bc5-4d0c-b8c9-7a178fc5013c' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-cf932ffe-4008-4a6d-9668-0b799e2ba95a' class='xr-var-data-in' type='checkbox'><label for='data-cf932ffe-4008-4a6d-9668-0b799e2ba95a' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>time</dd><dt><span>long_name :</span></dt><dd>time</dd><dt><span>bounds :</span></dt><dd>time_bnds</dd><dt><span>axis :</span></dt><dd>T</dd></dl></div><div class='xr-var-data'><pre>array([cftime.DatetimeNoLeap(1750, 1, 16, 0, 0, 0, 0, has_year_zero=True),\n",
+       "       cftime.DatetimeNoLeap(1750, 2, 15, 0, 0, 0, 0, has_year_zero=True),\n",
+       "       cftime.DatetimeNoLeap(1750, 3, 16, 0, 0, 0, 0, has_year_zero=True), ...,\n",
+       "       cftime.DatetimeNoLeap(2014, 10, 16, 0, 0, 0, 0, has_year_zero=True),\n",
+       "       cftime.DatetimeNoLeap(2014, 11, 16, 0, 0, 0, 0, has_year_zero=True),\n",
+       "       cftime.DatetimeNoLeap(2014, 12, 16, 0, 0, 0, 0, has_year_zero=True)],\n",
+       "      dtype=object)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-6faf463b-2e9d-4d30-8738-1b7bb8183731' class='xr-section-summary-in' type='checkbox'  checked><label for='section-6faf463b-2e9d-4d30-8738-1b7bb8183731' class='xr-section-summary' >Data variables: <span>(7)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>lon_bnds</span></div><div class='xr-var-dims'>(lon, bnds)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-f54760cd-a0a1-402a-8529-71c063a95b78' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-f54760cd-a0a1-402a-8529-71c063a95b78' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-eaf1e73f-8ee6-483a-8293-5620864fa2cc' class='xr-var-data-in' type='checkbox'><label for='data-eaf1e73f-8ee6-483a-8293-5620864fa2cc' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[1440 values with dtype=float64]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>lat_bnds</span></div><div class='xr-var-dims'>(lat, bnds)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-68656367-be23-4906-823b-92c584270fd8' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-68656367-be23-4906-823b-92c584270fd8' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-7c6bab96-ab2e-47e7-8c3e-df57f31a9eb8' class='xr-var-data-in' type='checkbox'><label for='data-7c6bab96-ab2e-47e7-8c3e-df57f31a9eb8' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[720 values with dtype=float64]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>time_bnds</span></div><div class='xr-var-dims'>(time, bnds)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-3d8fc2a8-d7d1-49e1-9a75-91e3dfc8aea6' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-3d8fc2a8-d7d1-49e1-9a75-91e3dfc8aea6' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-96a9e192-ec3b-4106-87f5-e4d95a957657' class='xr-var-data-in' type='checkbox'><label for='data-96a9e192-ec3b-4106-87f5-e4d95a957657' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[6360 values with dtype=object]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>CO_flux</span></div><div class='xr-var-dims'>(time, lev, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-7e34609c-e91e-45ae-ba4a-3187fd7a3c4b' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-7e34609c-e91e-45ae-ba4a-3187fd7a3c4b' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-00b0faaa-c261-4708-900c-627770ff45fc' class='xr-var-data-in' type='checkbox'><label for='data-00b0faaa-c261-4708-900c-627770ff45fc' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>kg m-2 s-1</dd></dl></div><div class='xr-var-data'><pre>[824256000 values with dtype=float32]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>NH3_flux</span></div><div class='xr-var-dims'>(time, lev, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-b23ec907-4b3c-4b40-b807-291730f22cfe' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-b23ec907-4b3c-4b40-b807-291730f22cfe' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-738dfd5e-2289-4c23-a185-15aa89824790' class='xr-var-data-in' type='checkbox'><label for='data-738dfd5e-2289-4c23-a185-15aa89824790' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>kg m-2 s-1</dd></dl></div><div class='xr-var-data'><pre>[824256000 values with dtype=float32]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>NOx_flux</span></div><div class='xr-var-dims'>(time, lev, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-23d5129e-6ae5-43c8-ba18-f43d6f3b2c5b' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-23d5129e-6ae5-43c8-ba18-f43d6f3b2c5b' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-660560b1-95c8-4cc6-8e9a-476ebfa347e0' class='xr-var-data-in' type='checkbox'><label for='data-660560b1-95c8-4cc6-8e9a-476ebfa347e0' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>kg(NO2) m-2 s-1</dd></dl></div><div class='xr-var-data'><pre>[824256000 values with dtype=float32]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>SO2_flux</span></div><div class='xr-var-dims'>(time, lev, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-d3094953-a9e1-4ae4-a510-f3c1d20449a9' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-d3094953-a9e1-4ae4-a510-f3c1d20449a9' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-4d2a84ca-b9a2-474a-bee8-f06677f715f9' class='xr-var-data-in' type='checkbox'><label for='data-4d2a84ca-b9a2-474a-bee8-f06677f715f9' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>kg m-2 s-1</dd></dl></div><div class='xr-var-data'><pre>[824256000 values with dtype=float32]</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-2ac8c2d2-1958-4919-bd6f-5c458d8c2f57' class='xr-section-summary-in' type='checkbox'  ><label for='section-2ac8c2d2-1958-4919-bd6f-5c458d8c2f57' class='xr-section-summary' >Indexes: <span>(4)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>lon</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-7d86bf89-3a71-41c7-ba8f-1d5703ca8742' class='xr-index-data-in' type='checkbox'/><label for='index-7d86bf89-3a71-41c7-ba8f-1d5703ca8742' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([-179.75, -179.25, -178.75, -178.25, -177.75, -177.25, -176.75, -176.25,\n",
+       "       -175.75, -175.25,\n",
+       "       ...\n",
+       "        175.25,  175.75,  176.25,  176.75,  177.25,  177.75,  178.25,  178.75,\n",
+       "        179.25,  179.75],\n",
+       "      dtype=&#x27;float64&#x27;, name=&#x27;lon&#x27;, length=720))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>lat</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-824d754c-2976-4db2-8358-ed49cc13146f' class='xr-index-data-in' type='checkbox'/><label for='index-824d754c-2976-4db2-8358-ed49cc13146f' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([-89.75, -89.25, -88.75, -88.25, -87.75, -87.25, -86.75, -86.25, -85.75,\n",
+       "       -85.25,\n",
+       "       ...\n",
+       "        85.25,  85.75,  86.25,  86.75,  87.25,  87.75,  88.25,  88.75,  89.25,\n",
+       "        89.75],\n",
+       "      dtype=&#x27;float64&#x27;, name=&#x27;lat&#x27;, length=360))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>lev</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-2a9efae0-97f3-4eb9-bd3b-1cde3b426203' class='xr-index-data-in' type='checkbox'/><label for='index-2a9efae0-97f3-4eb9-bd3b-1cde3b426203' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([45.0], dtype=&#x27;float64&#x27;, name=&#x27;lev&#x27;))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>time</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-d5a16692-d36f-4f1a-a762-6220febbecbb' class='xr-index-data-in' type='checkbox'/><label for='index-d5a16692-d36f-4f1a-a762-6220febbecbb' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(CFTimeIndex([1750-01-16 00:00:00, 1750-02-15 00:00:00, 1750-03-16 00:00:00,\n",
+       "             1750-04-16 00:00:00, 1750-05-16 00:00:00, 1750-06-16 00:00:00,\n",
+       "             1750-07-16 00:00:00, 1750-08-16 00:00:00, 1750-09-16 00:00:00,\n",
+       "             1750-10-16 00:00:00,\n",
+       "             ...\n",
+       "             2014-03-16 00:00:00, 2014-04-16 00:00:00, 2014-05-16 00:00:00,\n",
+       "             2014-06-16 00:00:00, 2014-07-16 00:00:00, 2014-08-16 00:00:00,\n",
+       "             2014-09-16 00:00:00, 2014-10-16 00:00:00, 2014-11-16 00:00:00,\n",
+       "             2014-12-16 00:00:00],\n",
+       "            dtype=&#x27;object&#x27;, length=3180, calendar=&#x27;noleap&#x27;, freq=&#x27;None&#x27;))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-8b23112d-3e20-4e0a-b9f8-4e53d0bfbb8a' class='xr-section-summary-in' type='checkbox'  ><label for='section-8b23112d-3e20-4e0a-b9f8-4e53d0bfbb8a' class='xr-section-summary' >Attributes: <span>(39)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'><dt><span>CDI :</span></dt><dd>Climate Data Interface version 1.7.0 (http://mpimet.mpg.de/cdi)</dd><dt><span>Conventions :</span></dt><dd>CF-1.6</dd><dt><span>history :</span></dt><dd>Tue Aug 28 23:02:02 2018: cdo -O -Q copy /scratch/b/b324024/tmp/DECK_for_EMAC/tmp2/CMIP6v6.1_DLR1.0_DECK_road_MISC_175001-201412.nc /scratch/b/b324024/tmp/DECK_for_EMAC/CMIP6v6.1_DLR1.0_DECK_road_MISC_175001-201412.nc\n",
+       "Tue Aug 28 22:59:59 2018: ncks -A /scratch/b/b324024/tmp/DECK_for_EMAC/bnds/all_bounds_anthro_input4MIPs.nc /scratch/b/b324024/tmp/DECK_for_EMAC/tmp1/CMIP6v6.1_DLR1.0_DECK_road_MISC_175001-201412.nc\n",
+       "Tue Aug 28 14:05:41 2018: ncks -O -v lon_bnds,lat_bnds,time_bnds BC-em-AIR-anthro_input4MIPs_emissions_CMIP_CEDS-2017-08-30_gn_175001-179912.nc all_bounds_anthro_input4MIPs.nc\n",
+       "06-09-2017 18:34:58 PM UTC; College Park, MD, USA</dd><dt><span>source :</span></dt><dd>CEDS-2017-08-30: Community Emissions Data System (CEDS) for Historical Emissions</dd><dt><span>institution :</span></dt><dd>Pacific Northwest National Laboratory - Joint Global Change Research Institute, College Park, MD 20740, USA</dd><dt><span>reference1 :</span></dt><dd>Lamarque et al.(2010), doi:10.5194/acp-10-7017-2010</dd><dt><span>reference2 :</span></dt><dd>Pozzer et al. (2009),doi:10.5194/acp-9-9417-2009</dd><dt><span>creation_date :</span></dt><dd>2017-09-06T18:34:58Z</dd><dt><span>title :</span></dt><dd>Annual Aircraft Anthropogenic Emissions of BC prepared for input4MIPs</dd><dt><span>NCO :</span></dt><dd>4.6.7</dd><dt><span>nco_openmp_thread_number :</span></dt><dd>1</dd><dt><span>history_of_appended_files :</span></dt><dd>Tue Aug 28 22:59:59 2018: Appended file /scratch/b/b324024/tmp/DECK_for_EMAC/bnds/all_bounds_anthro_input4MIPs.nc had following &quot;history&quot; attribute:\n",
+       "Tue Aug 28 14:05:41 2018: ncks -O -v lon_bnds,lat_bnds,time_bnds BC-em-AIR-anthro_input4MIPs_emissions_CMIP_CEDS-2017-08-30_gn_175001-179912.nc all_bounds_anthro_input4MIPs.nc\n",
+       "06-09-2017 18:34:58 PM UTC; College Park, MD, USA\n",
+       "Thu Jul  6 12:51:45 2017: Appended file preindustrial_road_NH3_all.nc had following &quot;history&quot; attribute:\n",
+       "Mon Jul  3 18:26:01 2017: ncrcat preindustrial_road_NH3_1750.nc preindustrial_road_NH3_1751.nc preindustrial_road_NH3_1752.nc preindustrial_road_NH3_1753.nc preindustrial_road_NH3_1754.nc preindustrial_road_NH3_1755.nc preindustrial_road_NH3_1756.nc preindustrial_road_NH3_1757.nc preindustrial_road_NH3_1758.nc preindustrial_road_NH3_1759.nc preindustrial_road_NH3_1760.nc preindustrial_road_NH3_1761.nc preindustrial_road_NH3_1762.nc preindustrial_road_NH3_1763.nc preindustrial_road_NH3_1764.nc preindustrial_road_NH3_1765.nc preindustrial_road_NH3_1766.nc preindustrial_road_NH3_1767.nc preindustrial_road_NH3_1768.nc preindustrial_road_NH3_1769.nc preindustrial_road_NH3_1770.nc preindustrial_road_NH3_1771.nc preindustrial_road_NH3_1772.nc preindustrial_road_NH3_1773.nc preindustrial_road_NH3_1774.nc preindustrial_road_NH3_1775.nc preindustrial_road_NH3_1776.nc preindustrial_road_NH3_1777.nc preindustrial_road_NH3_1778.nc preindustrial_road_NH3_1779.nc preindustrial_road_NH3_1780.nc preindustrial_road_NH3_1781.nc preindustrial_road_NH3_1782.nc preindustrial_road_NH3_1783.nc preindustrial_road_NH3_1784.nc preindustrial_road_NH3_1785.nc preindustrial_road_NH3_1786.nc preindustrial_road_NH3_1787.nc preindustrial_road_NH3_1788.nc preindustrial_road_NH3_1789.nc preindustrial_road_NH3_1790.nc preindustrial_road_NH3_1791.nc preindustrial_road_NH3_1792.nc preindustrial_road_NH3_1793.nc preindustrial_road_NH3_1794.nc preindustrial_road_NH3_1795.nc preindustrial_road_NH3_1796.nc preindustrial_road_NH3_1797.nc preindustrial_road_NH3_1798.nc preindustrial_road_NH3_1799.nc preindustrial_road_NH3_1800.nc preindustrial_road_NH3_1801.nc preindustrial_road_NH3_1802.nc preindustrial_road_NH3_1803.nc preindustrial_road_NH3_1804.nc preindustrial_road_NH3_1805.nc preindustrial_road_NH3_1806.nc preindustrial_road_NH3_1807.nc preindustrial_road_NH3_1808.nc preindustrial_road_NH3_1809.nc preindustrial_road_NH3_1810.nc preindustrial_road_NH3_1811.nc preindustrial_road_NH3_1812.nc preindustrial_road_NH3_1813.nc preindustrial_road_NH3_1814.nc preindustrial_road_NH3_1815.nc preindustrial_road_NH3_1816.nc preindustrial_road_NH3_1817.nc preindustrial_road_NH3_1818.nc preindustrial_road_NH3_1819.nc preindustrial_road_NH3_1820.nc preindustrial_road_NH3_1821.nc preindustrial_road_NH3_1822.nc preindustrial_road_NH3_1823.nc preindustrial_road_NH3_1824.nc preindustrial_road_NH3_1825.nc preindustrial_road_NH3_1826.nc preindustrial_road_NH3_1827.nc preindustrial_road_NH3_1828.nc preindustrial_road_NH3_1829.nc preindustrial_road_NH3_1830.nc preindustrial_road_NH3_1831.nc preindustrial_road_NH3_1832.nc preindustrial_road_NH3_1833.nc preindustrial_road_NH3_1834.nc preindustrial_road_NH3_1835.nc preindustrial_road_NH3_1836.nc preindustrial_road_NH3_1837.nc preindustrial_road_NH3_1838.nc preindustrial_road_NH3_1839.nc preindustrial_road_NH3_1840.nc preindustrial_road_NH3_1841.nc preindustrial_road_NH3_1842.nc preindustrial_road_NH3_1843.nc preindustrial_road_NH3_1844.nc preindustrial_road_NH3_1845.nc preindustrial_road_NH3_1846.nc preindustrial_road_NH3_1847.nc preindustrial_road_NH3_1848.nc preindustrial_road_NH3_1849.nc preindustrial_road_NH3_1850.nc preindustrial_road_NH3_1851.nc preindustrial_road_NH3_1852.nc preindustrial_road_NH3_1853.nc preindustrial_road_NH3_1854.nc preindustrial_road_NH3_1855.nc preindustrial_road_NH3_1856.nc preindustrial_road_NH3_1857.nc preindustrial_road_NH3_1858.nc preindustrial_road_NH3_1859.nc preindustrial_road_NH3_1860.nc preindustrial_road_NH3_1861.nc preindustrial_road_NH3_1862.nc preindustrial_road_NH3_1863.nc preindustrial_road_NH3_1864.nc preindustrial_road_NH3_1865.nc preindustrial_road_NH3_1866.nc preindustrial_road_NH3_1867.nc preindustrial_road_NH3_1868.nc preindustrial_road_NH3_1869.nc preindustrial_road_NH3_1870.nc preindustrial_road_NH3_1871.nc preindustrial_road_NH3_1872.nc preindustrial_road_NH3_1873.nc preindustrial_road_NH3_1874.nc preindustrial_road_NH3_1875.nc preindustrial_road_NH3_1876.nc preindustrial_road_NH3_1877.nc preindustrial_road_NH3_1878.nc preindustrial_road_NH3_1879.nc preindustrial_road_NH3_1880.nc preindustrial_road_NH3_1881.nc preindustrial_road_NH3_1882.nc preindustrial_road_NH3_1883.nc preindustrial_road_NH3_1884.nc preindustrial_road_NH3_1885.nc preindustrial_road_NH3_1886.nc preindustrial_road_NH3_1887.nc preindustrial_road_NH3_1888.nc preindustrial_road_NH3_1889.nc preindustrial_road_NH3_1890.nc preindustrial_road_NH3_1891.nc preindustrial_road_NH3_1892.nc preindustrial_road_NH3_1893.nc preindustrial_road_NH3_1894.nc preindustrial_road_NH3_1895.nc preindustrial_road_NH3_1896.nc preindustrial_road_NH3_1897.nc preindustrial_road_NH3_1898.nc preindustrial_road_NH3_1899.nc preindustrial_road_NH3_1900.nc preindustrial_road_NH3_1901.nc preindustrial_road_NH3_1902.nc preindustrial_road_NH3_1903.nc preindustrial_road_NH3_1904.nc preindustrial_road_NH3_1905.nc preindustrial_road_NH3_1906.nc preindustrial_road_NH3_1907.nc preindustrial_road_NH3_1908.nc preindustrial_road_NH3_1909.nc preindustrial_road_NH3_1910.nc preindustrial_road_NH3_1911.nc preindustrial_road_NH3_1912.nc preindustrial_road_NH3_1913.nc preindustrial_road_NH3_1914.nc preindustrial_road_NH3_1915.nc preindustrial_road_NH3_1916.nc preindustrial_road_NH3_1917.nc preindustrial_road_NH3_1918.nc preindustrial_road_NH3_1919.nc preindustrial_road_NH3_1920.nc preindustrial_road_NH3_1921.nc preindustrial_road_NH3_1922.nc preindustrial_road_NH3_1923.nc preindustrial_road_NH3_1924.nc preindustrial_road_NH3_1925.nc preindustrial_road_NH3_1926.nc preindustrial_road_NH3_1927.nc preindustrial_road_NH3_1928.nc preindustrial_road_NH3_1929.nc preindustrial_road_NH3_1930.nc preindustrial_road_NH3_1931.nc preindustrial_road_NH3_1932.nc preindustrial_road_NH3_1933.nc preindustrial_road_NH3_1934.nc preindustrial_road_NH3_1935.nc preindustrial_road_NH3_1936.nc preindustrial_road_NH3_1937.nc preindustrial_road_NH3_1938.nc preindustrial_road_NH3_1939.nc preindustrial_road_NH3_1940.nc preindustrial_road_NH3_1941.nc preindustrial_road_NH3_1942.nc preindustrial_road_NH3_1943.nc preindustrial_road_NH3_1944.nc preindustrial_road_NH3_1945.nc preindustrial_road_NH3_1946.nc preindustrial_road_NH3_1947.nc preindustrial_road_NH3_1948.nc preindustrial_road_NH3_1949.nc preindustrial_road_NH3_1950.nc preindustrial_road_NH3_1951.nc preindustrial_road_NH3_1952.nc preindustrial_road_NH3_1953.nc preindustrial_road_NH3_1954.nc preindustrial_road_NH3_1955.nc preindustrial_road_NH3_1956.nc preindustrial_road_NH3_1957.nc preindustrial_road_NH3_1958.nc preindustrial_road_NH3_1959.nc preindustrial_road_NH3_1960.nc preindustrial_road_NH3_1961.nc preindustrial_road_NH3_1962.nc preindustrial_road_NH3_1963.nc preindustrial_road_NH3_1964.nc preindustrial_road_NH3_1965.nc preindustrial_road_NH3_1966.nc preindustrial_road_NH3_1967.nc preindustrial_road_NH3_1968.nc preindustrial_road_NH3_1969.nc preindustrial_road_NH3_1970.nc preindustrial_road_NH3_1971.nc preindustrial_road_NH3_1972.nc preindustrial_road_NH3_1973.nc preindustrial_road_NH3_1974.nc preindustrial_road_NH3_1975.nc preindustrial_road_NH3_1976.nc preindustrial_road_NH3_1977.nc preindustrial_road_NH3_1978.nc preindustrial_road_NH3_1979.nc preindustrial_road_NH3_1980.nc preindustrial_road_NH3_1981.nc preindustrial_road_NH3_1982.nc preindustrial_road_NH3_1983.nc preindustrial_road_NH3_1984.nc preindustrial_road_NH3_1985.nc preindustrial_road_NH3_1986.nc preindustrial_road_NH3_1987.nc preindustrial_road_NH3_1988.nc preindustrial_road_NH3_1989.nc preindustrial_road_NH3_1990.nc preindustrial_road_NH3_1991.nc preindustrial_road_NH3_1992.nc preindustrial_road_NH3_1993.nc preindustrial_road_NH3_1994.nc preindustrial_road_NH3_1995.nc preindustrial_road_NH3_1996.nc preindustrial_road_NH3_1997.nc preindustrial_road_NH3_1998.nc preindustrial_road_NH3_1999.nc preindustrial_road_NH3_2000.nc preindustrial_road_NH3_2001.nc preindustrial_road_NH3_2002.nc preindustrial_road_NH3_2003.nc preindustrial_road_NH3_2004.nc preindustrial_road_NH3_2005.nc preindustrial_road_NH3_2006.nc preindustrial_road_NH3_2007.nc preindustrial_road_NH3_2008.nc preindustrial_road_NH3_2009.nc preindustrial_road_NH3_2010.nc preindustrial_road_NH3_2011.nc preindustrial_road_NH3_2012.nc preindustrial_road_NH3_2013.nc preindustrial_road_NH3_2014.nc preindustrial_road_NH3_all.nc\n",
+       "Thu Jul  6 11:13:10 2017: Appended file preindustrial_road_NOx_all.nc had following &quot;history&quot; attribute:\n",
+       "Mon Jul  3 22:25:01 2017: ncrcat preindustrial_road_NOx_1750.nc preindustrial_road_NOx_1751.nc preindustrial_road_NOx_1752.nc preindustrial_road_NOx_1753.nc preindustrial_road_NOx_1754.nc preindustrial_road_NOx_1755.nc preindustrial_road_NOx_1756.nc preindustrial_road_NOx_1757.nc preindustrial_road_NOx_1758.nc preindustrial_road_NOx_1759.nc preindustrial_road_NOx_1760.nc preindustrial_road_NOx_1761.nc preindustrial_road_NOx_1762.nc preindustrial_road_NOx_1763.nc preindustrial_road_NOx_1764.nc preindustrial_road_NOx_1765.nc preindustrial_road_NOx_1766.nc preindustrial_road_NOx_1767.nc preindustrial_road_NOx_1768.nc preindustrial_road_NOx_1769.nc preindustrial_road_NOx_1770.nc preindustrial_road_NOx_1771.nc preindustrial_road_NOx_1772.nc preindustrial_road_NOx_1773.nc preindustrial_road_NOx_1774.nc preindustrial_road_NOx_1775.nc preindustrial_road_NOx_1776.nc preindustrial_road_NOx_1777.nc preindustrial_road_NOx_1778.nc preindustrial_road_NOx_1779.nc preindustrial_road_NOx_1780.nc preindustrial_road_NOx_1781.nc preindustrial_road_NOx_1782.nc preindustrial_road_NOx_1783.nc preindustrial_road_NOx_1784.nc preindustrial_road_NOx_1785.nc preindustrial_road_NOx_1786.nc preindustrial_road_NOx_1787.nc preindustrial_road_NOx_1788.nc preindustrial_road_NOx_1789.nc preindustrial_road_NOx_1790.nc preindustrial_road_NOx_1791.nc preindustrial_road_NOx_1792.nc preindustrial_road_NOx_1793.nc preindustrial_road_NOx_1794.nc preindustrial_road_NOx_1795.nc preindustrial_road_NOx_1796.nc preindustrial_road_NOx_1797.nc preindustrial_road_NOx_1798.nc preindustrial_road_NOx_1799.nc preindustrial_road_NOx_1800.nc preindustrial_road_NOx_1801.nc preindustrial_road_NOx_1802.nc preindustrial_road_NOx_1803.nc preindustrial_road_NOx_1804.nc preindustrial_road_NOx_1805.nc preindustrial_road_NOx_1806.nc preindustrial_road_NOx_1807.nc preindustrial_road_NOx_1808.nc preindustrial_road_NOx_1809.nc preindustrial_road_NOx_1810.nc preindustrial_road_NOx_1811.nc preindustrial_road_NOx_1812.nc preindustrial_road_NOx_1813.nc preindustrial_road_NOx_1814.nc preindustrial_road_NOx_1815.nc preindustrial_road_NOx_1816.nc preindustrial_road_NOx_1817.nc preindustrial_road_NOx_1818.nc preindustrial_road_NOx_1819.nc preindustrial_road_NOx_1820.nc preindustrial_road_NOx_1821.nc preindustrial_road_NOx_1822.nc preindustrial_road_NOx_1823.nc preindustrial_road_NOx_1824.nc preindustrial_road_NOx_1825.nc preindustrial_road_NOx_1826.nc preindustrial_road_NOx_1827.nc preindustrial_road_NOx_1828.nc preindustrial_road_NOx_1829.nc preindustrial_road_NOx_1830.nc preindustrial_road_NOx_1831.nc preindustrial_road_NOx_1832.nc preindustrial_road_NOx_1833.nc preindustrial_road_NOx_1834.nc preindustrial_road_NOx_1835.nc preindustrial_road_NOx_1836.nc preindustrial_road_NOx_1837.nc preindustrial_road_NOx_1838.nc preindustrial_road_NOx_1839.nc preindustrial_road_NOx_1840.nc preindustrial_road_NOx_1841.nc preindustrial_road_NOx_1842.nc preindustrial_road_NOx_1843.nc preindustrial_road_NOx_1844.nc preindustrial_road_NOx_1845.nc preindustrial_road_NOx_1846.nc preindustrial_road_NOx_1847.nc preindustrial_road_NOx_1848.nc preindustrial_road_NOx_1849.nc preindustrial_road_NOx_1850.nc preindustrial_road_NOx_1851.nc preindustrial_road_NOx_1852.nc preindustrial_road_NOx_1853.nc preindustrial_road_NOx_1854.nc preindustrial_road_NOx_1855.nc preindustrial_road_NOx_1856.nc preindustrial_road_NOx_1857.nc preindustrial_road_NOx_1858.nc preindustrial_road_NOx_1859.nc preindustrial_road_NOx_1860.nc preindustrial_road_NOx_1861.nc preindustrial_road_NOx_1862.nc preindustrial_road_NOx_1863.nc preindustrial_road_NOx_1864.nc preindustrial_road_NOx_1865.nc preindustrial_road_NOx_1866.nc preindustrial_road_NOx_1867.nc preindustrial_road_NOx_1868.nc preindustrial_road_NOx_1869.nc preindustrial_road_NOx_1870.nc preindustrial_road_NOx_1871.nc preindustrial_road_NOx_1872.nc preindustrial_road_NOx_1873.nc preindustrial_road_NOx_1874.nc preindustrial_road_NOx_1875.nc preindustrial_road_NOx_1876.nc preindustrial_road_NOx_1877.nc preindustrial_road_NOx_1878.nc preindustrial_road_NOx_1879.nc preindustrial_road_NOx_1880.nc preindustrial_road_NOx_1881.nc preindustrial_road_NOx_1882.nc preindustrial_road_NOx_1883.nc preindustrial_road_NOx_1884.nc preindustrial_road_NOx_1885.nc preindustrial_road_NOx_1886.nc preindustrial_road_NOx_1887.nc preindustrial_road_NOx_1888.nc preindustrial_road_NOx_1889.nc preindustrial_road_NOx_1890.nc preindustrial_road_NOx_1891.nc preindustrial_road_NOx_1892.nc preindustrial_road_NOx_1893.nc preindustrial_road_NOx_1894.nc preindustrial_road_NOx_1895.nc preindustrial_road_NOx_1896.nc preindustrial_road_NOx_1897.nc preindustrial_road_NOx_1898.nc preindustrial_road_NOx_1899.nc preindustrial_road_NOx_1900.nc preindustrial_road_NOx_1901.nc preindustrial_road_NOx_1902.nc preindustrial_road_NOx_1903.nc preindustrial_road_NOx_1904.nc preindustrial_road_NOx_1905.nc preindustrial_road_NOx_1906.nc preindustrial_road_NOx_1907.nc preindustrial_road_NOx_1908.nc preindustrial_road_NOx_1909.nc preindustrial_road_NOx_1910.nc preindustrial_road_NOx_1911.nc preindustrial_road_NOx_1912.nc preindustrial_road_NOx_1913.nc preindustrial_road_NOx_1914.nc preindustrial_road_NOx_1915.nc preindustrial_road_NOx_1916.nc preindustrial_road_NOx_1917.nc preindustrial_road_NOx_1918.nc preindustrial_road_NOx_1919.nc preindustrial_road_NOx_1920.nc preindustrial_road_NOx_1921.nc preindustrial_road_NOx_1922.nc preindustrial_road_NOx_1923.nc preindustrial_road_NOx_1924.nc preindustrial_road_NOx_1925.nc preindustrial_road_NOx_1926.nc preindustrial_road_NOx_1927.nc preindustrial_road_NOx_1928.nc preindustrial_road_NOx_1929.nc preindustrial_road_NOx_1930.nc preindustrial_road_NOx_1931.nc preindustrial_road_NOx_1932.nc preindustrial_road_NOx_1933.nc preindustrial_road_NOx_1934.nc preindustrial_road_NOx_1935.nc preindustrial_road_NOx_1936.nc preindustrial_road_NOx_1937.nc preindustrial_road_NOx_1938.nc preindustrial_road_NOx_1939.nc preindustrial_road_NOx_1940.nc preindustrial_road_NOx_1941.nc preindustrial_road_NOx_1942.nc preindustrial_road_NOx_1943.nc preindustrial_road_NOx_1944.nc preindustrial_road_NOx_1945.nc preindustrial_road_NOx_1946.nc preindustrial_road_NOx_1947.nc preindustrial_road_NOx_1948.nc preindustrial_road_NOx_1949.nc preindustrial_road_NOx_1950.nc preindustrial_road_NOx_1951.nc preindustrial_road_NOx_1952.nc preindustrial_road_NOx_1953.nc preindustrial_road_NOx_1954.nc preindustrial_road_NOx_1955.nc preindustrial_road_NOx_1956.nc preindustrial_road_NOx_1957.nc preindustrial_road_NOx_1958.nc preindustrial_road_NOx_1959.nc preindustrial_road_NOx_1960.nc preindustrial_road_NOx_1961.nc preindustrial_road_NOx_1962.nc preindustrial_road_NOx_1963.nc preindustrial_road_NOx_1964.nc preindustrial_road_NOx_1965.nc preindustrial_road_NOx_1966.nc preindustrial_road_NOx_1967.nc preindustrial_road_NOx_1968.nc preindustrial_road_NOx_1969.nc preindustrial_road_NOx_1970.nc preindustrial_road_NOx_1971.nc preindustrial_road_NOx_1972.nc preindustrial_road_NOx_1973.nc preindustrial_road_NOx_1974.nc preindustrial_road_NOx_1975.nc preindustrial_road_NOx_1976.nc preindustrial_road_NOx_1977.nc preindustrial_road_NOx_1978.nc preindustrial_road_NOx_1979.nc preindustrial_road_NOx_1980.nc preindustrial_road_NOx_1981.nc preindustrial_road_NOx_1982.nc preindustrial_road_NOx_1983.nc preindustrial_road_NOx_1984.nc preindustrial_road_NOx_1985.nc preindustrial_road_NOx_1986.nc preindustrial_road_NOx_1987.nc preindustrial_road_NOx_1988.nc preindustrial_road_NOx_1989.nc preindustrial_road_NOx_1990.nc preindustrial_road_NOx_1991.nc preindustrial_road_NOx_1992.nc preindustrial_road_NOx_1993.nc preindustrial_road_NOx_1994.nc preindustrial_road_NOx_1995.nc preindustrial_road_NOx_1996.nc preindustrial_road_NOx_1997.nc preindustrial_road_NOx_1998.nc preindustrial_road_NOx_1999.nc preindustrial_road_NOx_2000.nc preindustrial_road_NOx_2001.nc preindustrial_road_NOx_2002.nc preindustrial_road_NOx_2003.nc preindustrial_road_NOx_2004.nc preindustrial_road_NOx_2005.nc preindustrial_road_NOx_2006.nc preindustrial_road_NOx_2007.nc preindustrial_road_NOx_2008.nc preindustrial_road_NOx_2009.nc preindustrial_road_NOx_2010.nc preindustrial_road_NOx_2011.nc preindustrial_road_NOx_2012.nc preindustrial_road_NOx_2013.nc preindustrial_road_NOx_2014.nc preindustrial_road_NOx_all.nc\n",
+       "Thu Jul  6 11:12:05 2017: Appended file preindustrial_road_CO_all.nc had following &quot;history&quot; attribute:\n",
+       "Mon Jul  3 16:28:19 2017: ncrcat preindustrial_road_CO_1750.nc preindustrial_road_CO_1751.nc preindustrial_road_CO_1752.nc preindustrial_road_CO_1753.nc preindustrial_road_CO_1754.nc preindustrial_road_CO_1755.nc preindustrial_road_CO_1756.nc preindustrial_road_CO_1757.nc preindustrial_road_CO_1758.nc preindustrial_road_CO_1759.nc preindustrial_road_CO_1760.nc preindustrial_road_CO_1761.nc preindustrial_road_CO_1762.nc preindustrial_road_CO_1763.nc preindustrial_road_CO_1764.nc preindustrial_road_CO_1765.nc preindustrial_road_CO_1766.nc preindustrial_road_CO_1767.nc preindustrial_road_CO_1768.nc preindustrial_road_CO_1769.nc preindustrial_road_CO_1770.nc preindustrial_road_CO_1771.nc preindustrial_road_CO_1772.nc preindustrial_road_CO_1773.nc preindustrial_road_CO_1774.nc preindustrial_road_CO_1775.nc preindustrial_road_CO_1776.nc preindustrial_road_CO_1777.nc preindustrial_road_CO_1778.nc preindustrial_road_CO_1779.nc preindustrial_road_CO_1780.nc preindustrial_road_CO_1781.nc preindustrial_road_CO_1782.nc preindustrial_road_CO_1783.nc preindustrial_road_CO_1784.nc preindustrial_road_CO_1785.nc preindustrial_road_CO_1786.nc preindustrial_road_CO_1787.nc preindustrial_road_CO_1788.nc preindustrial_road_CO_1789.nc preindustrial_road_CO_1790.nc preindustrial_road_CO_1791.nc preindustrial_road_CO_1792.nc preindustrial_road_CO_1793.nc preindustrial_road_CO_1794.nc preindustrial_road_CO_1795.nc preindustrial_road_CO_1796.nc preindustrial_road_CO_1797.nc preindustrial_road_CO_1798.nc preindustrial_road_CO_1799.nc preindustrial_road_CO_1800.nc preindustrial_road_CO_1801.nc preindustrial_road_CO_1802.nc preindustrial_road_CO_1803.nc preindustrial_road_CO_1804.nc preindustrial_road_CO_1805.nc preindustrial_road_CO_1806.nc preindustrial_road_CO_1807.nc preindustrial_road_CO_1808.nc preindustrial_road_CO_1809.nc preindustrial_road_CO_1810.nc preindustrial_road_CO_1811.nc preindustrial_road_CO_1812.nc preindustrial_road_CO_1813.nc preindustrial_road_CO_1814.nc preindustrial_road_CO_1815.nc preindustrial_road_CO_1816.nc preindustrial_road_CO_1817.nc preindustrial_road_CO_1818.nc preindustrial_road_CO_1819.nc preindustrial_road_CO_1820.nc preindustrial_road_CO_1821.nc preindustrial_road_CO_1822.nc preindustrial_road_CO_1823.nc preindustrial_road_CO_1824.nc preindustrial_road_CO_1825.nc preindustrial_road_CO_1826.nc preindustrial_road_CO_1827.nc preindustrial_road_CO_1828.nc preindustrial_road_CO_1829.nc preindustrial_road_CO_1830.nc preindustrial_road_CO_1831.nc preindustrial_road_CO_1832.nc preindustrial_road_CO_1833.nc preindustrial_road_CO_1834.nc preindustrial_road_CO_1835.nc preindustrial_road_CO_1836.nc preindustrial_road_CO_1837.nc preindustrial_road_CO_1838.nc preindustrial_road_CO_1839.nc preindustrial_road_CO_1840.nc preindustrial_road_CO_1841.nc preindustrial_road_CO_1842.nc preindustrial_road_CO_1843.nc preindustrial_road_CO_1844.nc preindustrial_road_CO_1845.nc preindustrial_road_CO_1846.nc preindustrial_road_CO_1847.nc preindustrial_road_CO_1848.nc preindustrial_road_CO_1849.nc preindustrial_road_CO_1850.nc preindustrial_road_CO_1851.nc preindustrial_road_CO_1852.nc preindustrial_road_CO_1853.nc preindustrial_road_CO_1854.nc preindustrial_road_CO_1855.nc preindustrial_road_CO_1856.nc preindustrial_road_CO_1857.nc preindustrial_road_CO_1858.nc preindustrial_road_CO_1859.nc preindustrial_road_CO_1860.nc preindustrial_road_CO_1861.nc preindustrial_road_CO_1862.nc preindustrial_road_CO_1863.nc preindustrial_road_CO_1864.nc preindustrial_road_CO_1865.nc preindustrial_road_CO_1866.nc preindustrial_road_CO_1867.nc preindustrial_road_CO_1868.nc preindustrial_road_CO_1869.nc preindustrial_road_CO_1870.nc preindustrial_road_CO_1871.nc preindustrial_road_CO_1872.nc preindustrial_road_CO_1873.nc preindustrial_road_CO_1874.nc preindustrial_road_CO_1875.nc preindustrial_road_CO_1876.nc preindustrial_road_CO_1877.nc preindustrial_road_CO_1878.nc preindustrial_road_CO_1879.nc preindustrial_road_CO_1880.nc preindustrial_road_CO_1881.nc preindustrial_road_CO_1882.nc preindustrial_road_CO_1883.nc preindustrial_road_CO_1884.nc preindustrial_road_CO_1885.nc preindustrial_road_CO_1886.nc preindustrial_road_CO_1887.nc preindustrial_road_CO_1888.nc preindustrial_road_CO_1889.nc preindustrial_road_CO_1890.nc preindustrial_road_CO_1891.nc preindustrial_road_CO_1892.nc preindustrial_road_CO_1893.nc preindustrial_road_CO_1894.nc preindustrial_road_CO_1895.nc preindustrial_road_CO_1896.nc preindustrial_road_CO_1897.nc preindustrial_road_CO_1898.nc preindustrial_road_CO_1899.nc preindustrial_road_CO_1900.nc preindustrial_road_CO_1901.nc preindustrial_road_CO_1902.nc preindustrial_road_CO_1903.nc preindustrial_road_CO_1904.nc preindustrial_road_CO_1905.nc preindustrial_road_CO_1906.nc preindustrial_road_CO_1907.nc preindustrial_road_CO_1908.nc preindustrial_road_CO_1909.nc preindustrial_road_CO_1910.nc preindustrial_road_CO_1911.nc preindustrial_road_CO_1912.nc preindustrial_road_CO_1913.nc preindustrial_road_CO_1914.nc preindustrial_road_CO_1915.nc preindustrial_road_CO_1916.nc preindustrial_road_CO_1917.nc preindustrial_road_CO_1918.nc preindustrial_road_CO_1919.nc preindustrial_road_CO_1920.nc preindustrial_road_CO_1921.nc preindustrial_road_CO_1922.nc preindustrial_road_CO_1923.nc preindustrial_road_CO_1924.nc preindustrial_road_CO_1925.nc preindustrial_road_CO_1926.nc preindustrial_road_CO_1927.nc preindustrial_road_CO_1928.nc preindustrial_road_CO_1929.nc preindustrial_road_CO_1930.nc preindustrial_road_CO_1931.nc preindustrial_road_CO_1932.nc preindustrial_road_CO_1933.nc preindustrial_road_CO_1934.nc preindustrial_road_CO_1935.nc preindustrial_road_CO_1936.nc preindustrial_road_CO_1937.nc preindustrial_road_CO_1938.nc preindustrial_road_CO_1939.nc preindustrial_road_CO_1940.nc preindustrial_road_CO_1941.nc preindustrial_road_CO_1942.nc preindustrial_road_CO_1943.nc preindustrial_road_CO_1944.nc preindustrial_road_CO_1945.nc preindustrial_road_CO_1946.nc preindustrial_road_CO_1947.nc preindustrial_road_CO_1948.nc preindustrial_road_CO_1949.nc preindustrial_road_CO_1950.nc preindustrial_road_CO_1951.nc preindustrial_road_CO_1952.nc preindustrial_road_CO_1953.nc preindustrial_road_CO_1954.nc preindustrial_road_CO_1955.nc preindustrial_road_CO_1956.nc preindustrial_road_CO_1957.nc preindustrial_road_CO_1958.nc preindustrial_road_CO_1959.nc preindustrial_road_CO_1960.nc preindustrial_road_CO_1961.nc preindustrial_road_CO_1962.nc preindustrial_road_CO_1963.nc preindustrial_road_CO_1964.nc preindustrial_road_CO_1965.nc preindustrial_road_CO_1966.nc preindustrial_road_CO_1967.nc preindustrial_road_CO_1968.nc preindustrial_road_CO_1969.nc preindustrial_road_CO_1970.nc preindustrial_road_CO_1971.nc preindustrial_road_CO_1972.nc preindustrial_road_CO_1973.nc preindustrial_road_CO_1974.nc preindustrial_road_CO_1975.nc preindustrial_road_CO_1976.nc preindustrial_road_CO_1977.nc preindustrial_road_CO_1978.nc preindustrial_road_CO_1979.nc preindustrial_road_CO_1980.nc preindustrial_road_CO_1981.nc preindustrial_road_CO_1982.nc preindustrial_road_CO_1983.nc preindustrial_road_CO_1984.nc preindustrial_road_CO_1985.nc preindustrial_road_CO_1986.nc preindustrial_road_CO_1987.nc preindustrial_road_CO_1988.nc preindustrial_road_CO_1989.nc preindustrial_road_CO_1990.nc preindustrial_road_CO_1991.nc preindustrial_road_CO_1992.nc preindustrial_road_CO_1993.nc preindustrial_road_CO_1994.nc preindustrial_road_CO_1995.nc preindustrial_road_CO_1996.nc preindustrial_road_CO_1997.nc preindustrial_road_CO_1998.nc preindustrial_road_CO_1999.nc preindustrial_road_CO_2000.nc preindustrial_road_CO_2001.nc preindustrial_road_CO_2002.nc preindustrial_road_CO_2003.nc preindustrial_road_CO_2004.nc preindustrial_road_CO_2005.nc preindustrial_road_CO_2006.nc preindustrial_road_CO_2007.nc preindustrial_road_CO_2008.nc preindustrial_road_CO_2009.nc preindustrial_road_CO_2010.nc preindustrial_road_CO_2011.nc preindustrial_road_CO_2012.nc preindustrial_road_CO_2013.nc preindustrial_road_CO_2014.nc preindustrial_road_CO_all.nc\n",
+       "</dd><dt><span>activity_id :</span></dt><dd>input4MIPs</dd><dt><span>comment :</span></dt><dd>This data supersedes 2016-06-18, 2016-06-18-sectorDimV2, 2016-07-26, 2016-07-26-sectorDim, and 2017-05-18 data versions. See README file at the project web site.</dd><dt><span>contact :</span></dt><dd>Steven J. Smith (ssmith@pnnl.gov)</dd><dt><span>data_structure :</span></dt><dd>grid</dd><dt><span>dataset_category :</span></dt><dd>emissions</dd><dt><span>dataset_version_number :</span></dt><dd>2017-08-30</dd><dt><span>external_variables :</span></dt><dd>gridcell_area</dd><dt><span>frequency :</span></dt><dd>mon</dd><dt><span>further_info_url :</span></dt><dd>http://www.globalchange.umd.edu/ceds/</dd><dt><span>grid :</span></dt><dd>0.5x0.5 degree latitude x longitude</dd><dt><span>grid_label :</span></dt><dd>gn</dd><dt><span>institution_id :</span></dt><dd>PNNL-JGCRI</dd><dt><span>mip_era :</span></dt><dd>CMIP6</dd><dt><span>product :</span></dt><dd>primary-emissions-data</dd><dt><span>realm :</span></dt><dd>atmos</dd><dt><span>references :</span></dt><dd>Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J.-I., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O&#x27;Rourke, P. R., and Zhang, Q.: Historical (1750-2014) anthropogenic emissions of reactive gases and aerosols from the Community Emission Data System (CEDS), Geosci. Model Dev. Discuss., doi:10.5194/gmd-2017-43, in review, 2017.</dd><dt><span>table_id :</span></dt><dd>input4MIPs</dd><dt><span>target_mip :</span></dt><dd>CMIP</dd><dt><span>variable_id :</span></dt><dd>BC_em_AIR_anthro</dd><dt><span>global_total_emission_1750 :</span></dt><dd>0 Tg/year</dd><dt><span>global_total_emission_1799 :</span></dt><dd>0 Tg/year</dd><dt><span>data_usage_tips :</span></dt><dd>Note that these are monthly average fluxes.</dd><dt><span>reporting_unit :</span></dt><dd>Mass flux of BC, reported as carbon mass</dd><dt><span>nominal_resolution :</span></dt><dd>50 km</dd><dt><span>source_id :</span></dt><dd>CEDS-2017-08-30</dd><dt><span>tracking_id :</span></dt><dd>hdl:21.14100/649247a5-afc6-4e25-b777-9d7a77a3b1ed</dd><dt><span>CDO :</span></dt><dd>Climate Data Operators version 1.7.0 (http://mpimet.mpg.de/cdo)</dd></dl></div></li></ul></div></div>"
+      ],
+      "text/plain": [
+       "<xarray.Dataset>\n",
+       "Dimensions:    (lon: 720, bnds: 2, lat: 360, lev: 1, time: 3180)\n",
+       "Coordinates:\n",
+       "  * lon        (lon) float64 -179.8 -179.2 -178.8 -178.2 ... 178.8 179.2 179.8\n",
+       "  * lat        (lat) float64 -89.75 -89.25 -88.75 -88.25 ... 88.75 89.25 89.75\n",
+       "  * lev        (lev) float64 45.0\n",
+       "  * time       (time) object 1750-01-16 00:00:00 ... 2014-12-16 00:00:00\n",
+       "Dimensions without coordinates: bnds\n",
+       "Data variables:\n",
+       "    lon_bnds   (lon, bnds) float64 ...\n",
+       "    lat_bnds   (lat, bnds) float64 ...\n",
+       "    time_bnds  (time, bnds) object ...\n",
+       "    CO_flux    (time, lev, lat, lon) float32 ...\n",
+       "    NH3_flux   (time, lev, lat, lon) float32 ...\n",
+       "    NOx_flux   (time, lev, lat, lon) float32 ...\n",
+       "    SO2_flux   (time, lev, lat, lon) float32 ...\n",
+       "Attributes: (12/39)\n",
+       "    CDI:                         Climate Data Interface version 1.7.0 (http:/...\n",
+       "    Conventions:                 CF-1.6\n",
+       "    history:                     Tue Aug 28 23:02:02 2018: cdo -O -Q copy /sc...\n",
+       "    source:                      CEDS-2017-08-30: Community Emissions Data Sy...\n",
+       "    institution:                 Pacific Northwest National Laboratory - Join...\n",
+       "    reference1:                  Lamarque et al.(2010), doi:10.5194/acp-10-70...\n",
+       "    ...                          ...\n",
+       "    data_usage_tips:             Note that these are monthly average fluxes.\n",
+       "    reporting_unit:              Mass flux of BC, reported as carbon mass\n",
+       "    nominal_resolution:          50 km\n",
+       "    source_id:                   CEDS-2017-08-30\n",
+       "    tracking_id:                 hdl:21.14100/649247a5-afc6-4e25-b777-9d7a77a...\n",
+       "    CDO:                         Climate Data Operators version 1.7.0 (http:/..."
+      ]
+     },
+     "execution_count": 9,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "data_road_misc"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "id": "4cd472c4-a52b-4d43-94d0-24b6d3e42e3d",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "co_flux_road_misc = data_road_misc['CO_flux'] # kg m-2 s-1\n",
+    "nh3_flux_road_misc = data_road_misc['NH3_flux'] # kg m-2 s-1\n",
+    "nox_flux_road_misc = data_road_misc['NOx_flux'] # kg(NO2) m-2 s-1\n",
+    "so2_flux_road_misc = data_road_misc['SO2_flux'] # kg m-2 s-1"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "id": "83759f6f-2c64-4c0a-a392-aa915093f3d5",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "def zonal_average(emission):\n",
+    "    # Average over lev\n",
+    "    emission = emission.mean('lev')\n",
+    "    # Create a weight array for the zonal average\n",
+    "    weight_emission = np.cos(np.deg2rad(emission.lat))\n",
+    "    weight_emission = weight_emission / weight_emission.sum() \n",
+    "\n",
+    "    # Average over lon, zonal average over lan\n",
+    "    emission = emission.mean('lon')\n",
+    "    emission_weighted = []\n",
+    "    for year in range(emission.shape[0]):\n",
+    "        emission_year_weighted = np.sum(emission[year, :] * weight_emission).compute().data.item()\n",
+    "        emission_weighted.append(emission_year_weighted)\n",
+    "        \n",
+    "    return emission_weighted "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "id": "cb911dad-93ab-4ad5-bbcf-372c1d17f7c9",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "def total_emissions(flux):\n",
+    "    yearly_flux = zonal_average(flux.resample(time=\"1YS\").mean(dim=\"time\"))  \n",
+    "    return np.array(yearly_flux) * area_earth * seconds_in_year * k_to_tera"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 13,
+   "id": "ade27428-d000-479d-b279-f48270fd50c1",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "co_yearly_flux_road_misc = zonal_average(co_flux_road_misc.resample(time=\"1YS\").mean(dim=\"time\"))  "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 14,
+   "id": "8a608640-13a1-46cc-9844-af3862a50f23",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "co_yearly_emissions_road_misc = np.array(co_yearly_flux_road_misc) * area_earth * seconds_in_year * k_to_tera"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 15,
+   "id": "d9ab5edf-e5d7-4938-9426-45db65b20112",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "nox_yearly_emissions_road_misc = total_emissions(nox_flux_road_misc)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 16,
+   "id": "9a68eccf-408b-442e-87c3-d3ed948a2182",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAHWCAYAAACmMzqDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACMJ0lEQVR4nOzdeXxU5dn/8e9kkkz2yb6RBZB9R1AEF0AFRUURW624VmutiC0P+tMibcWnFRSty6PV1ta6b23d6lIVRVALKPsmIEsgCSSEbJN9ksyc3x+TGY2QsCU5M5PP+/U6LzLn3HPmmpE2N9dc93VbDMMwBAAAAAAAAHShELMDAAAAAAAAQPdDUgoAAAAAAABdjqQUAAAAAAAAuhxJKQAAAAAAAHQ5klIAAAAAAADociSlAAAAAAAA0OVISgEAAAAAAKDLkZQCAAAAAABAlyMpBQAAAAAAgC5HUgpAh9m4caN++tOfqlevXoqIiFBMTIxOPvlkLVq0SOXl5a3GNjU16amnntLYsWNlt9sVGRmpgQMH6te//rXKyspMegdts1gsmj9/foffd8KECZowYUKH3xcAAMAs119/vXr27Nnh933uuedksVi0Z8+eDr83AHNYDMMwzA4CQOD761//qpkzZ6p///6aOXOmBg0apKamJq1evVp//etfNXz4cL311luSpLq6Ol1wwQX68ssv9fOf/1wXXXSRIiMjtWLFCj300EOKiYnR4sWL1b9/f5Pf1XdWrlyprKwsZWVldeh9v/nmG0nSoEGDOvS+AAAAZtm1a5eqqqo0cuTIDr3vwYMHtWvXLo0cOVI2m61D7w3AHCSlAJywFStW6Mwzz9SkSZP09ttvHzJJaGxs1IcffqiLL75YknTzzTfr6aef1muvvaYrrrii1dhvv/1Wp556qrKysrRhwwZZrdYuex8AAAAAgK7D8j0AJ2zBggWyWCx6+umnD/utVXh4uC8hVVxcrL///e8677zzDklISVK/fv101113acuWLXr77beP+NqrV6/WxRdfrMTEREVERGjkyJH6xz/+0WqMt9R7yZIluummm5SUlKS4uDhde+21qq2tVXFxsS6//HLFx8crIyNDd9xxh5qamlrd44fL9+rq6nTHHXf4liomJiZq9OjRevXVV31jdu/erZ/85CfKzMyUzWZTWlqazjnnHK1fv9435nDL98rLyzVz5kz16NFD4eHh6t27t+bNmyen03lITLNmzdKLL76ogQMHKioqSsOHD9d7773XatzBgwf185//XNnZ2bLZbEpJSdHpp5+uTz755IifLwAAOH7z58+XxWLRli1bdOWVV8putystLU033HCDHA5Hq7ENDQ2aO3euevXqpfDwcPXo0UO33nqrKisrJUmGYeiCCy5QUlKS8vPzfc+rq6vT4MGDNXDgQNXW1rYbT1VVlW/+4n2N2bNnH/I87xzj2WefVf/+/RUZGanRo0dr5cqVMgxDDz74oHr16qWYmBidffbZ2rlzZ6vnH2753j//+U+NGTNGdrtdUVFR6t27t2644QbfdbfbrT/84Q++14uPj9ewYcP02GOP+ca0tXzv73//u4YPH+6bk1166aXaunXrITHFxMRo586duuCCCxQTE6Ps7Gzdfvvth8yxnnrqKQ0fPlwxMTGKjY3VgAEDdPfdd7f72QI4PqFmBwAgsLlcLi1ZskSjRo1Sdnb2Ecd/9tlnam5u1rRp09ocM23aNN19991avHixLrvssnbvdf7552vMmDH685//LLvd7qu+qqur0/XXX99q/M9+9jNNnz5dr732mtatW6e7775bzc3N2r59u6ZPn66f//zn+uSTT/TAAw8oMzNTc+bMafO158yZoxdffFF/+MMfNHLkSNXW1mrz5s2t+mFdcMEFcrlcWrRokXJyclRaWqrly5f7JpeH09DQoIkTJ2rXrl269957NWzYMH3xxRdauHCh1q9fr/fff7/V+Pfff1+rVq3S//7v/yomJkaLFi3SpZdequ3bt6t3796SpGuuuUZr167Vfffdp379+qmyslJr1671y95dAAAEo8suu0xXXHGFbrzxRm3atElz586V5EmmSJ6E07Rp0/Tpp59q7ty5OvPMM7Vx40bdc889WrFihVasWCGbzaYXX3xRI0aM0OWXX64vvvhCYWFhmjlzpvLy8vTVV18pOjq6zRjq6uo0fvx4FRYW6u6779awYcO0ZcsW/e53v9OmTZv0ySefyGKx+Ma/9957Wrdune6//35ZLBbddddduvDCC3Xddddp9+7deuKJJ+RwODRnzhxddtllWr9+favnf9+KFSt0xRVX6IorrtD8+fMVERGhvXv3asmSJb4xixYt0vz58/Wb3/xGZ511lpqamrRt27Z2502StHDhQt1999268sortXDhQpWVlWn+/PkaO3asVq1apb59+/rGNjU16eKLL9aNN96o22+/XZ9//rl+//vfy26363e/+50k6bXXXtPMmTN122236aGHHlJISIh27tzpa7kAoIMZAHACiouLDUnGT37yk6Maf//99xuSjA8//LDNMfX19YYkY8qUKe3ea8CAAcbIkSONpqamVucvuugiIyMjw3C5XIZhGMazzz5rSDJuu+22VuOmTZtmSDIefvjhVudHjBhhnHzyya3OSTLuuece3+MhQ4YY06ZNazO20tJSQ5Lx6KOPtvsexo8fb4wfP973+M9//rMhyfjHP/7RatwDDzxgSDI+/vjjVjGlpaUZVVVVvnPFxcVGSEiIsXDhQt+5mJgYY/bs2e3GAQAAOt4999xjSDIWLVrU6vzMmTONiIgIw+12G4ZhGB9++OFhx73++uuGJOPpp5/2nfvyyy+N0NBQY/bs2cbf//53Q5Lxt7/97YixLFy40AgJCTFWrVrV6vy//vUvQ5LxwQcf+M5JMtLT042amhrfubffftuQZIwYMcIXt2EYxqOPPmpIMjZu3Og7d9111xm5ubm+xw899JAhyaisrGwzvosuusgYMWJEu+/BO6fLy8szDMMwKioqjMjISOOCCy5oNS4/P9+w2WzGjBkzWsV0uDnWBRdcYPTv39/3eNasWUZ8fHy7cQDoOCzfA+C32vq2TZJ27typbdu26aqrrpIkNTc3+44LLrhARUVF2r59e6vnXHTRRa0eDxw4UJJ04YUXHnJ+79697cZ26qmn6j//+Y9+/etfa+nSpaqvr291PTExUSeddJIefPBBPfzww1q3bp3cbnf7b1jSkiVLFB0drR/96Eetznurvj799NNW5ydOnKjY2Fjf47S0NKWmpraK/9RTT9Vzzz2nP/zhD1q5cuUhSxMBAEDn8rYx8Bo2bJgaGhpUUlIiSb6KoR9Wef/4xz9WdHR0q9//p59+uu677z49+uijuuWWW3T11VfrxhtvPGIM7733noYMGaIRI0a0mjedd955slgsWrp0aavxEydObFV55Z03TZkypdUczXu+vbnTKaecIkm6/PLL9Y9//EP79u07ZMypp56qDRs2aObMmfroo49UVVV1xPe0YsUK1dfXH/K5ZWdn6+yzzz5k3mSxWDR16tRW54YNG3bIvKmyslJXXnml3nnnHZWWlh4xDgDHj6QUgBOSnJysqKgo5eXlHdX4nJwcSWp3vPdae8sBDxw4IEm64447FBYW1uqYOXOmJB0yiUhMTGz1ODw8vM3zDQ0N7b6P//u//9Ndd92lt99+WxMnTlRiYqKmTZumHTt2SPJMej799FOdd955WrRokU4++WSlpKTol7/8paqrq9u8b1lZmdLT0w9JyKWmpio0NPSQJXdJSUmH3MNms7VKkr3++uu67rrr9Le//U1jx45VYmKirr32WhUXF7f7HgEAQMf44e9rbw9O7+/rsrIyhYaGKiUlpdU4i8Wi9PT0Q37/X3XVVQoPD5fT6dT/+3//76hiOHDggDZu3HjIvCk2NlaGYZzQvElSu3Ons846S2+//baam5t17bXXKisrS0OGDGnVi3Pu3Ll66KGHtHLlSk2ZMkVJSUk655xztHr16jbv6/1cMjIyDrmWmZl5yOcWFRWliIiIVudsNlur2K+55hr9/e9/1969e3XZZZcpNTVVY8aM0eLFi9uMA8DxIykF4IRYrVadc845WrNmjQoLC484fuLEiQoNDW23ibn32qRJk9ock5ycLMkzgVm1atVhjxEjRhzLWzkm0dHRuvfee7Vt2zYVFxfrqaee0sqVK1t9+5abm6tnnnlGxcXF2r59u/7nf/5HTz75ZLuTx6SkJB04cEDGDzZGLSkpUXNzs+99H4vk5GQ9+uij2rNnj/bu3auFCxfqzTffPORbRQAAYI6kpCQ1Nzfr4MGDrc4bhqHi4uJWv/9dLpeuuuoqJSQkKCcnRzfeeKMaGxuP+BrJyckaOnRom/Om3/72tx3+vr7vkksu0aeffiqHw6GlS5cqKytLM2bM0IoVKyRJoaGhmjNnjtauXavy8nK9+uqrKigo0Hnnnae6urrD3tOb7CsqKjrk2v79+49r3iRJP/3pT7V8+XI5HA69//77MgxDF1100REr6QEcO5JSAE7Y3LlzZRiGbrrppsNOipqamvTuu+9KktLT03XDDTfoo48+0uuvv37I2G+//VYPPPCABg8e3G4z9P79+6tv377asGGDRo8efdjj+8vaOlNaWpquv/56XXnlldq+ffthJ079+vXTb37zGw0dOlRr165t817nnHOOampqDknavfDCC77rJyInJ0ezZs3SpEmT2o0DAAB0He/v95deeqnV+TfeeEO1tbWtfv/fc889+uKLL/Tyyy/r9ddf14YNG46qWuqiiy7Srl27lJSUdNh50w93y+ssNptN48eP1wMPPCBJWrdu3SFj4uPj9aMf/Ui33nqrysvLD9ltz2vs2LGKjIw85HMrLCzUkiVLTnjeFB0drSlTpmjevHlqbGzUli1bTuh+AA7F7nsATtjYsWP11FNPaebMmRo1apRuueUWDR48WE1NTVq3bp2efvppDRkyxFdF9PDDD2v79u26+uqr9fnnn2vq1Kmy2WxauXKlHnroIcXGxuqNN96Q1Wpt93X/8pe/aMqUKTrvvPN0/fXXq0ePHiovL9fWrVu1du1a/fOf/+y09zxmzBhddNFFGjZsmBISErR161a9+OKLGjt2rKKiorRx40bNmjVLP/7xj9W3b1+Fh4dryZIl2rhxo37961+3ed9rr71Wf/rTn3Tddddpz549Gjp0qL788kstWLBAF1xwgc4999xjitPhcGjixImaMWOGBgwYoNjYWK1atUoffvihpk+ffqIfAwAA6ACTJk3Seeedp7vuuktVVVU6/fTTfbvvjRw5Utdcc40kafHixVq4cKF++9vf+hIuCxcu1B133KEJEybo0ksvbfM1Zs+erTfeeENnnXWW/ud//kfDhg2T2+1Wfn6+Pv74Y91+++0aM2ZMp7y/3/3udyosLNQ555yjrKwsVVZW6rHHHlNYWJjGjx8vSZo6daqGDBmi0aNHKyUlRXv37tWjjz6q3NzcVjvofV98fLx++9vf6u6779a1116rK6+8UmVlZbr33nsVERGhe+6555hjvemmmxQZGanTTz9dGRkZKi4u1sKFC2W32329sQB0HJJSADrETTfdpFNPPVWPPPKIHnjgARUXFyssLEz9+vXTjBkzNGvWLN/Y6OhoLV68WH/961/1wgsv6IUXXlBTU5N69uypn/3sZ7rzzjsP2yvphyZOnKivv/5a9913n2bPnq2KigolJSVp0KBBuvzyyzvz7erss8/Wv//9bz3yyCOqq6tTjx49dO2112revHmSPBVhJ510kp588kkVFBTIYrGod+/e+uMf/6jbbrutzftGRETos88+07x58/Tggw/q4MGD6tGjh+64447jmlhFRERozJgxevHFF7Vnzx41NTUpJydHd911l+68887jfv8AAKDjWCwWvf3225o/f76effZZ3XfffUpOTtY111yjBQsWyGazqaioSFdffbUmTJig3/3ud77nzpkzR8uWLdMNN9ygkSNHtlnxFB0drS+++EL333+/nn76aeXl5SkyMlI5OTk699xzO7VSasyYMVq9erXuuusuHTx4UPHx8Ro9erSWLFmiwYMHS/LM69544w397W9/U1VVldLT0zVp0iT99re/VVhYWJv3njt3rlJTU/V///d/ev311xUZGakJEyZowYIFbSaz2nPmmWfqueee0z/+8Q9VVFQoOTlZZ5xxhl544YVDen4BOHEW44eNSwAAAAAAAIBORk8pAAAAAAAAdDmSUgAAAAAAAOhyJKUAAAAAAADQ5UhKAQAAAAAAoMuRlAIAAAAAAECXIykFAAAAAACALhdqdgD+wO12a//+/YqNjZXFYjE7HAAA4McMw1B1dbUyMzMVEtJ9vt9jvgQAAI7WUc+XDBM9+eSTxtChQ43Y2FgjNjbWOO2004wPPvjAd93tdhv33HOPkZGRYURERBjjx483Nm/e3OoeDQ0NxqxZs4ykpCQjKirKmDp1qlFQUHBMcRQUFBiSODg4ODg4ODiO+jjW+UagY77EwcHBwcHBcazHkeZLFsMwDJnk3XffldVqVZ8+fSRJzz//vB588EGtW7dOgwcP1gMPPKD77rtPzz33nPr166c//OEP+vzzz7V9+3bFxsZKkm655Ra9++67eu6555SUlKTbb79d5eXlWrNmjaxW61HF4XA4FB8fr4KCAsXFxXXa+wUAAIGvqqpK2dnZqqyslN1uNzucLsN8CQAAHK2jnS+ZmpQ6nMTERD344IO64YYblJmZqdmzZ+uuu+6SJDmdTqWlpemBBx7QzTffLIfDoZSUFL344ou64oorJEn79+9Xdna2PvjgA5133nlH9ZpVVVWy2+1yOBxMsgAAQLu667yhu75vAABw7I523uA3jRBcLpdee+011dbWauzYscrLy1NxcbEmT57sG2Oz2TR+/HgtX75ckrRmzRo1NTW1GpOZmakhQ4b4xgAAAAAAAMD/mN7ofNOmTRo7dqwaGhoUExOjt956S4MGDfIlldLS0lqNT0tL0969eyVJxcXFCg8PV0JCwiFjiouL23xNp9Mpp9Ppe1xVVdVRbwcAAAAAAABHwfRKqf79+2v9+vVauXKlbrnlFl133XX65ptvfNd/uLuLYRhH3PHlSGMWLlwou93uO7Kzs0/sTQAAAAAAAOCYmJ6UCg8PV58+fTR69GgtXLhQw4cP12OPPab09HRJOqTiqaSkxFc9lZ6ersbGRlVUVLQ55nDmzp0rh8PhOwoKCjr4XQEAAAAAAKA9pielfsgwDDmdTvXq1Uvp6elavHix71pjY6OWLVumcePGSZJGjRqlsLCwVmOKioq0efNm35jDsdlsiouLa3UAAAAAAACg65jaU+ruu+/WlClTlJ2drerqar322mtaunSpPvzwQ1ksFs2ePVsLFixQ37591bdvXy1YsEBRUVGaMWOGJMlut+vGG2/U7bffrqSkJCUmJuqOO+7Q0KFDde6555r51gAAAAAAANAOU5NSBw4c0DXXXKOioiLZ7XYNGzZMH374oSZNmiRJuvPOO1VfX6+ZM2eqoqJCY8aM0ccff6zY2FjfPR555BGFhobq8ssvV319vc455xw999xzslqtZr0tAAAAAAAAHIHFMAzD7CDMVlVVJbvdLofDwVI+AADQru46b+iu7xsAABy7o503+F1PKQAAAAAAAAQ/klIAAAAAAADociSlAAAAAAAA0OVISgEAAAAAAKDLkZQCAAAAAABAlyMpBQBAEGlocqnZ5TY7DAAAAPiZusZms0M4BEkpAACCREl1g0b9frF++twqGYZhdjgAAADwE699na9Bv/tI/9lUZHYorZCUAgAgSGwocKi20aUvdpTqfT+bcAAAAMA8r68ukCS9t9G/5ogkpQAACBL7K+t9Py/6cLuczS4TowEAAIA/cNQ3aUNBpSRpbX6FucH8AEkpAACCxPeTUvnldXrlq3wTowEAAEBXaGx2a/M+R5vtG1bsKpW75VKRo0FFjvrDjjMDSSkAAILEfkeDJKl3crQk6QOW8AEAAAS9+/+zTRc9/qXeXr/vsNc/31Ha6vH6/MouiOrokJQCACBIeCulLhuVJUnaUOhQYzM78QEAAASrZpdbb60rlCS9t+HQLyQNw9Dn3x6UJGUnRkqS1rUs5fMHJKUAAAgS3qTUuJOSlBAVpsZmt7bsdxzzfQzD0COLv9WsV9Zq3lubfD0IAAAA4F++yitXRV2TJGn5rrJDeoruLatTYUW9wqwW/fzM3pKktXv9p68USSkAAIJAs8utA1We5Xs9EiI1KjdBkrTmOCYdH39zQI99ukPvbSzSy1/la97bmzo0VgAAAHSM77drqG9yafWe1nO/FbvLJEkjcxJ0ep9kSdKmff5TTU9SCgCAIHCg2im3IYVbQ5QcbdPJLUmpY91hxe32VElJ0sT+KZKkrUXVamhiJz8AAAB/4nIb+mjLAUnfLc1b1rJUz2vzPk/V/MicePVKjlZ8VJiczW59U1TVtcG2gaQUAABBwLt0L90eoZAQi0blfFcp1dZOLIfzn83F2lZcrVhbqB65YoSSY2xyuQ2/mbgAAADAY/WecpXWOGWPDNOcSf0kScu2/yAptd8zhxuSaZfFYtGYXomS/GdDHJJSAAAEAW9SKjM+QpI0LCteoSEWHahyal/l0W37axiGHvvUUyV1wxm9FB8VrmFZdknSpsJj700FAACAzvPuxv2SpEmD0jShX6pCLNL2A9Uqcnjmfs0ut7a1fLE4ODNOkvTjUdmSpH+tKTyk/5QZSEoBABAE9vmSUp7S7chwq2/y8fm3pW0+7/tW7CrTtwdqFB1u1Q1n9JIkDe3hSUptJCkFAADgNxqb3Xpvo6faadqIHkqIDtfQrHhJ0le7yyVJu0tr5Wx2Kzrcqp5J0ZKkCf1TlB4XofLaRi3+5oApsX8fSSkAAIJAUaWnyXmmPdJ3bnw/T0+o+f/eog83Fx/xHi+s2CtJuvTkHrJHhkmShmd7k1KVHRkuAAAATsDS7SWqrGtSaqxNY09KkiSN/sFGN95+UoMy4xQSYpEkhVpDdPnoLEnSq1/nd3XYhyApBQBAENj/g0opSbr17D46f3C6Gl1uzXx5jT5p59uwIke9Fm/1XL92bE/f+SEtlVI7D9ao1tncCZEDAADgWL29fp8k6ZIRmbK2JJx+uPvylv3epXv2Vs+9/JRsWSzSf3eWaW9ZbVeFfFihpr46AADoEPt+0FNKkmyhVj0xY6Tu/NdGvblun3752jrdf9kw7TxQLVks6psao5iIUFU3NOufqwvkchs6rXei+qXF+u6RGhuhDHuEihwN2rK/Sqe2NMcEAACAOcpqnPpka4kk6dKRWb7z3qTUtuIq1TibfZVS3pYOXlkJUTpnQJoiw61yuY9+Q5zOQFIKAIAgcLhKKclTov3Aj4bpQHWD/ruzTL98dV279/n5Wb0POTe0h11FjgZtLKwkKQUAAGCiGmezbnh+tRqb3RqYEaeBGd99mZgWF6GshEgVVtRrXX6Fb/fkH1ZKSdJfrx0li8XSZXG3haQUAAABzlHXpKoGz9K6HyalJCnMGqInrxqlq/62UntK6zShf4qiw0O182CNGpvdsoZYdHJOgqYMTdcpPQ9NOo3umaCPvzmgv3+Zpx+PypY9KqzT3xMAAABaMwxDN7+4WhsKKhUfFaZHrxhxSGJpVG6CCivq9fzyPapuaFa4NUR902IOuZc/JKQkklIAAAS8bcWeb8F6xEcqxnb4X+32yDC9O+sMScc+CblqTK5e+Spfe8rq9Jt3Nuv/fnLoBAgAAACda2OhQ//dWaaIsBC9eMMY9U+PPWTMqNwEvbN+v2953zkDUxVm9d924v4bGQAAOCpbW0qzv1++fTgWi+W4kknRtlA9csUIWUMsenfDfn22veS44gQAAMDxW9yyac3E/qkamnXokjxJOjknwfdzz6Qo3T99WJfEdrxISgEAEOC2FlVLkgZmxB1h5PEbmZOga07LlSS9tW5/p70OAAAADs+blJo0KK3NMQPSY5WVEKm4iFA9fe1ov2+7wPI9AAACnHf53oD0zktKSdK0kT303PI9WrL1gBqaXIoIs3bq6wEAAMAjv6xO2w9Uyxpi0dkDUtscF2oN0Qe/OlMul6GE6PAujPD4UCkFAEAAc7kNbT/grZRqf/neiRqeZVemPUK1jS59/u3BTn0tAACA7qiqoUnXP/u1/rGqoNX5j78pliSd0jNB8VHtJ5viIsICIiElkZQCACCg5ZXWqqHJrcgwq3KTojv1tSwWi6YMzZAk/Wdzcae+FgAAQHe0eMsBLd1+UPPe3qRvW754lKSPt3iX7qWbFVqnICkFAEAA8y7d65ceK2tI5++Id8FQz0Tok28OyNns6vTXAwAA6E72ltVKkppchua9tUlut6G1+RX6ek+5rCEWnT+EpBQAAPAT3p33BnXy0j2vkdkJSo+LULWzWR9sKuqS1wQAAOgu9pTV+X5etadCf/pspx5Z/K0k6bKTe6hHfKRZoXUKklIAAASwrth57/tCQiy6+rQcSdJflu2WYRhd8roAAADdwZ6WSqkz+iRLkv64+Ft9saNUoSEW3XZ2XzND6xQkpQAACGDeXgP907qmUkqSrj4tV1HhVm0rrtbnO0q77HUBAACCmWEYyiv1JKV+c9FA/ebCgbK0dGf48ehsZSdGmRhd5wg1OwAAAHB8Gpvd2l9ZL0nqldy5Tc6/Lz4qXFeemqNnvszTn5fu0vh+KV322gAAAMGqsq5J1Q3NkqTcxGgNODNO/dJitXT7Qf3ynD4mR9c5SEoBABCgCivq5DakyDCrUmJtXfraN5zRS898macVu8tU3dCk2IiwLn19AAAAf1JZ16iXv8rX1qIqVdQ1amL/VF12cpYSosOP+h55LUv3MuwRigy3SpLO6peis4L4C0CSUgAABKi95Z5GmDmJUbJYOn/nve/rER+phKgwVdQ1aV9lvQakk5QCAADd07JvD+rOf23QgSqn79x/d5bp4cXf6ulrRuuMvslHdR/vznu5ScG3TK8t9JQCACBA5bfszpJj0sQlK8HzuoXl9aa8PgAAgNmW7yrV9c9+rQNVTvVOjtbcKQP0u4sGaUB6rOoaXfrZC6u0YlfZUd1rT6lnbtczqevaMpiNpBQAAAEqv6VSKtekppdZCZ4tiQsr6o4wEgAAIPg0NLk0981NMgzpwqEZev+XZ+rm8SfphjN66Z1Zp2ti/xQ1NLn18xdWy1HXdMT7eXfe69mFvULNRlIKAIAAkV9Wpxpns+/x3pZKKbNKvL9LSlEpBQAAup/HPt2hvWV1So+L0MLLhvr6QEmSLdSqp64epZNSolXtbNZHW4p91xqaXNpTWivDMFrdb0+Zt1KK5XsAAMCPbC2q0sQ/LtWc19f7zuWXe75NyzGpxNu3fI+klF9ZuHChLBaLZs+e7TtnGIbmz5+vzMxMRUZGasKECdqyZYt5QQIAEOCqGpr0ty92S5L+95LBijvMpi8RYVZNPzlLkvTuxv0qdjTomme+0rD5H2vCQ0v17H/3tBr/XU8pKqUAAIAf+e/OUrnchpZ9e1BNLrcMw/Cf5XuVLN/zF6tWrdLTTz+tYcOGtTq/aNEiPfzww3riiSe0atUqpaena9KkSaqurjYpUgAAAtu6/Eo1uQzlJEZp8uD0NsddNCxDkmcuN+uVtfpiR6kaXW5J0l8+36Wmlp+LHQ2qbFniR6NzAADgV7bsr5IkOZvd2lZUrZJqpxqa3LKGWNSjJTnU1aiU8i81NTW66qqr9Ne//lUJCQm+84Zh6NFHH9W8efM0ffp0DRkyRM8//7zq6ur0yiuvmBgxAACBa82ecknS6NyEdsflJkVreJZdbkNavbdC4aEheuOWsUqJtelAlVMfbCqSJN3/n62SpBHZ8YoKD+3c4P0ISSkAAALAlv0O38/rCyp8/aQy4yMUZjXn17k3GVZZ16TqhiM370TnuvXWW3XhhRfq3HPPbXU+Ly9PxcXFmjx5su+czWbT+PHjtXz58jbv53Q6VVVV1eoAAAAeq/dWSJJG9Ww/KSVJU4dn+n7+1Tl9NSo3UVePyZUk/f3LPH24uUhvr9+vEItnKWB3QlIKAAA/19Dk0q6Dtb7H6woqv+s5kGhez4EYW6gSojz9E/ZVUi1lptdee01r167VwoULD7lWXOxprJqWltbqfFpamu/a4SxcuFB2u913ZGdnd2zQAAAEqGaXW+sLKiVJo3MTjzj+4hGZSogK06jcBP38rN6SpKtOy1G4NUQbCh36xUtrJUnXju2pYVnxnRW2XyIpBQCAn9teXC2X+7vdWdYXVPr6SeWY3HPAt4SvnKSUWQoKCvSrX/1KL730kiIiItocZ7FYWj02DOOQc983d+5cORwO31FQUNBhMQMAEMi2FVerrtGl2IhQ9U2NOeL41NgIrbz7HL3289N8Fe7JMTb97MxeslikyDCrRuUm6PbJ/To7dL/TfRYqAgAQoLz9pIb0iNPmfVXafbBWn2wtkWT+lsFZCZHatM+hwgqanZtlzZo1Kikp0ahRo3znXC6XPv/8cz3xxBPavn27JE/FVEZGhm9MSUnJIdVT32ez2WSz2TovcAAAAtTqln5SJ+ckKCSk7S94vs8Waj3k3J3nD9Adk/sf9T2CEZVSAAD4OW8/qdP7JPt2Y9laVKUYW6guGJrR3lM7nW8HPpqdm+acc87Rpk2btH79et8xevRoXXXVVVq/fr169+6t9PR0LV682PecxsZGLVu2TOPGjTMxcgAAApO3n9SRmpwfje6ckJKolAIAwO95K6UGZ9pV7GjwNTm/79IhvuVzZmEHPvPFxsZqyJAhrc5FR0crKSnJd3727NlasGCB+vbtq759+2rBggWKiorSjBkzzAgZAADTOZtd+tOSnZo8OF1DetiP6bnr8islSaM6ICnV3ZGUAgDAj7nchrYVe5NScZKkd9bv15WnZuuSET3MDE3Sd5VS3xRVqcnlNm0nQLTvzjvvVH19vWbOnKmKigqNGTNGH3/8sWJjY80ODQAAU/xrTaH+b8lOLf32oP4964yjfl5ZjdO3wcvQrGNLZuFQJKUAAPBj+eV1amhyKyIsRD2TotU7OVon58SrR3yk2aFJ8nxDaI8MU355nZ5auku/PKev2SFB0tKlS1s9tlgsmj9/vubPn29KPAAA+Juvdnv6Qm0sdOhgtVMpsUfXR3HTPk9bhd4p0YqNCOu0+LoLU7/OXLhwoU455RTFxsYqNTVV06ZN8zXj9Lr++utlsVhaHaeddlqrMU6nU7fddpuSk5MVHR2tiy++WIWFhV35VgAA6BR7SmslST2TomUN8fwezEqIanfXtK4UHxWuey8eLEn6v093aHPLRA0AAMBfGYahr/PKfY8///bgUT93U6FnrjPsGJf84fBMTUotW7ZMt956q1auXKnFixerublZkydPVm1tbatx559/voqKinzHBx980Or67Nmz9dZbb+m1117Tl19+qZqaGl100UVyuVxd+XYAAOhweS1JqV7J0SZH0rZLRmTq/MHpanYb+v1735gdDgAAQLsKK+pVXNXge7z0GJJSG1u+gDvWPlQ4PFOX73344YetHj/77LNKTU3VmjVrdNZZZ/nO22w2paenH/YeDodDzzzzjF588UWde+65kqSXXnpJ2dnZ+uSTT3Teeed13hsAAKCTeZNSPf04KWWxWHTPxYO0ZFuJvsor18rdZTqtd5LZYQEAABzWVy1VUrERoapuaNYXOw7K5TZkPcxOeMt3lio51qZ+aZ4+jL5Kqaz4Los3mPlVN1KHw/MfNzExsdX5pUuXKjU1Vf369dNNN92kkpIS37U1a9aoqalJkydP9p3LzMzUkCFDtHz58sO+jtPpVFVVVasDAAB/tKespVIqyX+TUpKUYY/U5adkSfIs4wMAAPBXq1qSUleMzlZcRKgq65p01d9Watqf/qsix3c7Cn/+7UHN+NtXmvzI55rx15VavqtUxVUNsli+24AGJ8ZvklKGYWjOnDk644wzWm1rPGXKFL388stasmSJ/vjHP2rVqlU6++yz5XQ6JUnFxcUKDw9XQkLrrRjT0tJUXFx82NdauHCh7Ha778jOzu68NwYAwAnwLd9L8e+klCTdMqGPwqwWLd9VptV7yo/8BAAAABN83TJPGXtSks7smyJJWrm7XOsLKvXm2n2+ce9t3O/7efmuMl33968lSSelxCjaxr5xHcFvklKzZs3Sxo0b9eqrr7Y6f8UVV+jCCy/UkCFDNHXqVP3nP//Rt99+q/fff7/d+xmG0WYT2Llz58rhcPiOgoKCDnsfAAB0lIYml2/L4Z5+XiklST3iIzV9pKda6pWv802OBgAA4FAHq53KK62VxSKNzk3UzIkn6Yw+yRrb0npg5e4ySZLLbejTrZ5VWg/+aJj6pcWoyWVIosl5R/KLpNRtt92mf//73/rss8+UlZXV7tiMjAzl5uZqxw7P0oD09HQ1NjaqoqKi1biSkhKlpaUd9h42m01xcXGtDgAA/E1BeZ0MQ4q1hSo5JtzscI7Kj0d7fo9/tLlYDU1sOAIAAPzLjpJqSVJuYpTsUWEanGnXSz8bo3suHiRJWr2nQk0ut9bmV6istlFxEaGaNrKHnv3pqUqNtUmSRubEmxV+0DE1KWUYhmbNmqU333xTS5YsUa9evY74nLKyMhUUFCgjI0OSNGrUKIWFhWnx4sW+MUVFRdq8ebPGjRvXabEDANDZvt/kvK3qX39zck6CesRHqrbR5ft2EQAAwF/kl9VJknJ/UIXeLzVWCVFhqm9yaWOhQ4u/OSBJOntAqsKsIeoRH6l//mKsfnPhQP14NC2AOoqpSalbb71VL730kl555RXFxsaquLhYxcXFqq/3LFWoqanRHXfcoRUrVmjPnj1aunSppk6dquTkZF166aWSJLvdrhtvvFG33367Pv30U61bt05XX321hg4d6tuNDwCAQBQIO+/9UEiIRZeMyJQkvbN+3xFGAwAAdK09vqRUVKvzISEWjen13RK+j7d4elRPHpzuG5ObFK2fndlbEWHWLoo2+JmalHrqqafkcDg0YcIEZWRk+I7XX39dkmS1WrVp0yZdcskl6tevn6677jr169dPK1asUGxsrO8+jzzyiKZNm6bLL79cp59+uqKiovTuu+/KauUvCgAgcPl23gugpJQkXTKihyRp6faDctQ1mRwNAADAd/LLPfOrH1ZKSdJpvRMlSU9+tlN7yupkCw3RWf1SujS+7sbUdvGGYbR7PTIyUh999NER7xMREaHHH39cjz/+eEeFBgCA6Xw77yVHHWGkf+mfHqsB6bHaVlyt/2wu0k9OzTE7JAAAAEnSXm+lVOKh86vTTvJUStU2evpi3jN1sGLYZa9T+UWjcwAAcKjdB1uW7wXAzns/dLFvCd/+I4wEAADoGoZhfK+n1KFJqX6psUqL8zQzv/uCAZoxhi/WOhspPwAA/FBFbaNKqp2SpL5psUcY7X8uHp6pRR9u18q8MhU7GpRujzA7JAAA0M1V1DWp2tksSco+TKVUSIhFL944RsWOBpbtdREqpQAA8ENbi6okSTmJUQFZNp6VEKVTeibIMKR3N1AtBQAAzOft15lhj2izWXm/tFgSUl2IpBQAAH7om5ak1MCMwKuS8rq4peH5OxvYhQ8AAJjPu3Qv5zBVUjAHSSkAAPzQ1qJqSdLAjDiTIzl+Fw7NkDXEos37qlTsaDA7HAAA0M3tbaefFMxBUgoAAD+0rdhbKRW4SanE6HD1TvY0ad/a8n4AAADMsrfcs3wvNwA3kQlWJKUAAPAzTS63dhyokSQNTA/cpJQkDWhJqnl7ZAEAAJilvZ33YA6SUgAA+JndB2vV6HIrxhaqrIRIs8M5Id6eWNtaliMCAACYZY83KZVIpZS/ICkFAICf8VYVDUiPVUiIxeRoToy30msby/cAAICJKusaVVrjlCT1TKZSyl+QlAIAwM/4klIBvPOel/c97DpYq4Yml8nRAACA7sq7s3F2YqRiI8JMjgZeJKUAAPAz3x7wLHUbEOD9pCQpPS5C8VFhcrkN7SypMTscAADQTfl2Ng6C+VUwISkFAICfKXI0SFLA95OSJIvFogHpLX2liukrBQAAzOGtRA/knY2DEUkpAAD8zMFqT7+D1NgIkyPpGN6KL3bgAwAAZiEp5Z9CzQ4AAAB8p7HZrbLaRklSWpzN5Gg6xqCWyd8nWw8oIixEPx6VrZ7J7HoDAAC6RpPLrR0HPG0EBpGU8itUSgEA4Ee8u8KEhliUEBVucjQdY2iWXZK0t6xOf/psl+77YKvJEQEAgO5k98FaNbrcirGFBkV7hGBCUgoAAD9S4lu6Z1NIiMXkaDrGwIw4PXz5cE0/uYck0fAcAAB0qW+KHJKkAemxQTO/ChYkpQAA8CMHqjxNzlPigqOflNf0k7N0x+T+kqTCijq53IbJEQEAgO7Ct/MeS/f8DkkpAAD8yPcrpYJNelyEwkND1OQytL+y3uxwAABAN0GTc/9FUgoAAD9S0lIpFSxNzr8vJMSi7JY+DvnldSZHAwAAuovdB2slSf3SYkyOBD9EUgoAAD9SUuWtlAqu5XteuUmeXff2lpGUAgAAna+hyaX9Dk+FNrv/+h+SUgAA+JGS6uCtlJKknMQoSdLe8lqTIwEAAN1BQXmdDEOKsYUqKTo4djYOJiSlAADwIweCvFLKm5TKp1IKAAB0gbxSzxdhPZOjZLGw856/ISkFAIAf8TY6TwnCRueSlJvUUilFUgoAAHQB75zD20IA/oWkFAAAfqLZ5VZZrScplRYXnJVS3qRUfnmdDMMwORoAABDs8so8lVK9SEr5JZJSAAD4idKaRhmGZA2xBG3Pg6yEKFksUo2zWeW1jWaHAwAAgtzelqSU94sx+BeSUgAA+Alvk/OUGJtCQoKz50FEmFXpLVVge8tZwgcAADrXnlLPfKMXO+/5JZJSAAD4iRJvk/Mg3XnPi2bnAACgKzQ0ubTfUS+JnlL+iqQUAAB+4kBLpVRqkDY596LZOQAA6AqFFXUyDCnGFqrkmOBsjRDoSEoBAOAnvJVSKbHB2eTcK90eKem75YoAAACdIa/Uu/NelCyW4GyNEOhISgEA4CeKWsrLM+3BnZRKafmmsrTGaXIkAAAgmHmbnPekn5TfIikFAICfKHJ4Kocy4iNNjqRzJcd4lieW1rD7HgAA6Dyb9jkkST3Zec9vkZQCAMBP7KtsqZSKD+5KqeSWnlkHq6mUAgAAneNAVYM+2FQkSTp3YJrJ0aAtoWYHAAAAJMMwtL8lKdUjyCulUnyVUiSlAABAxzIMQ4YhPb98j5pchkbnJmhkToLZYaENJKUAAPADlXVNamhyS5LSg7ynlLdSqq7RpbrGZkWFMx0BAAAnrqzGqXMfXqYwa4jqG12SpJ+d2dvkqNAelu8BAOAHvEv3kmNssoVaTY6mc0WHWxUR5pmClFbTVwoAAHSM1XsrVFHXpJJqp6qdzeqZFKVJg1i658/4ahIAAD/gbXLeI8j7SUmSxWJRcoxNhRX1OljjVA7NRwEAQAfIL6uTJA3KiNNJqTG6ekyOrCEWk6NCe0hKAQDgB7z9pDLswd1PysublKKvFAAA6Ch7y2slSRMHpOj/nTfA5GhwNFi+BwCAH9jv23mv+ySlJJqdAwCAjrO3pVIqNzHa5EhwtEhKAQDgB/a3LN/L7AbL9yQpJTZcEj2lAABAx8kv9ySlaA0QOEhKAQDgB7pbpVRKS6XUwZoGkyMBAADBoNnl1r4Kz3wql6RUwCApBQCAH+huSank2Jble1RKAQCADrC/skHNbkPhoSFKi+0elefBgKQUAAAma3a5daCqey3fo6cUAADoSN4m5zmJUQphx72AQVIKAACTHah2ym1IYVaLkqNtZofTJUhKAQCAjvRdk3OW7gUSklIAAJjMu3Qvwx7Zbb7ZS45paXRew/I9AABw4vaWtVRK0U8qoJCUAgDAZEUtO++l27vH0j3pu55SNc5mNTS5TI4GAAAEOiqlAhNJKQAATFbS0k8qLa77JKVibaGyhXqmIQerWcIHAABOTH55S1IqKdrkSHAsSEoBAGCygy19lVJiukc/KUmyWCy+vlIH6SsFAABOgGEYvqQUy/cCC0kpAABM5q0USo3rPkkp6bslfCVVJKUAAMDxK6l2qq7RpRCLlJUQaXY4OAYkpQAAMJk3KdWdKqUkqW9qjCRp075KcwMBAAABbdfBGklSTmKUbKFWk6PBsSApBQCAyXxJqdjulZQanZsgSVq9p8LkSAAAQCDbddCz817vlBiTI8GxMjUptXDhQp1yyimKjY1Vamqqpk2bpu3bt7caYxiG5s+fr8zMTEVGRmrChAnasmVLqzFOp1O33XabkpOTFR0drYsvvliFhYVd+VYAADhu3TYp1dOTlFpfUKnGZrfJ0QAAgEC1u6VS6qQUmpwHGlOTUsuWLdOtt96qlStXavHixWpubtbkyZNVW1vrG7No0SI9/PDDeuKJJ7Rq1Sqlp6dr0qRJqq6u9o2ZPXu23nrrLb322mv68ssvVVNTo4suukguF1tMAwD8W5PLrfK6RkndLyl1UkqMEqLC5Gx2a8t+h9nhAACAAOWtlDqJSqmAE2rmi3/44YetHj/77LNKTU3VmjVrdNZZZ8kwDD366KOaN2+epk+fLkl6/vnnlZaWpldeeUU333yzHA6HnnnmGb344os699xzJUkvvfSSsrOz9cknn+i8887r8vcFAMDRKq9tlGFI1hCLEqLCzQ6nS1ksFo3KTdAnW0u0Zm+FRuYkmB0SAAAIQN5KKZbvBR6/6inlcHi+JU1MTJQk5eXlqbi4WJMnT/aNsdlsGj9+vJYvXy5JWrNmjZqamlqNyczM1JAhQ3xjfsjpdKqqqqrVAQCAGbxL95Kiw2UNsZgcTdcb3dPzO3/VnnKTIwEAAIGoocmlfZX1kli+F4j8JillGIbmzJmjM844Q0OGDJEkFRcXS5LS0tJajU1LS/NdKy4uVnh4uBISEtoc80MLFy6U3W73HdnZ2R39dgAAOCrepFRqXPdauuflbXa+Zm+FDMMwORoAABBo8kprZRiSPTJMidHdq+o8GPhNUmrWrFnauHGjXn311UOuWSytvzk2DOOQcz/U3pi5c+fK4XD4joKCguMPHACAE+Brch7TPZNSQ7PsCg8NUWlNozbto68UAAA4Nrt9/aSij5gngP/xi6TUbbfdpn//+9/67LPPlJWV5Tufnp4uSYdUPJWUlPiqp9LT09XY2KiKioo2x/yQzWZTXFxcqwMAADMcrOmeO+952UKtunBohiTp6c93mxwNAAAINLvoJxXQTE1KGYahWbNm6c0339SSJUvUq1evVtd79eql9PR0LV682HeusbFRy5Yt07hx4yRJo0aNUlhYWKsxRUVF2rx5s28MAAD+qqSqQVL3TUpJ0s/P6i1J+mBTkfaW1R5hNA7nqaee0rBhw3xfto0dO1b/+c9/fNcNw9D8+fOVmZmpyMhITZgwQVu2bDExYgAAOoa3yTk77wUmU5NSt956q1566SW98sorio2NVXFxsYqLi1Vf72lSZrFYNHv2bC1YsEBvvfWWNm/erOuvv15RUVGaMWOGJMlut+vGG2/U7bffrk8//VTr1q3T1VdfraFDh/p24wMAwF/5KqW66fI9SRqYEacJ/VPkNqS/fkG11PHIysrS/fffr9WrV2v16tU6++yzdckll/gST4sWLdLDDz+sJ554QqtWrVJ6eromTZqk6upqkyMHAODE7C71fKHVmybnAcnUpNRTTz0lh8OhCRMmKCMjw3e8/vrrvjF33nmnZs+erZkzZ2r06NHat2+fPv74Y8XGxvrGPPLII5o2bZouv/xynX766YqKitK7774rq9VqxtsCAOCo+XpKxUaYHIm5vNVSb67dp2aX2+RoAs/UqVN1wQUXqF+/furXr5/uu+8+xcTEaOXKlTIMQ48++qjmzZun6dOna8iQIXr++edVV1enV155xezQAQA4IYUVnqKWnMQokyPB8Qg188WPZpcdi8Wi+fPna/78+W2OiYiI0OOPP67HH3+8A6MDAKDzfZeU6r6VUpJ0Wq8kRYdbVdvo0s6DNRqQTr/H4+VyufTPf/5TtbW1Gjt2rPLy8lRcXKzJkyf7xthsNo0fP17Lly/XzTfffNj7OJ1OOZ1O3+OqqqpOjx0AgGPR0ORSeW2jJCnTHmlyNDgeftHoHACA7oqklEdIiEWDe9glSZsK2YXveGzatEkxMTGy2Wz6xS9+obfeekuDBg3ybRjzww1g0tLSDtlM5vsWLlwou93uO7Kzszs1fgAAjlWxw9ObMyrcqrhIU2tucJxISgEAYJJaZ7NqG12SpNRunpSSpGHepNQ+klLHo3///lq/fr1WrlypW265Rdddd52++eYb3/UfbpNtGEa7W2fPnTtXDofDdxQUFHRa7AAAHI/9Ds/SvXR7RLu/0+C/SCUCAGCSkpYqqcgwq6Jt/EoemuVJSm2kUuq4hIeHq0+fPpKk0aNHa9WqVXrsscd01113SZKKi4uVkZHhG19SUnJI9dT32Ww22WwkSwEA/stbKcXSvcBFpRQAACbZWeLZwrhnMrvFSNKwrHhJ0taiKjXR7PyEGYYhp9OpXr16KT09XYsXL/Zda2xs1LJlyzRu3DgTIwQA4MQUtSSl0u3de8OYQMbXsgAAmOTbA9WSpP5pMSZH4h9yE6MUawtVtbNZOw7UaFAmzc6P1t13360pU6YoOztb1dXVeu2117R06VJ9+OGHslgsmj17thYsWKC+ffuqb9++WrBggaKiojRjxgyzQwcA4LgVtSzfyyQpFbBISgEAYBJvUqpfeqzJkfiHkBCLhvSwa8XuMm3aV0lS6hgcOHBA11xzjYqKimS32zVs2DB9+OGHmjRpkiTpzjvvVH19vWbOnKmKigqNGTNGH3/8sWJj+bsHAAhcRZXeSimW7wUqklIAAJhke7G3UorEgNewLG9SyqErTjE7msDxzDPPtHvdYrFo/vz5mj9/ftcEBABAF/Au38uIp1IqUNFTCgAAEzS73Np9sFaS1I+klM/w7HhJ0mfbDtJXCgAAtMu7fC+D5XsBi6QUAAAm2FNWp0aXW1HhVvWIp+Tc6+wBqUqOsWlfZb3eXrfP7HAAAICfamhyqaKuSZKUEcdcKlCRlAIAwATeflJ902IVEmIxORr/ERFm1c/P6iVJenLpLrnchskRAQAAf+RduhcVblVcJJ2JAhVJKQAATPBdPyl23vuhq8bkKj4qTHmltXp/U5HZ4QAAAD9UVOlZupduj5DFwhd8gYqkFAAAJvDtvEc/qUNE20J17Wm5kqQPNpKUAgAAh/JWSmWy815AIykFAIAJtpOUateZ/VIkSav3lsswWMIHAABa8zY5T6fJeUAjKQUAQBdrcrm1t6xOktSX5XuHNSzLrvDQEJXWNCqvtNbscAAAgJ/5rlKKpFQgIykFAEAXKyivk8ttKDLMqvQ4JlKHYwu1aniWXZK0ek+FydEAAAB/4/3SKishyuRIcCJISgEA0MX2lHkmUblJUTTmbMcpPRMlSav2lJscCQAA8CeGYWjL/ipJ0qDMOJOjwYkgKQUAQBfLK/Us3euVHG1yJP6NpBQAADic/Y4GOeqbFBpioRVCgCMpBQBAF9vTUm7ek6RUu07OTZDFIu0pq1NJdYPZ4QAAAD+xZZ9DktQnNUa2UKvJ0eBEkJQCAKCLeZfv9UoiKdUee2SY+rfsTvjZthKTowEAAP7Cu3RvcKbd5EhwokhKAQDQxfKolDpqU4dnSpIe/OhbOeqbTI4GAAD4g2+KvEkp+kkFOpJSAAB0IWezS/sr6yVJPZPZLeZIfnZmL/VOiVZpjVOLPtxmdjgAAMAPfEOT86BBUgoAgC5UUF4vtyFFh1uVEmMzOxy/Zwu1asGlQyVJL3+Vr4LyOpMjAgAAZqqsa9S+li/4SEoFPpJSAAB0oe83ObdYLCZHExhO652kIT08k85txdUmRwMAAMzkrZLKToxUXESYydHgRJGUAgCgC3mbnNNP6tjkJno+r3wqpQAA6Na8/aQGZVAlFQxISgEA0IW8Tc7Zee/YZCd6+m/ltyT1AABA97S7ZS7Vr2WHXgQ2klIAAHQhdt47PjnepBSVUgAAdGt5B1vmUnzBFxRISgEA0EXcbkOb9zkkSf35du+Y5CaRlAIAALRCCDYkpQAA6CJ5ZbWqamiWLTREAzJISh0Lb6VUQUW93G7D5GgAAIAZ6htdKnI0SJJ6k5QKCiSlAADoIuvzKyVJQ3vYFWblV/CxyLBHyBpiUWOzWyXVTrPDAQAAJvBWSdkjw5QQHW5yNOgIzIgBAOgi6wsqJUkjsuNNjSMQhVpD1CM+UpK0l2bnAAB0S3u8G8ZQJRU0SEoBANBFvEmpkTkJ5gYSoGh2DgBA97abpFTQISkFAEAXaGhyaWtRlSRpRE68ucEEqJyWZucFJKUAAOiWvJVS7LwXPEhKAQDQBTbvc6jZbSgl1qZMe4TZ4QQkKqUAAOje8ryVUikkpYIFSSkAALrA9/tJWSwWc4MJUCSlAADo3ryNzntRKRU0SEoBANAFNhY6JNHk/ER4k1Jb9lfpJ0+v0BtrCk2OCAAAdJWqhiaV1jRKknomR5kcDTpKqNkBAADQHWze70lKDc6MMzmSwNUzOVqRYVbVN7m0cne5tuyr0oXDMhQRZjU7NAAA0Mm8/aSSY2yKjQgzORp0FCqlAADoZLXOZl8PhMGZdpOjCVwxtlC9ccs4PXLFcGXaI1TtbNbH3xwwOywAANAFCivqJUk5iZEmR4KORFIKAIBOtq24SoYhpcXZlBJrMzucgDYoM06XjszSZaOyJElvrmUJHwAA3cGBqgZJUjobxgQVklIAAHSyLfurJFEl1ZEuHdlDkvT5twdV0jJJBQAAwau45fd9WhxJqWBCUgoAgE62ZZ83KUU/qY7SOyVGJ+fEy21ID360XbXOZrNDAgAAneiAg6RUMCIpBQBAJ9tSRJPzznDduJ6SpH+uKdTZf1zq69sFAACCz4EqpyQpnaRUUCEpBQBAJ2psdmt7cbUklu91tEtG9NCfrz5ZWQmROlDl1PPL95gdEgAA6CTenlKpcfTnDCYkpQAA6EQ7SqrV5DIUFxGqrAR2i+lo5w/J0G8vGiRJWvbtQZOjAQAAncXX6JxKqaBCUgoAgE7kbXI+KDNOFovF5GiC07iTkhQaYlFeaa32lrGEDwCAYFPd0KTaRpckekoFG5JSAAB0om/Yea/TxUaEaVRugiTPbnwAACC4ePtJxdpCFW0LNTkadCSSUgAAdKIt+z1Nzof0oMl5ZxrfP0USS/gAAAhG3qV7aXaqpIINSSkAADqJ221QKdVFxvfzJKWW7yqTs9llcjQAAKAjFTtaklI0OQ86x1X3Vltbq2XLlik/P1+NjY2trv3yl7/skMAAAAh0e8pqVdvoki00RL2To80OJ6gNyohTSqxNB6udWrOnQuP6JJsd0lFhTgUAwJEdqPYmpaiUCjbHnJRat26dLrjgAtXV1am2tlaJiYkqLS1VVFSUUlNTmUABANDC2+R8QEacQq0UJ3cmi8Wi009K0tvr92v5rrKASEoxpwIA4OgccLDzXrA65hny//zP/2jq1KkqLy9XZGSkVq5cqb1792rUqFF66KGHjulen3/+uaZOnarMzExZLBa9/fbbra5ff/31slgsrY7TTjut1Rin06nbbrtNycnJio6O1sUXX6zCwsJjfVsAAHS4Lb6le/ST6greRNR/d5WaHMnR6cg5FQAAwczb6JxKqeBzzEmp9evX6/bbb5fVapXVapXT6VR2drYWLVqku++++5juVVtbq+HDh+uJJ55oc8z555+voqIi3/HBBx+0uj579my99dZbeu211/Tll1+qpqZGF110kVwu+kkAAMzlbXJOUqprjDspSZK0sdCh6oYmk6M5so6cUwEAEMyKq1i+F6yOefleWFiYLBaLJCktLU35+fkaOHCg7Ha78vPzj+leU6ZM0ZQpU9odY7PZlJ6efthrDodDzzzzjF588UWde+65kqSXXnpJ2dnZ+uSTT3TeeecdUzwAAHQUw6DJeVfLSohSblKU9pbV6eu8cp0zMM3skNrVkXMqAACCWUkVjc6D1TFXSo0cOVKrV6+WJE2cOFG/+93v9PLLL2v27NkaOnRohwe4dOlSpaamql+/frrppptUUlLiu7ZmzRo1NTVp8uTJvnOZmZkaMmSIli9f3uGxAABwtIqrGlRW2yhriEUD0mPNDqfbGHdSyxK+nWUmR3JkXT2nAgAgELndhkqqPcv30u1USgWbY05KLViwQBkZGZKk3//+90pKStItt9yikpISPf300x0a3JQpU/Tyyy9ryZIl+uMf/6hVq1bp7LPPltPp+QtZXFys8PBwJSQktHpeWlqaiouL27yv0+lUVVVVqwMAgI60qdCzdK9PSowiwqwmR9N9nN7Hs4RveQD0lerKORUAAIHqQHWDmt2GQixSSgyVUsHmqJfv1dTUKCYmRqNHj/adS0lJOaTHU0e64oorfD8PGTJEo0ePVm5urt5//31Nnz69zecZhuErhz+chQsX6t577+3QWAEA+L71BZWSpBHZ8abG0d2M7e1JSm0rrlZpjVPJfjh5NWNOBQBAoNrQMqfqlxbLbsZB6Kj/iyYnJ2vKlCl66qmntG/fvs6MqU0ZGRnKzc3Vjh07JEnp6elqbGxURUVFq3ElJSVKS2u7j8TcuXPlcDh8R0FBQafGDQDofjYUVkqShpOU6lJJMTZNHZ6pm87sJbfbMDucw/KHORUAAIFiXX6lJGlkTkL7AxGQjjoptX37dl1wwQV644031Lt3b51yyin6/e9/r40bN3ZmfK2UlZWpoKDAV+o+atQohYWFafHixb4xRUVF2rx5s8aNG9fmfWw2m+Li4lodAAB0FLfb0MYCz/I9KqW63uNXjtS8Cwcp1U936PGHORUAAIFibb6nCGVkTry5gaBTHHVSKjc3V7fddps++eQTlZSUaM6cOdqyZYvOOuss9erVS7/61a+0ZMkSuVyuo37xmpoarV+/XuvXr5ck5eXlaf369crPz1dNTY3uuOMOrVixQnv27NHSpUs1depUJScn69JLL5Uk2e123Xjjjbr99tv16aefat26dbr66qs1dOhQ3258AAB0td2lNap2NisyzKp+aTFmhwM/0xlzKgAAglGTy62NLX06T6ZSKigd14JMu92uK6+8Uq+99ppKS0v1l7/8RW63Wz/96U+VkpKil19++ajus3r1ao0cOVIjR46UJM2ZM0cjR47U7373O1mtVm3atEmXXHKJ+vXrp+uuu079+vXTihUrFBv73S5GjzzyiKZNm6bLL79cp59+uqKiovTuu+/KaqWpLADAHOtbqqSG9rDT+wDt6qg5FQAAwWhrUZWczW7FRYSqd3K02eGgE1gMw+jQhgtr166Vy+XSKaec0pG37VRVVVWy2+1yOBws5QMAnLDfvL1JL63M101n9tK8CweZHQ46WFfNG/xtTsV8CQDQ1Z5fvkf3/HuLxvdL0fM3nGp2ODgGRztvOOrd97za6ndgsVgUERGhwYMHy2bzv51uAADoKht8/aQoM0fbmFMBANA++kkFv2NOSo0YMUIWi6XN62FhYbriiiv0l7/8RRER/tlgFACAzuKoa9LWoipJ0vBsu8nRwJ8xpwIAoH3rCyol0U8qmB1zo4u33npLffv21dNPP63169dr3bp1evrpp9W/f3+98soreuaZZ7RkyRL95je/6Yx4AQDwa//euF/NbkP902LVIz7S7HDgx5hTAQDQtlpns/aW1UmSBmeybDxYHXOl1H333afHHntM5513nu/csGHDlJWVpd/+9rf6+uuvFR0drdtvv10PPfRQhwYLAIC/+9eaQknSj0dntVsFAzCnAgCgbTtLaiRJyTHhSophOXuwOuZKqU2bNik3N/eQ87m5udq0aZMkTzl6UVHRiUcHAEAA2XGgWhsKKhUaYtG0kT3MDgd+jjkVAABt+/ZAtSSpb2qsyZGgMx1zUmrAgAG6//771djY6DvX1NSk+++/XwMGDJAk7du3T2lpaR0XJQAAAeCfLVVSE/qnKplv9HAEzKkAAGjbjpZKqX5pMSZHgs50zMv3/vSnP+niiy9WVlaWhg0bJovFoo0bN8rlcum9996TJO3evVszZ87s8GABAPBX1Q1N+sfqAknSj0ZlmRwNAgFzKgAA2uarlEqjUiqYHXNSaty4cdqzZ49eeuklffvttzIMQz/60Y80Y8YMxcZ6/rJcc801HR4oAAD+7Pnle1RZ16TeydE6d2Cq2eEgADCnAgCgbTsOeCulSEoFs6NOSt1www167LHHFBsbq5iYGP3iF7/ozLgAAAgYVQ1N+usXeZKkX53bV6HWY14dj26EORUAAO2rdTZrX2W9JJbvBbujnjU///zzqq+v78xYAAAISC+u2CtHfZP6pMboomGZZocDP8ecCgCA9nn7SaXE2hQfFW5yNOhMR52UMgyjM+MAACBgLdlWIkn62Rm9ZA2xmBwN/B1zKgAA2uftJ0WVVPA7pvUFFgsTbQAAvq+x2a1N+xySpDG9k0yOBoGCORUAAG3b4W1ynko/qWB3TI3O+/Xrd8RJVHl5+QkFBABAINmy36HGZrcSo8PVMynK7HAQIJhTAQDQtm+KqiTR5Lw7OKak1L333iu73d5ZsQAAEHDW5ldKkkZmx1P9gqPGnAoAgMNzNru0Zm+FJGl0zwSTo0FnO6ak1E9+8hOlprLNNQAAXmvzPZOmk3OZNOHodeScauHChXrzzTe1bds2RUZGaty4cXrggQfUv39/3xjDMHTvvffq6aefVkVFhcaMGaM//elPGjx4cIfEAABAR1mXX6mGJreSY2zqm0pPqWB31D2l+PYXAIBDrWv5Jm9kTry5gSBgdPScatmyZbr11lu1cuVKLV68WM3NzZo8ebJqa2t9YxYtWqSHH35YTzzxhFatWqX09HRNmjRJ1dXVHRoLAAAnavnOUknSuJOSyEN0A0ddKcVOMQAAtFbsaNB+R4NCLNLwrHizw0GA6Og51Ycfftjq8bPPPqvU1FStWbNGZ511lgzD0KOPPqp58+Zp+vTpkqTnn39eaWlpeuWVV3TzzTd3aDwAAJyI5bvKJHmSUgh+R10p5Xa7WboHAMD3eJfu9U+PU7TtmFbEoxvr7DmVw+HZDTIxMVGSlJeXp+LiYk2ePNk3xmazafz48Vq+fHmnxQEAwLGqdTZrfUGlJOn0PsnmBoMuwQwaAIDj9PqqAknSab0TTY4E8DAMQ3PmzNEZZ5yhIUOGSJKKi4slSWlpaa3GpqWlae/evW3ey+l0yul0+h5XVVV1QsQAAHzn6z3lanYbykqIVHYiuxp3B0ddKQUAAL6zoaBSy749KGuIRT8d18vscABJ0qxZs7Rx40a9+uqrh1z7YV8OwzDa7dWxcOFC2e1235Gdnd3h8QIA8H0rd7N0r7shKQUAwHF4fMlOSdIlIzKVk8Q3eTDfbbfdpn//+9/67LPPlJWV5Tufnp4u6buKKa+SkpJDqqe+b+7cuXI4HL6joKCgcwIHAKDFhpale6PY1bjbICkFAMAxWrGrTJ9sPSCLRbp1Yh+zw0E3ZxiGZs2apTfffFNLlixRr16tK/d69eql9PR0LV682HeusbFRy5Yt07hx49q8r81mU1xcXKsDAIDO4nIb2rzPs1R8GBvIdBv0lAIA4BgUVtTp1lfWSpIuH5Wtk1JiTI4I3d2tt96qV155Re+8845iY2N9FVF2u12RkZGyWCyaPXu2FixYoL59+6pv375asGCBoqKiNGPGDJOjBwDAY/fBGtU4mxUZZlXfVOZX3QVJKQAAjpLbbegXL61ReW2jhvSI0/yLB5sdEqCnnnpKkjRhwoRW55999lldf/31kqQ777xT9fX1mjlzpioqKjRmzBh9/PHHio2N7eJoAQA4vA2Fnt1jh/SIU6iVRV3dBUkpAACO0vYD1dq8r0qRYVb95ZrRigy3mh0SIMMwjjjGYrFo/vz5mj9/fucHBADAcfD2kxrO0r1uhfQjAABHaX3LZGlkTrx6xEeaGwwAAEAQ2VhYKUkalh1vahzoWiSlAAA4SuvyKyRJI5gsAQAAdBhns0tbi6olScOz7CZHg65EUgoAgKP0XaUU2xQDAAB0lG1F1Wp0uRUfFaacxCizw0EXIikFAMBRqG5o0o6SGklUSgEAAHQk39K9rHhZLBZzg0GXIikFAMBR2FTokGFIPeIjlRJrMzscAACAoLG+wLPz3giW7nU7JKUAADgK61qW7o3IiTc1DgAAgGDz/UopdC8kpQAAOArr8islSSNZugcAANBhapzN2nnQ0yJhWDaVUt0NSSkAAI7C5n0tZeUkpQAAADqMt0VCpj1CqbERZoeDLkZSCgCAI6h1Nqu4qkGS1Dc11uRoAAAAggdL97o3klIAABxBXmmtJCkxOlz2qDCTowEAAAgeG1qSUsOpRu+WSEoBAHAEe8o8SaleydEmRwIAABBcNrTsvDecnfe6JZJSAAAcQd5BT1KqZxJJKQAAgI5SWuPUvsp6WSzSEJJS3RJJKQAAjsC7fK93CkkpAACAjuLd3fiklBjFRdAioTsiKQUAwBHksXwPAACgw63Nr5AknZwTb24gMA1JKQAAjsBbKcXyPQAAgI6zdq83KZVgciQwC0kpAADaUVHbqMq6JklSz+Qok6MBAAAIDs0utzYWepqcn5xLUqq7IikFAEA7vEv30uMiFBUeanI0AAAAwWFbcbXqm1yKjQhVn5QYs8OBSUhKAQDQjj2l9JMCAADoaN5+UiOy4xUSYjE5GpiFpBQAAO3w9ZMiKQUAANBh6CcFiaQUAADt2lZcLUnqTVIKAACgw6zNr5REP6nujqQUAABt2FtWqyXbSiRJY09KMjkaAACA4LC1qEr55XUKt4bo5Jx4s8OBiUhKAQDQhic/2yWX29CE/ika0sNudjgAAABB4e31+yRJEwekKDYizORoYCaSUgAAHEZBeZ3eWFsoSbrt7L4mRwMAABAc3G5D767fL0maNqKHydHAbCSlAAA4jJe/ylez29AZfZI1il4HAAAAHWLVnnLtdzQoNiJUEwekmh0OTEZSCgCAw/j4m2JJ0k9OzTY5EgAAgODxzgZPldSUIemKCLOaHA3MZmpS6vPPP9fUqVOVmZkpi8Wit99+u9V1wzA0f/58ZWZmKjIyUhMmTNCWLVtajXE6nbrtttuUnJys6OhoXXzxxSosLOzCdwEACDY7S2q0+2CtwqwWje+XYnY4AAAAQWPt3gpJ0qRB6SZHAn9galKqtrZWw4cP1xNPPHHY64sWLdLDDz+sJ554QqtWrVJ6eromTZqk6upq35jZs2frrbfe0muvvaYvv/xSNTU1uuiii+RyubrqbQAAgszibw5IksaelEzzTQAAgA5U5GiQJOUmRZkcCfxBqJkvPmXKFE2ZMuWw1wzD0KOPPqp58+Zp+vTpkqTnn39eaWlpeuWVV3TzzTfL4XDomWee0Ysvvqhzzz1XkvTSSy8pOztbn3zyic4777wuey8AgOCxuGXp3qRBaSZHAgAAEDxqnc1y1DdJkjLsESZHA3/gtz2l8vLyVFxcrMmTJ/vO2Ww2jR8/XsuXL5ckrVmzRk1NTa3GZGZmasiQIb4xAAAci5LqBq0rqJQkTRpIUgoAAKCjFDnqJUmxEaFUo0OSyZVS7Sku9nxLnZbW+h8EaWlp2rt3r29MeHi4EhISDhnjff7hOJ1OOZ1O3+OqqqqOChsAEOA+2lwsw5CGZdmVzjd4AAAAHWZfpWfpXo/4SJMjgb/w20opL4vF0uqxYRiHnPuhI41ZuHCh7Ha778jOZmclAIDHm+v2SZIuHp5pciQAAADBpajSUynF0j14+W1SKj3d04n/hxVPJSUlvuqp9PR0NTY2qqKios0xhzN37lw5HA7fUVBQ0MHRAwAC0Z7SWq3Lr1SIhaQUAABAR9vfkpTKpFIKLfw2KdWrVy+lp6dr8eLFvnONjY1atmyZxo0bJ0kaNWqUwsLCWo0pKirS5s2bfWMOx2azKS4urtUBAMBbLVVSZ/RNUWoc3+ABAAB0pP0tO++RlIKXqT2lampqtHPnTt/jvLw8rV+/XomJicrJydHs2bO1YMEC9e3bV3379tWCBQsUFRWlGTNmSJLsdrtuvPFG3X777UpKSlJiYqLuuOMODR061LcbHwAAR8MwDL293pOUmj6yh8nRAAAABJ/vKqX48g8epialVq9erYkTJ/oez5kzR5J03XXX6bnnntOdd96p+vp6zZw5UxUVFRozZow+/vhjxcbG+p7zyCOPKDQ0VJdffrnq6+t1zjnn6LnnnpPVau3y9wMACFzbD1Rrb1mdIsOsmjyYXfcAAAA6WlFLpVSGnUopeJialJowYYIMw2jzusVi0fz58zV//vw2x0REROjxxx/X448/3gkRAgC6i3X5lZKkkTnxigr3281pAQAAApJhGL5KKXbfg5ff9pQCAKArrcv3bJoxMife3EAAAACCUHlto5zNblksUhq9O9GCpBQAAPpepVR2grmBAAAABKH9lZ6leykxNoWHkoqAB38TAADdnqO+STtKaiRJI6iUAgAA6HD7WpbuZbB0D99DUgoA0O1tLKyUJOUkRik5xmZuMAAAAEGoyOHtJ8XSPXyHpBQAoNv7fpNzAAAAdLzCipZKKXbew/eQlAIAdHu+JufZ8eYGAgAAEKS+2HFQkjQoI87kSOBPSEoBALq9DYUOSdKIHJqcAwAAdLSdJTX69kCNwqwWnTswzexw4EdISgEAujVHXZPKaxslSf3SYkyOBgAAIPh8uLlIknR6n2TZo8JMjgb+hKQUAKBb21teK0lKibUpKjzU5GgAAACCzwebiiVJU4akmxwJ/A1JKQBAt7a3rE6SlJsYZXIkAAAAwWdPaa2+KaqSNcSiSYNISqE1klIAgG4tv9yTlMpJIikFAADQ0Z5bvkeSNLZ3khKjw80NBn6HpBQAoFvbW+ZZvpdDpRQAAECH2lNaq5dW7pUk3TLhJJOjgT8iKQUA6NZ8y/eolAIAAOhQiz7apma3oQn9U3R6n2Szw4EfIikFAOiWnM0uSd9bvpcYbWY4AAAAQWXxNwf0waZihVikuVMGmh0O/BRJKQBAt/OvNYXq/5sP9caaQhVXNUiiUgoAAKCj7D5Yozmvr5ck/fT0XuqfHmtuQPBbJKUAAN3OB5uKJEkL/7NNhiFFh1uVRONNAACAE+Z2G7r1lXWqdjbr1J6J+vWUAWaHBD9GUgoA0O1s3ueQJJXWOCVJOUnRslgsZoYEAAAQFDYUVmprUZWiw6164qqRCrOSdkDb+NsBAOhWSqoaVFLtbHUul533AAAAOsRHWw5IkiYMSFVqbITJ0cDfkZQCAHQrm/c7DjlHPykAAIATZxiGPt5SLEk6b3C6ydEgEJCUAgB0K5v3VUmSzhucpsgwqyQph6QUAADACdtZUqPdpbUKt4ZoYv8Us8NBACApBQDoVrz9pE7tlaSbzuyl1Fibxvdj0gQAAHCiPmqpkjq9T5JiI8JMjgaBINTsAAAA6Epb9nsqpYZkxmlM7yTNmdzf5IgAAACCwydbSySxdA9Hj0opAEC3UV7bqH2V9ZKkQZlxJkcDAAAQPBqaXL6K9DP6JpscDQIFSSkAQLfhnSj1So6mpBwAAKADbd7nULPbUGqsTT3iI80OBwGCpBQAoNtYvadckjQsy25yJAAAAMFlXX6lJGlkTrwsFou5wSBgkJQCAHQbX+wslSSd3oeScgAAgI60rqBCkjQyJ8HkSBBISEoBALoFR32TNhRUSpLOICkFAADQobyVUiOy402NA4GFpBQAoFtYsatMbkPqnRKtTPocAAAAdJgiR72KHA0KsdAmAceGpBQAoFv4cudBSdKZVEkBAAB0qPUtVVID0uMUFR5qbjAIKCSlAADdwpc7PP2kzuibYnIkAAAAwWX1Xm8/qXhzA0HAISkFAAh6a/MrtKesTtYQi07rnWh2OAAAAEGjtMap11cVSJLO7EtFOo4NSSkAQFA7UNWgW15aI0maMiRdsRFhJkcEAAAQPB795FvVOJs1LMuuyYPSzQ4HAYakFAAgKK3ZW65fvrpOFz/xpQ5UOdU3NUYLpw81OyygU3z++eeaOnWqMjMzZbFY9Pbbb7e6bhiG5s+fr8zMTEVGRmrChAnasmWLOcECAILGzpJqvfq1p0pq3gUDFRJiMTkiBBqSUgCAoPTrNzbp3xv260CVU8kxNv3tutFUSSFo1dbWavjw4XriiScOe33RokV6+OGH9cQTT2jVqlVKT0/XpEmTVF1d3cWRAgCCyZNLd8nlNjRpUJrG9E4yOxwEINriAwCCTo2zWTsP1kiSnr5mlMb1SVaMjV95CF5TpkzRlClTDnvNMAw9+uijmjdvnqZPny5Jev7555WWlqZXXnlFN998c1eGCgAIEgeqGvTuhv2SpFsn9jE5GgQqKqUAAEHnm/1VMgwpwx6hyYPTSUihW8vLy1NxcbEmT57sO2ez2TR+/HgtX768zec5nU5VVVW1OgAA8HphxR41uQyd0jNBI7LjzQ4HAYqkFAAg6Gza55AkDelhNzkSwHzFxcWSpLS0tFbn09LSfNcOZ+HChbLb7b4jOzu7U+MEAASOusZmvfxVviTpxjN6mxwNAhlJKQBA0NnckpQaSlIK8LFYWjefNQzjkHPfN3fuXDkcDt9RUFDQ2SECAALESyv3qrKuSTmJUZo0KO3ITwDawHoGAEDQ2eyrlIozORLAfOnpnu25i4uLlZGR4TtfUlJySPXU99lsNtlstk6PDwAQWGqdzfrzst2SpFkT+8jKjns4AVRKAQCCSl1js3a1NDln+R4g9erVS+np6Vq8eLHvXGNjo5YtW6Zx48aZGBkAIBA9t3yPymsb1TMpStNP7mF2OAhwVEoBAILKN/ur5DaktDibUmMjzA4H6BI1NTXauXOn73FeXp7Wr1+vxMRE5eTkaPbs2VqwYIH69u2rvn37asGCBYqKitKMGTNMjBoAEGgamlx6+nNPldSvzu2rUCt1LjgxJKUAAEHF1+Q8kyopdB+rV6/WxIkTfY/nzJkjSbruuuv03HPP6c4771R9fb1mzpypiooKjRkzRh9//LFiY2PNChkAEIC+2FEqR32TMu0Rung4VVI4cSSlAABB5avd5ZJYuofuZcKECTIMo83rFotF8+fP1/z587suKABA0Pl4i2fX1smD0+klhQ5BrR0AIKDVNTbrN29v0jvr96mkqkGfbD0gSTpvcLrJkQEAAASPZpfbN8+aPJgd99AxqJQCAAS0hz/+Vi+tzNdrXxfovMHpanYbGp2boEGZ7LwHAADQUdbsrVBFXZPskWE6tWei2eEgSFApBQAIWJv3OfT3/+ZJkprdht7fVCRJumZsrplhAQAABJ2Pv/FUSZ0zMJUG5+gw/E0CAAQkwzA0761NchvSxP4pSooOlyQlRYfr/CEs3QMAAOhIS7aVSJImD2LpHjoOSSkAQEBas7dCGwodigq36oHLhunBHw9TrC1Us87uI1uo1ezwAAAAgoajrkl5pbWSpNN6J5kcDYIJPaUAAAHprXX7JElThmQoNS5CZ8dFaOP8ybJY2AkGAACgI23e75AkZSdGKj4q3ORoEEyolAIABBxns0vvbfT0j7p0ZA/feRJSAAAAHW/zPk9SamgPu8mRINj4dVJq/vz5slgsrY709O/6hBiGofnz5yszM1ORkZGaMGGCtmzZYmLEAICusHT7QTnqm5QWZ9PYkyghBwAA6EybWpJSgzNJSqFj+XVSSpIGDx6soqIi37Fp0ybftUWLFunhhx/WE088oVWrVik9PV2TJk1SdXW1iREDADra3rJa3fLSGm0oqJQkvbm2UJJ0yYgesoZQHQUAANCZtuyvkkSlFDqe3yelQkNDlZ6e7jtSUlIkeaqkHn30Uc2bN0/Tp0/XkCFD9Pzzz6uurk6vvPKKyVEDADrSXz7frf9sLtasV9dq+a5SfbTFsyXx9JN7HOGZAAAAOB67Dtbo5hdX64sdB31NzoeQlEIH8/uk1I4dO5SZmalevXrpJz/5iXbv3i1JysvLU3FxsSZPnuwba7PZNH78eC1fvrzdezqdTlVVVbU6AAD+a/nOUklSQXm9rn92lSTpR6OyNCA9zsywAAAAgtaTn+3SR1sO6MbnV0uSesRHKjGaJufoWH6dlBozZoxeeOEFffTRR/rrX/+q4uJijRs3TmVlZSouLpYkpaWltXpOWlqa71pbFi5cKLvd7juys7M77T0AAE5MYUWd9pTV+R43NrsVFxGqX08ZYGJUAAAAwcvlNrRkm6cyvbHZLUka0oMvA9Hx/DopNWXKFF122WUaOnSozj33XL3//vuSpOeff9435oc7LRmGccTdl+bOnSuHw+E7CgoKOj54AECHWL6zTJI0Midekwd5voiYe8FAJcfYzAwLAAAgaK3Nr1BFXZOiwq2+/p1DaHKOThBqdgDHIjo6WkOHDtWOHTs0bdo0SVJxcbEyMjJ8Y0pKSg6pnvohm80mm41/zABAIPiyZeneGX2SNevsPtpTWqf+6bEmRwUAABC8PvnGUyV13uB0jcyJ14sr9uriEZkmR4Vg5NeVUj/kdDq1detWZWRkqFevXkpPT9fixYt91xsbG7Vs2TKNGzfOxCgBAB3FMAwt3+VJSp3eJ1m2UCsJKQAAgE62eKsnKXXuwDRdO7anFs8Zr9ykaJOjQjDy60qpO+64Q1OnTlVOTo5KSkr0hz/8QVVVVbruuutksVg0e/ZsLViwQH379lXfvn21YMECRUVFacaMGWaHDgDoANsPVKu0plGRYVaNzIk3OxwAAICgt+tgjXYfrFWY1aKz+iWbHQ6CnF8npQoLC3XllVeqtLRUKSkpOu2007Ry5Url5uZKku68807V19dr5syZqqio0JgxY/Txxx8rNpZv0QEgGPxnk2fjitN6J8oWajU5GgAAgOD35tpCSdK4k5IVGxFmcjQIdn6dlHrttdfavW6xWDR//nzNnz+/awICAHQZwzD0zvp9kkQPAwAAgC7Q5HLr9VWepNRPTmGXenS+gOopBQAIbB9uLtI/Vh/djqfrCyq1p6xOkWFWTR6U3smRAQAAYPE3B1Ra41RKrE3nDmp/AzGgI/h1pRQAIHgUOxo08+W1chtS/7RYDc+Ob3f8O+v3S5ImD05TtI1fVwAAAJ3tla/yJUlXjM5WmJUaFnQ+/pYBALrEG2sL5TY8P7+2Kr/dsU0ut97d4ElKTRvRo7NDAwAA6JYMw1Cts1mGYejpz3fpy52lslikn5zK0j10Db56BgB0OsMwWi3be2f9fs27cJBi2qiAemNNocpqG5UcY9MZfdn1BQAAoDPc8+8temHFXiVFh6ustlGS9IvxJykrIcrkyNBdUCkFAOh0X+WVa29ZnaLDreqZFKW6Rpf+3bI874eczS49vmSnJOkX43tTOg4AANAJ6hqb9c/Vnqbm3oTUby4cqLvOH2BmWOhmqJQCAHSqNXvLtfA/2yR5dtE7KSVGf3h/q55fvkeXj85S6A+STq+vKtC+ynqlxdl09Wm5ZoQMAAAQ9JZtP6j6JpeyEiL16BUjlBRjU6/kaLPDQjfD188AgE7z4oo9uuypFdpQUKnw0BBdc1pP/WhUluIiQrX9QLX+/t8831jDMPSPVQW6vyWBdevEPooIs5oVOgAAQFD7YHOxJOmCoRka3TORhBRMQVIKANApDMPQ01/sliRdNCxDH/zyDA3KjFN8VLh+c+EgSdIfP/5We0prJUkPfrRdd76xUXWNLp3eJ0lXnEKDTQAAgM7Q0OTSkq0HJElThqSbHA26M5JSAIBOsa6gUgXl9YoKt+rBHw1Xn9RY37Ufj87S6X2S5Gx267fvbNbBaqf+9qWnaur/nddfL9wwRrZQqqQAAAA6w+ffHlRto0uZ9giNyI43Oxx0YySlAACdwtvIfPKgNEWGt04wWSwWLbh0qMKsFn2xo1S/em2dGpvdGp4dr5kTTpI1xGJGyAAAAEGp1tmshf/Zqn+uLlCzy60/febZVOb8IRmyWJh3wTw0OgcAdDiX29B7G4skeZqbH05uUrSuOa2n/v7fPC3fVSZJuunMXkyMAAAAOlB5baN++twqbSiolCT9c02hNhQ6FBsRqp+f1dvc4NDtUSkFAOgwTS63nly6U1f/7SuV1jiVEBWmM/umtDn+trP7KDbC8/1Ij/hInT+YngYAAAAdpaHJpRl/XakNBZWKbNlA5uu8cknS7y4apHR7hJnhASSlAAAnZkNBpZ79b572VdZr1itrtejD7Vqx21P59KNRWQqztv2rJiE6XHedP0CSNGdSP4W2MxYAAADH5vElO7StuFrJMTa9e9vpmn1uX0nSpEFp+tGoLJOjAySLYRiG2UGYraqqSna7XQ6HQ3FxcWaHAwABw+02NPb+T3Wgyuk7F24N0Z3n99eo3AQNz4pXyFH0h2pocikijMbmCAzddd7QXd83AAQKwzC0rqBSgzLiFBFm1Tf7q3TxE1+q2W3oz1eP0vktu+ztq6xXRlzEUc3RgON1tPMGekoBAI7b5v0OHahyymKRDMOTkPrLtaM0sX/qMd2HhBQAAMCJefXrAt391iYNz47XQz8aplmvrFWz29CUIem+hJTkaZkA+AuSUgCA4/bp1hJJ0vmD0/Wrc/vKFmpVr+Rok6MCAADoXtxuQ09/vkuSp7XC5Ec/l2FImfYI3XvxYJOjA9pGUgoAcNyWbPMkpSYOSNWAdJbzAAAAmGHJthLtKatTbESoQkMsqqhrUs+kKL30szFKjaOZOfwXSSkAwHEpqWrQpn0OSTrm5XoAAADoOM98mSdJmnFqji4/JVsfbCzSFadmKzWWhBT8G0kpAMBx+Wy7p0pqeHa8UmJtJkcDAADQPa3Lr9CK3WWyhlh07bie6hEfqdvO6Wt2WMBRYe9tAMBxeXvdfknS2VRJAQAAmMLlNvS7d7ZIki4ZkUkTcwQcklIAgGP21e4yrdhdpjCrRT8anWV2OAAAAEFj8TcH9Pcv8+R2G0cc++rX+dq0z6FYW6h+PWVAF0QHdCyW7wEAjtljn+6QJF0+Optv5AAAADrIroM1mvnyGjW5DNU4m/XLdpbh7Smt1aIPt0mSbp/cj/5RCEgkpQAAR2V/Zb2ueHqFahqaVVHXpDCrRTMn9jE7LAAAgKBgGIbm/3uLmlyeCqlHPvlWQ3vYNXHAoa0Sqhqa9LMXVquqoVkjc+J19Wm5XR0u0CFYvgcAOCqvfZ2vgvJ6VdQ1SZKuGpNLlRQAAEAHKK1x6unPd+uLHaUKt4ZoypB0GYY08+W1+nTrAd84wzD0352lmvHXldpZUqP0uAj95epRCrXyT3sEJiqlAABHZBiG3tngaWx+9wUDNCo3UcOy7CZHBQAAEPjeWb9Pc/6xQa6WHlI/P6u3fnlOX9W+sFqff3tQN72wWvdPH6bLT8nWfe9v1d++zJMkxdhC9ddrRys1jmV7CFwkpQAAR7Sh0KG9ZXWKDLPq6tNyFRXOrw8AAIAT5ahv0vx/b5HLbWhAeqymDMnQLRNOUnhoiJ65brTufnOT/rmmUL9+c6O27Hfo+RV7JUnXjc3VrRP7kJBCwONfFQCAI3pn/T5J0uTBaSSkAAAAOsifPtupirom9U2N0Xu3ndFqGV6YNUSLfjRMIRaLXl9d4EtIzZxwku48n532EBz4lwUA4BBNLrc+3Vqid9bv086SGhVU1EmSLhmRaXJkAAAAgc0wDL2/qUj/3VmqN9Z4vvi7+8KBh+0LZbFY9IdLh6ioqkGff3tQp/RM0JxJ/bo6ZKDTkJQCALRSUduoG59fpbX5la3OZ9gjdEafFHOCAgAACGAVtY3asr9KOYlR+uPi7Xpn/X7ftXMGpGpCv7bnWGHWED19zSgt+/agzuiTTFNzBBWSUgAAn32V9br2ma+062CtYiNCNWNMjs7okyxriEX90mIVHsokCAAA4FgYhqHrn/1aGwodvnPWEIuuHZur0bmJmjQoTRaLpd17RIRZdd7g9M4OFehyJKUAAJKkwoo6/eTplSqsqFemPULP33Cq+qbFmh0WAABAQFu6/aA2FDpkDbHIMAwlxdj02E9GaNxJyWaHBpiOpBQAdEOGYejPy3ZrR0m1zuqbovLaRj3zZZ72VdarZ1KUXrnpNGXGR5odJgAAQEAzDENPfLZTknTjGb00Z1I/hVtDFBLSfmUU0F2QlAKAbuj55Xv0wIfbJElvrt3nO98rOVqv3nSa0u1sLwwAAHCiVu4u15q9FQoPDdHPzuiliDCr2SEBfoWkFAB0I85ml97bUKTfv79VknT+4HTtq6xXtM2qcwem6UejshQfFW5ylAAAAIGv1tms37y9SZJ0xehspcbxpR/wQySlACDIGYahr/LK9fa6ffpgU5GqGpolSdNH9tAfLx9+xMaaAAAAODZut6F5b23SroO1So+L0Oxz+5odEuCXSEoBQBDbX1mv37y9WUu2lfjOpcXZNP3kLP3qnL4kpAAAADpQXWOz5r21WZ9sPaDqhmZZQyx6fMZIJcXYzA4N8EskpQAgSBiGod++s1lLtpaof3qs6hpdWptfoSaXoXBriKaf3EMXj8jUmF5JstJcEwAAoMM9sWSn3lrn6dcZFW7Vby4cpFN6JpocFeC/SEoBQJB45ss8vbQyX5K039HgOz86N0H3XzZUfVJjzQoNAAAg6O0tq9XfvsiTJP3xx8N1yYhMhVpDTI4K8G8kpQAggFU3NOn9jUXaWVKjZ5fvkST98uw+So61yRpi0eknJSs3KYplegAAAJ3E7Ta0vrBSD/xnmxpdbp3ZN1nTT+7B/As4CiSlACAAFTnq9cGmYj352U6V1Tb6zk8bkan/mdSPSRAAAEAn23WwRs8v36OPthTrQJVTkhQaYtHvLhrEXAw4SiSlACCAbC2q0ry3NmltfqXvXK/kaI3vl6L+6bF8KwcAANDJapzNevzTHXrmyzw1uw1JUnS4VWcPTNM1p+WqbxotE4CjRVIKAALAjgPVen1VgZ5fsUdNLkMhFmlYVrwuG5Wln5ySrTD6FQAAAHSqWmezPtxcrEUfbfNVRp09IFVXn5ajcSclKyLManKEQOAhKQUAfqqyrlHvbtivf60p1IZCh+/85EFp+v20IUqLizAxOgAAgODmdht6+et8Ldl6QAdrnNpeXK0ml6cyKjcpSvdMHaSzB6SZHCUQ2EhKAYAfMQxDa/ZW6Nn/7tHibw6o0eWW5OlPMHFAqq48NVsT+6eyRA8AAKCTuN2Gdh2s0YIPtuqz7QdbXctNitLlo7N14xm9qIwCOgBJKQAwUVVDk7YVVeub/Q59U1SlDQUObT9Q7bs+KCNOl43K0iUjMpUcYzMxUgAAgOCVV1qrDzYVafWecq3Nr5SjvkmSZAsN0S/P6asB6bHqkxqj3KRokyMFggtJKQDoIoZhqNHlVkmVU6+vKtC7G/drb1ndIePCQ0M0fWQPXTM2V4Mz7SZECgAAELxqnc36Oq9c+eV12lZcpXX5ldpWXN1qTERYiEbnJmrehQM1MCPOpEiB4EdSCgA6mMttaOXuMn2wqUgbCit1sNqpqvpmNTS7ZBiHju8RH6mBGXEalBmnQRlxOqVngpKoigIAAOhwX+4o1f/71wYVORpanbeGWHR6n2RN7J+iUbkJGpgRx0YyQBcgKQUAHcTlNvRVXpn+8N5WfVNU1e7YU3sl6rqxPTXupCQlRId3UYQAAADdR35Znf67q1T/3VmqNXsrVFnXpPomlyQpPS5Cw7Ls6pUSrRFZ8TqlVyKtEgATkJQCgBNwsNqp9zbu1zvr92trUZWczZ7G5LG2UF00PEMT+qcq0x4pe2SYIsJCZAuzKjLMqvBQvnkDAADoSKU1Ti3fVab/7ijVf3eVqrCi/pAxFot01Zgc3X3BQEWF889hwGz8rxAA2tHkcquyrkmVdY0qr21URV2T9lXWa0NBpdYVVKigvPVkxxYaoh+NytKcSf1YggcAANCBDMNQVUOzymqcKqtt1MFqp749UK1v9lfpm6KqQ5JQoSEWjcyJ17iTkjXupCRlxkcqLjJM9sgwk94BgB8KmqTUk08+qQcffFBFRUUaPHiwHn30UZ155plmhwUgQHi/Wduyz6GD1U4VVtZr98EaldY0HvG5w7LsuuzkLI3vl6LsxChZQyxdEDEAHDvmSwD8SWOzW7tLa1RYXq9mtyG3YXj+dBtqcrlV5GjQnrJa7S2r076KepXVOtXkOkyDzu8ZlBGn0/skaVyfZJ3aM1HRtqD5Jy8QlILif6Gvv/66Zs+erSeffFKnn366/vKXv2jKlCn65ptvlJOTY3Z4ADqB0TJpaWx2y9nslrPZJWeTW476Jh2sdqq0xqnyOk9CyWqxqLbRpVpns2qdzapp+bPW6VK1s1lFjnpV1jW1+VoWi2SPDFNiVLjio8KUHGPT0B52jcxJ0LBsu+Ii+LYNgP9jvgSgKzW73Cqva2yZlzWqtNqpgzVOlVY7daDaqR0HqrXrYM0Rk0yHE2sLVVJMuJJibOqVHK1BLRvGDEyPkz2KeRkQSCyGcbi9oALLmDFjdPLJJ+upp57ynRs4cKCmTZumhQsXHvH5VVVVstvtcjgciotju08EP8Mw5DYkt2HI5TZktPzsbjnvve659t1Yt/HdWJe79djvX3e5D38vZ7NLDU0uNTS5Vd/k+bm+5XGD93GjSw3Nbs+fLde//7P3+c5ml9wd/P9eAzPidGrPBKXbI5Vhj9BJKTHqkeDpB0X1EwCvQJ03MF8CApP3iziX9zAMuVzGIZVFnjFuudxSs9std8ufru89t/l7z3cZ351zuw93n+9eo8llqNbZrKqGJlXVe/9sUlVDs6rqm9TQ5PLN91zGd/c5GrG2UPVMjlZ4aIisFousId8daXE25SZFKzcpStkJUUqJtSkxOlwRYdZO/tQBnKijnTcEfKVUY2Oj1qxZo1//+tetzk+ePFnLly8/7HOcTqecTqfvcVVV+7tknYgNBZX6xUtrDjnfVirQ0OEvtJc6bOtS2885ttdo+/5t3OcY4znW+7R14VjjbP85bY3vmM+u7ffQ+f9tAj8NfXjh1hDZQkMUExGqlFibkmM8kxaLPBOkKJtV0bZQxYSHev60ef6MtlmVbo9Qj/hIxVLxBCBI+ft8adfBGl39t6/avH6k311t/f48uuce4Xq7A9p/9vHM37577hHufZyve6L3PlLg7cd1Aq+rI32ex//f4oivfQJ//4702kd6z94v/AJViEVKjA5XcozNNz/z/Bmu3skxGpARqx7xkbJY+PIP6K4CPilVWloql8ultLS0VufT0tJUXFx82OcsXLhQ9957b1eE51sLDQSqEIsUYrEoxGKRxSJZQ7772XNeLY+/+9kacrjrki3UqshwqyLCQhQZZlVEy+H52XPO1nIuKtzqGxPZ8rN3XESYVbbQENlCrbKFhSjcGqIQKpkAoE3+Pl9yuQ3mS8BxCA2xKCTEotDvVReFtszVQkMsslotP6g+Cmn9nJZrodbvnvPD+1lbxkXbQhUXGaa4iFDZI8Nafg5TXGSoIsKsvnuFtIwPs1oUHxVOtTmAdgV8Usrrh9l1wzDazLjPnTtXc+bM8T2uqqpSdnZ2p8Q1MCNO784647DXjvULgbbGW3T4C4cb3xH38Ixv43yb7+kYYmzz3m3c4xhjOdb3ekz3NinGw55uY6w3wRRiUatEUojFopCQQ68DAIKHv86XchKj2pwveR3vr6QjPa+t37lHem6n3bf92x7hddt/9vG+7pHmA+0/t73nHX+8J/K89t7P8b4Xz3M74b+5RQoNaVnW9r0Ekzd5BACBLuCTUsnJybJarYd8y1dSUnLIt4FeNptNNlvXbNUebQvV0Cx7l7wWAADA4fj7fCkizMp8CQCAbijE7ABOVHh4uEaNGqXFixe3Or948WKNGzfOpKgAAAD8B/MlAADgjwK+UkqS5syZo2uuuUajR4/W2LFj9fTTTys/P1+/+MUvzA4NAADALzBfAgAA/iYoklJXXHGFysrK9L//+78qKirSkCFD9MEHHyg3N9fs0AAAAPwC8yUAAOBvLMaR9mbtBqqqqmS32+VwOBQXF2d2OAAAwI9113lDd33fAADg2B3tvCHge0oBAAAAAAAg8JCUAgAAAAAAQJcjKQUAAAAAAIAuR1IKAAAAAAAAXY6kFAAAAAAAALocSSkAAAAAAAB0OZJSAAAAAAAA6HIkpQAAAAAAANDlSEoBAAAAAACgy5GUAgAAAAAAQJcLNTsAf2AYhiSpqqrK5EgAAIC/884XvPOH7oL5EgAAOFpHO18iKSWpurpakpSdnW1yJAAAIFBUV1fLbrebHUaXYb4EAACO1ZHmSxaju33Ndxhut1v79+9XbGysLBaL2eEcoqqqStnZ2SooKFBcXJzZ4fglPqP28fm0j8/nyPiM2sfnc2TB9BkZhqHq6mplZmYqJKT7dEJgvhT4+Izax+dzZHxG7ePzaR+fz5EF02d0tPMlKqUkhYSEKCsry+wwjiguLi7g/2J2Nj6j9vH5tI/P58j4jNrH53NkwfIZdacKKS/mS8GDz6h9fD5HxmfUPj6f9vH5HFmwfEZHM1/qPl/vAQAAAAAAwG+QlAIAAAAAAECXIykVAGw2m+655x7ZbDazQ/FbfEbt4/NpH5/PkfEZtY/P58j4jNDZ+Dt2ZHxG7ePzOTI+o/bx+bSPz+fIuuNnRKNzAAAAAAAAdDkqpQAAAAAAANDlSEoBAAAAAACgy5GUAgAAAAAAQJcjKdVFPv/8c02dOlWZmZmyWCx6++23W123WCyHPR588MFW41asWKGzzz5b0dHRio+P14QJE1RfX++7XlFRoWuuuUZ2u112u13XXHONKisru+AdnpgjfT41NTWaNWuWsrKyFBkZqYEDB+qpp55qNcbpdOq2225TcnKyoqOjdfHFF6uwsLDVmED9fKSO+Yy8DMPQlClTDnufQP2MOuLzKS4u1jXXXKP09HRFR0fr5JNP1r/+9a9WYwL185GO/BkdOHBA119/vTIzMxUVFaXzzz9fO3bs8F0vLy/Xbbfdpv79+ysqKko5OTn65S9/KYfD0eo+gfoZnejn4xWs/z+9cOFCnXLKKYqNjVVqaqqmTZum7du3txpjGIbmz5+vzMxMRUZGasKECdqyZUurMcH+/9U4McyX2sd86ciYL7WP+dKRMV9qH/Ol9jFfOnYkpbpIbW2thv//9u4+psr6/+P4C5Qbb1FMQIYi1cob0HmzTIfpjJBSp+FaU2d3zqzEma7Naixb/qGV9yPTLKnmH2opyuZGaaBiIZrBxGWoiLkUxBDR1ATk/f3Def1+R/QcSjzG4fnYzj/X9TkX1+eFffbap3Nx+vdXWlrabc+XlZW5vNatWyc/Pz9NnDjRGZOXl6ekpCQlJiZq//79OnDggFJSUuTv/3+/xsmTJ6uwsFBZWVnKyspSYWGhpk6des/nd7c85TNnzhxlZWVp/fr1OnLkiObMmaNZs2Zp27Ztzpg333xTGRkZ2rBhg/bu3au//vpLY8eO1fXr150xzTUfqWkyumn58uXy8/O77XWaa0ZNkc/UqVNVXFyszMxMFRUVKTk5Wc8//7wKCgqcMc01H8l9RmamCRMm6MSJE9q2bZsKCgoUHR2thIQEXb58WZJ05swZnTlzRosXL1ZRUZG+/PJLZWVladq0aS7Xaq4Z3W0+km+v07t379bMmTO1b98+7dixQ3V1dUpMTHSZ/0cffaSlS5cqLS1NBw4cUEREhJ566ildunTJGePrazXuDn3JPfqSZ/Ql9+hLntGX3KMvuUdf+hcMXifJMjIy3I4ZP368jRo1yuXYkCFDLDU19Y7v+fXXX02S7du3zzmWl5dnkuy33367q3v2ptvl07dvX/vggw9cjg0cONDJ48KFCxYQEGAbNmxwzp8+fdr8/f0tKyvLzHwnH7N/l9FNhYWFFhUVZWVlZQ2u4ysZ/dt82rVrZ19//bXLmNDQUPv888/NzHfyMWuYUXFxsUmyw4cPO8fq6uosNDTU1q5de8frbNq0yQIDA622ttbMfCejf5tPS1mnzcwqKipMku3evdvMzOrr6y0iIsIWLVrkjPn7778tJCTEVq9ebWYtb63G3aEvuUdf8oy+5B59yTP6knv0Jc/oS57xSan/oLNnz2r79u0uu+kVFRXKz89XWFiYhg0bpvDwcI0YMUJ79+51xuTl5SkkJERDhgxxjj3++OMKCQnRTz/95NU5NLX4+HhlZmbq9OnTMjPl5OTo6NGjGj16tCTp4MGDqq2tVWJiovOeyMhIxcbGOnP35XwkzxlJ0pUrVzRp0iSlpaUpIiKiwTV8OaPG5BMfH6+NGzfq/Pnzqq+v14YNG3Tt2jWNHDlSkm/nc+3aNUlScHCwc6xVq1YKDAx0WWduVV1drY4dO6p169aSfDejxuTT0tbpm48hhIaGSpJKS0tVXl7usg4HBQVpxIgRztxYq9GU6EsN0Zc8oy+5R19yj77kHn2pIfqSZ2xK/Qd99dVX6tChg5KTk51jJ06ckCS9//77mj59urKysjRw4EA9+eSTzjO65eXlCgsLa3C9sLAwlZeXe+fm75GVK1eqT58+ioqKUmBgoJKSkrRq1SrFx8dLujH3wMBAde7c2eV94eHhztx9OR/Jc0bSjY9kDxs2TOPHj7/tNXw5o8bks3HjRtXV1alLly4KCgrSjBkzlJGRoYceekiSb+fTq1cvRUdH65133lFVVZVqamq0aNEilZeXq6ys7Lbvqays1IIFCzRjxgznmK9m1Jh8WtI6bWaaO3eu4uPjFRsbK0nO/YeHh7uMvXUdbulrNZoOfakh+pJn9CX36Evu0Zfcoy+5oi81Tuv7fQNoaN26dZoyZYrLDnN9fb0kacaMGXr55ZclSQMGDNAPP/ygdevWaeHChZJ02+fezeyOz8M3FytXrtS+ffuUmZmp6Oho7dmzR2+88Ya6deumhISEO77v1rn7aj6S54wyMzOVnZ3t8rz/7fhqRo35N5Samqqqqirt3LlTDzzwgLZu3arnnntOubm5iouLk+S7+QQEBGjz5s2aNm2aQkND1apVKyUkJOjpp5++7fiLFy9qzJgx6tOnj+bPn+9yzhczakw+LWmdTklJ0aFDh277f4VvnUdj5taS1mo0HfpSQ/Qlz+hL7tGX3KMvuUdfckVfahw2pf5jcnNzVVxcrI0bN7oc79atmySpT58+Lsd79+6tU6dOSZIiIiJ09uzZBtc8d+5cg53Y5uTq1at69913lZGRoTFjxkiS+vXrp8LCQi1evFgJCQmKiIhQTU2NqqqqXHaUKyoqNGzYMEm+m4/UuIyys7NVUlKiTp06ubx34sSJGj58uHbt2uWzGTUmn5KSEqWlpenw4cPq27evJKl///7Kzc3VJ598otWrV/tsPjcNGjRIhYWFqq6uVk1Njbp27aohQ4Zo8ODBLuMuXbqkpKQktW/fXhkZGQoICHDO+XJGnvJpKev0rFmzlJmZqT179igqKso5fvMRl/LycicL6cY6fHNuLX2tRtOhLzVEX/KMvuQefalx6Evu0ZduoC81Ho/v/cd88cUXGjRokPr37+9yvGfPnoqMjGzwdZJHjx5VdHS0JGno0KGqrq7W/v37nfP5+fmqrq52/vE2R7W1taqtrXX5NgbpxvPJN3faBw0apICAAO3YscM5X1ZWpsOHDztz99V8pMZl9Pbbb+vQoUMqLCx0XpK0bNkypaenS/LdjBqTz5UrVyTJ7RhfzedWISEh6tq1q44dO6aff/7Z5fGFixcvKjExUYGBgcrMzHT5hILUMjK6Uz6+vk6bmVJSUrRlyxZlZ2crJibG5XxMTIwiIiJc1uGamhrt3r3bmVtLX6vRdOhLDdGXPKMvuUdf+mfoS+7Rl+hLjeaNv6YOs0uXLllBQYEVFBSYJFu6dKkVFBTY77//7oyprq62tm3b2qeffnrbayxbtsw6duxo33zzjR07dsxSU1MtODjYjh8/7oxJSkqyfv36WV5enuXl5VlcXJyNHTv2ns/vbnnKZ8SIEda3b1/LycmxEydOWHp6ugUHB9uqVauca7z22msWFRVlO3futF9++cVGjRpl/fv3t7q6OmdMc83HrGkyupVu860rzTWju82npqbGHn74YRs+fLjl5+fb8ePHbfHixebn52fbt293fk5zzcfMc0abNm2ynJwcKykpsa1bt1p0dLQlJyc777948aINGTLE4uLi7Pjx41ZWVua8fOG/s7vNx8y31+nXX3/dQkJCbNeuXS6/+ytXrjhjFi1aZCEhIbZlyxYrKiqySZMmWbdu3ezixYvOGF9fq3F36Evu0Zc8oy+5R1/yjL7kHn3JPfrSP8emlJfk5OSYpAavF1980RmzZs0aa9OmjV24cOGO11m4cKFFRUVZ27ZtbejQoZabm+tyvrKy0qZMmWIdOnSwDh062JQpU6yqquoezarpeMqnrKzMXnrpJYuMjLTg4GB79NFHbcmSJVZfX+9c4+rVq5aSkmKhoaHWpk0bGzt2rJ06dcrl5zTXfMyaJqNb3a5kNdeMmiKfo0ePWnJysoWFhVnbtm2tX79+Db7yuLnmY+Y5oxUrVlhUVJQFBARYjx49LDU11a5du+bx/ZKstLTUGddcM7rbfG7y1XX6Tr/79PR0Z0x9fb3Nnz/fIiIiLCgoyJ544gkrKipyuY6vr9W4O/Ql9+hLntGX3KMveUZfco++5B596Z/zMzNz/1kqAAAAAAAAoGnxN6UAAAAAAADgdWxKAQAAAAAAwOvYlAIAAAAAAIDXsSkFAAAAAAAAr2NTCgAAAAAAAF7HphQAAAAAAAC8jk0pAAAAAAAAeB2bUgAAAAAAAPA6NqUAAAAAAADgdWxKAfB5ZqaEhASNHj26wblVq1YpJCREp06dug93BgAA8N9AXwJwP7ApBcDn+fn5KT09Xfn5+VqzZo1zvLS0VPPmzdOKFSvUo0ePJv2ZtbW1TXo9AACAe4m+BOB+YFMKQIvQvXt3rVixQm+99ZZKS0tlZpo2bZqefPJJPfbYY3rmmWfUvn17hYeHa+rUqfrzzz+d92ZlZSk+Pl6dOnVSly5dNHbsWJWUlDjnT548KT8/P23atEkjR45UcHCw1q9ffz+mCQAA8K/RlwB4m5+Z2f2+CQDwlgkTJujChQuaOHGiFixYoAMHDmjw4MGaPn26XnjhBV29elXz5s1TXV2dsrOzJUmbN2+Wn5+f4uLidPnyZb333ns6efKkCgsL5e/vr5MnTyomJkY9e/bUkiVLNGDAAAUFBSkyMvI+zxYAAOCfoy8B8BY2pQC0KBUVFYqNjVVlZaW+/fZbFRQUKD8/X999950z5o8//lD37t1VXFysRx55pME1zp07p7CwMBUVFSk2NtYpWcuXL9fs2bO9OR0AAIAmR18C4C08vgegRQkLC9Orr76q3r1769lnn9XBgweVk5Oj9u3bO69evXpJkvOR85KSEk2ePFkPPvigOnbsqJiYGElq8Mc+Bw8e7N3JAAAA3AP0JQDe0vp+3wAAeFvr1q3VuvWN5a++vl7jxo3Thx9+2GBct27dJEnjxo1T9+7dtXbtWkVGRqq+vl6xsbGqqalxGd+uXbt7f/MAAABeQF8C4A1sSgFo0QYOHKjNmzerZ8+eTvH6/yorK3XkyBGtWbNGw4cPlyTt3bvX27cJAABw39CXANwrPL4HoEWbOXOmzp8/r0mTJmn//v06ceKEvv/+e73yyiu6fv26OnfurC5duuizzz7T8ePHlZ2drblz597v2wYAAPAa+hKAe4VNKQAtWmRkpH788Uddv35do0ePVmxsrGbPnq2QkBD5+/vL399fGzZs0MGDBxUbG6s5c+bo448/vt+3DQAA4DX0JQD3Ct++BwAAAAAAAK/jk1IAAAAAAADwOjalAAAAAAAA4HVsSgEAAAAAAMDr2JQCAAAAAACA17EpBQAAAAAAAK9jUwoAAAAAAABex6YUAAAAAAAAvI5NKQAAAAAAAHgdm1IAAAAAAADwOjalAAAAAAAA4HVsSgEAAAAAAMDr2JQCAAAAAACA1/0PrrW5oMCYND0AAAAASUVORK5CYII=",
+      "text/plain": [
+       "<Figure size 1200x480 with 2 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "fig, axs = plt.subplots(1,2)\n",
+    "fig.set_figwidth(12)\n",
+    "\n",
+    "N = 265\n",
+    "dates = pd.date_range(\"1/1/1750\", periods=265, freq='Y')\n",
+    "\n",
+    "axs[0].plot(dates, co_yearly_emissions_road_misc)\n",
+    "axs[0].set_title('CO emissions')\n",
+    "axs[0].set_xlabel('Year')\n",
+    "axs[0].set_ylabel('Tg/a')\n",
+    "\n",
+    "\n",
+    "axs[1].plot(dates, nox_yearly_emissions_road_misc)\n",
+    "axs[1].set_title('nox emissions')\n",
+    "axs[1].set_xlabel('Year')\n",
+    "axs[1].set_ylabel('Tg/a')\n",
+    "\n",
+    "fig.tight_layout()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 19,
+   "id": "07a908a1-5a7d-4dd8-8ae5-260bfba993aa",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHFCAYAAAAUpjivAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAABovUlEQVR4nO3dd3xUVd7H8c9MekIykE5ICL2G3gRRQBBQAZF1saKsWFaBlSIqrq67j7uLuvYGFpQVRCwUsdGbSA9ECELoPSGEhAnpZe7zR2DWSAuQ5E4m3/frNa9nc+fMze/eJyZfzjn3HIthGAYiIiIibspqdgEiIiIiFUlhR0RERNyawo6IiIi4NYUdERERcWsKOyIiIuLWFHZERETErSnsiIiIiFtT2BERERG3prAjIiIibk1hR0RK2bp1K3/605+oX78+vr6+1KhRg/bt2/Pyyy+Tnp5eqm1hYSGTJ0+ma9eu2Gw2/Pz8aN68OU8//TQnT5406QouzGKx8Pe//73cz9uzZ0969uxZ7ucVkfJh0XYRInLWhx9+yGOPPUbTpk157LHHaNGiBYWFhWzatIkPP/yQNm3aMHfuXABycnK4+eabWb16NQ8//DADBgzAz8+PtWvX8sorr1CjRg0WL15M06ZNTb6q/1m3bh3R0dFER0eX63l//fVXAFq0aFGu5xWR8qGwIyIArF27luuuu44bb7yRefPm4ePjU+r9goICFixYwKBBgwB45JFH+OCDD5g1axZ33HFHqba7du2ic+fOREdH88svv+Dh4VFp1yEi8nsaxhIRAP79739jsVj44IMPzgk6AN7e3s6gk5KSwscff0y/fv3OCToATZo04amnnmL79u3Mmzfvkt9706ZNDBo0iODgYHx9fWnXrh1ffvllqTbTpk3DYrGwbNkyHnroIUJCQggKCuK+++4jOzublJQUhg4dSs2aNalduzZPPPEEhYWFpc7x+2GsnJwcnnjiCeeQXXBwMB07duTzzz93ttm3bx933nknUVFR+Pj4EBERQe/evUlISHC2Od8wVnp6Oo899hh16tTB29ubBg0a8Ne//pX8/Pxzaho1ahTTp0+nefPm+Pv706ZNG7777rtS7U6cOMHDDz9MTEwMPj4+hIWFce2117JkyZJL3l+R6s7T7AJExHzFxcUsW7aMDh06EBMTc8n2y5cvp6ioiMGDB1+wzeDBg3nmmWdYvHgxf/jDHy56rv79+9OlSxemTJmCzWZz9hbl5OQwfPjwUu0ffPBBhgwZwqxZs9iyZQvPPPMMRUVFJCUlMWTIEB5++GGWLFnCSy+9RFRUFOPGjbvg9x43bhzTp0/nn//8J+3atSM7O5vExMRS841uvvlmiouLefnll6lbty5paWmsWbOGU6dOXfC8eXl59OrVi7179/KPf/yD1q1b89NPPzFp0iQSEhL4/vvvS7X//vvv2bhxI//3f/9HjRo1ePnll7nttttISkqiQYMGAAwbNozNmzfzr3/9iyZNmnDq1Ck2b97sknOjRFyOISLVXkpKigEYd955Z5nav/jiiwZgLFiw4IJtcnNzDcC46aabLnquZs2aGe3atTMKCwtLHR8wYIBRu3Zto7i42DAMw/jkk08MwBg9enSpdoMHDzYA47XXXit1vG3btkb79u1LHQOM559/3vl1XFycMXjw4AvWlpaWZgDGG2+8cdFr6NGjh9GjRw/n11OmTDEA48svvyzV7qWXXjIAY9GiRaVqioiIMDIzM53HUlJSDKvVakyaNMl5rEaNGsaYMWMuWoeInJ+GsUSkQlkslgu+t2fPHnbu3Mk999wDQFFRkfN18803k5ycTFJSUqnPDBgwoNTXzZs3B+CWW2455/jBgwcvWlvnzp358ccfefrpp1mxYgW5ubml3g8ODqZhw4b85z//4bXXXmPLli04HI6LXzCwbNkyAgICuP3220sdP9tLtXTp0lLHe/XqRWBgoPPriIgIwsPDS9XfuXNnpk2bxj//+U/WrVt3zhCdiFyYwo6IEBoair+/P/v37y9T+7p16wJctP3Z9y42LHb8+HEAnnjiCby8vEq9HnvsMQDS0tJKfSY4OLjU197e3hc8npeXd9HreOutt3jqqaeYN28evXr1Ijg4mMGDB7N7926gJKgtXbqUfv368fLLL9O+fXvCwsL4y1/+wunTpy943pMnTxIZGXlO0AsPD8fT0/OcoaeQkJBzzuHj41MqfH3xxRfcf//9fPTRR3Tt2pXg4GDuu+8+UlJSLnqNIqKwIyKAh4cHvXv3Jj4+niNHjlyyfa9evfD09Lzo5OOz7914440XbBMaGgrAxIkT2bhx43lfbdu2vZxLuSwBAQH84x//YOfOnaSkpDB58mTWrVvHwIEDnW1iY2OZOnUqKSkpJCUlMXbsWN577z0mTJhwwfOGhIRw/PhxjN897JqamkpRUZHzui9HaGgob7zxBgcOHODgwYNMmjSJOXPmnDOnSUTOpbAjIkBJ4DAMg4ceeoiCgoJz3i8sLOTbb78FIDIykgceeICFCxfyxRdfnNN2165dvPTSS7Rs2fKik5ibNm1K48aN+eWXX+jYseN5X78d3qlIERERDB8+nLvuuoukpCRycnLOadOkSROeffZZWrVqxebNmy94rt69e5OVlXVOGPz000+d71+NunXrMmrUKG688caL1iEiJfQ0logA0LVrVyZPnsxjjz1Ghw4dePTRR2nZsiWFhYVs2bKFDz74gLi4OGevx2uvvUZSUhL33nsvq1atYuDAgfj4+LBu3TpeeeUVAgMDmT179iXX2Hn//fe56aab6NevH8OHD6dOnTqkp6ezY8cONm/ezFdffVVh19ylSxcGDBhA69atqVWrFjt27GD69Ol07doVf39/tm7dyqhRo/jjH/9I48aN8fb2ZtmyZWzdupWnn376gue97777ePfdd7n//vs5cOAArVq1YvXq1fz73//m5ptvpk+fPpdVp91up1evXtx99900a9aMwMBANm7cyIIFCxgyZMjV3gYRt6ewIyJODz30EJ07d+b111/npZdeIiUlBS8vL5o0acLdd9/NqFGjnG0DAgJYvHgxH374IZ9++imffvophYWF1KtXjwcffJAnn3zyvHNRfq9Xr15s2LCBf/3rX4wZM4aMjAxCQkJo0aIFQ4cOrcjL5YYbbmD+/Pm8/vrr5OTkUKdOHe677z7++te/AiU9WA0bNuS9997j8OHDWCwWGjRowKuvvsro0aMveF5fX1+WL1/OX//6V/7zn/9w4sQJ6tSpwxNPPMHzzz9/2XX6+vrSpUsXpk+fzoEDBygsLKRu3bo89dRTPPnkk1d8/SLVhVZQFhEREbemOTsiIiLi1hR2RERExK0p7IiIiIhbU9gRERERt6awIyIiIm5NYUdERETcmtbZARwOB8eOHSMwMPCimxaKiIiI6zAMg9OnTxMVFYXVeuH+G4Ud4NixYxfdrFBERERc1+HDh4mOjr7g+wo74Nx75/DhwwQFBZlcjYiIiJRFZmYmMTExl9xDT2EHnENXQUFBCjsiIiJVzKWmoGiCsoiIiLg1hR0RERFxawo7IiIi4tYUdkRERMStKeyIiIiIW1PYEREREbemsCMiIiJuTWFHRERE3JrCjoiIiLg1hR0RERFxawo7IiIi4tYUdkRERMStKeyIuLns/CKzSxARMZXCjogbm7XhEC2fX8jYLxLIzCs0uxwREVMo7Ii4sS83HQZg7paj3PTGT2w8kG5yRSIilU9hR8RNnczKZ8vhUwDUqenH0VO53PH+Wl5dlERhscPc4kREKpHCjoibWpF0AsOAllFBLBhzHUPa18FhwNvL9nD7lLUcSMs2u0QRkUqhsCPippbtTAWgd7NwAn29eG1oW96+qx1Bvp78cvgUN7/1E19uPIxhGCZXKiJSsRR2RNxQQZGDVbtOAHBD8wjn8YFtolgw5nq61A8mp6CYJ2dv5bHPNmvysoi4NYUdETe06UA6p/OLCK3hTes6tlLvRdX0Y+ZD1/BU/2Z4Wi38mJjCM3O2mVSpiEjFU9gRcUNLzwxh9WoajtVqOed9D6uFR3s2ZNbD12C1wHdbk9mwX09qiYh7UtgRcUPO+TrNwy/armO9YO7qXBeAf3y7nWKH5u+IiPtR2BFxM/tOZLE/LRsvDwvdG4ddsv24G5sQ5OvJ9mOZfHVmXR4REXeisCPiZs726lzTIIQaPp6XbB9Sw4cxfZoA8J+FSZqsLCJu59K/CUWkSlm6oyTs3NDs4kNYvzWsayyfrT/I3hPZvLVkN88OaFFR5VUpqZl5/HVeIolH7Xh5WPH2tJb8Xw9Lqa/j6gTxRN+mWCznzo8SEfMp7Ii4EXtuoXNLiMsJO14eVv42sCX3f7yBaWsOcFeXujQMq1FRZVYJa/eeZPTnW0jLyr9k25W7TtCqjo3+cbUroTIRuVwKOyJu5KfdJyhyGDQKr0FsSMBlfbZHkzB6Nwtn6c5U/vndr3zyp84VVKVrczgMpqzayysLk3AY0CwykL8NbIGPpwcFRQ4Ki//3Kig2WJl0gtmbj/DKol3c2CISj/M8/SYi5lLYEXEjy3b8b9XkK/HXW5qzavcJliedYPnOVHpd4XmqKntOIeO+THA+uj+kfR3+NbgVft4eF/xMz6ZhLNlxnD2pWczbcpQ/dIiurHJFpIw0QVnETRQ7DJYnXf58nd9qEFaDP11bH4AXvv+VgqLqs2Fo4lE7A975iaU7U/H2tDJpSCte/WObiwYdgCBfLx7t2RCA15fsqlb3TKSqMDXsTJo0iU6dOhEYGEh4eDiDBw8mKSmpVJusrCxGjRpFdHQ0fn5+NG/enMmTJ5dqk5+fz+jRowkNDSUgIIBBgwZx5MiRyrwUEdMlHM4gI6eQIF9POsTWuuLzjLqhEaE1vNl3IptP1x4ovwJdlGEYzFx/iCGT13A4PZeYYD/mPNqNuzrXLfOE4/u71iMs0IcjGbl8ocf3RVyOqWFn5cqVjBw5knXr1rF48WKKioro27cv2dn/24157NixLFiwgBkzZrBjxw7Gjh3L6NGj+eabb5xtxowZw9y5c5k1axarV68mKyuLAQMGUFxcbMZliZji7FNYPZuG4+lx5f9pB/l6MaFfUwDeXLq7TBN0q6qCIgcTvt7KM3O3UVDkoE/zcL4bdR1xv9ti41L8vD0YfUMjAN5eupvcAv3uEXElpoadBQsWMHz4cFq2bEmbNm345JNPOHToEPHx8c42a9eu5f7776dnz57Uq1ePhx9+mDZt2rBp0yYA7HY7U6dO5dVXX6VPnz60a9eOGTNmsG3bNpYsWWLWpYlUurKumlwWt3eIIa5OEKfzinh10a6rPp8ryi0o5uHpm/g6/ghWCzzVvxkfDOuIzd/ris53Z6e6RNfyI/V0frXoEROpSlxqzo7dbgcgODjYeax79+7Mnz+fo0ePYhgGy5cvZ9euXfTr1w+A+Ph4CgsL6du3r/MzUVFRxMXFsWbNmvN+n/z8fDIzM0u9RKqyIxk57Ew5jdVS8lTV1fKwWnh+YEsAZm08xOrdaRiG+2wlkZlXyH0fr2dF0gl8vaxMHd6JR3s2PO8+YmXl7Wl1Ls44eeVeLc4o4kJcJuwYhsG4cePo3r07cXFxzuNvvfUWLVq0IDo6Gm9vb/r37897771H9+7dAUhJScHb25tatUrPUYiIiCAlJeW832vSpEnYbDbnKyYmpuIuTKQSLD/Tq9MxNpia/t7lcs5O9YIZ2CYKw4B7p67nxtdX8e7yPRw9lVsu5zdLWlY+d32wjo0HMgj09WT6iC70alo+T53d1q4ODcMCOJVTyEc/7S+Xc4rI1XOZsDNq1Ci2bt3K559/Xur4W2+9xbp165g/fz7x8fG8+uqrPPbYY5ccojIM44KTCydOnIjdbne+Dh/WhEKp2s4+Kn1DOQxh/db/DWrJ4LZR+Hha2ZOaxX8WJnHti8u484O1fLnxMKerWO/FsVO5DH1/LduPZRIS4M2sh6+hU73gS3+wjDysFsb3LZnvNPWnfaRnF5TbuUXkyrnEOjujR49m/vz5rFq1iujo/61RkZubyzPPPMPcuXO55ZZbAGjdujUJCQm88sor9OnTh8jISAoKCsjIyCjVu5Oamkq3bt3O+/18fHzw8fGp2IsSqSQ5BUWs2XsSuPL1dS6kVoA3b9zZjv/LK2TBthTmbDnCun3pztdz3yRyY4sI7ukSyzUNgl16u4R9J7IYNnUDR0/lEmXzZcaDXWhQAatE928ZSVydIBKPZjJ5xR7+eou23hAxm6k9O4ZhMGrUKObMmcOyZcuoX79+qfcLCwspLCzEai1dpoeHBw5HyVoWHTp0wMvLi8WLFzvfT05OJjEx8YJhR8Sd/LznJAVFDmKC/WgUXjFbPAT5ejG0UwyzHu7Kz0/fwIR+TWkUXoP8IgffbU3mrg/Xceu7P/P91mSKHa43t2f7MTtD31/L0VO5NAgL4OtHu1VI0AGwWi08caZ3579rD5Jsr9rDfiLuwNSenZEjRzJz5ky++eYbAgMDnXNsbDYbfn5+BAUF0aNHDyZMmICfnx+xsbGsXLmSTz/9lNdee83ZdsSIEYwfP56QkBCCg4N54oknaNWqFX369DHz8kQqxbKdxwHo3SyiUnpW6tT0Y2SvRjzWsyGJRzOZtfEQX8cfYesROyNnbqZusD8PXlefP3aIueSCfBUtr7CYjQfSeeyzzZzOK6JlVBD/faAzoTUqtme3R5MwOtWrxcYDGby9bA//vq1VhX4/Ebk4i2HiIxYX+sX8ySefMHz4cKBkAvLEiRNZtGgR6enpxMbG8vDDDzN27Fjn5/Py8pgwYQIzZ84kNzeX3r17895775V54nFmZiY2mw273U5QUFC5XJtIZTAMgy7/XlryuPMDnbm+HJ7EuhIns/L579qDTF97gIycknk8tfy9uK9rPe7rGktwgDcZOYUczcjlSEYOR0/lciQjl6Onckm25+JptWLz83K+gvw8S33t7Vm6d9dC6d8d6dkFpGTmkWzPJflUHsn2kv99thaATvVqMXV4J4J8r+zR8su1YX86Q99fi6fVwtLxPS57rzIRubSy/v02Ney4CoUdqaoSj9oZ8PZq/L092PK3G/HxNLcnJaegiK82HeGj1fs4nF4yfOPtacXDYiG30JyF9ny9rPRrGcmLQ1pXek/T/R9vYOWuEwxuG8Ubd7ar1O8tUh2U9e+3S0xQFpErs+jXkiGs6xqHmh50APy9Pbm/Wz3u6VKXBdtTeH/lPrYdtTvfDwv0oU5NP6Jr+VGnlh/RNf2IqumHw4BTOQXYcwvJzC3E/rtX0UXmARkGBPl5UtvmR22bL5E2X6JsfkTafKlt88Xm52XaxOkn+jZl5a4TzEs4Rk5BMU/f1KzC5gqJyIUp7IhUUXmFxcxcfwiAm+Jqm1xNaZ4eVga0juKWVrXZnZqFp9VCVE0/fL3MD2SVqVW0jcd7N+btZbtZ9Otxlu1M5Z4udXm8TxOCA8pnPSQRuTSXWWdHRC7P7M1HSMvKJ8rmyy2tXSvsnGWxWGgSEUiDsBrVLuicNfbGJiwccz03NAunyGHw37UH6fHycqas3EueSUN7ItWNwo5IFVTsMPhg1T4AHryuAV5XsfGnVLzGEYF8PLwTnz3YhRa1gzidX8SLP+6k96sr+SbhKA4XfFxfxJ3oN6RIFfRjYjIHT+ZQ09+LOztru5Oq4tpGoXw3ujuv/rENkUG+HD2Vy+OzErh9yhpO5Wi1ZZGKorAjUsUYhsGUlXsBuL9rPfy9NfWuKrFaLfyhQzTLn+jJhH5NCfD2YPOhUzw6YzOFxQ6zyxNxSwo7IlXM6j1pJB7NxNfLyv3d6pldjlwhP28PRvZqxJzHriXA24O1+07yt2+2u9Xu8iKuQmFHpIo526tzZ6e6eqLHDTSNDOTtu9thtcDnGw7x8c8HzC5JxO0o7IhUIVuPnOLnPSfxsFp48Lr6l/6AVAk3NIvgmZubA/Cv739l+Zld7EWkfCjsiFQhZ3t1bm0TRXQtf5OrkfI0ont97uwUg8OA0Z9vISnltNklibgNhR2RKmJ/WjY/JpZslvtIj4YmVyPlzWKx8H+3xnFNg2Cy8ot4YNpG0rLyzS5LxC0o7IhUER+s2othwA3NwmkaGWh2OVIBvD2tTL6nA/VC/Dl6KpdHpseTX6SFB0WulsKOSBWQmpnH7PijADzaU7067qxWgDcf3d+JQF9P4g9mMHH2Nj2hJXKVFHZEqoCPfz5AQbGDDrG16FQv2OxypII1Cq/Be/e0x8NqYc6Wo7y3Yq/ZJYlUaQo7Ii4uM6+Qz9YdBOBRzdWpNq5rHMbfB7YA4D8Lk5i8Yq96eESukMKOiIv7bN0hTucX0Ti8Bjc0Cze7HKlEw7rW45HrGwDw0oKdPDV7KwVFWmVZ5HIp7Ii4sLzCYqau3g/An3s0xGq1mFyRVLaJNzfn7wNbYLXAl5uOcN/H67WPlshlUtgRcWFzNh8lLSufKJsvg9pGmV2OmGT4tfWZen8navh4sm5fOre9t4Z9J7LMLkukylDYEXFhszYeAuCB7vXx8tB/rtVZr2bhfP1oV+rU9GN/Wja3vbeGtXtPml2WSJWg354iLmp/WjZbj9jxsFq4rV0ds8sRF9AsMoh5I6+lbUxN7LmFDJu6ni83Hja7LBGXp7Aj4qLmJxwD4NpGoYTU8DG5GnEVYYE+zHr4Gga0rk2Rw+DJ2VuZ9OMOPaklchEKOyIuyDAMvvmlZBHBW9toro6U5uvlwVt3tuMvNzQC4P2V+1iyQ5uHilyIwo6IC9p+LJN9J7Lx8bTSt2WE2eWIC7JaLYzr25T7u8YC8P3WYyZXJOK6FHZEXNC3v5T84erdPJxAXy+TqxFXNvBMz9/Snalag0fkAhR2RFyMw2Ew/0zYGaQhLLmE9nVrERbow+m8Itbu09NZIuejsCPiYjYdzCDZnkegjyc9m2rFZLk4q9XCjS1KhjoXJKaYXI2Ia1LYEXEx889MTO4XF4mvl4fJ1UhV0L9lJACLfz1OsUNPZYn8nsKOiAspLHbw/dZkAG7VislSRtc0CCHI15O0rHw2H8owuxwRl6OwI+JCVu9JIyOnkNAa3nRtEGJ2OVJFeHta6d1cQ1kiF6KwI+JCzi4kOKB1FJ7aHkIuQ78zQ1kLt6dogUGR39FvU5Gr8K/vf6Xnf5Zz6GTOVZ8rt6CYRdtL/lU+UE9hyWXq0SQMXy8rRzJy2X4s0+xyRFyKqWFn0qRJdOrUicDAQMLDwxk8eDBJSUnntNuxYweDBg3CZrMRGBjINddcw6FDh5zv5+fnM3r0aEJDQwkICGDQoEEcOXKkMi9FqqE9qaf5aPV+DpzM4cUFO676fEt3Hie7oJjoWn60r1vz6guUasXP24OeTUqe3lu4XUNZIr9lathZuXIlI0eOZN26dSxevJiioiL69u1Ldna2s83evXvp3r07zZo1Y8WKFfzyyy8899xz+Pr6OtuMGTOGuXPnMmvWLFavXk1WVhYDBgyguLjYjMuSauLd5Xs5O1rww7YU4g9e3cTQs0NYg9pEYbFYrrY8qYb6xWnejsj5WAwXGtw9ceIE4eHhrFy5kuuvvx6AO++8Ey8vL6ZPn37ez9jtdsLCwpg+fTp33HEHAMeOHSMmJoYffviBfv36XfL7ZmZmYrPZsNvtBAUFld8Fids6kJbNDa+uwGFA53rBbDiQTofYWnz9565XFFTsuYV0+ucSCoodLBhzHc0i9XMol8+eW0iHFxZT5DBYOr4HDcNqmF2SSIUq699vl5qzY7fbAQgODgbA4XDw/fff06RJE/r160d4eDhdunRh3rx5zs/Ex8dTWFhI3759nceioqKIi4tjzZo15/0++fn5ZGZmlnqJXI73VuzBYUDPpmG8dVc7fL2sxB/MuOLhg4WJKRQUO2gaEaigI1fM5udFt0ahgIayRH7LZcKOYRiMGzeO7t27ExcXB0BqaipZWVm8+OKL9O/fn0WLFnHbbbcxZMgQVq5cCUBKSgre3t7UqlWr1PkiIiJISTn/f+yTJk3CZrM5XzExMRV7ceJWDqfnMGdzycJ/o29oTKTNl4euawDASwuSKCy+/P2Jzu5wPkhr68hV6ndm49iFGsoScXKZsDNq1Ci2bt3K559/7jzmcJT80bj11lsZO3Ysbdu25emnn2bAgAFMmTLlouczDOOCwwkTJ07Ebrc7X4cPHy6/CxG3N2XlXoocBtc2CqFDbEnIfqRHQ0JreLM/LZuZ6w9d4gylpWbmsXZvyZ5G2gtLrtaNLSKwWOCXI3aOnco1uxwRl+ASYWf06NHMnz+f5cuXEx0d7TweGhqKp6cnLVq0KNW+efPmzqexIiMjKSgoICOj9OTQ1NRUIiIizvv9fHx8CAoKKvUSKYsUex5fbSp50m/0DY2dx2v4ePJ4nyYAvLl0N5l5hWU+53dbk3EY0K5uTWKC/cu3YKl2wgN96XgmhC/SUJYIYHLYMQyDUaNGMWfOHJYtW0b9+vVLve/t7U2nTp3OeRx9165dxMbGAtChQwe8vLxYvHix8/3k5GQSExPp1q1bxV+EVCtTVu6loNhB53rBXPO7FY7v7BRDg7AA0rMLmLJib5nPeXaH81vVqyPl5OwCgwsUdkQAk8POyJEjmTFjBjNnziQwMJCUlBRSUlLIzf1f1+uECRP44osv+PDDD9mzZw/vvPMO3377LY899hgANpuNESNGMH78eJYuXcqWLVu49957adWqFX369DHr0sQNpZ7O4/MNJT2Ko3s3Oud9Lw8rT/dvBsDU1fvLNIRw6GQOCYdPYbXALa0VdqR8nA07G/ank55dYHI1IuYzNexMnjwZu91Oz549qV27tvP1xRdfONvcdtttTJkyhZdffplWrVrx0UcfMXv2bLp37+5s8/rrrzN48GCGDh3Ktddei7+/P99++y0eHtoxWsrPRz/tJ7/IQduYmnQ/88TL793YIoLO9YLJL3Lw6qJdFz1fUbGDj3/eD8C1jUIJC/Qp95qleooJ9qdlVBAOA5b8etzsckRM51Lr7JhF6+zIpaRnF9D9pWXkFBTz8fCO3NDs/PPBABIOn2Lwuz9jscD3o6+jRVTpnynDMFi4/TivLEpiT2oWAG/c0ZbB7epU6DVI9fLW0t28tngXNzQL5+PhncwuR6RCVMl1dkRc1dTV+8gpKCauThC9moZftG3bmJoMaF0bw4BJP5beRmLdvpMMmbyGP8+IZ09qFjX9vXhuQAtu1SPnUs76x5UMZa3enUZWfpHJ1YiYy9PsAkRcnT2nkP+uOQjAqF6Ny7RC8pP9mrFwewo/7U5j5a4ThNXw4eWFO1mRdAIAPy8PHryuPg9d34AgX68KrV+qp8bhNWgQGsC+tGyW70zV5rJSrSnsiFzCtDUHyMovomlEIH1bXHj46rfqhvhzX9d6TF29n798voXMvEIMAzytFu7qXJfRvRsRHuh76ROJXCGLxULflpFMWbmXBdtTFHakWtMwlshFnM4rdE4iHnVDI6zWsu97NfqGRgT5emLPLQk6A9tEsWRcD14YHKegI5Xi7FDWip2p5BVqY2SpvtSzI3IR09cdxJ5bSIOwAG5uVfuyPlvT35t37m7Pj4kp3NOlLnF1bBVUpcj5ta5jo7bNl2R7Hn/5fAvPDWihhSulWlLPjsgFFBU7mPbzAQBG9WqEx2X06px1fZMwJg1ppaAjprBaLYzp0xirBRb9epw+r63k1UVJ5BRowrJULwo7Ihfw0+40Uk/nExzgzQAt+CdV1B2d6vLD49fRrWEI+UUO3l62hxteWck3CUfRyiNSXSjsiFzA15tL9sAa1CYKb0/9pyJVV7PIID57sAtT7u1ATLAfKZl5PD4rgdunrGXrkVNmlydS4fQbXOQ87DmFLN5esvLs7R2iL9FaxPVZLBb6x0WyeGwPJvRrir+3B/EHM7j13Z+Z8NUv2HPKvnmtSFWjsCNyHt9uPUZBsYNmkYG0jNKq2uI+fL08GNmrEcvG92RIuzoYBnwVf4RB765mZ0qm2eWJVAiFHZHz+Dq+ZAjr9g7RZVpEUKSqibT58todbZn9aDeia/lx8GQOt727hvm/HDO7NJFyp7Aj8jt7UrNIOHwKD6uFW9tqvypxbx1ia/HtqO5c1ziU3MJi/vL5Fv71/a8UFTvMLk2k3CjsiPzO7DMTk3s2CdNO5FIt1ArwZtqfOvNoz4YAfPjTfoZN3cDJrHyTKxMpHwo7Ir9R7DCYu/koAH/QxGSpRjysFp7q34zJ97QnwNuDtftOMvDt1fxy+JTZpYlcNYUdkd/4eU8aKZl52Py86N384rubi7ijm1rVZt7Ia2kQGsAxex5/fH8tX248bHZZIldFYUfkN2b/Zm0dH08Pk6sRMUfjiEDmjbqWPs0jKChy8OTsrby9dLfZZYlcMYUdkTMy8wpZuD0F0No6IkG+XnwwrANj+jQG4NXFu/hs/UGTqxK5Mgo7Imf8sDWZvEIHjcJr0Dpae1mJlOyt1YTRNzQC4Nl5ifywLdnkqkQun8KOyBlnh7C0to5IaeNubMLdXepiGDBmVgI/70kzuySRy6KwIwIcSMtm44EMrBa4rZ3W1hH5LYvFwgu3xnFTXCQFxQ4e/nQT247YzS5LpMwUdkSAOWd6da5rHEZEkK/J1Yi4Hg+rhTfubEu3hiFkFxQz/JMN7DuRZXZZImWisCPVnsNhMFtr64hcko+nB+8P60BcnSBOZhcwbOoGUux5ZpclckkKO1Ltrdt/kqOncgn09aRviwizyxFxaYG+Xkz7U2fqhwZw9FQu9328nlM5BWaXJXJRCjtS7Z3d9HNgmyh8vbS2jsilhNbw4dMHOhMe6MOu41mM+O8mcguKzS5L5IIUdqRay84vYkFiydo6f2ivISyRsooJ9mf6iC4E+XoSfzCD0Z9v1uah4rIUdqRa+2FbMjkFxTQIDaB93ZpmlyNSpTSNDOTj4Z3w8bSyZEcqf5u/HcMwzC5L5BwKO1KtnR3C+oPW1hG5Ih3rBfPmne2wWGDm+kO8u3yP2SWJnENhR6qtxKN21u9Px8Nq0do6Ilehf1wk/xjUEoBXFu3iq03aOFRci8KOVFtTVu4FYEDr2kTV9DO5GpGq7b6u9fhzj4YATJyzjZW7Tphckcj/KOxItXTwZLZzj5+zv6BF5Oo82a8pg9tGUeQweHRGPIlHtcqyuAaFHamWPli1D4cBPZuG0bx2kNnliLgFq9XCy7e34dpGIeQUFDP8k40cTs8xuywRc8POpEmT6NSpE4GBgYSHhzN48GCSkpIu2P6RRx7BYrHwxhtvlDqen5/P6NGjCQ0NJSAggEGDBnHkyJEKrl6qqtTTeXx1ZmLyo+rVESlX3p5Wptzbgea1g0jLyuf+TzaQka1FB8VcpoadlStXMnLkSNatW8fixYspKiqib9++ZGdnn9N23rx5rF+/nqioqHPeGzNmDHPnzmXWrFmsXr2arKwsBgwYQHGxFrmSc037+QAFRQ7a1a1J5/rBZpcj4nZKVlnuRJ2afuw7kc2I/24kr1C/j8U8poadBQsWMHz4cFq2bEmbNm345JNPOHToEPHx8aXaHT16lFGjRvHZZ5/h5eVV6j273c7UqVN59dVX6dOnD+3atWPGjBls27aNJUuWVOblSBVwOq+Q6esOAiW9OnrcXKRiRAT5Mu1PnQjy9WTzoVO8svDCvfYiFc2l5uzY7SWT2YKD//evbYfDwbBhw5gwYQItW7Y85zPx8fEUFhbSt29f57GoqCji4uJYs2ZNxRctVcrM9Yc4nVdEo/Aa9GmufbBEKlLjiEBeG9oWgJkbDmkPLTGNy4QdwzAYN24c3bt3Jy4uznn8pZdewtPTk7/85S/n/VxKSgre3t7UqlWr1PGIiAhSUlLO+5n8/HwyMzNLvcT95RcVM3X1fgAeub4BVqt6dUQqWu/m4TSvHUROQTHT1x40uxypplwm7IwaNYqtW7fy+eefO4/Fx8fz5ptvMm3atMsebjAM44KfmTRpEjabzfmKiYm5qtqlapi7+Sipp/OpbfPl1rZaRFCkMlgsFv7cowEA09Yc0NwdMYVLhJ3Ro0czf/58li9fTnT0/zZj/Omnn0hNTaVu3bp4enri6enJwYMHGT9+PPXq1QMgMjKSgoICMjIySp0zNTWViIjzD1NMnDgRu93ufB0+rNU+3V2xw+D9VfsAGNG9Pt6eLvGjL1It3NKqNnVq+nEyu0CrK4spTP2NbxgGo0aNYs6cOSxbtoz69euXen/YsGFs3bqVhIQE5ysqKooJEyawcOFCADp06ICXlxeLFy92fi45OZnExES6det23u/r4+NDUFBQqZe4t0XbU9iflo3Nz4u7Otc1uxyRasXTw8pD15X8fv/gp33aHV0qnaeZ33zkyJHMnDmTb775hsDAQOccG5vNhp+fHyEhIYSEhJT6jJeXF5GRkTRt2tTZdsSIEYwfP56QkBCCg4N54oknaNWqFX369Kn0axLXYxgGk89sDXF/11gCfEz9sReploZ2iuHNpbs5nJ7Lj4kpDGxz7jIiIhXF1J6dyZMnY7fb6dmzJ7Vr13a+vvjii8s6z+uvv87gwYMZOnQo1157Lf7+/nz77bd4eHhUUOVSlazde5KtR+z4elm5v1s9s8sRqZb8vT2d//1NWbkXwzDMLUiqFYuhnzgyMzOx2WzY7XYNabmhYVPX89PuNO7vGss/bo279AdEpEJkZBfQ7cVl5BYWM31EZ65rHGZ2SVLFlfXvt2ZpiltLPGrnp91peFgtPHhdA7PLEanWagV4c0enkqdf31+5z+RqpDpR2BG3dnauzsDWtYkJ9je5GhEZ0b0+HlYLq/ekse2IdkWXyqGwI24rK7+IhYklk94fvl4bfoq4gphgfwa2rg3AlFV7Ta5GqguFHXFbGw+kU+QwiAn2o0WU5mKJuIpHepT84+PHbckcPHnuxs8i5U1hR9zWur0nAejaIOQSLUWkMjWvHUSPJmE4DPjwJ83dkYqnsCNua+2+M2GnocKOiKv585nena82HSEtK9/kasTdKeyIW8rMKyTxaMnkx2vUsyPicq5pEEybmJrkFzn475oDZpcjbk5hR9zShn3pOAyoF+JPbZuf2eWIyO9YLBYePbNB6KdrD5KdX2RyReLOtG6+uCUNYYm4vhtbRFI/NID9adl0+fdSvDwseFgtWCwWPCwWrJaSUOTjZWXcjU0Y0FpbTMiVUc+OuKV1Z8KOhrBEXJeH1cKYPo2BkqUiMnIKScsq4MTpfFIy8zhmz+PoqVz2ncjmlYVJ2mJCrph6dsTtnMop4NfkTEBPYom4ulvb1qFL/RCy8oswDAOHAcUOA4dhYBhQUFzMPR+t58DJHLYdtdM6uqbZJUsVpLAjbmf9/nQMAxqGBRAe5Gt2OSJyCZG2i/932qd5BN9tTWZ+wjGFHbkiGsYSt7N2r+briLiTQW1K5up8u/UYxQ4NZcnlU9gRt3N2vk7XBqEmVyIi5aFH0zCCfD05npnPhv3pZpcjVZDCjriVk1n57Ew5DZSs4yEiVZ+Ppwc3xZXspzX/l2MmVyNVkcKOuJX1Z/7V1zQikJAaPiZXIyLlZVDbkqGsH7YlU1DkMLkaqWoUdsStnJ2vo14dEfdyTYMQwgJ9sOcW8tPuE2aXI1WMwo64FS0mKOKePKwWBrTWUJZcGYUdcRupp/PYk5qFxQJd6ivsiLibs09lLdp+nJwCbS8hZaewI25j3b6S+TrNIoOoFeBtcjUiUt7axtSkbrA/uYXFLNmRanY5UoUo7Ijb+N8j5+rVEXFHFovF2bszP0FDWVJ2CjviNtZpMUERt3f2qayVu1I5lVNgcjVSVSjsiFs4npnHvrRsrBboXF9PYom4qyYRgTSLDKSw2GBBYorZ5UgVobAjbuHsI+cto2zY/LxMrkZEKtLAs0NZeipLykhhR9yC9sMSqT7OzttZu+8kxzPzTK5GqgKFHXELazU5WaTaiAn2p33dmhgGfLc12exypApQ2JEq7+ipXA6l5+BhtdCxXi2zyxGRSjBIQ1lyGRR2pMo7O4QVV8dGoK/m64hUB7e0jsJqgV8On+JAWrbZ5YiLU9iRKs85X0dDWCLVRligD9c2CgXgW/XuyCUo7EiVZhjG/xYT1ORkkWrl7FNZ3/xyDMMwTK5GXJnCjlRph9NzOXoqF0+rhY6xmq8jUp30axmJt4eVPalZ7Eg+bXY54sIUdqRKW7svDYA2MTUJ8PE0uRoRqUw2Py96NQsDNFFZLs7UsDNp0iQ6depEYGAg4eHhDB48mKSkJOf7hYWFPPXUU7Rq1YqAgACioqK47777OHas9A91fn4+o0ePJjQ0lICAAAYNGsSRI0cq+3LEBGc3/9R8HZHq6ZbWJUNZK5K0MahcmKlhZ+XKlYwcOZJ169axePFiioqK6Nu3L9nZJTPrc3Jy2Lx5M8899xybN29mzpw57Nq1i0GDBpU6z5gxY5g7dy6zZs1i9erVZGVlMWDAAIqLi824LKkkhmFoMUGRau6aM9vDJB0/TWZeocnViKuyGC40q+vEiROEh4ezcuVKrr/++vO22bhxI507d+bgwYPUrVsXu91OWFgY06dP54477gDg2LFjxMTE8MMPP9CvX79Lft/MzExsNht2u52goKByvSapOEkpp+n3xiq8Pa388re++Hl7mF2SiJjgupeXcTg9l/8+0JkeTcLMLkcqUVn/frvUnB273Q5AcPCFN3K02+1YLBZq1qwJQHx8PIWFhfTt29fZJioqiri4ONasWXPec+Tn55OZmVnqJVXP0p3HAbi2YYiCjkg11im25G/GpgPpJlcirsplwo5hGIwbN47u3bsTFxd33jZ5eXk8/fTT3H333c4El5KSgre3N7VqlX4SJyIigpSU8++IO2nSJGw2m/MVExNTvhcjlWLZjpIx+huaR5hciYiYqcOZldM3HcgwuRJxVS4TdkaNGsXWrVv5/PPPz/t+YWEhd955Jw6Hg/fee++S5zMMA4vFct73Jk6ciN1ud74OHz58VbVL5UvPLmDzoZJfbDc0Cze5GhExU8czPTsJh09RWOwwuRpxRS4RdkaPHs38+fNZvnw50dHR57xfWFjI0KFD2b9/P4sXLy41LhcZGUlBQQEZGaUTfWpqKhER5/8Xv4+PD0FBQaVeUrWs3JWKw4BmkYHUqelndjkiYqLG4TUI8vUkt7CYHcmaliDnMjXsGIbBqFGjmDNnDsuWLaN+/frntDkbdHbv3s2SJUsICSn91E2HDh3w8vJi8eLFzmPJyckkJibSrVu3Cr8GMceynScA6N1cvToi1Z3VaqFDrIay5MJMDTsjR45kxowZzJw5k8DAQFJSUkhJSSE3NxeAoqIibr/9djZt2sRnn31GcXGxs01BQQEANpuNESNGMH78eJYuXcqWLVu49957adWqFX369DHz8qSCFBY7WHlmTY0bmmm+johAx3pnJikf1CRlOZepS85OnjwZgJ49e5Y6/sknnzB8+HCOHDnC/PnzAWjbtm2pNsuXL3d+7vXXX8fT05OhQ4eSm5tL7969mTZtGh4eekLHHcUfzCAzr4jgAG/axtQ0uxwRcQG/7dm52JxNqZ5MDTuXWuKnXr16ZdrczdfXl7fffpu33367vEoTF7ZsZ0mvTs+mYXhY9QtNRKBNdE08rRZST+dzJCOXmGB/s0sSF+ISE5RFLsfSHSXr6/TWEJaInOHn7UHLOjZAQ1lyLoUdqVIOpGWz90Q2nlYL1zUJNbscEXEhnTRJWS7gioaxsrOzWblyJYcOHXJOFD7rL3/5S7kUJnI+Z4ewOtULJsjXy+RqRMSVdKxXi49W7yf+oMKOlHbZYWfLli3cfPPN5OTkkJ2dTXBwMGlpafj7+xMeHq6wIxXqbNjRI+ci8nsdYv+3Kag9txCbn/5BJCUuexhr7NixDBw4kPT0dPz8/Fi3bh0HDx6kQ4cOvPLKKxVRowgAp/MKWb+/ZJdzrZosIr8XFuhDbIg/hoFzhXURuIKwk5CQwPjx4/Hw8MDDw4P8/HxiYmJ4+eWXeeaZZyqiRhEAVu9Oo7DYoH5oAA3Caphdjoi4oLOPoMdr3o78xmWHHS8vL+f6BRERERw6dAgoWdzv7P8WqQhLd55dSFC9OiJyfp20uKCcx2XP2WnXrh2bNm2iSZMm9OrVi7/97W+kpaUxffp0WrVqVRE1iuBwGKw4s2pyb4UdEbmAjmd6ds5uCurloYeO5Qp6dv79739Tu3ZtAF544QVCQkJ49NFHSU1N5YMPPij3AkUAth61k5ZVQKCPp3NZeBGR32sYVgObnxd5hQ62H9OmoFKizD07WVlZ1KhRg44dOzqPhYWF8cMPP1RIYSK/tezMQoLXNwnD21P/UhOR8zu7KeiynalsOpCuLWUEuIyendDQUG666SYmT57M0aNHK7ImkXNovo6IlFXHemcmKWu9HTmjzGEnKSmJm2++mdmzZ9OgQQM6derECy+8wNatWyuyPhFS7HlsP5aJxVKyH5aIyMV0jD07STmjTPsrivsrc9iJjY1l9OjRLFmyhNTUVMaNG8f27du5/vrrqV+/Po8//jjLli2juLi4IuuVaujsQoLtYmoSUsPH5GpExNW1jrbh5WHhxOl8Dqfnml2OuIArmvxgs9m46667mDVrFmlpabz//vs4HA7+9Kc/ERYWxmeffVbedUo1tmznmY0/m2vjTxG5NF8vD+K0Kaj8xlXP9PT09KRv3768/fbbHDx4kCVLltCkSZPyqE2EvMJiVu9JAzRfR0TK7uwj6Bu1uKBwBevsXGiOjsViwdfXl5YtW+Ljo6EGKR9r954kr9BBlM2XZpGBZpcjIlVEx3rBfPjTfuLVsyNcQdhp27atcwXl8/Hy8uKOO+7g/fffx9fX96qKE1l6ZgjrhubhF/25ExH5rbPbRuw6noU9pxCbvzYFrc4uexhr7ty5NG7cmA8++ICEhAS2bNnCBx98QNOmTZk5cyZTp05l2bJlPPvssxVRr1QjhmGwbMfZVZM1X0dEyi60hg/1QwMAbQoqV9Cz869//Ys333yTfv36OY+1bt2a6OhonnvuOTZs2EBAQADjx4/XLuhyVfanZXPMnoe3p5WuDUPMLkdEqpgOsbXYn5bNpoPp9NKcv2rtsnt2tm3bRmxs7DnHY2Nj2bZtG1Ay1JWcnHz11Um1tmF/yVh7u5ia+Hp5mFyNiFQ1mqQsZ1122GnWrBkvvvgiBQUFzmOFhYW8+OKLNGvWDICjR48SEaFhB7k6Z8NOl/raC0tELt/ZffR+OXyKgiKHydWImS57GOvdd99l0KBBREdH07p1aywWC1u3bqW4uJjvvvsOgH379vHYY4+Ve7FSvaw/E3Y6KeyIyBVoGBZALX8vMnIK2X7MTru6tcwuSUxy2WGnW7duHDhwgBkzZrBr1y4Mw+D222/n7rvvJjCw5NHgYcOGlXuhUr0cPZXL0VO5eFgttNcvKBG5AhZLyaagS3akEn8wQ2GnGitz2HnggQd48803CQwMpEaNGvz5z3+uyLqkmtt4plcnro6NAJ/LzuQiIgB0iA1myY5U1u49yYPXNTC7HDFJmefs/Pe//yU3V3uMSOVYr/k6IlIOejUr2Tx46c5U7YJejZU57GjnWKlMG/afBKBTPYUdEblyzSKDGNoxGoDn5ydS7NDfsurosp7G0gq2UhnSsvLZeyIbgE71NMYuIlfnyf7NCPT1JPFoJrM2HjK7HDHBZYWdJk2aEBwcfNGXyNU6O1+nWWQgNf29Ta5GRKq60Bo+jL+xZIPq/yxMIiO74BKfEHdzWTM///GPf2Cz2SqqFhEANhwoCTudNV9HRMrJvdfEMmvjYXamnOaVRUn867ZWZpckleiyws6dd95JeLiW3JaKdXYxQYUdESkvnh5W/j6oJXd+sI6ZGw5xV+e6xNXRP96rizIPY2m+jlSGzLxCfk3OBKCzJieLSDm6pkEIg9pEYRjwt28ScWiycrVh6tNYkyZNolOnTgQGBhIeHs7gwYNJSko65/v+/e9/JyoqCj8/P3r27Mn27dtLtcnPz2f06NGEhoYSEBDAoEGDOHLkSLnXKxUv/kAGhgH1QvwJD/I1uxwRcTPP3Nwcf28PNh86xdwtR80uRypJmcOOw+Eo9yGslStXMnLkSNatW8fixYspKiqib9++ZGdnO9u8/PLLvPbaa7zzzjts3LiRyMhIbrzxRk6fPu1sM2bMGObOncusWbNYvXo1WVlZDBgwgOLi4nKtVyreeg1hiUgFirT58pfejQGY9ONOMvMKTa5IKoPFcKEFdE6cOEF4eDgrV67k+uuvxzAMoqKiGDNmDE899RRQ0osTERHBSy+9xCOPPILdbicsLIzp06dzxx13AHDs2DFiYmL44Ycf6Nev3yW/b2ZmJjabDbvdTlBQUIVeo1zcHyavIf5gBq/8sQ23d4g2uxwRcUMFRQ76v7GKfWnZjOhen+cGtDC7JLlCZf37fdm7nlcku90O4HyEff/+/aSkpNC3b19nGx8fH3r06MGaNWsAiI+Pp7CwsFSbqKgo4uLinG1+Lz8/n8zMzFIvMV9uQTFbj5wCNF9HRCqOt6eV5we1BGDamgPsOn76Ep+Qqs5lwo5hGIwbN47u3bsTFxcHQEpKCgARERGl2kZERDjfS0lJwdvbm1q1al2wze9NmjQJm83mfMXExJT35cgV2HI4g8Jig8ggX2KC/cwuR0TcWI8mYfRtEUGxw+Dv87drlwA35zJhZ9SoUWzdupXPP//8nPd+/ySYYRiXfDrsYm0mTpyI3W53vg4fPnzlhUu5+e0j53r6T0Qq2nMDWuDjaWXN3pN8vy3Z7HKkArlE2Bk9ejTz589n+fLlREf/b55GZGQkwDk9NKmpqc7ensjISAoKCsjIyLhgm9/z8fEhKCio1EvMp/V1RKQyxQT78+ceDQGY8NVWFm4//2iAVH2mhh3DMBg1ahRz5sxh2bJl1K9fv9T79evXJzIyksWLFzuPFRQUsHLlSrp16wZAhw4d8PLyKtUmOTmZxMREZxtxfQVFDjYfKgms2ulcRCrLoz0bcn2TMHILi/nzjHimrNyrIS03ZGrYGTlyJDNmzGDmzJkEBgaSkpJCSkoKubm5QMnw1ZgxY/j3v//N3LlzSUxMZPjw4fj7+3P33XcDYLPZGDFiBOPHj2fp0qVs2bKFe++9l1atWtGnTx8zL08uQ+IxO3mFDmr5e9EovIbZ5YhINeHr5cHH93fkvq6xGAa8+ONOnvx6KwVFDrNLk3J0WdtFlLfJkycD0LNnz1LHP/nkE4YPHw7Ak08+SW5uLo899hgZGRl06dKFRYsWERgY6Gz/+uuv4+npydChQ8nNzaV3795MmzYNDw+PyroUuUpnh7A61dN8HRGpXJ4eVv7v1jgahtXgH99u56v4IxxMz+H9eztQK0CbEbsDl1pnxyxaZ8d8D0zbyLKdqTx7S3MevK6B2eWISDW1IimV0TO3cDq/iNgQf6be30m9zS6sSq6zI9VTscNg45mdzrvUDzG5GhGpzno2DWf2Y92IruXHwZM5DHnvZ37ek2Z2WXKVFHbEdEkppzmdV0SAtwfNawde+gMiIhWoSUQg34y8lg6xtcjMK+K+jzfwdbz2W6zKFHbEdBv2nwSgQ71gPD30Iyki5gup4cNnD3bhtnZ1KHYY/HXuNo5n5pldllwh/WUR021wDmHpkXMRcR2+Xh68NrQNnerVIr/IwTvL9phdklwhhR0xlWEYWkxQRFyWxWJhfN+mAMzaeIjD6TkmVyRXQmFHTLU/LZu0rAK8Pa20jraZXY6IyDmuaRBC90ahFBYbvLV0t9nlyBVQ2BFTne3VaRtTEx9PrYskIq5pfN8mAMzefIR9J7JMrkYul8KOmOps2NF8HRFxZe3q1qJP83AcBryxRL07VY3CjphqvebriEgVMfbGkt6db7ceY2dKpsnVyOVQ2BHT7EnN4uipXDysFtrXrWV2OSIiF9UyysYtrWtjGPDaol1mlyOXQWFHTPPp2gMA9GwSRoCPqdu0iYiUydg+TbBaYNGvx/nl8Cmzy5EyUtgRU9hzC50rkj7Qvb7J1YiIlE2j8Brc1i4agFcXq3enqlDYEVN8ufEwOQXFNI0IpFtD7YclIlXH470b42m1sGrXCedDFuLaFHak0hUVO5i25gAAD3Svh8ViMbcgEZHLUDfEn6GdYgB4ZVEShmGYXJFcisKOVLrFvx7n6KlcggO8ubVtHbPLERG5bKNvaIS3p5UN+9NZrV3RXZ7CjlS6j3/eD8Ddnevi66WFBEWk6qlt8+PeLrEAvLJol3p3XJzCjlSqbUfsbDyQgafVwrCusWaXIyJyxR7t2RA/Lw9+OXyKJTtSzS5HLkJhRyrVJ2d6dQa0rk1EkK/J1YiIXLmwQB/+dG09AF747lcOpGWbW5BckMKOVJrUzDy+3XoM0OPmIuIeHr6+AbVtvhxKz2HQO6tZueuE2SXJeSjsSKWZse4ghcUGHWJr0Tq6ptnliIhctZr+3nwz8lra1a1JZl4Rf/pkA++v3Ks5PC5GYUcqRV5hMZ+tPwTAA9eqV0dE3Ed4kC+zHr6GOzrG4DBg0o87eXxWArkFxWaXJmco7EilmP/LMU5mFxBl86VfywizyxERKVc+nh68+IdWvHBrSzytFub/cow/TF7DkYwcs0sTFHakEhiGwcerSyYm39+tHp4e+rETEfdjsVgY1rUenz3YhZAAb35NzmTQOz+zZq/W4TGb/upIhVu77yQ7U07j5+XBnZ3qml2OiEiF6tIghG9HdyeuThDp2QUMm7qBGesOml1WtaawIxXuk58PAPCHDnWw+XuZW4yISCWIqunH13/uxm3t6lDsMPjbN4kkHrWbXVa1pbAjFergyWyW7DgOwPBumpgsItWHr5cHrw1tw4DWtXEY8Oy8RBwOPaVlBoUdqVDT1hzAMKBn0zAahdcwuxwRkUplsVh4bkALavh4knD4FF9uOmx2SdWSwo5UmNN5hXy16QgAf9Lj5iJSTUUE+TKmT2MAXlqwk4zsApMrqn4UdqTC/Lgthaz8IhqEBXB941CzyxERMc3wbvVoFhlIRk4hLy9MMrucakdhRyrM15tLenVu7xCNxWIxuRoREfN4elj5v1vjAJi18RAJh0+ZW1A1o7AjFeJweg4b9qdjscBt7eqYXY6IiOk61w9mSPs6GAY8O28bxZqsXGlMDTurVq1i4MCBREVFYbFYmDdvXqn3s7KyGDVqFNHR0fj5+dG8eXMmT55cqk1+fj6jR48mNDSUgIAABg0axJEjRyrxKuR85mw+CsC1DUOpbfMzuRoREdcw8abmBPp6kng0k5nrtfZOZTE17GRnZ9OmTRveeeed874/duxYFixYwIwZM9ixYwdjx45l9OjRfPPNN842Y8aMYe7cucyaNYvVq1eTlZXFgAEDKC7WniRmMQyDOVtKAueQ9urVERE5KyzQhwn9mgLwn4VJpGXlm1xR9WBq2Lnpppv45z//yZAhQ877/tq1a7n//vvp2bMn9erV4+GHH6ZNmzZs2rQJALvdztSpU3n11Vfp06cP7dq1Y8aMGWzbto0lS5ZU5qXIb8QfzODgyRz8vT3oHxdpdjkiIi7lni6xtIwKIjOviBd/3Gl2OdWCS8/Z6d69O/Pnz+fo0aMYhsHy5cvZtWsX/fr1AyA+Pp7CwkL69u3r/ExUVBRxcXGsWbPmgufNz88nMzOz1EvKz+wzQ1g3xdXG39vT5GpERFyLh9XCC4NLJit/HX+ETQfSTa7I/bl02Hnrrbdo0aIF0dHReHt7079/f9577z26d+8OQEpKCt7e3tSqVavU5yIiIkhJSbngeSdNmoTNZnO+YmJiKvQ6qpO8wmK+23oMKNkeQkREztW+bi3u7FTyt+fZeYkUFTtMrsi9uXzYWbduHfPnzyc+Pp5XX32Vxx577JJDVIZhXPRR54kTJ2K3252vw4e1omV5WbLjOKfziqhT049r6oeYXY6IiMt6sn8zavp7sTPlNJ+u1WTliuSyYwy5ubk888wzzJ07l1tuuQWA1q1bk5CQwCuvvEKfPn2IjIykoKCAjIyMUr07qampdOvW7YLn9vHxwcfHp8KvoTqaHV8yMfm2dnWwWrW2jojIhQQHePNkv2Y8M3cbk37cQUZOASN7NcLXy8Ps0tyOy/bsFBYWUlhYiNVaukQPDw8cjpLuvg4dOuDl5cXixYud7ycnJ5OYmHjRsCMVI/V0Hqt2pwFwm57CEhG5pDs7xTCgdW0Kiw3eXraH/m+sYvWZ36NSfkzt2cnKymLPnj3Or/fv309CQgLBwcHUrVuXHj16MGHCBPz8/IiNjWXlypV8+umnvPbaawDYbDZGjBjB+PHjCQkJITg4mCeeeIJWrVrRp08fsy6r2pqfcIxih0G7ujVpGKZNP0VELsVqtfD2Xe0Y0Lo2z8/fzoGTOdw7dT23tavDX29pTmgNjUKUB4thGKYt4bhixQp69ep1zvH777+fadOmkZKSwsSJE1m0aBHp6enExsby8MMPM3bsWOecnLy8PCZMmMDMmTPJzc2ld+/evPfee5c16TgzMxObzYbdbicoKKjcrq+6uenNn9iRnMkLg+MYdk2s2eWIiFQpp/MKeXXRLv679gCGATY/L565uRl/7BCjaQEXUNa/36aGHVehsHP1fj2Wyc1v/YS3h5UNf+1NTX9vs0sSEamSEg6f4pk52/g1uWRZlM71gvn3kDgahQeaXJnrKevfb5edsyNVy5wzm372bh6uoCMichXaxtRk/qhrefaW5vh5ebDhQDp/mLyWUzkFZpdWZSnsyFUrKnYwL+HM2jrto02uRkSk6vP0sPLgdQ1YPO566oX4Y88tZEHihdePk4tT2JGr9tPuNNKy8gkJ8KZH0zCzyxERcRvRtfz5Y8eSOajfbU02uZqqS2FHrtrXZ4awBrWNwstDP1IiIuVpYOsoANbsTePEaW0ceiX0l0muij23kMW/Hgc0hCUiUhHqhvjTJtqGw4AFierduRIKO3JVvt+aTEGRg6YRgbSM0pNsIiIVYcCZ3p1vNZR1RRR25KqcfQprSPs6F92PTERErtwtrWsDsPFAOin2PJOrqXoUduSK7Uk9zaaDGVgtMLidtocQEakoUTX96BhbC8OA77epd+dyKezIFXtpQRIAfZpHEBHka3I1IiLubWCbM0NZvxwzuZKqR2FHrsiG/eks/vU4HlYLT/ZvanY5IiJu76ZWkVgtJSssH07PMbucKkVhRy6bYRj864cdANzRKUZLmIuIVILwQF+61A8BNJR1uRR25LJ9tzWZXw6fwt/bgzF9GptdjohItaGhrCujsCOXJb+omJcX7gTgkesbEh6ouToiIpWlf1wkHlYL249lsu9EltnlVBkKO3JZpq89yOH0XMIDfXjo+vpmlyMiUq0EB3jTvVEooO0jLofCjpSZPaeQt5ftAWB83yb4e3uaXJGISPUz4MyaO99t1VBWWSnsSJm9u2IP9txCmkYEcnuHGLPLERGplvq2jMTbw8qu41kkpZw2u5wqQWFHyuRweg7Tfj4AwNM3N8PDqtWSRUTMYPPz4vomYYB6d8pKYUfK5D8LkygodnBtoxB6nvmPTEREzDGwzdmhrGQMwzC5GtensCOXtPXIKeb/cgyLBSbe1Fx7YImImKxP8wh8vazsT8tm+7FMs8txeQo7clGGYfCv70sWELytbR3i6thMrkhERAJ8PLmhWTgA32oo65IUduSilu5IZf3+dHw8rYzvp20hRERcxYDWJQsMfveLhrIuRWFHLqio2MGkH0t6dR7oXp86Nf1MrkhERM7q1TScAG8Pjp7KZcvhU2aX49IUduSC5iUcY++JbIIDvHm0Z0OzyxERkd/w8/agT4sIoKR3Ry5Mq8LJeRU7DN5bXrKA4CPXNyDI18vkikRE5PcGto7im4RjzN58hKOncih2gMMwKHYYzv9b7DBoEFaDZ25uRmA1/V2usCPn9d3WY+xLy6amvxf3XhNrdjkiInIe1zUJJTjAm/TsAhZuP37Bduv3p7P3RBb//VNn/Lw9KrFC16CwI+dwOAzePdOrM+La+gT46MdERMQV+Xh6MPOhLmzYn47VYsHDasHDYsFqteBhBavFQn6hgxe++5UN+9N59LN4PhjWEW/P6jWLRX/F5ByLfk1h1/EsAn09uf/aemaXIyIiF9EsMohmkUEXbVM/LIBhU9ezIukEY77Ywlt3tsPTo/oEnupzpVImhmE4N/sc3q2e5uqIiLiBTvWCS3p0PKz8sC2Fp+dsw+GoPo+rK+xIKcuTUtl+LBN/bw8euLa+2eWIiEg5ub5JGG/d1Q4Pq4Wv44/wf9/9Wm3W51HYESfDMHhraUmvzrBrYqkV4G1yRSIiUp76x0Xyn9tbAzBtzQFeW7zL5Ioqh8KOOP285yQJh0/h62XlwesamF2OiIhUgCHto3nh1pYAvL1sD1NW7jW5oopnathZtWoVAwcOJCoqCovFwrx5885ps2PHDgYNGoTNZiMwMJBrrrmGQ4cOOd/Pz89n9OjRhIaGEhAQwKBBgzhy5EglXoX7eGvZbgDu6lyXsEAfk6sREZGKMqxrPZ7q3wyAF3/cycer91NQ5DC5qopjatjJzs6mTZs2vPPOO+d9f+/evXTv3p1mzZqxYsUKfvnlF5577jl8fX2dbcaMGcPcuXOZNWsWq1evJisriwEDBlBcXFxZl+EW1u87yYb96Xh7WHnkeq2WLCLi7h7t2ZCRvUp+3//fd7/S6u8LuX3yGv79ww4WJCZzPDPP5ArLj8VwkdlJFouFuXPnMnjwYOexO++8Ey8vL6ZPn37ez9jtdsLCwpg+fTp33HEHAMeOHSMmJoYffviBfv36lel7Z2ZmYrPZsNvtBAVd/PE9dzVs6np+2p3GPV3q8q/bWpldjoiIVALDMHhjyW7+u/YAp3IKz3m/Tk0/2tatSY8mYdzePhqr1WJClRdW1r/fLjtnx+Fw8P3339OkSRP69etHeHg4Xbp0KTXUFR8fT2FhIX379nUei4qKIi4ujjVr1phQddW05VAGP+1Ow9Nq4c891KsjIlJdWCwWxt7YhC3P3cjS8T145Y9tuLtLXZrXDsJqgaOncvl+azJPfr2Vd84sNlsVueyigqmpqWRlZfHiiy/yz3/+k5deeokFCxYwZMgQli9fTo8ePUhJScHb25tatWqV+mxERAQpKSkXPHd+fj75+fnOrzMzMyvsOqqCd86sq3NbuzrEBPubXI2IiFQ2i8VCw7AaNAyrwe0dogHIyi9i6+FTLNuZyker9/Pm0t1c2yiEDrHBJld7+Vy6Zwfg1ltvZezYsbRt25ann36aAQMGMGXKlIt+1jAMLJYLd7VNmjQJm83mfMXExJRr7VVJ4lE7S3emYrXAY70amV2OiIi4iBo+nnRrFMqzA1owuG0UxQ6Dx2clkJl37nCXq3PZsBMaGoqnpyctWrQodbx58+bOp7EiIyMpKCggIyOjVJvU1FQiIiIueO6JEydit9udr8OHD5f/BVQRZ3t1BraJon5ogMnViIiIK/q/wXHEBPtxJCOXZ+cmVrnFCF027Hh7e9OpUyeSkpJKHd+1axexsSW7cHfo0AEvLy8WL17sfD85OZnExES6det2wXP7+PgQFBRU6lUd7Tp+mgXbS4b7RqpXR0RELiDI14s37ihZfXn+L8eYu+Wo2SVdFlPn7GRlZbFnz/8mPO3fv5+EhASCg4OpW7cuEyZM4I477uD666+nV69eLFiwgG+//ZYVK1YAYLPZGDFiBOPHjyckJITg4GCeeOIJWrVqRZ8+fUy6qqrjraUl6+rcFBdJk4hAk6sRERFX1iG2FmN6N+bVxbt4bl4iHWJrERtSNUYETO3Z2bRpE+3ataNdu3YAjBs3jnbt2vG3v/0NgNtuu40pU6bw8ssv06pVKz766CNmz55N9+7dned4/fXXGTx4MEOHDuXaa6/F39+fb7/9Fg8PD1OuqarYffw0329LBmD0DY1NrkZERKqCx3o1onP9YLILivnLrAQKi6vGQoQus86OmarjOjuPz9rCNwnH6Nsigg/u62h2OSIiUkUcO5VL/zdWkZlXxMheDZnQr5lptVT5dXak4uw9kcW3vxwD4C+91asjIiJlF1XTjxf/ULKZ6Hsr9rJ270mTK7o0hZ1q6J1le3AY0Kd5BHF1bGaXIyIiVczNrWpzZ6cYDAPGfpHAqZwCs0u6KIWdambfiSy+SSiZRf+4enVEROQK/W1gCxqEBpCSmcfTs7e59OPoCjvVzLvL9+Iw4IZm4bSKVq+OiIhcGX9vT966qx1eHhYWbE/hq/gjZpd0QQo71cjBk9nMU6+OiIiUk7g6Nsb3bQrAC9/+SrI91+SKzk9hpxp5Z9keih0GPZuG0SamptnliIiIG3jouga0janJ6fwiJs5xzeEshZ1q4tDJHOacWfFST2CJiEh58bBaeOWPrfH2tLIi6YRLDmcp7FQT7y4v6dW5rnEo7evWuvQHREREyqhReCDjbmwCwAvfud5wlsJONXA4PYfZm0uS9pg+6tUREZHy5xzOynO94SyFnWrgvRV7KXIYdG8USofYYLPLERERN/T74ayvXWg4S2HHzR09lcvX8YcBzdUREZGK1Sg8kLF9Soaz/u+7X0mx55lcUQmFHTf33vI9FBYbdG0QQuf66tUREZGK9dB19WnjHM7a6hLDWQo7buzYqVy+3FTSq/O45uqIiEgl8PSw8srtrfH2sLI86QSzNx81uySFHXf25pLdFBYbdKkfzDUNQswuR0REqonGEYGMPfN01j++3W76cJbCjpvaffw0X52Zq/Nk/6YmVyMiItXNb4eznplr7tNZCjtu6qUFO3EY0K9lhJ7AEhGRSvfb4axlO1NNHc5S2HFD6/edZMmOVDysFp7s38zsckREpJpqHBHImBsbU8vfiwBvD9Pq8DTtO0uFMAyDST/uBODOTjE0DKthckUiIlKdPXxdA4Z2jCG0ho9pNahnx838mJhCwuFT+Ht76AksERExnaeH1dSgAwo7bqWw2MHLC0p6dR68rgHhgb4mVyQiImI+hR038vmGQxw4mUNoDW8evr6B2eWIiIi4BIUdN5GVX8SbS3YD8HjvxtTw0XQsERERUNhxGx+s2sfJ7ALqhwZwZ+e6ZpcjIiLiMhR23EBqZh4f/bQPgAn9muLlof+3ioiInKW/im7gjaW7ySkopm1MTW6KizS7HBEREZeisFPF7T2RxRcbS7aFeObm5lgsFpMrEhERcS0KO1Xcywt2Uuww6NM8nM71tS2EiIjI7ynsVGGrdp1g4fbjWC3wlLaFEBEROS+FnSoq/mA6f54RD8CdnevSOCLQ5IpERERck8JOFbT1yCmGf7yRnIJirmscyt8GtDC7JBEREZelsFPF7EjOZNjUDZzOL6Jz/WA+GNYRXy/zdpIVERFxdQo7Vcie1Czu/Wg99txC2tWtycfDO+HnraAjIiJyMaaGnVWrVjFw4ECioqKwWCzMmzfvgm0feeQRLBYLb7zxRqnj+fn5jB49mtDQUAICAhg0aBBHjhyp2MJNcPBkNvd8tI6T2QW0jApi2p86a0sIERGRMjA17GRnZ9OmTRveeeedi7abN28e69evJyoq6pz3xowZw9y5c5k1axarV68mKyuLAQMGUFxcXFFlV7qjp3K5+8P1HM/Mp2lEINNHdMHm52V2WSIiIlWCqV0DN910EzfddNNF2xw9epRRo0axcOFCbrnlllLv2e12pk6dyvTp0+nTpw8AM2bMICYmhiVLltCvX78Kq72yHM/M4+4P13H0VC4NQgOY8WAXggO8zS5LRESkynDpOTsOh4Nhw4YxYcIEWrZsec778fHxFBYW0rdvX+exqKgo4uLiWLNmzQXPm5+fT2ZmZqmXK0o9E3QOnswhJtiPzx7qQligj9lliYiIVCkuHXZeeuklPD09+ctf/nLe91NSUvD29qZWrVqljkdERJCSknLB806aNAmbzeZ8xcTElGvd5WH9vpPc8vZq9p7IJsrmy8wHr6G2zc/sskRERKoclw078fHxvPnmm0ybNu2y93syDOOin5k4cSJ2u935Onz48NWWW24Mw+DDVfu4+6P1nDidT5OIGnz+8DXEBPubXZqIiEiV5LJh56effiI1NZW6devi6emJp6cnBw8eZPz48dSrVw+AyMhICgoKyMjIKPXZ1NRUIiIiLnhuHx8fgoKCSr1cwem8Qh77bDP/+mEHxQ6DW9tGMW/ktcSGBJhdmoiISJXlsmFn2LBhbN26lYSEBOcrKiqKCRMmsHDhQgA6dOiAl5cXixcvdn4uOTmZxMREunXrZlbpV2TX8dPc+u7P/JiYgpeHhRdubckbd7TF31uPl4uIiFwNU/+SZmVlsWfPHufX+/fvJyEhgeDgYOrWrUtISEip9l5eXkRGRtK0aVMAbDYbI0aMYPz48YSEhBAcHMwTTzxBq1atnE9nVQXfJBzl6dnbyC0sprbNl3fvaU/7urUu/UERERG5JFPDzqZNm+jVq5fz63HjxgFw//33M23atDKd4/XXX8fT05OhQ4eSm5tL7969mTZtGh4err+ycEGRg399/yv/XXsQgO6NQnnzzraE1NATVyIiIuXFYhiGYXYRZsvMzMRms2G32yt1/s4/v/uVj1bvB2BUr0aMvbEJHtbLm4wtIiJSXZX177cmhJhk74kspq05AMDbd7VjYJtzV4cWERGRq+eyE5Td3aQfdlDkMOjdLFxBR0REpAIp7Jhg9e40luxIxdNq4ZlbmptdjoiIiFtT2KlkRcUOXvjuVwCGdY2lYVgNkysSERFxbwo7leyLTYdJOn4am58Xj/dubHY5IiIibk9hpxJl5hXy2qJdAIzp05ia/tq9XEREpKIp7FSid5fv4WR2AQ3CArj3mlizyxEREakWFHYqyaGTOXyy+gAAz97SHC8P3XoREZHKoL+4lWTSjzsoKHZwXeNQejUNN7scERGRakNhpxKs23eSHxNTsFrg2VtaYLFolWQREZHKorBTwYodhvNR87s616VpZKDJFYmIiFQvCjsVbPbmI2w/lkmgjyfjbmxidjkiIiLVjsJOBcrOL+I/C5MAGN27kXYzFxERMYHCTgWavGIvJ07nExviz/3d6pldjoiISLWksFOB8ouK8bBamHhTc3w8PcwuR0REpFqyGIZhmF2E2TIzM7HZbNjtdoKCgsr13AdPZlM32F9PYImIiJSzsv799qzEmqql2JAAs0sQERGp1jSMJSIiIm5NYUdERETcmsKOiIiIuDWFHREREXFrCjsiIiLi1hR2RERExK0p7IiIiIhbU9gRERERt6awIyIiIm5NYUdERETcmsKOiIiIuDWFHREREXFrCjsiIiLi1rTrOWAYBlCyVbyIiIhUDWf/bp/9O34hCjvA6dOnAYiJiTG5EhEREblcp0+fxmazXfB9i3GpOFQNOBwOjh07RmBgIBaLpVK/d2ZmJjExMRw+fJigoKBK/d7uQPfv6ukeXh3dv6une3h1qvP9MwyD06dPExUVhdV64Zk56tkBrFYr0dHRptYQFBRU7X5Iy5Pu39XTPbw6un9XT/fw6lTX+3exHp2zNEFZRERE3JrCjoiIiLg1hR2T+fj48Pzzz+Pj42N2KVWS7t/V0z28Orp/V0/38Oro/l2aJiiLiIiIW1PPjoiIiLg1hR0RERFxawo7IiIi4tYUdkRERMStKexcpVWrVjFw4ECioqKwWCzMmzev1PvHjx9n+PDhREVF4e/vT//+/dm9e/c551m7di033HADAQEB1KxZk549e5Kbm+t8PyMjg2HDhmGz2bDZbAwbNoxTp05V8NVVjqu9hwcOHMBisZz39dVXXznbues9LI+fwZSUFIYNG0ZkZCQBAQG0b9+er7/+ulQbd71/UD73cO/evdx2222EhYURFBTE0KFDOX78eKk27noPJ02aRKdOnQgMDCQ8PJzBgweTlJRUqo1hGPz9738nKioKPz8/evbsyfbt20u1yc/PZ/To0YSGhhIQEMCgQYM4cuRIqTbueA/L6/598MEH9OzZk6CgICwWy3nvizvev7JQ2LlK2dnZtGnThnfeeeec9wzDYPDgwezbt49vvvmGLVu2EBsbS58+fcjOzna2W7t2Lf3796dv375s2LCBjRs3MmrUqFJLX999990kJCSwYMECFixYQEJCAsOGDauUa6xoV3sPY2JiSE5OLvX6xz/+QUBAADfddJPzXO56D8vjZ3DYsGEkJSUxf/58tm3bxpAhQ7jjjjvYsmWLs4273j+4+nuYnZ1N3759sVgsLFu2jJ9//pmCggIGDhyIw+Fwnstd7+HKlSsZOXIk69atY/HixRQVFdG3b99SP2Mvv/wyr732Gu+88w4bN24kMjKSG2+80bk3IcCYMWOYO3cus2bNYvXq1WRlZTFgwACKi4udbdzxHpbX/cvJyaF///4888wzF/xe7nj/ysSQcgMYc+fOdX6dlJRkAEZiYqLzWFFRkREcHGx8+OGHzmNdunQxnn322Que99dffzUAY926dc5ja9euNQBj586d5XsRJrvSe/h7bdu2NR544AHn19XlHl7p/QsICDA+/fTTUucKDg42PvroI8Mwqs/9M4wru4cLFy40rFarYbfbnW3S09MNwFi8eLFhGNXrHqamphqAsXLlSsMwDMPhcBiRkZHGiy++6GyTl5dn2Gw2Y8qUKYZhGMapU6cMLy8vY9asWc42R48eNaxWq7FgwQLDMKrPPbyS+/dby5cvNwAjIyOj1PHqcv/ORz07FSg/Px8AX19f5zEPDw+8vb1ZvXo1AKmpqaxfv57w8HC6detGREQEPXr0cL4PJT0/NpuNLl26OI9dc8012Gw21qxZU0lXY46y3MPfi4+PJyEhgREjRjiPVdd7WNb71717d7744gvS09NxOBzMmjWL/Px8evbsCVTf+wdlu4f5+flYLJZSi7r5+vpitVqdbarTPbTb7QAEBwcDsH//flJSUujbt6+zjY+PDz169HBee3x8PIWFhaXaREVFERcX52xTXe7hldy/sqgu9+98FHYqULNmzYiNjWXixIlkZGRQUFDAiy++SEpKCsnJyQDs27cPgL///e889NBDLFiwgPbt29O7d2/nnICUlBTCw8PPOX94eDgpKSmVd0EmKMs9/L2pU6fSvHlzunXr5jxWXe9hWe/fF198QVFRESEhIfj4+PDII48wd+5cGjZsCFTf+wdlu4fXXHMNAQEBPPXUU+Tk5JCdnc2ECRNwOBzONtXlHhqGwbhx4+jevTtxcXEAzuuLiIgo1TYiIsL5XkpKCt7e3tSqVeuibdz9Hl7p/SuL6nD/LkRhpwJ5eXkxe/Zsdu3aRXBwMP7+/qxYsYKbbroJDw8PAOd4/iOPPMKf/vQn2rVrx+uvv07Tpk35+OOPneeyWCznnN8wjPMedydluYe/lZuby8yZM0v16pxVHe9hWe/fs88+S0ZGBkuWLGHTpk2MGzeOP/7xj2zbts3ZpjrePyjbPQwLC+Orr77i22+/pUaNGthsNux2O+3bty91n6vDPRw1ahRbt27l888/P+e9319nWa79923c/R6W9/271Dmu9DxVjafZBbi7Dh06kJCQgN1up6CggLCwMLp06ULHjh0BqF27NgAtWrQo9bnmzZtz6NAhACIjI895qgPgxIkT5yR9d3Spe/hbX3/9NTk5Odx3332ljlfne3ip+7d3717eeecdEhMTadmyJQBt2rThp59+4t1332XKlCnV+v5B2X4G+/bty969e0lLS8PT05OaNWsSGRlJ/fr1gerxMzh69Gjmz5/PqlWriI6Odh6PjIwESnoWzv7Og5Jh/LPXHhkZSUFBARkZGaV6d1JTU529tO5+D6/m/pWFu9+/i1HPTiWx2WyEhYWxe/duNm3axK233gpAvXr1iIqKOucxw127dhEbGwtA165dsdvtbNiwwfn++vXrsdvtpYZq3N2F7uFvTZ06lUGDBhEWFlbquO7hhe9fTk4OQKmn/6BkXsrZnkfdvxJl+RkMDQ2lZs2aLFu2jNTUVAYNGgS49z00DINRo0YxZ84cli1b5gx4Z9WvX5/IyEgWL17sPFZQUMDKlSud196hQwe8vLxKtUlOTiYxMdHZxl3vYXncv7Jw1/tXJqZMi3Yjp0+fNrZs2WJs2bLFAIzXXnvN2LJli3Hw4EHDMAzjyy+/NJYvX27s3bvXmDdvnhEbG2sMGTKk1Dlef/11IygoyPjqq6+M3bt3G88++6zh6+tr7Nmzx9mmf//+RuvWrY21a9caa9euNVq1amUMGDCgUq+1opTHPTQMw9i9e7dhsViMH3/88bzfx13v4dXev4KCAqNRo0bGddddZ6xfv97Ys2eP8corrxgWi8X4/vvvne3c9f4ZRvn8DH788cfG2rVrjT179hjTp083goODjXHjxpVq46738NFHHzVsNpuxYsUKIzk52fnKyclxtnnxxRcNm81mzJkzx9i2bZtx1113GbVr1zYyMzOdbf785z8b0dHRxpIlS4zNmzcbN9xwg9GmTRujqKjI2cYd72F53b/k5GRjy5YtxocffmgAxqpVq4wtW7YYJ0+edLZxx/tXFgo7V+nsI36/f91///2GYRjGm2++aURHRxteXl5G3bp1jWeffdbIz88/5zyTJk0yoqOjDX9/f6Nr167GTz/9VOr9kydPGvfcc48RGBhoBAYGGvfcc885jxVWVeV1DydOnGhER0cbxcXF5/0+7noPy+P+7dq1yxgyZIgRHh5u+Pv7G61btz7nUXR3vX+GUT738KmnnjIiIiIMLy8vo3Hjxsarr75qOByOUm3c9R6e794BxieffOJs43A4jOeff96IjIw0fHx8jOuvv97Ytm1bqfPk5uYao0aNMoKDgw0/Pz9jwIABxqFDh0q1ccd7WF737/nnn7/kedzx/pWFxTAMo6J6jURERETMpjk7IiIi4tYUdkRERMStKeyIiIiIW1PYEREREbemsCMiIiJuTWFHRERE3JrCjoiIiLg1hR0RERFxawo7IlIlGIZBnz596Nev3znvvffee9hsNufmuSIiv6WwIyJVgsVi4ZNPPmH9+vW8//77zuP79+/nqaee4s0336Ru3brl+j0LCwvL9XwiYg6FHRGpMmJiYnjzzTd54okn2L9/P4ZhMGLECHr37k3nzp25+eabqVGjBhEREQwbNoy0tDTnZxcsWED37t2pWbMmISEhDBgwgL179zrfP3DgABaLhS+//JKePXvi6+vLjBkzzLhMESln2htLRKqcwYMHc+rUKf7whz/wwgsvsHHjRjp27MhDDz3EfffdR25uLk899RRFRUUsW7YMgNmzZ2OxWGjVqhXZ2dn87W9/48CBAyQkJGC1Wjlw4AD169enXr16vPrqq7Rr1w4fHx+ioqJMvloRuVoKOyJS5aSmphIXF8fJkyf5+uuv2bJlC+vXr2fhwoXONkeOHCEmJoakpCSaNGlyzjlOnDhBeHg427ZtIy4uzhl23njjDR5//PHKvBwRqWAaxhKRKic8PJyHH36Y5s2bc9tttxEfH8/y5cupUaOG89WsWTMA51DV3r17ufvuu2nQoAFBQUHUr18f4JxJzR07dqzcixGRCudpdgEiIlfC09MTT8+SX2EOh4OBAwfy0ksvndOudu3aAAwcOJCYmBg+/PBDoqKicDgcxMXFUVBQUKp9QEBAxRcvIpVKYUdEqrz27dsze/Zs6tWr5wxAv3Xy5El27NjB+++/z3XXXQfA6tWrK7tMETGJhrFEpMobOXIk6enp3HXXXWzYsIF9+/axaNEiHnjgAYqLi6lVqxYhISF88MEH7Nmzh2XLljFu3DizyxaRSqKwIyJVXlRUFD///DPFxcX069ePuLg4Hn/8cWw2G1arFavVyqxZs4iPjycuLo6xY8fyn//8x+yyRaSS6GksERERcWvq2RERERG3prAjIiIibk1hR0RERNyawo6IiIi4NYUdERERcWsKOyIiIuLWFHZERETErSnsiIiIiFtT2BERERG3prAjIiIibk1hR0RERNyawo6IiIi4tf8Hs7GuQzddrQgAAAAASUVORK5CYII=",
+      "text/plain": [
+       "<Figure size 640x480 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "N = 57\n",
+    "dates = pd.date_range(\"1/1/1958\", periods=57, freq='Y')\n",
+    "\n",
+    "plt.plot(dates, test)\n",
+    "plt.title('CO emissions')\n",
+    "plt.xlabel('Year')\n",
+    "plt.ylabel('Tg/a')\n",
+    "\n",
+    "fig.tight_layout()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "d695b8f6-f060-469e-aa91-22d6cb705524",
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (based on the module python3/2023.01)",
+   "language": "python",
+   "name": "python3_2023_01"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.10.10"
+  }
+ },
  "nbformat": 4,
  "nbformat_minor": 5
 }
diff --git a/emissions/historical_emissions.ipynb b/emissions/historical_emissions.ipynb
index ce0f98f492c320e83d0dad7124949c23b67b4671..acf884211c8e8894b984f8955d965246e3def9f2 100644
--- a/emissions/historical_emissions.ipynb
+++ b/emissions/historical_emissions.ipynb
@@ -11,17 +11,18 @@
   {
    "cell_type": "code",
    "execution_count": 1,
-   "id": "c11f9e93-2877-415a-89bb-84d9390b2731",
+   "id": "b5954e9e-dfcf-45d6-bd71-275eb1bbb845",
    "metadata": {
     "tags": []
    },
    "outputs": [],
    "source": [
-    "import glob\n",
-    "import pandas as pd\n",
-    "import matplotlib.pyplot as plt\n",
     "import xarray as xr\n",
-    "import numpy as np"
+    "import numpy as np\n",
+    "import matplotlib.pyplot as plt\n",
+    "import pandas as pd\n",
+    "import glob\n",
+    "from IPython.display import Image"
    ]
   },
   {
@@ -39,718 +40,134 @@
     {
      "data": {
       "text/plain": [
-       "['/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_awb_NMVOC_183001-183912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_MISC_183001-183912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_aerosol_193001-193912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMHC_201001-201012.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_aerosol_201401-201412.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_awb_NMVOC_175001-201512.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMHC_189001-189912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_awb_NMVOC_191001-191912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_aerosol_201501-201512.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_aerosol_190001-190912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_MISC_201201-201212.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_aerosol_183001-183912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMVOC_194001-194912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMVOC_201301-201312.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMHC_185001-185912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_aerosol_199001-199912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMHC_186001-186912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_aerosol_194001-194912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMHC_194001-194912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_awb_NMVOC_201101-201112.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_188001-188912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_178001-178912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_NMHC_197001-197912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMVOC_197001-197912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMVOC_194001-194912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_aerosol_176001-176912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_NMHC_189001-189912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMVOC_180001-180912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_awb_NMVOC_198001-198912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2_DLR1.0_hist-piNTCF_air_aerosol_181001-181912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_bb_NMVOC_191001-191912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_NMHC_192001-192912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_awb_NMVOC_182001-182912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_aerosol_201201-201212.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_aerosol_187001-187912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_bb_NMVOC_184001-184912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_aerosol_200001-200912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_aerosol_185001-185912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_aerosol_201101-201112.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_186001-186912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2.1_DLR1.0_hist-piNTCF_air_MISC_196001-196912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_bb_NMVOC_201101-201112.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_aerosol_191001-191912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_aerosol_192001-192912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_MISC_199001-199912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMVOC_195001-195912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_177001-177912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMHC_200001-200912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_aerosol_190001-190912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_aerosol_185001-185912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_aerosol_186001-186912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_NMHC_188001-188912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMVOC_201101-201112.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_177001-177912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_NMHC_190001-190912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_MISC_187001-187912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_aerosol_180001-180912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMVOC_187001-187912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_NMHC_188001-188912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_196001-196912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2.1_DLR1.0_hist-piNTCF_air_MISC_179001-179912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_MISC_185001-185912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_NMHC_201201-201212.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_MISC_191001-191912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMHC_188001-188912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2.1_DLR1.0_hist-piNTCF_air_MISC_199001-199912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_179001-179912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMVOC_178001-178912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_bb_NMVOC_201501-201512.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_aerosol_175001-175912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMHC_195001-195912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_181001-181912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMHC_176001-176912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMHC_177001-177912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_NMHC_201001-201012.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_aerosol_188001-188912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_awb_NMVOC_201501-201512.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_aerosol_177001-177912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_201201-201212.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_bb_NMVOC_185001-185912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_MISC_182001-182912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_aerosol_180001-180912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2.1_DLR1.0_hist-piNTCF_air_MISC_193001-193912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_NMHC_200001-200912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_aerosol_190001-190912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_aerosol_197001-197912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_aerosol_182001-182912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMVOC_196001-196912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_awb_NMVOC_195001-195912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_aerosol_179001-179912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_MISC_184001-184912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMVOC_201401-201412.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMVOC_191001-191912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_NMHC_180001-180912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_MISC_175001-201412.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_awb_NMVOC_192001-192912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_NMHC_187001-187912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_194001-194912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_MISC_201301-201312.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_MISC_192001-192912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2_DLR1.0_hist-piNTCF_air_aerosol_201201-201212.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_MISC_189001-189912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMVOC_192001-192912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_aerosol_194001-194912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_aerosol_183001-183912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_aerosol_181001-181912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_MISC_181001-181912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMHC_181001-181912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2.1_DLR1.0_hist-piNTCF_air_MISC_178001-178912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2_DLR1.0_hist-piNTCF_air_aerosol_184001-184912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2.1_DLR1.0_hist-piNTCF_air_MISC_182001-182912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_188001-188912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_aerosol_175001-201412.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_aerosol_201301-201312.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_MISC_185001-185912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMHC_201101-201112.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMHC_201401-201412.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_176001-176912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2_DLR1.0_hist-piNTCF_air_aerosol_201301-201312.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_aerosol_188001-188912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMVOC_192001-192912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_bb_NMVOC_186001-186912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMHC_194001-194912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_aerosol_186001-186912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_195001-195912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_MISC_187001-187912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMHC_179001-179912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_aerosol_187001-187912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_MISC_189001-189912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_aerosol_201101-201112.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMHC_197001-197912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_196001-196912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_aerosol_184001-184912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMHC_181001-181912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_bb_NMVOC_201301-201312.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_bb_NMVOC_176001-176912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_NMHC_194001-194912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_MISC_188001-188912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMVOC_177001-177912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2_DLR1.0_hist-piNTCF_air_aerosol_198001-198912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_184001-184912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_bb_NMVOC_190001-190912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2.1_DLR1.0_hist-piNTCF_air_MISC_181001-181912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_MISC_198001-198912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_bb_NMVOC_200001-200912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_191001-191912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_aerosol_180001-180912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_199001-199912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMVOC_175001-201412.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_aerosol_195001-195912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_183001-183912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_MISC_197001-197912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMHC_183001-183912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_aerosol_201001-201012.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_MISC_175001-175912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMHC_182001-182912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_NMHC_198001-198912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMHC_201001-201012.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_MISC_186001-186912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2.1_DLR1.0_hist-piNTCF_air_MISC_175001-201412.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2_DLR1.0_hist-piNTCF_air_aerosol_185001-185912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMVOC_196001-196912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_MISC_188001-188912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_aerosol_200001-200912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2_DLR1.0_hist-piNTCF_air_aerosol_175001-175912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_aerosol_201501-201512.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_aerosol_186001-186912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_aerosol_181001-181912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMHC_178001-178912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_awb_NMVOC_201301-201312.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_MISC_201101-201112.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_awb_NMVOC_185001-185912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_aerosol_201201-201212.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMHC_192001-192912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMHC_192001-192912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_MISC_200001-200912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMHC_180001-180912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMVOC_201401-201412.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2.1_DLR1.0_hist-piNTCF_air_MISC_195001-195912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_193001-193912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMHC_201301-201312.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_NMHC_181001-181912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_aerosol_196001-196912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMVOC_198001-198912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMHC_190001-190912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMHC_178001-178912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_aerosol_201301-201312.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMVOC_189001-189912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_183001-183912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_MISC_195001-195912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2_DLR1.0_hist-piNTCF_air_aerosol_183001-183912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_aerosol_181001-181912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_aerosol_195001-195912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_aerosol_184001-184912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_MISC_182001-182912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_aerosol_196001-196912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMVOC_182001-182912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMHC_175001-201412.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMVOC_192001-192912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_awb_NMVOC_199001-199912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_aerosol_185001-185912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMHC_201201-201212.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_MISC_196001-196912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_187001-187912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_190001-190912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_187001-187912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_NMHC_177001-177912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMHC_185001-185912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_MISC_184001-184912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_aerosol_193001-193912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_MISC_180001-180912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_awb_NMVOC_175001-175912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_aerosol_175001-201512.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2_DLR1.0_hist-piNTCF_air_aerosol_176001-176912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_aerosol_201301-201312.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMVOC_180001-180912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2_DLR1.0_hist-piNTCF_air_aerosol_196001-196912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMVOC_188001-188912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_189001-189912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMVOC_184001-184912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMVOC_188001-188912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_195001-195912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMHC_201301-201312.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_aerosol_201001-201012.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_200001-200912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_MISC_183001-183912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_aerosol_185001-185912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2.1_DLR1.0_hist-piNTCF_air_MISC_200001-200912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_bb_NMVOC_183001-183912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_aerosol_176001-176912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMHC_190001-190912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMVOC_176001-176912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_aerosol_178001-178912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMHC_176001-176912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_aerosol_175001-175912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_aerosol_177001-177912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMHC_182001-182912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_aerosol_201401-201412.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_aerosol_178001-178912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_182001-182912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMVOC_201201-201212.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_MISC_181001-181912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2.1_DLR1.0_hist-piNTCF_air_MISC_201201-201212.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_aerosol_179001-179912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_aerosol_192001-192912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2_DLR1.0_hist-piNTCF_air_aerosol_195001-195912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_201301-201312.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2_DLR1.0_hist-piNTCF_air_aerosol_180001-180912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMHC_187001-187912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMHC_175001-201412.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_NMHC_181001-181912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_aerosol_176001-176912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMVOC_177001-177912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_MISC_177001-177912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMVOC_193001-193912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_bb_NMVOC_192001-192912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_199001-199912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_201401-201412.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_NMHC_184001-184912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_MISC_195001-195912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_NMHC_200001-200912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_MISC_201201-201212.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_aerosol_201301-201312.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_MISC_180001-180912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_MISC_196001-196912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2.1_DLR1.0_hist-piNTCF_air_MISC_188001-188912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_MISC_200001-200912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_MISC_200001-200912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMHC_193001-193912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMVOC_186001-186912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_awb_NMVOC_197001-197912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMVOC_191001-191912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMHC_191001-191912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2.1_DLR1.0_hist-piNTCF_air_MISC_185001-185912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMVOC_193001-193912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMVOC_194001-194912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_aerosol_183001-183912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMHC_177001-177912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMVOC_189001-189912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMHC_179001-179912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMVOC_201201-201212.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMVOC_175001-175912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMVOC_200001-200912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_aerosol_183001-183912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_MISC_197001-197912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_aerosol_198001-198912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_MISC_191001-191912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_aerosol_181001-181912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_aerosol_191001-191912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2.1_DLR1.0_hist-piNTCF_air_MISC_198001-198912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_aerosol_193001-193912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMVOC_199001-199912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2_DLR1.0_hist-piNTCF_air_aerosol_192001-192912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_MISC_201001-201012.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMVOC_201001-201012.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_awb_NMVOC_196001-196912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMHC_187001-187912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_aerosol_195001-195912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_awb_NMVOC_190001-190912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_aerosol_191001-191912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_aerosol_197001-197912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMVOC_201001-201012.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_NMHC_187001-187912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_bb_NMVOC_196001-196912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_aerosol_201401-201412.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMHC_200001-200912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_awb_NMVOC_188001-188912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_aerosol_184001-184912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_aerosol_179001-179912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_NMHC_190001-190912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2_DLR1.0_hist-piNTCF_air_aerosol_191001-191912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_aerosol_186001-186912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMHC_201101-201112.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_NMHC_196001-196912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMVOC_182001-182912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_aerosol_199001-199912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_MISC_197001-197912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_201501-201512.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_bb_NMVOC_178001-178912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_182001-182912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMVOC_191001-191912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMHC_192001-192912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2.1_DLR1.0_hist-piNTCF_air_MISC_191001-191912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2_DLR1.0_hist-piNTCF_air_aerosol_194001-194912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMHC_200001-200912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_aerosol_196001-196912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_184001-184912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_NMHC_179001-179912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_NMHC_201501-201512.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_193001-193912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2_DLR1.0_hist-piNTCF_air_aerosol_177001-177912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMHC_194001-194912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMHC_196001-196912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_aerosol_194001-194912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMHC_197001-197912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_MISC_186001-186912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_aerosol_182001-182912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMHC_186001-186912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_awb_NMVOC_184001-184912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_NMHC_186001-186912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_aerosol_198001-198912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_aerosol_187001-187912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMVOC_179001-179912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMHC_198001-198912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_bb_NMVOC_181001-181912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_MISC_201301-201312.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_aerosol_192001-192912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_NMHC_182001-182912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_bb_NMVOC_177001-177912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_NMHC_201001-201012.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_aerosol_177001-177912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMHC_201101-201112.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMVOC_185001-185912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_bb_NMVOC_180001-180912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_aerosol_201201-201212.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_aerosol_180001-180912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_aerosol_175001-175912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_aerosol_179001-179912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_aerosol_188001-188912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_aerosol_184001-184912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_200001-200912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_NMHC_201501-201512.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_MISC_194001-194912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMVOC_186001-186912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMHC_187001-187912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_198001-198912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_aerosol_189001-189912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_NMHC_191001-191912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMVOC_201101-201112.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMHC_201401-201412.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_MISC_199001-199912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2_DLR1.0_hist-piNTCF_air_aerosol_188001-188912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMVOC_184001-184912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMHC_199001-199912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_aerosol_199001-199912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_bb_NMVOC_198001-198912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2_DLR1.0_hist-piNTCF_air_aerosol_201401-201412.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_MISC_194001-194912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_aerosol_200001-200912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_MISC_176001-176912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_aerosol_182001-182912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_NMHC_201301-201312.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMVOC_183001-183912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_aerosol_187001-187912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_awb_NMVOC_189001-189912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_NMHC_201401-201412.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_awb_NMVOC_194001-194912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_aerosol_187001-187912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMVOC_197001-197912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_MISC_190001-190912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_NMHC_199001-199912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMHC_185001-185912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_NMHC_183001-183912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2.1_DLR1.0_hist-piNTCF_air_MISC_201001-201012.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_MISC_201501-201512.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_aerosol_194001-194912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_aerosol_175001-175912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_aerosol_199001-199912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMVOC_185001-185912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_bb_NMVOC_199001-199912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMHC_184001-184912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_MISC_201101-201112.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2.1_DLR1.0_hist-piNTCF_air_MISC_197001-197912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_MISC_198001-198912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_MISC_201101-201112.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_bb_NMVOC_193001-193912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMVOC_201401-201412.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMVOC_195001-195912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_MISC_182001-182912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2.1_DLR1.0_hist-piNTCF_air_MISC_192001-192912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_MISC_175001-201512.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMVOC_201101-201112.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2.1_DLR1.0_hist-piNTCF_air_MISC_184001-184912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_aerosol_186001-186912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMVOC_176001-176912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_awb_NMVOC_177001-177912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_MISC_191001-191912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMHC_178001-178912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMVOC_179001-179912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_MISC_179001-179912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_NMHC_176001-176912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_201201-201212.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_NMHC_199001-199912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMVOC_178001-178912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMHC_197001-197912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_NMHC_201201-201212.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMHC_175001-175912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_aerosol_175001-175912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_aerosol_201001-201012.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_175001-201412.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_aerosol_200001-200912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_aerosol_201301-201312.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_awb_NMVOC_193001-193912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_201301-201312.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_MISC_194001-194912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMHC_176001-176912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMVOC_190001-190912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2_DLR1.0_hist-piNTCF_air_aerosol_187001-187912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_aerosol_192001-192912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_189001-189912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_NMHC_198001-198912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMHC_196001-196912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_aerosol_175001-201512.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMHC_189001-189912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_NMHC_195001-195912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMVOC_187001-187912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_NMHC_180001-180912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_NMHC_201301-201312.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMHC_198001-198912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMVOC_196001-196912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMHC_201001-201012.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_185001-185912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_NMHC_201101-201112.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_197001-197912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_aerosol_189001-189912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2_DLR1.0_hist-piNTCF_air_aerosol_190001-190912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_awb_NMVOC_201201-201212.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_aerosol_201201-201212.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMHC_181001-181912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMHC_175001-201412.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_NMHC_182001-182912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2.1_DLR1.0_hist-piNTCF_air_MISC_186001-186912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMHC_182001-182912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMVOC_190001-190912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMVOC_198001-198912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMHC_175001-175912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_NMHC_193001-193912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMVOC_195001-195912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_MISC_178001-178912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMVOC_190001-190912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2.1_DLR1.0_hist-piNTCF_air_MISC_176001-176912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMVOC_184001-184912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2_DLR1.0_hist-piNTCF_air_aerosol_182001-182912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_aerosol_201401-201412.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_aerosol_197001-197912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_MISC_179001-179912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_awb_NMVOC_179001-179912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMVOC_193001-193912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_MISC_195001-195912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_MISC_180001-180912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_NMHC_175001-175912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2_DLR1.0_hist-piNTCF_air_aerosol_197001-197912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_aerosol_193001-193912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_NMHC_201101-201112.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_NMHC_192001-192912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_MISC_199001-199912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_NMHC_184001-184912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_MISC_175001-201412.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2_DLR1.0_hist-piNTCF_air_aerosol_186001-186912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_185001-185912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2_DLR1.0_hist-piNTCF_air_aerosol_179001-179912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMHC_190001-190912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_awb_NMVOC_200001-200912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_aerosol_189001-189912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMVOC_188001-188912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_aerosol_201201-201212.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMVOC_185001-185912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_bb_NMVOC_189001-189912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_aerosol_193001-193912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_aerosol_189001-189912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_aerosol_198001-198912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_MISC_201401-201412.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_aerosol_178001-178912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_MISC_198001-198912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMVOC_186001-186912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMHC_183001-183912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_bb_NMVOC_187001-187912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMHC_179001-179912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_MISC_175001-175912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMVOC_201001-201012.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_aerosol_198001-198912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_aerosol_192001-192912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2.1_DLR1.0_hist-piNTCF_air_MISC_183001-183912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_MISC_181001-181912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMHC_180001-180912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_MISC_184001-184912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_MISC_189001-189912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_awb_NMVOC_178001-178912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMHC_175001-175912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMVOC_176001-176912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMHC_183001-183912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMHC_191001-191912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMHC_184001-184912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMVOC_197001-197912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_MISC_183001-183912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_MISC_201001-201012.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMVOC_201301-201312.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2.1_DLR1.0_hist-piNTCF_air_MISC_201301-201312.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_175001-175912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMHC_195001-195912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_awb_NMVOC_201401-201412.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_aerosol_189001-189912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_aerosol_181001-181912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_MISC_188001-188912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMHC_193001-193912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_MISC_176001-176912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_MISC_192001-192912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_NMHC_197001-197912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMHC_201401-201412.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMVOC_182001-182912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_NMHC_183001-183912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_aerosol_200001-200912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_aerosol_201401-201412.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_192001-192912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_aerosol_175001-201412.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_MISC_193001-193912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_bb_NMVOC_201001-201012.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_MISC_190001-190912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2_DLR1.0_hist-piNTCF_air_aerosol_200001-200912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMHC_184001-184912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMHC_201201-201212.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_aerosol_182001-182912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_175001-201512.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMHC_198001-198912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_201001-201012.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMVOC_187001-187912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_aerosol_178001-178912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_201001-201012.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_awb_NMVOC_186001-186912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_NMHC_193001-193912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_aerosol_195001-195912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMVOC_199001-199912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_191001-191912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMVOC_198001-198912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_awb_NMVOC_176001-176912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_NMHC_189001-189912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMHC_186001-186912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMHC_191001-191912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2.1_DLR1.0_hist-piNTCF_air_MISC_194001-194912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMVOC_189001-189912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_aerosol_195001-195912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMVOC_200001-200912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2.1_DLR1.0_hist-piNTCF_air_MISC_187001-187912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_aerosol_183001-183912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_201401-201412.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_MISC_177001-177912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_NMHC_176001-176912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_NMHC_195001-195912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_NMHC_185001-185912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_NMHC_196001-196912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_aerosol_175001-201412.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMVOC_200001-200912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMVOC_183001-183912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_186001-186912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_bb_NMVOC_201201-201212.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_aerosol_177001-177912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_bb_NMVOC_195001-195912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_NMHC_185001-185912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_MISC_179001-179912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMVOC_175001-175912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_NMHC_191001-191912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2_DLR1.0_hist-piNTCF_air_aerosol_201101-201112.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMHC_180001-180912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2_DLR1.0_hist-piNTCF_air_aerosol_199001-199912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_bb_NMVOC_182001-182912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMHC_195001-195912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_aerosol_191001-191912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2.1_DLR1.0_hist-piNTCF_air_MISC_190001-190912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_aerosol_199001-199912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_aerosol_188001-188912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_aerosol_185001-185912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMVOC_181001-181912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMHC_177001-177912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMHC_201201-201212.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_MISC_193001-193912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_aerosol_182001-182912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_aerosol_190001-190912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_NMHC_178001-178912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMVOC_199001-199912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_MISC_201001-201012.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_aerosol_176001-176912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_NMHC_179001-179912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_bb_NMVOC_179001-179912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_aerosol_188001-188912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_180001-180912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_aerosol_190001-190912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_NMHC_177001-177912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_aerosol_196001-196912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_aerosol_196001-196912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMVOC_175001-201412.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_aerosol_191001-191912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_bb_NMVOC_197001-197912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_178001-178912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_MISC_178001-178912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_MISC_186001-186912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMVOC_201301-201312.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMHC_199001-199912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2.1_DLR1.0_hist-piNTCF_air_MISC_175001-175912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_MISC_176001-176912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_MISC_190001-190912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_bb_NMVOC_194001-194912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2.1_DLR1.0_hist-piNTCF_air_MISC_201401-201412.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2_DLR1.0_hist-piNTCF_air_aerosol_189001-189912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2.1_DLR1.0_hist-piNTCF_air_MISC_189001-189912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_MISC_187001-187912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMVOC_175001-201412.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_176001-176912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_MISC_196001-196912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_aerosol_201001-201012.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2_DLR1.0_hist-piNTCF_air_aerosol_193001-193912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_aerosol_180001-180912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_aerosol_201101-201112.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_190001-190912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMVOC_181001-181912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_201101-201112.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_NMHC_178001-178912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_MISC_178001-178912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMHC_188001-188912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_aerosol_179001-179912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2_DLR1.0_hist-piNTCF_air_aerosol_201001-201012.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_197001-197912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_NMHC_175001-201512.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_NMHC_201401-201412.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_aerosol_177001-177912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_MISC_201301-201312.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMHC_199001-199912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_NMHC_175001-201512.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_bb_NMVOC_175001-201512.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_MISC_193001-193912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_aerosol_178001-178912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMVOC_179001-179912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_194001-194912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_awb_NMVOC_181001-181912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_MISC_201201-201212.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_MISC_177001-177912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMVOC_181001-181912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_awb_NMVOC_201001-201012.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_aerosol_198001-198912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_bb_NMVOC_175001-175912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_awb_NMVOC_180001-180912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMHC_201301-201312.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_192001-192912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMHC_196001-196912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_aerosol_201101-201112.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_179001-179912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_MISC_201401-201412.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2.1_DLR1.0_hist-piNTCF_air_MISC_201101-201112.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2_DLR1.0_hist-piNTCF_air_aerosol_178001-178912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_NMHC_193001-193912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_MISC_201401-201412.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_NMHC_175001-175912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_MISC_185001-185912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_aerosol_194001-194912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_aerosol_184001-184912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMVOC_183001-183912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_MISC_175001-175912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_175001-175912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_198001-198912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_NMHC_194001-194912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2.1_DLR1.0_hist-piNTCF_air_MISC_177001-177912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMVOC_175001-175912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_aerosol_201001-201012.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2_DLR1.0_hist-piNTCF_air_aerosol_175001-201412.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_aerosol_197001-197912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.2.1_DLR1.0_hist-piNTCF_air_MISC_180001-180912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_201101-201112.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_bb_NMVOC_201401-201412.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_MISC_192001-192912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_bb_NMVOC_188001-188912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMVOC_201201-201212.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_181001-181912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_aerosol_176001-176912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMVOC_178001-178912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_180001-180912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMVOC_177001-177912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMHC_189001-189912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_aerosol_201101-201112.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_land-road-awb_aerosol_197001-197912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_ship_NMVOC_180001-180912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_awb_NMHC_186001-186912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_NMHC_188001-188912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_awb_NMVOC_187001-187912.nc']"
+       "['/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_192001-192912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_192001-192912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_176001-176912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_201001-201012.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_197001-197912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_195001-195912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_183001-183912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_200001-200912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_198001-198912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_193001-193912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_180001-180912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_185001-185912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_201401-201412.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_183001-183912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_201301-201312.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_193001-193912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_176001-176912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_175001-175912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_199001-199912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_194001-194912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_175001-175912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_186001-186912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_201101-201112.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_195001-195912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_185001-185912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_201401-201412.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_186001-186912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_198001-198912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_187001-187912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_177001-177912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_197001-197912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_184001-184912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_186001-186912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_189001-189912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_200001-200912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_195001-195912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_201001-201012.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_181001-181912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_180001-180912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_194001-194912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_187001-187912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_183001-183912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_179001-179912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_178001-178912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_200001-200912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_180001-180912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_191001-191912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_190001-190912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_175001-175912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_178001-178912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_187001-187912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_175001-175912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_184001-184912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_201101-201112.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_188001-188912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_190001-190912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_175001-201412.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_175001-201412.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_201301-201312.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_201201-201212.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_177001-177912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_191001-191912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_201201-201212.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_191001-191912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_185001-185912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_188001-188912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_200001-200912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_183001-183912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_198001-198912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_196001-196912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_184001-184912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_179001-179912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_181001-181912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_182001-182912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_190001-190912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_178001-178912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_188001-188912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_184001-184912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_199001-199912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_182001-182912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_197001-197912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_201401-201412.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_201201-201212.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_177001-177912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_188001-188912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_201001-201012.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_181001-181912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_191001-191912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_199001-199912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_175001-201412.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_182001-182912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_175001-201412.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_193001-193912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_196001-196912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_189001-189912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_198001-198912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_201301-201312.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_189001-189912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_201001-201012.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_196001-196912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_190001-190912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_189001-189912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_196001-196912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_179001-179912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_178001-178912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_201101-201112.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_192001-192912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_180001-180912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_193001-193912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_201301-201312.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_186001-186912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_177001-177912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_195001-195912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_201101-201112.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_199001-199912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_197001-197912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_192001-192912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_176001-176912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_182001-182912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_187001-187912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_179001-179912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_194001-194912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMHC_176001-176912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_201201-201212.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_185001-185912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_181001-181912.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_aerosol_201401-201412.nc',\n",
+       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_NMVOC_194001-194912.nc']"
       ]
      },
      "execution_count": 2,
@@ -759,81 +176,26 @@
     }
    ],
    "source": [
-    "path_hist = '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/*hist*.nc'\n",
+    "path_hist = '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/*DECK_road_*.nc'\n",
     "files_hist = glob.glob(path_hist)\n",
     "files_hist"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 3,
+   "execution_count": 6,
    "id": "4eeb225e-79d7-4670-a0ba-74dd587fc28b",
    "metadata": {
     "tags": []
    },
    "outputs": [],
    "source": [
-    "path_road_misc = '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC*.nc'\n",
-    "files_road_misc = glob.glob(path_road_misc)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 4,
-   "id": "4a15d6a0-a2b7-4527-b90b-7880df9de1f2",
-   "metadata": {
-    "tags": []
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "['/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_186001-186912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_177001-177912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_196001-196912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_188001-188912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_195001-195912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_191001-191912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_183001-183912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_187001-187912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_182001-182912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_201301-201312.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_199001-199912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_201401-201412.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_184001-184912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_193001-193912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_200001-200912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_198001-198912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_201201-201212.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_175001-201412.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_189001-189912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_197001-197912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_185001-185912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_201001-201012.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_178001-178912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_176001-176912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_190001-190912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_201101-201112.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_194001-194912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_192001-192912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_179001-179912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_175001-175912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_181001-181912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_180001-180912.nc']"
-      ]
-     },
-     "execution_count": 4,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "files_road_misc"
+    "path_road_misc =  '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_DECK_road_MISC_175001-201412.nc'"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 5,
+   "execution_count": 7,
    "id": "1a680b77-aeae-4651-b969-8f3ad062c545",
    "metadata": {
     "tags": []
@@ -847,19 +209,19 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 6,
+   "execution_count": 8,
    "id": "1f204678-097f-4519-96f3-22a871e553fe",
    "metadata": {
     "tags": []
    },
    "outputs": [],
    "source": [
-    "data_road_misc = xr.open_mfdataset(files_road_misc)"
+    "data_road_misc = xr.open_dataset(path_road_misc)"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 7,
+   "execution_count": 9,
    "id": "0d8a2c7f-c613-46f6-ac2c-a27f9b2bb5bf",
    "metadata": {
     "tags": []
@@ -1232,848 +594,51 @@
        "  fill: currentColor;\n",
        "}\n",
        "</style><pre class='xr-text-repr-fallback'>&lt;xarray.Dataset&gt;\n",
-       "Dimensions:    (time: 3180, lev: 1, lat: 360, lon: 720, bnds: 2)\n",
+       "Dimensions:    (lon: 720, bnds: 2, lat: 360, lev: 1, time: 3180)\n",
        "Coordinates:\n",
+       "  * lon        (lon) float64 -179.8 -179.2 -178.8 -178.2 ... 178.8 179.2 179.8\n",
        "  * lat        (lat) float64 -89.75 -89.25 -88.75 -88.25 ... 88.75 89.25 89.75\n",
        "  * lev        (lev) float64 45.0\n",
-       "  * lon        (lon) float64 -179.8 -179.2 -178.8 -178.2 ... 178.8 179.2 179.8\n",
        "  * time       (time) object 1750-01-16 00:00:00 ... 2014-12-16 00:00:00\n",
        "Dimensions without coordinates: bnds\n",
        "Data variables:\n",
-       "    CO_flux    (time, lev, lat, lon) float32 dask.array&lt;chunksize=(120, 1, 360, 720), meta=np.ndarray&gt;\n",
-       "    NH3_flux   (time, lev, lat, lon) float32 dask.array&lt;chunksize=(120, 1, 360, 720), meta=np.ndarray&gt;\n",
-       "    NOx_flux   (time, lev, lat, lon) float32 dask.array&lt;chunksize=(120, 1, 360, 720), meta=np.ndarray&gt;\n",
-       "    SO2_flux   (time, lev, lat, lon) float32 dask.array&lt;chunksize=(120, 1, 360, 720), meta=np.ndarray&gt;\n",
-       "    lat_bnds   (time, lat, bnds) float64 dask.array&lt;chunksize=(120, 360, 2), meta=np.ndarray&gt;\n",
-       "    lon_bnds   (time, lon, bnds) float64 dask.array&lt;chunksize=(120, 720, 2), meta=np.ndarray&gt;\n",
-       "    time_bnds  (time, bnds) object dask.array&lt;chunksize=(120, 2), meta=np.ndarray&gt;\n",
-       "Attributes: (12/41)\n",
+       "    lon_bnds   (lon, bnds) float64 ...\n",
+       "    lat_bnds   (lat, bnds) float64 ...\n",
+       "    time_bnds  (time, bnds) object ...\n",
+       "    CO_flux    (time, lev, lat, lon) float32 ...\n",
+       "    NH3_flux   (time, lev, lat, lon) float32 ...\n",
+       "    NOx_flux   (time, lev, lat, lon) float32 ...\n",
+       "    SO2_flux   (time, lev, lat, lon) float32 ...\n",
+       "Attributes: (12/39)\n",
        "    CDI:                         Climate Data Interface version 1.7.0 (http:/...\n",
        "    Conventions:                 CF-1.6\n",
-       "    history:                     Sat Mar 13 02:37:08 2021: /work/bd0080/b3090...\n",
+       "    history:                     Tue Aug 28 23:02:02 2018: cdo -O -Q copy /sc...\n",
        "    source:                      CEDS-2017-08-30: Community Emissions Data Sy...\n",
        "    institution:                 Pacific Northwest National Laboratory - Join...\n",
        "    reference1:                  Lamarque et al.(2010), doi:10.5194/acp-10-70...\n",
        "    ...                          ...\n",
+       "    data_usage_tips:             Note that these are monthly average fluxes.\n",
+       "    reporting_unit:              Mass flux of BC, reported as carbon mass\n",
        "    nominal_resolution:          50 km\n",
        "    source_id:                   CEDS-2017-08-30\n",
        "    tracking_id:                 hdl:21.14100/649247a5-afc6-4e25-b777-9d7a77a...\n",
-       "    CDO:                         Climate Data Operators version 1.7.0 (http:/...\n",
-       "    description:                 Original data from CMIP6v6.1_DLR1.0_DECK_roa...\n",
-       "    prepared:                    Created Wed Jan  2 11:59:14 2019 with prepar...</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-612e72a7-45c7-4c0d-93cb-fcb7f905e158' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-612e72a7-45c7-4c0d-93cb-fcb7f905e158' class='xr-section-summary'  title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>time</span>: 3180</li><li><span class='xr-has-index'>lev</span>: 1</li><li><span class='xr-has-index'>lat</span>: 360</li><li><span class='xr-has-index'>lon</span>: 720</li><li><span>bnds</span>: 2</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-c3cb4481-6ca5-4c6d-bd80-cbc4cf520f24' class='xr-section-summary-in' type='checkbox'  checked><label for='section-c3cb4481-6ca5-4c6d-bd80-cbc4cf520f24' class='xr-section-summary' >Coordinates: <span>(4)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>lat</span></div><div class='xr-var-dims'>(lat)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>-89.75 -89.25 ... 89.25 89.75</div><input id='attrs-b38ef06c-fd0b-4fba-905f-b9affe23405a' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-b38ef06c-fd0b-4fba-905f-b9affe23405a' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-c9e0aca5-8040-476f-ba87-d4ca7f12ffa4' class='xr-var-data-in' type='checkbox'><label for='data-c9e0aca5-8040-476f-ba87-d4ca7f12ffa4' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>latitude</dd><dt><span>long_name :</span></dt><dd>latitude</dd><dt><span>units :</span></dt><dd>degrees_north</dd><dt><span>axis :</span></dt><dd>Y</dd><dt><span>bounds :</span></dt><dd>lat_bnds</dd></dl></div><div class='xr-var-data'><pre>array([-89.75, -89.25, -88.75, ...,  88.75,  89.25,  89.75])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>lev</span></div><div class='xr-var-dims'>(lev)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>45.0</div><input id='attrs-392ac9bb-1f5e-4525-9c13-15cc8f537828' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-392ac9bb-1f5e-4525-9c13-15cc8f537828' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-ed413d65-33bc-4636-bb39-2d10ced770cb' class='xr-var-data-in' type='checkbox'><label for='data-ed413d65-33bc-4636-bb39-2d10ced770cb' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>meters</dd><dt><span>axis :</span></dt><dd>Z</dd></dl></div><div class='xr-var-data'><pre>array([45.])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>lon</span></div><div class='xr-var-dims'>(lon)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>-179.8 -179.2 ... 179.2 179.8</div><input id='attrs-ad9654d2-4b0a-4d74-a51c-53f770abff58' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-ad9654d2-4b0a-4d74-a51c-53f770abff58' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-e7dcd2b6-2896-4d8a-846b-f9af5b54f1ac' class='xr-var-data-in' type='checkbox'><label for='data-e7dcd2b6-2896-4d8a-846b-f9af5b54f1ac' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>longitude</dd><dt><span>long_name :</span></dt><dd>longitude</dd><dt><span>units :</span></dt><dd>degrees_east</dd><dt><span>axis :</span></dt><dd>X</dd><dt><span>bounds :</span></dt><dd>lon_bnds</dd></dl></div><div class='xr-var-data'><pre>array([-179.75, -179.25, -178.75, ...,  178.75,  179.25,  179.75])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>time</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>1750-01-16 00:00:00 ... 2014-12-...</div><input id='attrs-8508a674-71cf-44c9-b64f-13ad1c37f357' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-8508a674-71cf-44c9-b64f-13ad1c37f357' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-8d42d73c-4b47-4deb-bd9a-1222b20d6bd7' class='xr-var-data-in' type='checkbox'><label for='data-8d42d73c-4b47-4deb-bd9a-1222b20d6bd7' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>time</dd><dt><span>long_name :</span></dt><dd>time</dd><dt><span>bounds :</span></dt><dd>time_bnds</dd><dt><span>axis :</span></dt><dd>T</dd></dl></div><div class='xr-var-data'><pre>array([cftime.DatetimeNoLeap(1750, 1, 16, 0, 0, 0, 0, has_year_zero=True),\n",
+       "    CDO:                         Climate Data Operators version 1.7.0 (http:/...</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-77f1f66e-c792-4e41-a448-da3e9ae9b53a' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-77f1f66e-c792-4e41-a448-da3e9ae9b53a' class='xr-section-summary'  title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>lon</span>: 720</li><li><span>bnds</span>: 2</li><li><span class='xr-has-index'>lat</span>: 360</li><li><span class='xr-has-index'>lev</span>: 1</li><li><span class='xr-has-index'>time</span>: 3180</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-f78c4356-6d08-48f1-ab33-89cf21ce7f35' class='xr-section-summary-in' type='checkbox'  checked><label for='section-f78c4356-6d08-48f1-ab33-89cf21ce7f35' class='xr-section-summary' >Coordinates: <span>(4)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>lon</span></div><div class='xr-var-dims'>(lon)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>-179.8 -179.2 ... 179.2 179.8</div><input id='attrs-6c2c25ef-6315-452a-b5a4-bbafefc65568' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-6c2c25ef-6315-452a-b5a4-bbafefc65568' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-f539ddc7-89f4-44f1-bde5-e5f41c16d347' class='xr-var-data-in' type='checkbox'><label for='data-f539ddc7-89f4-44f1-bde5-e5f41c16d347' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>longitude</dd><dt><span>long_name :</span></dt><dd>longitude</dd><dt><span>units :</span></dt><dd>degrees_east</dd><dt><span>axis :</span></dt><dd>X</dd><dt><span>bounds :</span></dt><dd>lon_bnds</dd></dl></div><div class='xr-var-data'><pre>array([-179.75, -179.25, -178.75, ...,  178.75,  179.25,  179.75])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>lat</span></div><div class='xr-var-dims'>(lat)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>-89.75 -89.25 ... 89.25 89.75</div><input id='attrs-1d860e80-ec72-43c8-8987-36fb1ded1597' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-1d860e80-ec72-43c8-8987-36fb1ded1597' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-d827efa2-8100-42db-848e-bde75a7d83cc' class='xr-var-data-in' type='checkbox'><label for='data-d827efa2-8100-42db-848e-bde75a7d83cc' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>latitude</dd><dt><span>long_name :</span></dt><dd>latitude</dd><dt><span>units :</span></dt><dd>degrees_north</dd><dt><span>axis :</span></dt><dd>Y</dd><dt><span>bounds :</span></dt><dd>lat_bnds</dd></dl></div><div class='xr-var-data'><pre>array([-89.75, -89.25, -88.75, ...,  88.75,  89.25,  89.75])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>lev</span></div><div class='xr-var-dims'>(lev)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>45.0</div><input id='attrs-f96042ec-e032-474d-b87f-9d7d3df5cafd' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-f96042ec-e032-474d-b87f-9d7d3df5cafd' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-8803bd28-7f36-449a-bee9-5fed68e3933b' class='xr-var-data-in' type='checkbox'><label for='data-8803bd28-7f36-449a-bee9-5fed68e3933b' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>meters</dd><dt><span>axis :</span></dt><dd>Z</dd></dl></div><div class='xr-var-data'><pre>array([45.])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>time</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>1750-01-16 00:00:00 ... 2014-12-...</div><input id='attrs-5bc1b61d-4bc5-4d0c-b8c9-7a178fc5013c' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-5bc1b61d-4bc5-4d0c-b8c9-7a178fc5013c' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-cf932ffe-4008-4a6d-9668-0b799e2ba95a' class='xr-var-data-in' type='checkbox'><label for='data-cf932ffe-4008-4a6d-9668-0b799e2ba95a' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>time</dd><dt><span>long_name :</span></dt><dd>time</dd><dt><span>bounds :</span></dt><dd>time_bnds</dd><dt><span>axis :</span></dt><dd>T</dd></dl></div><div class='xr-var-data'><pre>array([cftime.DatetimeNoLeap(1750, 1, 16, 0, 0, 0, 0, has_year_zero=True),\n",
        "       cftime.DatetimeNoLeap(1750, 2, 15, 0, 0, 0, 0, has_year_zero=True),\n",
        "       cftime.DatetimeNoLeap(1750, 3, 16, 0, 0, 0, 0, has_year_zero=True), ...,\n",
        "       cftime.DatetimeNoLeap(2014, 10, 16, 0, 0, 0, 0, has_year_zero=True),\n",
        "       cftime.DatetimeNoLeap(2014, 11, 16, 0, 0, 0, 0, has_year_zero=True),\n",
        "       cftime.DatetimeNoLeap(2014, 12, 16, 0, 0, 0, 0, has_year_zero=True)],\n",
-       "      dtype=object)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-4a6fe737-9bc9-4c5f-9515-1017eaa5e1e1' class='xr-section-summary-in' type='checkbox'  checked><label for='section-4a6fe737-9bc9-4c5f-9515-1017eaa5e1e1' class='xr-section-summary' >Data variables: <span>(7)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>CO_flux</span></div><div class='xr-var-dims'>(time, lev, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(120, 1, 360, 720), meta=np.ndarray&gt;</div><input id='attrs-d228d187-50bc-46d4-ad1f-f0f93216f17f' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-d228d187-50bc-46d4-ad1f-f0f93216f17f' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-3bf783e3-f57b-4540-918f-c6ec22741e94' class='xr-var-data-in' type='checkbox'><label for='data-3bf783e3-f57b-4540-918f-c6ec22741e94' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>kg m-2 s-1</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table style=\"border-collapse: collapse;\">\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 3.07 GiB </td>\n",
-       "                        <td> 118.65 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (3180, 1, 360, 720) </td>\n",
-       "                        <td> (120, 1, 360, 720) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Dask graph </th>\n",
-       "                        <td colspan=\"2\"> 31 chunks in 63 graph layers </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Data type </th>\n",
-       "                        <td colspan=\"2\"> float32 numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"487\" height=\"104\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"4\" y1=\"0\" x2=\"4\" y2=\"25\" />\n",
-       "  <line x1=\"9\" y1=\"0\" x2=\"9\" y2=\"25\" />\n",
-       "  <line x1=\"13\" y1=\"0\" x2=\"13\" y2=\"25\" />\n",
-       "  <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n",
-       "  <line x1=\"22\" y1=\"0\" x2=\"22\" y2=\"25\" />\n",
-       "  <line x1=\"27\" y1=\"0\" x2=\"27\" y2=\"25\" />\n",
-       "  <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n",
-       "  <line x1=\"36\" y1=\"0\" x2=\"36\" y2=\"25\" />\n",
-       "  <line x1=\"40\" y1=\"0\" x2=\"40\" y2=\"25\" />\n",
-       "  <line x1=\"45\" y1=\"0\" x2=\"45\" y2=\"25\" />\n",
-       "  <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n",
-       "  <line x1=\"54\" y1=\"0\" x2=\"54\" y2=\"25\" />\n",
-       "  <line x1=\"58\" y1=\"0\" x2=\"58\" y2=\"25\" />\n",
-       "  <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n",
-       "  <line x1=\"67\" y1=\"0\" x2=\"67\" y2=\"25\" />\n",
-       "  <line x1=\"72\" y1=\"0\" x2=\"72\" y2=\"25\" />\n",
-       "  <line x1=\"76\" y1=\"0\" x2=\"76\" y2=\"25\" />\n",
-       "  <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n",
-       "  <line x1=\"86\" y1=\"0\" x2=\"86\" y2=\"25\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"25\" />\n",
-       "  <line x1=\"95\" y1=\"0\" x2=\"95\" y2=\"25\" />\n",
-       "  <line x1=\"99\" y1=\"0\" x2=\"99\" y2=\"25\" />\n",
-       "  <line x1=\"104\" y1=\"0\" x2=\"104\" y2=\"25\" />\n",
-       "  <line x1=\"108\" y1=\"0\" x2=\"108\" y2=\"25\" />\n",
-       "  <line x1=\"113\" y1=\"0\" x2=\"113\" y2=\"25\" />\n",
-       "  <line x1=\"117\" y1=\"0\" x2=\"117\" y2=\"25\" />\n",
-       "  <line x1=\"118\" y1=\"0\" x2=\"118\" y2=\"25\" />\n",
-       "  <line x1=\"118\" y1=\"0\" x2=\"118\" y2=\"25\" />\n",
-       "  <line x1=\"119\" y1=\"0\" x2=\"119\" y2=\"25\" />\n",
-       "  <line x1=\"119\" y1=\"0\" x2=\"119\" y2=\"25\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >3180</text>\n",
-       "  <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,140.000000,12.706308)\">1</text>\n",
-       "\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"190\" y1=\"0\" x2=\"204\" y2=\"14\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"190\" y1=\"39\" x2=\"204\" y2=\"54\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"190\" y1=\"0\" x2=\"190\" y2=\"39\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"204\" y1=\"14\" x2=\"204\" y2=\"54\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"190.0,0.0 204.9485979497544,14.948597949754403 204.9485979497544,54.22111034444378 190.0,39.27251239468938\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"190\" y1=\"0\" x2=\"232\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"204\" y1=\"14\" x2=\"247\" y2=\"14\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"190\" y1=\"0\" x2=\"204\" y2=\"14\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"232\" y1=\"0\" x2=\"247\" y2=\"14\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"190.0,0.0 232.5174518299924,0.0 247.4660497797468,14.948597949754403 204.9485979497544,14.948597949754403\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"204\" y1=\"14\" x2=\"247\" y2=\"14\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"204\" y1=\"54\" x2=\"247\" y2=\"54\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"204\" y1=\"14\" x2=\"204\" y2=\"54\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"247\" y1=\"14\" x2=\"247\" y2=\"54\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"204.9485979497544,14.948597949754403 247.4660497797468,14.948597949754403 247.4660497797468,54.22111034444378 204.9485979497544,54.22111034444378\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"226.207324\" y=\"74.221110\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >720</text>\n",
-       "  <text x=\"267.466050\" y=\"34.584854\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,267.466050,34.584854)\">360</text>\n",
-       "  <text x=\"187.474299\" y=\"66.746811\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,187.474299,66.746811)\">1</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>NH3_flux</span></div><div class='xr-var-dims'>(time, lev, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(120, 1, 360, 720), meta=np.ndarray&gt;</div><input id='attrs-7fc6876f-0279-43b2-88b3-68aee2cf1465' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-7fc6876f-0279-43b2-88b3-68aee2cf1465' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-f07bb053-3ac7-471e-a492-2c6d0c5543ae' class='xr-var-data-in' type='checkbox'><label for='data-f07bb053-3ac7-471e-a492-2c6d0c5543ae' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>kg m-2 s-1</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table style=\"border-collapse: collapse;\">\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 3.07 GiB </td>\n",
-       "                        <td> 118.65 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (3180, 1, 360, 720) </td>\n",
-       "                        <td> (120, 1, 360, 720) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Dask graph </th>\n",
-       "                        <td colspan=\"2\"> 31 chunks in 63 graph layers </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Data type </th>\n",
-       "                        <td colspan=\"2\"> float32 numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"487\" height=\"104\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"4\" y1=\"0\" x2=\"4\" y2=\"25\" />\n",
-       "  <line x1=\"9\" y1=\"0\" x2=\"9\" y2=\"25\" />\n",
-       "  <line x1=\"13\" y1=\"0\" x2=\"13\" y2=\"25\" />\n",
-       "  <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n",
-       "  <line x1=\"22\" y1=\"0\" x2=\"22\" y2=\"25\" />\n",
-       "  <line x1=\"27\" y1=\"0\" x2=\"27\" y2=\"25\" />\n",
-       "  <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n",
-       "  <line x1=\"36\" y1=\"0\" x2=\"36\" y2=\"25\" />\n",
-       "  <line x1=\"40\" y1=\"0\" x2=\"40\" y2=\"25\" />\n",
-       "  <line x1=\"45\" y1=\"0\" x2=\"45\" y2=\"25\" />\n",
-       "  <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n",
-       "  <line x1=\"54\" y1=\"0\" x2=\"54\" y2=\"25\" />\n",
-       "  <line x1=\"58\" y1=\"0\" x2=\"58\" y2=\"25\" />\n",
-       "  <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n",
-       "  <line x1=\"67\" y1=\"0\" x2=\"67\" y2=\"25\" />\n",
-       "  <line x1=\"72\" y1=\"0\" x2=\"72\" y2=\"25\" />\n",
-       "  <line x1=\"76\" y1=\"0\" x2=\"76\" y2=\"25\" />\n",
-       "  <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n",
-       "  <line x1=\"86\" y1=\"0\" x2=\"86\" y2=\"25\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"25\" />\n",
-       "  <line x1=\"95\" y1=\"0\" x2=\"95\" y2=\"25\" />\n",
-       "  <line x1=\"99\" y1=\"0\" x2=\"99\" y2=\"25\" />\n",
-       "  <line x1=\"104\" y1=\"0\" x2=\"104\" y2=\"25\" />\n",
-       "  <line x1=\"108\" y1=\"0\" x2=\"108\" y2=\"25\" />\n",
-       "  <line x1=\"113\" y1=\"0\" x2=\"113\" y2=\"25\" />\n",
-       "  <line x1=\"117\" y1=\"0\" x2=\"117\" y2=\"25\" />\n",
-       "  <line x1=\"118\" y1=\"0\" x2=\"118\" y2=\"25\" />\n",
-       "  <line x1=\"118\" y1=\"0\" x2=\"118\" y2=\"25\" />\n",
-       "  <line x1=\"119\" y1=\"0\" x2=\"119\" y2=\"25\" />\n",
-       "  <line x1=\"119\" y1=\"0\" x2=\"119\" y2=\"25\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >3180</text>\n",
-       "  <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,140.000000,12.706308)\">1</text>\n",
-       "\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"190\" y1=\"0\" x2=\"204\" y2=\"14\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"190\" y1=\"39\" x2=\"204\" y2=\"54\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"190\" y1=\"0\" x2=\"190\" y2=\"39\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"204\" y1=\"14\" x2=\"204\" y2=\"54\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"190.0,0.0 204.9485979497544,14.948597949754403 204.9485979497544,54.22111034444378 190.0,39.27251239468938\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"190\" y1=\"0\" x2=\"232\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"204\" y1=\"14\" x2=\"247\" y2=\"14\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"190\" y1=\"0\" x2=\"204\" y2=\"14\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"232\" y1=\"0\" x2=\"247\" y2=\"14\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"190.0,0.0 232.5174518299924,0.0 247.4660497797468,14.948597949754403 204.9485979497544,14.948597949754403\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"204\" y1=\"14\" x2=\"247\" y2=\"14\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"204\" y1=\"54\" x2=\"247\" y2=\"54\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"204\" y1=\"14\" x2=\"204\" y2=\"54\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"247\" y1=\"14\" x2=\"247\" y2=\"54\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"204.9485979497544,14.948597949754403 247.4660497797468,14.948597949754403 247.4660497797468,54.22111034444378 204.9485979497544,54.22111034444378\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"226.207324\" y=\"74.221110\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >720</text>\n",
-       "  <text x=\"267.466050\" y=\"34.584854\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,267.466050,34.584854)\">360</text>\n",
-       "  <text x=\"187.474299\" y=\"66.746811\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,187.474299,66.746811)\">1</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>NOx_flux</span></div><div class='xr-var-dims'>(time, lev, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(120, 1, 360, 720), meta=np.ndarray&gt;</div><input id='attrs-af627a4a-7737-45d9-893a-53f3029888b1' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-af627a4a-7737-45d9-893a-53f3029888b1' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-628aa1f2-582b-47c5-be84-187478e8ccc1' class='xr-var-data-in' type='checkbox'><label for='data-628aa1f2-582b-47c5-be84-187478e8ccc1' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>kg(NO2) m-2 s-1</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table style=\"border-collapse: collapse;\">\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 3.07 GiB </td>\n",
-       "                        <td> 118.65 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (3180, 1, 360, 720) </td>\n",
-       "                        <td> (120, 1, 360, 720) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Dask graph </th>\n",
-       "                        <td colspan=\"2\"> 31 chunks in 63 graph layers </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Data type </th>\n",
-       "                        <td colspan=\"2\"> float32 numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"487\" height=\"104\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"4\" y1=\"0\" x2=\"4\" y2=\"25\" />\n",
-       "  <line x1=\"9\" y1=\"0\" x2=\"9\" y2=\"25\" />\n",
-       "  <line x1=\"13\" y1=\"0\" x2=\"13\" y2=\"25\" />\n",
-       "  <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n",
-       "  <line x1=\"22\" y1=\"0\" x2=\"22\" y2=\"25\" />\n",
-       "  <line x1=\"27\" y1=\"0\" x2=\"27\" y2=\"25\" />\n",
-       "  <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n",
-       "  <line x1=\"36\" y1=\"0\" x2=\"36\" y2=\"25\" />\n",
-       "  <line x1=\"40\" y1=\"0\" x2=\"40\" y2=\"25\" />\n",
-       "  <line x1=\"45\" y1=\"0\" x2=\"45\" y2=\"25\" />\n",
-       "  <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n",
-       "  <line x1=\"54\" y1=\"0\" x2=\"54\" y2=\"25\" />\n",
-       "  <line x1=\"58\" y1=\"0\" x2=\"58\" y2=\"25\" />\n",
-       "  <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n",
-       "  <line x1=\"67\" y1=\"0\" x2=\"67\" y2=\"25\" />\n",
-       "  <line x1=\"72\" y1=\"0\" x2=\"72\" y2=\"25\" />\n",
-       "  <line x1=\"76\" y1=\"0\" x2=\"76\" y2=\"25\" />\n",
-       "  <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n",
-       "  <line x1=\"86\" y1=\"0\" x2=\"86\" y2=\"25\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"25\" />\n",
-       "  <line x1=\"95\" y1=\"0\" x2=\"95\" y2=\"25\" />\n",
-       "  <line x1=\"99\" y1=\"0\" x2=\"99\" y2=\"25\" />\n",
-       "  <line x1=\"104\" y1=\"0\" x2=\"104\" y2=\"25\" />\n",
-       "  <line x1=\"108\" y1=\"0\" x2=\"108\" y2=\"25\" />\n",
-       "  <line x1=\"113\" y1=\"0\" x2=\"113\" y2=\"25\" />\n",
-       "  <line x1=\"117\" y1=\"0\" x2=\"117\" y2=\"25\" />\n",
-       "  <line x1=\"118\" y1=\"0\" x2=\"118\" y2=\"25\" />\n",
-       "  <line x1=\"118\" y1=\"0\" x2=\"118\" y2=\"25\" />\n",
-       "  <line x1=\"119\" y1=\"0\" x2=\"119\" y2=\"25\" />\n",
-       "  <line x1=\"119\" y1=\"0\" x2=\"119\" y2=\"25\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >3180</text>\n",
-       "  <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,140.000000,12.706308)\">1</text>\n",
-       "\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"190\" y1=\"0\" x2=\"204\" y2=\"14\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"190\" y1=\"39\" x2=\"204\" y2=\"54\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"190\" y1=\"0\" x2=\"190\" y2=\"39\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"204\" y1=\"14\" x2=\"204\" y2=\"54\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"190.0,0.0 204.9485979497544,14.948597949754403 204.9485979497544,54.22111034444378 190.0,39.27251239468938\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"190\" y1=\"0\" x2=\"232\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"204\" y1=\"14\" x2=\"247\" y2=\"14\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"190\" y1=\"0\" x2=\"204\" y2=\"14\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"232\" y1=\"0\" x2=\"247\" y2=\"14\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"190.0,0.0 232.5174518299924,0.0 247.4660497797468,14.948597949754403 204.9485979497544,14.948597949754403\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"204\" y1=\"14\" x2=\"247\" y2=\"14\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"204\" y1=\"54\" x2=\"247\" y2=\"54\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"204\" y1=\"14\" x2=\"204\" y2=\"54\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"247\" y1=\"14\" x2=\"247\" y2=\"54\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"204.9485979497544,14.948597949754403 247.4660497797468,14.948597949754403 247.4660497797468,54.22111034444378 204.9485979497544,54.22111034444378\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"226.207324\" y=\"74.221110\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >720</text>\n",
-       "  <text x=\"267.466050\" y=\"34.584854\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,267.466050,34.584854)\">360</text>\n",
-       "  <text x=\"187.474299\" y=\"66.746811\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,187.474299,66.746811)\">1</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>SO2_flux</span></div><div class='xr-var-dims'>(time, lev, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(120, 1, 360, 720), meta=np.ndarray&gt;</div><input id='attrs-03778699-5cea-4bf3-b2a6-8f4598667322' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-03778699-5cea-4bf3-b2a6-8f4598667322' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-289f555e-2e57-4137-b8b5-42af574b8a7c' class='xr-var-data-in' type='checkbox'><label for='data-289f555e-2e57-4137-b8b5-42af574b8a7c' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>kg m-2 s-1</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table style=\"border-collapse: collapse;\">\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 3.07 GiB </td>\n",
-       "                        <td> 118.65 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (3180, 1, 360, 720) </td>\n",
-       "                        <td> (120, 1, 360, 720) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Dask graph </th>\n",
-       "                        <td colspan=\"2\"> 31 chunks in 63 graph layers </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Data type </th>\n",
-       "                        <td colspan=\"2\"> float32 numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"487\" height=\"104\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"4\" y1=\"0\" x2=\"4\" y2=\"25\" />\n",
-       "  <line x1=\"9\" y1=\"0\" x2=\"9\" y2=\"25\" />\n",
-       "  <line x1=\"13\" y1=\"0\" x2=\"13\" y2=\"25\" />\n",
-       "  <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n",
-       "  <line x1=\"22\" y1=\"0\" x2=\"22\" y2=\"25\" />\n",
-       "  <line x1=\"27\" y1=\"0\" x2=\"27\" y2=\"25\" />\n",
-       "  <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n",
-       "  <line x1=\"36\" y1=\"0\" x2=\"36\" y2=\"25\" />\n",
-       "  <line x1=\"40\" y1=\"0\" x2=\"40\" y2=\"25\" />\n",
-       "  <line x1=\"45\" y1=\"0\" x2=\"45\" y2=\"25\" />\n",
-       "  <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n",
-       "  <line x1=\"54\" y1=\"0\" x2=\"54\" y2=\"25\" />\n",
-       "  <line x1=\"58\" y1=\"0\" x2=\"58\" y2=\"25\" />\n",
-       "  <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n",
-       "  <line x1=\"67\" y1=\"0\" x2=\"67\" y2=\"25\" />\n",
-       "  <line x1=\"72\" y1=\"0\" x2=\"72\" y2=\"25\" />\n",
-       "  <line x1=\"76\" y1=\"0\" x2=\"76\" y2=\"25\" />\n",
-       "  <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n",
-       "  <line x1=\"86\" y1=\"0\" x2=\"86\" y2=\"25\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"25\" />\n",
-       "  <line x1=\"95\" y1=\"0\" x2=\"95\" y2=\"25\" />\n",
-       "  <line x1=\"99\" y1=\"0\" x2=\"99\" y2=\"25\" />\n",
-       "  <line x1=\"104\" y1=\"0\" x2=\"104\" y2=\"25\" />\n",
-       "  <line x1=\"108\" y1=\"0\" x2=\"108\" y2=\"25\" />\n",
-       "  <line x1=\"113\" y1=\"0\" x2=\"113\" y2=\"25\" />\n",
-       "  <line x1=\"117\" y1=\"0\" x2=\"117\" y2=\"25\" />\n",
-       "  <line x1=\"118\" y1=\"0\" x2=\"118\" y2=\"25\" />\n",
-       "  <line x1=\"118\" y1=\"0\" x2=\"118\" y2=\"25\" />\n",
-       "  <line x1=\"119\" y1=\"0\" x2=\"119\" y2=\"25\" />\n",
-       "  <line x1=\"119\" y1=\"0\" x2=\"119\" y2=\"25\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >3180</text>\n",
-       "  <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,140.000000,12.706308)\">1</text>\n",
-       "\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"190\" y1=\"0\" x2=\"204\" y2=\"14\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"190\" y1=\"39\" x2=\"204\" y2=\"54\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"190\" y1=\"0\" x2=\"190\" y2=\"39\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"204\" y1=\"14\" x2=\"204\" y2=\"54\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"190.0,0.0 204.9485979497544,14.948597949754403 204.9485979497544,54.22111034444378 190.0,39.27251239468938\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"190\" y1=\"0\" x2=\"232\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"204\" y1=\"14\" x2=\"247\" y2=\"14\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"190\" y1=\"0\" x2=\"204\" y2=\"14\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"232\" y1=\"0\" x2=\"247\" y2=\"14\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"190.0,0.0 232.5174518299924,0.0 247.4660497797468,14.948597949754403 204.9485979497544,14.948597949754403\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"204\" y1=\"14\" x2=\"247\" y2=\"14\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"204\" y1=\"54\" x2=\"247\" y2=\"54\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"204\" y1=\"14\" x2=\"204\" y2=\"54\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"247\" y1=\"14\" x2=\"247\" y2=\"54\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"204.9485979497544,14.948597949754403 247.4660497797468,14.948597949754403 247.4660497797468,54.22111034444378 204.9485979497544,54.22111034444378\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"226.207324\" y=\"74.221110\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >720</text>\n",
-       "  <text x=\"267.466050\" y=\"34.584854\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,267.466050,34.584854)\">360</text>\n",
-       "  <text x=\"187.474299\" y=\"66.746811\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,187.474299,66.746811)\">1</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>lat_bnds</span></div><div class='xr-var-dims'>(time, lat, bnds)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(120, 360, 2), meta=np.ndarray&gt;</div><input id='attrs-a8382b02-2076-477f-a09d-9904fc99ea29' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-a8382b02-2076-477f-a09d-9904fc99ea29' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-d0d25486-d6ec-49fb-b958-fe5342c28036' class='xr-var-data-in' type='checkbox'><label for='data-d0d25486-d6ec-49fb-b958-fe5342c28036' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table style=\"border-collapse: collapse;\">\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 17.47 MiB </td>\n",
-       "                        <td> 675.00 kiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (3180, 360, 2) </td>\n",
-       "                        <td> (120, 360, 2) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Dask graph </th>\n",
-       "                        <td colspan=\"2\"> 31 chunks in 94 graph layers </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Data type </th>\n",
-       "                        <td colspan=\"2\"> float64 numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"156\" height=\"159\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"10\" y1=\"39\" x2=\"80\" y2=\"109\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"39\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"12\" y2=\"41\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"47\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"49\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"55\" />\n",
-       "  <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"60\" />\n",
-       "  <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"63\" />\n",
-       "  <line x1=\"39\" y1=\"29\" x2=\"39\" y2=\"68\" />\n",
-       "  <line x1=\"44\" y1=\"34\" x2=\"44\" y2=\"73\" />\n",
-       "  <line x1=\"47\" y1=\"37\" x2=\"47\" y2=\"76\" />\n",
-       "  <line x1=\"52\" y1=\"42\" x2=\"52\" y2=\"81\" />\n",
-       "  <line x1=\"55\" y1=\"45\" x2=\"55\" y2=\"84\" />\n",
-       "  <line x1=\"60\" y1=\"50\" x2=\"60\" y2=\"89\" />\n",
-       "  <line x1=\"65\" y1=\"55\" x2=\"65\" y2=\"95\" />\n",
-       "  <line x1=\"68\" y1=\"58\" x2=\"68\" y2=\"97\" />\n",
-       "  <line x1=\"73\" y1=\"63\" x2=\"73\" y2=\"103\" />\n",
-       "  <line x1=\"79\" y1=\"69\" x2=\"79\" y2=\"108\" />\n",
-       "  <line x1=\"79\" y1=\"69\" x2=\"79\" y2=\"108\" />\n",
-       "  <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"109\" />\n",
-       "  <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"109\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 80.58823529411765,70.58823529411765 80.58823529411765,109.86074768880704 10.0,39.27251239468938\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"35\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"38\" y2=\"2\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"43\" y2=\"7\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"46\" y2=\"10\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"51\" y2=\"15\" />\n",
-       "  <line x1=\"31\" y1=\"21\" x2=\"56\" y2=\"21\" />\n",
-       "  <line x1=\"33\" y1=\"23\" x2=\"59\" y2=\"23\" />\n",
-       "  <line x1=\"39\" y1=\"29\" x2=\"64\" y2=\"29\" />\n",
-       "  <line x1=\"44\" y1=\"34\" x2=\"70\" y2=\"34\" />\n",
-       "  <line x1=\"47\" y1=\"37\" x2=\"72\" y2=\"37\" />\n",
-       "  <line x1=\"52\" y1=\"42\" x2=\"78\" y2=\"42\" />\n",
-       "  <line x1=\"55\" y1=\"45\" x2=\"80\" y2=\"45\" />\n",
-       "  <line x1=\"60\" y1=\"50\" x2=\"86\" y2=\"50\" />\n",
-       "  <line x1=\"65\" y1=\"55\" x2=\"91\" y2=\"55\" />\n",
-       "  <line x1=\"68\" y1=\"58\" x2=\"94\" y2=\"58\" />\n",
-       "  <line x1=\"73\" y1=\"63\" x2=\"99\" y2=\"63\" />\n",
-       "  <line x1=\"79\" y1=\"69\" x2=\"104\" y2=\"69\" />\n",
-       "  <line x1=\"79\" y1=\"69\" x2=\"104\" y2=\"69\" />\n",
-       "  <line x1=\"80\" y1=\"70\" x2=\"105\" y2=\"70\" />\n",
-       "  <line x1=\"80\" y1=\"70\" x2=\"106\" y2=\"70\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"35\" y1=\"0\" x2=\"106\" y2=\"70\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 35.41261651458248,0.0 106.00085180870013,70.58823529411765 80.58823529411765,70.58823529411765\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"80\" y1=\"70\" x2=\"106\" y2=\"70\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"80\" y1=\"109\" x2=\"106\" y2=\"109\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"109\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"106\" y1=\"70\" x2=\"106\" y2=\"109\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"80.58823529411765,70.58823529411765 106.00085180870013,70.58823529411765 106.00085180870013,109.86074768880704 80.58823529411765,109.86074768880704\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"93.294544\" y=\"129.860748\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >2</text>\n",
-       "  <text x=\"126.000852\" y=\"90.224491\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,126.000852,90.224491)\">360</text>\n",
-       "  <text x=\"35.294118\" y=\"94.566630\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,35.294118,94.566630)\">3180</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>lon_bnds</span></div><div class='xr-var-dims'>(time, lon, bnds)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(120, 720, 2), meta=np.ndarray&gt;</div><input id='attrs-df130d99-e810-4160-bdb7-842d4150c226' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-df130d99-e810-4160-bdb7-842d4150c226' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-f93ef045-86da-4259-a3ac-e025597e47d0' class='xr-var-data-in' type='checkbox'><label for='data-f93ef045-86da-4259-a3ac-e025597e47d0' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table style=\"border-collapse: collapse;\">\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 34.94 MiB </td>\n",
-       "                        <td> 1.32 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (3180, 720, 2) </td>\n",
-       "                        <td> (120, 720, 2) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Dask graph </th>\n",
-       "                        <td colspan=\"2\"> 31 chunks in 94 graph layers </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Data type </th>\n",
-       "                        <td colspan=\"2\"> float64 numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"156\" height=\"163\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"10\" y1=\"42\" x2=\"80\" y2=\"113\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"42\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"12\" y2=\"45\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"50\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"53\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"58\" />\n",
-       "  <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"63\" />\n",
-       "  <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"66\" />\n",
-       "  <line x1=\"39\" y1=\"29\" x2=\"39\" y2=\"71\" />\n",
-       "  <line x1=\"44\" y1=\"34\" x2=\"44\" y2=\"77\" />\n",
-       "  <line x1=\"47\" y1=\"37\" x2=\"47\" y2=\"79\" />\n",
-       "  <line x1=\"52\" y1=\"42\" x2=\"52\" y2=\"85\" />\n",
-       "  <line x1=\"55\" y1=\"45\" x2=\"55\" y2=\"87\" />\n",
-       "  <line x1=\"60\" y1=\"50\" x2=\"60\" y2=\"93\" />\n",
-       "  <line x1=\"65\" y1=\"55\" x2=\"65\" y2=\"98\" />\n",
-       "  <line x1=\"68\" y1=\"58\" x2=\"68\" y2=\"101\" />\n",
-       "  <line x1=\"73\" y1=\"63\" x2=\"73\" y2=\"106\" />\n",
-       "  <line x1=\"79\" y1=\"69\" x2=\"79\" y2=\"111\" />\n",
-       "  <line x1=\"79\" y1=\"69\" x2=\"79\" y2=\"112\" />\n",
-       "  <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"112\" />\n",
-       "  <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"113\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 80.58823529411765,70.58823529411765 80.58823529411765,113.10568712411006 10.0,42.51745182999241\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"35\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"38\" y2=\"2\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"43\" y2=\"7\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"46\" y2=\"10\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"51\" y2=\"15\" />\n",
-       "  <line x1=\"31\" y1=\"21\" x2=\"56\" y2=\"21\" />\n",
-       "  <line x1=\"33\" y1=\"23\" x2=\"59\" y2=\"23\" />\n",
-       "  <line x1=\"39\" y1=\"29\" x2=\"64\" y2=\"29\" />\n",
-       "  <line x1=\"44\" y1=\"34\" x2=\"70\" y2=\"34\" />\n",
-       "  <line x1=\"47\" y1=\"37\" x2=\"72\" y2=\"37\" />\n",
-       "  <line x1=\"52\" y1=\"42\" x2=\"78\" y2=\"42\" />\n",
-       "  <line x1=\"55\" y1=\"45\" x2=\"80\" y2=\"45\" />\n",
-       "  <line x1=\"60\" y1=\"50\" x2=\"86\" y2=\"50\" />\n",
-       "  <line x1=\"65\" y1=\"55\" x2=\"91\" y2=\"55\" />\n",
-       "  <line x1=\"68\" y1=\"58\" x2=\"94\" y2=\"58\" />\n",
-       "  <line x1=\"73\" y1=\"63\" x2=\"99\" y2=\"63\" />\n",
-       "  <line x1=\"79\" y1=\"69\" x2=\"104\" y2=\"69\" />\n",
-       "  <line x1=\"79\" y1=\"69\" x2=\"104\" y2=\"69\" />\n",
-       "  <line x1=\"80\" y1=\"70\" x2=\"105\" y2=\"70\" />\n",
-       "  <line x1=\"80\" y1=\"70\" x2=\"106\" y2=\"70\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"35\" y1=\"0\" x2=\"106\" y2=\"70\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 35.41261651458248,0.0 106.00085180870013,70.58823529411765 80.58823529411765,70.58823529411765\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"80\" y1=\"70\" x2=\"106\" y2=\"70\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"80\" y1=\"113\" x2=\"106\" y2=\"113\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"113\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"106\" y1=\"70\" x2=\"106\" y2=\"113\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"80.58823529411765,70.58823529411765 106.00085180870013,70.58823529411765 106.00085180870013,113.10568712411006 80.58823529411765,113.10568712411006\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"93.294544\" y=\"133.105687\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >2</text>\n",
-       "  <text x=\"126.000852\" y=\"91.846961\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,126.000852,91.846961)\">720</text>\n",
-       "  <text x=\"35.294118\" y=\"97.811569\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,35.294118,97.811569)\">3180</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>time_bnds</span></div><div class='xr-var-dims'>(time, bnds)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(120, 2), meta=np.ndarray&gt;</div><input id='attrs-9d16ab50-d8a9-413e-8636-2585a01eb421' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-9d16ab50-d8a9-413e-8636-2585a01eb421' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-dd95c130-1831-480f-a427-7a5daba059c1' class='xr-var-data-in' type='checkbox'><label for='data-dd95c130-1831-480f-a427-7a5daba059c1' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table style=\"border-collapse: collapse;\">\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 49.69 kiB </td>\n",
-       "                        <td> 1.88 kiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (3180, 2) </td>\n",
-       "                        <td> (120, 2) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Dask graph </th>\n",
-       "                        <td colspan=\"2\"> 31 chunks in 63 graph layers </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Data type </th>\n",
-       "                        <td colspan=\"2\"> object numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"75\" height=\"170\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"25\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"4\" x2=\"25\" y2=\"4\" />\n",
-       "  <line x1=\"0\" y1=\"13\" x2=\"25\" y2=\"13\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"25\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"25\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"36\" x2=\"25\" y2=\"36\" />\n",
-       "  <line x1=\"0\" y1=\"40\" x2=\"25\" y2=\"40\" />\n",
-       "  <line x1=\"0\" y1=\"49\" x2=\"25\" y2=\"49\" />\n",
-       "  <line x1=\"0\" y1=\"58\" x2=\"25\" y2=\"58\" />\n",
-       "  <line x1=\"0\" y1=\"63\" x2=\"25\" y2=\"63\" />\n",
-       "  <line x1=\"0\" y1=\"72\" x2=\"25\" y2=\"72\" />\n",
-       "  <line x1=\"0\" y1=\"76\" x2=\"25\" y2=\"76\" />\n",
-       "  <line x1=\"0\" y1=\"86\" x2=\"25\" y2=\"86\" />\n",
-       "  <line x1=\"0\" y1=\"95\" x2=\"25\" y2=\"95\" />\n",
-       "  <line x1=\"0\" y1=\"99\" x2=\"25\" y2=\"99\" />\n",
-       "  <line x1=\"0\" y1=\"108\" x2=\"25\" y2=\"108\" />\n",
-       "  <line x1=\"0\" y1=\"117\" x2=\"25\" y2=\"117\" />\n",
-       "  <line x1=\"0\" y1=\"118\" x2=\"25\" y2=\"118\" />\n",
-       "  <line x1=\"0\" y1=\"119\" x2=\"25\" y2=\"119\" />\n",
-       "  <line x1=\"0\" y1=\"120\" x2=\"25\" y2=\"120\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"120\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"120\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 25.412616514582485,0.0 25.412616514582485,120.0 0.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"12.706308\" y=\"140.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >2</text>\n",
-       "  <text x=\"45.412617\" y=\"60.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,45.412617,60.000000)\">3180</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li></ul></div></li><li class='xr-section-item'><input id='section-c2638fd8-5388-4711-9742-713b9e6b6a22' class='xr-section-summary-in' type='checkbox'  ><label for='section-c2638fd8-5388-4711-9742-713b9e6b6a22' class='xr-section-summary' >Indexes: <span>(4)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>lat</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-d0611bc3-0ef4-4680-a249-72a0c831d771' class='xr-index-data-in' type='checkbox'/><label for='index-d0611bc3-0ef4-4680-a249-72a0c831d771' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([-89.75, -89.25, -88.75, -88.25, -87.75, -87.25, -86.75, -86.25, -85.75,\n",
-       "       -85.25,\n",
-       "       ...\n",
-       "        85.25,  85.75,  86.25,  86.75,  87.25,  87.75,  88.25,  88.75,  89.25,\n",
-       "        89.75],\n",
-       "      dtype=&#x27;float64&#x27;, name=&#x27;lat&#x27;, length=360))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>lev</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-d9297bef-d24e-4f76-9cc0-91b30755aa42' class='xr-index-data-in' type='checkbox'/><label for='index-d9297bef-d24e-4f76-9cc0-91b30755aa42' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([45.0], dtype=&#x27;float64&#x27;, name=&#x27;lev&#x27;))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>lon</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-b9b10851-2fd7-49cd-863b-457fc1096bf0' class='xr-index-data-in' type='checkbox'/><label for='index-b9b10851-2fd7-49cd-863b-457fc1096bf0' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([-179.75, -179.25, -178.75, -178.25, -177.75, -177.25, -176.75, -176.25,\n",
+       "      dtype=object)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-6faf463b-2e9d-4d30-8738-1b7bb8183731' class='xr-section-summary-in' type='checkbox'  checked><label for='section-6faf463b-2e9d-4d30-8738-1b7bb8183731' class='xr-section-summary' >Data variables: <span>(7)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>lon_bnds</span></div><div class='xr-var-dims'>(lon, bnds)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-f54760cd-a0a1-402a-8529-71c063a95b78' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-f54760cd-a0a1-402a-8529-71c063a95b78' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-eaf1e73f-8ee6-483a-8293-5620864fa2cc' class='xr-var-data-in' type='checkbox'><label for='data-eaf1e73f-8ee6-483a-8293-5620864fa2cc' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[1440 values with dtype=float64]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>lat_bnds</span></div><div class='xr-var-dims'>(lat, bnds)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-68656367-be23-4906-823b-92c584270fd8' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-68656367-be23-4906-823b-92c584270fd8' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-7c6bab96-ab2e-47e7-8c3e-df57f31a9eb8' class='xr-var-data-in' type='checkbox'><label for='data-7c6bab96-ab2e-47e7-8c3e-df57f31a9eb8' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[720 values with dtype=float64]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>time_bnds</span></div><div class='xr-var-dims'>(time, bnds)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-3d8fc2a8-d7d1-49e1-9a75-91e3dfc8aea6' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-3d8fc2a8-d7d1-49e1-9a75-91e3dfc8aea6' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-96a9e192-ec3b-4106-87f5-e4d95a957657' class='xr-var-data-in' type='checkbox'><label for='data-96a9e192-ec3b-4106-87f5-e4d95a957657' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[6360 values with dtype=object]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>CO_flux</span></div><div class='xr-var-dims'>(time, lev, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-7e34609c-e91e-45ae-ba4a-3187fd7a3c4b' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-7e34609c-e91e-45ae-ba4a-3187fd7a3c4b' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-00b0faaa-c261-4708-900c-627770ff45fc' class='xr-var-data-in' type='checkbox'><label for='data-00b0faaa-c261-4708-900c-627770ff45fc' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>kg m-2 s-1</dd></dl></div><div class='xr-var-data'><pre>[824256000 values with dtype=float32]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>NH3_flux</span></div><div class='xr-var-dims'>(time, lev, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-b23ec907-4b3c-4b40-b807-291730f22cfe' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-b23ec907-4b3c-4b40-b807-291730f22cfe' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-738dfd5e-2289-4c23-a185-15aa89824790' class='xr-var-data-in' type='checkbox'><label for='data-738dfd5e-2289-4c23-a185-15aa89824790' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>kg m-2 s-1</dd></dl></div><div class='xr-var-data'><pre>[824256000 values with dtype=float32]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>NOx_flux</span></div><div class='xr-var-dims'>(time, lev, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-23d5129e-6ae5-43c8-ba18-f43d6f3b2c5b' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-23d5129e-6ae5-43c8-ba18-f43d6f3b2c5b' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-660560b1-95c8-4cc6-8e9a-476ebfa347e0' class='xr-var-data-in' type='checkbox'><label for='data-660560b1-95c8-4cc6-8e9a-476ebfa347e0' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>kg(NO2) m-2 s-1</dd></dl></div><div class='xr-var-data'><pre>[824256000 values with dtype=float32]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>SO2_flux</span></div><div class='xr-var-dims'>(time, lev, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-d3094953-a9e1-4ae4-a510-f3c1d20449a9' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-d3094953-a9e1-4ae4-a510-f3c1d20449a9' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-4d2a84ca-b9a2-474a-bee8-f06677f715f9' class='xr-var-data-in' type='checkbox'><label for='data-4d2a84ca-b9a2-474a-bee8-f06677f715f9' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>kg m-2 s-1</dd></dl></div><div class='xr-var-data'><pre>[824256000 values with dtype=float32]</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-2ac8c2d2-1958-4919-bd6f-5c458d8c2f57' class='xr-section-summary-in' type='checkbox'  ><label for='section-2ac8c2d2-1958-4919-bd6f-5c458d8c2f57' class='xr-section-summary' >Indexes: <span>(4)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>lon</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-7d86bf89-3a71-41c7-ba8f-1d5703ca8742' class='xr-index-data-in' type='checkbox'/><label for='index-7d86bf89-3a71-41c7-ba8f-1d5703ca8742' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([-179.75, -179.25, -178.75, -178.25, -177.75, -177.25, -176.75, -176.25,\n",
        "       -175.75, -175.25,\n",
        "       ...\n",
        "        175.25,  175.75,  176.25,  176.75,  177.25,  177.75,  178.25,  178.75,\n",
        "        179.25,  179.75],\n",
-       "      dtype=&#x27;float64&#x27;, name=&#x27;lon&#x27;, length=720))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>time</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-5fccb05c-238a-462b-971f-fdeade6183e2' class='xr-index-data-in' type='checkbox'/><label for='index-5fccb05c-238a-462b-971f-fdeade6183e2' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(CFTimeIndex([1750-01-16 00:00:00, 1750-02-15 00:00:00, 1750-03-16 00:00:00,\n",
+       "      dtype=&#x27;float64&#x27;, name=&#x27;lon&#x27;, length=720))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>lat</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-824d754c-2976-4db2-8358-ed49cc13146f' class='xr-index-data-in' type='checkbox'/><label for='index-824d754c-2976-4db2-8358-ed49cc13146f' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([-89.75, -89.25, -88.75, -88.25, -87.75, -87.25, -86.75, -86.25, -85.75,\n",
+       "       -85.25,\n",
+       "       ...\n",
+       "        85.25,  85.75,  86.25,  86.75,  87.25,  87.75,  88.25,  88.75,  89.25,\n",
+       "        89.75],\n",
+       "      dtype=&#x27;float64&#x27;, name=&#x27;lat&#x27;, length=360))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>lev</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-2a9efae0-97f3-4eb9-bd3b-1cde3b426203' class='xr-index-data-in' type='checkbox'/><label for='index-2a9efae0-97f3-4eb9-bd3b-1cde3b426203' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([45.0], dtype=&#x27;float64&#x27;, name=&#x27;lev&#x27;))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>time</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-d5a16692-d36f-4f1a-a762-6220febbecbb' class='xr-index-data-in' type='checkbox'/><label for='index-d5a16692-d36f-4f1a-a762-6220febbecbb' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(CFTimeIndex([1750-01-16 00:00:00, 1750-02-15 00:00:00, 1750-03-16 00:00:00,\n",
        "             1750-04-16 00:00:00, 1750-05-16 00:00:00, 1750-06-16 00:00:00,\n",
        "             1750-07-16 00:00:00, 1750-08-16 00:00:00, 1750-09-16 00:00:00,\n",
        "             1750-10-16 00:00:00,\n",
@@ -2082,11 +647,10 @@
        "             2014-06-16 00:00:00, 2014-07-16 00:00:00, 2014-08-16 00:00:00,\n",
        "             2014-09-16 00:00:00, 2014-10-16 00:00:00, 2014-11-16 00:00:00,\n",
        "             2014-12-16 00:00:00],\n",
-       "            dtype=&#x27;object&#x27;, length=3180, calendar=&#x27;noleap&#x27;, freq=&#x27;None&#x27;))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-8584539b-cb64-4d94-b9cb-6788879b2340' class='xr-section-summary-in' type='checkbox'  ><label for='section-8584539b-cb64-4d94-b9cb-6788879b2340' class='xr-section-summary' >Attributes: <span>(41)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'><dt><span>CDI :</span></dt><dd>Climate Data Interface version 1.7.0 (http://mpimet.mpg.de/cdi)</dd><dt><span>Conventions :</span></dt><dd>CF-1.6</dd><dt><span>history :</span></dt><dd>Sat Mar 13 02:37:08 2021: /work/bd0080/b309057/SOFTWARE/miniconda3/envs/python3/bin/ncks -d time,0,119 --output=/mnt/lustre02/work/bd0080/b309057/CMIP6XC/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_175001-175912.nc /mnt/lustre01/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_175001-201412.nc\n",
-       "Tue Aug 28 23:02:02 2018: cdo -O -Q copy /scratch/b/b324024/tmp/DECK_for_EMAC/tmp2/CMIP6v6.1_DLR1.0_DECK_road_MISC_175001-201412.nc /scratch/b/b324024/tmp/DECK_for_EMAC/CMIP6v6.1_DLR1.0_DECK_road_MISC_175001-201412.nc\n",
+       "            dtype=&#x27;object&#x27;, length=3180, calendar=&#x27;noleap&#x27;, freq=&#x27;None&#x27;))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-8b23112d-3e20-4e0a-b9f8-4e53d0bfbb8a' class='xr-section-summary-in' type='checkbox'  ><label for='section-8b23112d-3e20-4e0a-b9f8-4e53d0bfbb8a' class='xr-section-summary' >Attributes: <span>(39)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'><dt><span>CDI :</span></dt><dd>Climate Data Interface version 1.7.0 (http://mpimet.mpg.de/cdi)</dd><dt><span>Conventions :</span></dt><dd>CF-1.6</dd><dt><span>history :</span></dt><dd>Tue Aug 28 23:02:02 2018: cdo -O -Q copy /scratch/b/b324024/tmp/DECK_for_EMAC/tmp2/CMIP6v6.1_DLR1.0_DECK_road_MISC_175001-201412.nc /scratch/b/b324024/tmp/DECK_for_EMAC/CMIP6v6.1_DLR1.0_DECK_road_MISC_175001-201412.nc\n",
        "Tue Aug 28 22:59:59 2018: ncks -A /scratch/b/b324024/tmp/DECK_for_EMAC/bnds/all_bounds_anthro_input4MIPs.nc /scratch/b/b324024/tmp/DECK_for_EMAC/tmp1/CMIP6v6.1_DLR1.0_DECK_road_MISC_175001-201412.nc\n",
        "Tue Aug 28 14:05:41 2018: ncks -O -v lon_bnds,lat_bnds,time_bnds BC-em-AIR-anthro_input4MIPs_emissions_CMIP_CEDS-2017-08-30_gn_175001-179912.nc all_bounds_anthro_input4MIPs.nc\n",
-       "06-09-2017 18:34:58 PM UTC; College Park, MD, USA</dd><dt><span>source :</span></dt><dd>CEDS-2017-08-30: Community Emissions Data System (CEDS) for Historical Emissions</dd><dt><span>institution :</span></dt><dd>Pacific Northwest National Laboratory - Joint Global Change Research Institute, College Park, MD 20740, USA</dd><dt><span>reference1 :</span></dt><dd>Lamarque et al.(2010), doi:10.5194/acp-10-7017-2010</dd><dt><span>reference2 :</span></dt><dd>Pozzer et al. (2009),doi:10.5194/acp-9-9417-2009</dd><dt><span>creation_date :</span></dt><dd>2017-09-06T18:34:58Z</dd><dt><span>title :</span></dt><dd>Annual Aircraft Anthropogenic Emissions of BC prepared for input4MIPs</dd><dt><span>NCO :</span></dt><dd>netCDF Operators version 4.9.7 (Homepage = http://nco.sf.net, Code = http://github.com/nco/nco)</dd><dt><span>nco_openmp_thread_number :</span></dt><dd>1</dd><dt><span>history_of_appended_files :</span></dt><dd>Tue Aug 28 22:59:59 2018: Appended file /scratch/b/b324024/tmp/DECK_for_EMAC/bnds/all_bounds_anthro_input4MIPs.nc had following &quot;history&quot; attribute:\n",
+       "06-09-2017 18:34:58 PM UTC; College Park, MD, USA</dd><dt><span>source :</span></dt><dd>CEDS-2017-08-30: Community Emissions Data System (CEDS) for Historical Emissions</dd><dt><span>institution :</span></dt><dd>Pacific Northwest National Laboratory - Joint Global Change Research Institute, College Park, MD 20740, USA</dd><dt><span>reference1 :</span></dt><dd>Lamarque et al.(2010), doi:10.5194/acp-10-7017-2010</dd><dt><span>reference2 :</span></dt><dd>Pozzer et al. (2009),doi:10.5194/acp-9-9417-2009</dd><dt><span>creation_date :</span></dt><dd>2017-09-06T18:34:58Z</dd><dt><span>title :</span></dt><dd>Annual Aircraft Anthropogenic Emissions of BC prepared for input4MIPs</dd><dt><span>NCO :</span></dt><dd>4.6.7</dd><dt><span>nco_openmp_thread_number :</span></dt><dd>1</dd><dt><span>history_of_appended_files :</span></dt><dd>Tue Aug 28 22:59:59 2018: Appended file /scratch/b/b324024/tmp/DECK_for_EMAC/bnds/all_bounds_anthro_input4MIPs.nc had following &quot;history&quot; attribute:\n",
        "Tue Aug 28 14:05:41 2018: ncks -O -v lon_bnds,lat_bnds,time_bnds BC-em-AIR-anthro_input4MIPs_emissions_CMIP_CEDS-2017-08-30_gn_175001-179912.nc all_bounds_anthro_input4MIPs.nc\n",
        "06-09-2017 18:34:58 PM UTC; College Park, MD, USA\n",
        "Thu Jul  6 12:51:45 2017: Appended file preindustrial_road_NH3_all.nc had following &quot;history&quot; attribute:\n",
@@ -2095,42 +659,42 @@
        "Mon Jul  3 22:25:01 2017: ncrcat preindustrial_road_NOx_1750.nc preindustrial_road_NOx_1751.nc preindustrial_road_NOx_1752.nc preindustrial_road_NOx_1753.nc preindustrial_road_NOx_1754.nc preindustrial_road_NOx_1755.nc preindustrial_road_NOx_1756.nc preindustrial_road_NOx_1757.nc preindustrial_road_NOx_1758.nc preindustrial_road_NOx_1759.nc preindustrial_road_NOx_1760.nc preindustrial_road_NOx_1761.nc preindustrial_road_NOx_1762.nc preindustrial_road_NOx_1763.nc preindustrial_road_NOx_1764.nc preindustrial_road_NOx_1765.nc preindustrial_road_NOx_1766.nc preindustrial_road_NOx_1767.nc preindustrial_road_NOx_1768.nc preindustrial_road_NOx_1769.nc preindustrial_road_NOx_1770.nc preindustrial_road_NOx_1771.nc preindustrial_road_NOx_1772.nc preindustrial_road_NOx_1773.nc preindustrial_road_NOx_1774.nc preindustrial_road_NOx_1775.nc preindustrial_road_NOx_1776.nc preindustrial_road_NOx_1777.nc preindustrial_road_NOx_1778.nc preindustrial_road_NOx_1779.nc preindustrial_road_NOx_1780.nc preindustrial_road_NOx_1781.nc preindustrial_road_NOx_1782.nc preindustrial_road_NOx_1783.nc preindustrial_road_NOx_1784.nc preindustrial_road_NOx_1785.nc preindustrial_road_NOx_1786.nc preindustrial_road_NOx_1787.nc preindustrial_road_NOx_1788.nc preindustrial_road_NOx_1789.nc preindustrial_road_NOx_1790.nc preindustrial_road_NOx_1791.nc preindustrial_road_NOx_1792.nc preindustrial_road_NOx_1793.nc preindustrial_road_NOx_1794.nc preindustrial_road_NOx_1795.nc preindustrial_road_NOx_1796.nc preindustrial_road_NOx_1797.nc preindustrial_road_NOx_1798.nc preindustrial_road_NOx_1799.nc preindustrial_road_NOx_1800.nc preindustrial_road_NOx_1801.nc preindustrial_road_NOx_1802.nc preindustrial_road_NOx_1803.nc preindustrial_road_NOx_1804.nc preindustrial_road_NOx_1805.nc preindustrial_road_NOx_1806.nc preindustrial_road_NOx_1807.nc preindustrial_road_NOx_1808.nc preindustrial_road_NOx_1809.nc preindustrial_road_NOx_1810.nc preindustrial_road_NOx_1811.nc preindustrial_road_NOx_1812.nc preindustrial_road_NOx_1813.nc preindustrial_road_NOx_1814.nc preindustrial_road_NOx_1815.nc preindustrial_road_NOx_1816.nc preindustrial_road_NOx_1817.nc preindustrial_road_NOx_1818.nc preindustrial_road_NOx_1819.nc preindustrial_road_NOx_1820.nc preindustrial_road_NOx_1821.nc preindustrial_road_NOx_1822.nc preindustrial_road_NOx_1823.nc preindustrial_road_NOx_1824.nc preindustrial_road_NOx_1825.nc preindustrial_road_NOx_1826.nc preindustrial_road_NOx_1827.nc preindustrial_road_NOx_1828.nc preindustrial_road_NOx_1829.nc preindustrial_road_NOx_1830.nc preindustrial_road_NOx_1831.nc preindustrial_road_NOx_1832.nc preindustrial_road_NOx_1833.nc preindustrial_road_NOx_1834.nc preindustrial_road_NOx_1835.nc preindustrial_road_NOx_1836.nc preindustrial_road_NOx_1837.nc preindustrial_road_NOx_1838.nc preindustrial_road_NOx_1839.nc preindustrial_road_NOx_1840.nc preindustrial_road_NOx_1841.nc preindustrial_road_NOx_1842.nc preindustrial_road_NOx_1843.nc preindustrial_road_NOx_1844.nc preindustrial_road_NOx_1845.nc preindustrial_road_NOx_1846.nc preindustrial_road_NOx_1847.nc preindustrial_road_NOx_1848.nc preindustrial_road_NOx_1849.nc preindustrial_road_NOx_1850.nc preindustrial_road_NOx_1851.nc preindustrial_road_NOx_1852.nc preindustrial_road_NOx_1853.nc preindustrial_road_NOx_1854.nc preindustrial_road_NOx_1855.nc preindustrial_road_NOx_1856.nc preindustrial_road_NOx_1857.nc preindustrial_road_NOx_1858.nc preindustrial_road_NOx_1859.nc preindustrial_road_NOx_1860.nc preindustrial_road_NOx_1861.nc preindustrial_road_NOx_1862.nc preindustrial_road_NOx_1863.nc preindustrial_road_NOx_1864.nc preindustrial_road_NOx_1865.nc preindustrial_road_NOx_1866.nc preindustrial_road_NOx_1867.nc preindustrial_road_NOx_1868.nc preindustrial_road_NOx_1869.nc preindustrial_road_NOx_1870.nc preindustrial_road_NOx_1871.nc preindustrial_road_NOx_1872.nc preindustrial_road_NOx_1873.nc preindustrial_road_NOx_1874.nc preindustrial_road_NOx_1875.nc preindustrial_road_NOx_1876.nc preindustrial_road_NOx_1877.nc preindustrial_road_NOx_1878.nc preindustrial_road_NOx_1879.nc preindustrial_road_NOx_1880.nc preindustrial_road_NOx_1881.nc preindustrial_road_NOx_1882.nc preindustrial_road_NOx_1883.nc preindustrial_road_NOx_1884.nc preindustrial_road_NOx_1885.nc preindustrial_road_NOx_1886.nc preindustrial_road_NOx_1887.nc preindustrial_road_NOx_1888.nc preindustrial_road_NOx_1889.nc preindustrial_road_NOx_1890.nc preindustrial_road_NOx_1891.nc preindustrial_road_NOx_1892.nc preindustrial_road_NOx_1893.nc preindustrial_road_NOx_1894.nc preindustrial_road_NOx_1895.nc preindustrial_road_NOx_1896.nc preindustrial_road_NOx_1897.nc preindustrial_road_NOx_1898.nc preindustrial_road_NOx_1899.nc preindustrial_road_NOx_1900.nc preindustrial_road_NOx_1901.nc preindustrial_road_NOx_1902.nc preindustrial_road_NOx_1903.nc preindustrial_road_NOx_1904.nc preindustrial_road_NOx_1905.nc preindustrial_road_NOx_1906.nc preindustrial_road_NOx_1907.nc preindustrial_road_NOx_1908.nc preindustrial_road_NOx_1909.nc preindustrial_road_NOx_1910.nc preindustrial_road_NOx_1911.nc preindustrial_road_NOx_1912.nc preindustrial_road_NOx_1913.nc preindustrial_road_NOx_1914.nc preindustrial_road_NOx_1915.nc preindustrial_road_NOx_1916.nc preindustrial_road_NOx_1917.nc preindustrial_road_NOx_1918.nc preindustrial_road_NOx_1919.nc preindustrial_road_NOx_1920.nc preindustrial_road_NOx_1921.nc preindustrial_road_NOx_1922.nc preindustrial_road_NOx_1923.nc preindustrial_road_NOx_1924.nc preindustrial_road_NOx_1925.nc preindustrial_road_NOx_1926.nc preindustrial_road_NOx_1927.nc preindustrial_road_NOx_1928.nc preindustrial_road_NOx_1929.nc preindustrial_road_NOx_1930.nc preindustrial_road_NOx_1931.nc preindustrial_road_NOx_1932.nc preindustrial_road_NOx_1933.nc preindustrial_road_NOx_1934.nc preindustrial_road_NOx_1935.nc preindustrial_road_NOx_1936.nc preindustrial_road_NOx_1937.nc preindustrial_road_NOx_1938.nc preindustrial_road_NOx_1939.nc preindustrial_road_NOx_1940.nc preindustrial_road_NOx_1941.nc preindustrial_road_NOx_1942.nc preindustrial_road_NOx_1943.nc preindustrial_road_NOx_1944.nc preindustrial_road_NOx_1945.nc preindustrial_road_NOx_1946.nc preindustrial_road_NOx_1947.nc preindustrial_road_NOx_1948.nc preindustrial_road_NOx_1949.nc preindustrial_road_NOx_1950.nc preindustrial_road_NOx_1951.nc preindustrial_road_NOx_1952.nc preindustrial_road_NOx_1953.nc preindustrial_road_NOx_1954.nc preindustrial_road_NOx_1955.nc preindustrial_road_NOx_1956.nc preindustrial_road_NOx_1957.nc preindustrial_road_NOx_1958.nc preindustrial_road_NOx_1959.nc preindustrial_road_NOx_1960.nc preindustrial_road_NOx_1961.nc preindustrial_road_NOx_1962.nc preindustrial_road_NOx_1963.nc preindustrial_road_NOx_1964.nc preindustrial_road_NOx_1965.nc preindustrial_road_NOx_1966.nc preindustrial_road_NOx_1967.nc preindustrial_road_NOx_1968.nc preindustrial_road_NOx_1969.nc preindustrial_road_NOx_1970.nc preindustrial_road_NOx_1971.nc preindustrial_road_NOx_1972.nc preindustrial_road_NOx_1973.nc preindustrial_road_NOx_1974.nc preindustrial_road_NOx_1975.nc preindustrial_road_NOx_1976.nc preindustrial_road_NOx_1977.nc preindustrial_road_NOx_1978.nc preindustrial_road_NOx_1979.nc preindustrial_road_NOx_1980.nc preindustrial_road_NOx_1981.nc preindustrial_road_NOx_1982.nc preindustrial_road_NOx_1983.nc preindustrial_road_NOx_1984.nc preindustrial_road_NOx_1985.nc preindustrial_road_NOx_1986.nc preindustrial_road_NOx_1987.nc preindustrial_road_NOx_1988.nc preindustrial_road_NOx_1989.nc preindustrial_road_NOx_1990.nc preindustrial_road_NOx_1991.nc preindustrial_road_NOx_1992.nc preindustrial_road_NOx_1993.nc preindustrial_road_NOx_1994.nc preindustrial_road_NOx_1995.nc preindustrial_road_NOx_1996.nc preindustrial_road_NOx_1997.nc preindustrial_road_NOx_1998.nc preindustrial_road_NOx_1999.nc preindustrial_road_NOx_2000.nc preindustrial_road_NOx_2001.nc preindustrial_road_NOx_2002.nc preindustrial_road_NOx_2003.nc preindustrial_road_NOx_2004.nc preindustrial_road_NOx_2005.nc preindustrial_road_NOx_2006.nc preindustrial_road_NOx_2007.nc preindustrial_road_NOx_2008.nc preindustrial_road_NOx_2009.nc preindustrial_road_NOx_2010.nc preindustrial_road_NOx_2011.nc preindustrial_road_NOx_2012.nc preindustrial_road_NOx_2013.nc preindustrial_road_NOx_2014.nc preindustrial_road_NOx_all.nc\n",
        "Thu Jul  6 11:12:05 2017: Appended file preindustrial_road_CO_all.nc had following &quot;history&quot; attribute:\n",
        "Mon Jul  3 16:28:19 2017: ncrcat preindustrial_road_CO_1750.nc preindustrial_road_CO_1751.nc preindustrial_road_CO_1752.nc preindustrial_road_CO_1753.nc preindustrial_road_CO_1754.nc preindustrial_road_CO_1755.nc preindustrial_road_CO_1756.nc preindustrial_road_CO_1757.nc preindustrial_road_CO_1758.nc preindustrial_road_CO_1759.nc preindustrial_road_CO_1760.nc preindustrial_road_CO_1761.nc preindustrial_road_CO_1762.nc preindustrial_road_CO_1763.nc preindustrial_road_CO_1764.nc preindustrial_road_CO_1765.nc preindustrial_road_CO_1766.nc preindustrial_road_CO_1767.nc preindustrial_road_CO_1768.nc preindustrial_road_CO_1769.nc preindustrial_road_CO_1770.nc preindustrial_road_CO_1771.nc preindustrial_road_CO_1772.nc preindustrial_road_CO_1773.nc preindustrial_road_CO_1774.nc preindustrial_road_CO_1775.nc preindustrial_road_CO_1776.nc preindustrial_road_CO_1777.nc preindustrial_road_CO_1778.nc preindustrial_road_CO_1779.nc preindustrial_road_CO_1780.nc preindustrial_road_CO_1781.nc preindustrial_road_CO_1782.nc preindustrial_road_CO_1783.nc preindustrial_road_CO_1784.nc preindustrial_road_CO_1785.nc preindustrial_road_CO_1786.nc preindustrial_road_CO_1787.nc preindustrial_road_CO_1788.nc preindustrial_road_CO_1789.nc preindustrial_road_CO_1790.nc preindustrial_road_CO_1791.nc preindustrial_road_CO_1792.nc preindustrial_road_CO_1793.nc preindustrial_road_CO_1794.nc preindustrial_road_CO_1795.nc preindustrial_road_CO_1796.nc preindustrial_road_CO_1797.nc preindustrial_road_CO_1798.nc preindustrial_road_CO_1799.nc preindustrial_road_CO_1800.nc preindustrial_road_CO_1801.nc preindustrial_road_CO_1802.nc preindustrial_road_CO_1803.nc preindustrial_road_CO_1804.nc preindustrial_road_CO_1805.nc preindustrial_road_CO_1806.nc preindustrial_road_CO_1807.nc preindustrial_road_CO_1808.nc preindustrial_road_CO_1809.nc preindustrial_road_CO_1810.nc preindustrial_road_CO_1811.nc preindustrial_road_CO_1812.nc preindustrial_road_CO_1813.nc preindustrial_road_CO_1814.nc preindustrial_road_CO_1815.nc preindustrial_road_CO_1816.nc preindustrial_road_CO_1817.nc preindustrial_road_CO_1818.nc preindustrial_road_CO_1819.nc preindustrial_road_CO_1820.nc preindustrial_road_CO_1821.nc preindustrial_road_CO_1822.nc preindustrial_road_CO_1823.nc preindustrial_road_CO_1824.nc preindustrial_road_CO_1825.nc preindustrial_road_CO_1826.nc preindustrial_road_CO_1827.nc preindustrial_road_CO_1828.nc preindustrial_road_CO_1829.nc preindustrial_road_CO_1830.nc preindustrial_road_CO_1831.nc preindustrial_road_CO_1832.nc preindustrial_road_CO_1833.nc preindustrial_road_CO_1834.nc preindustrial_road_CO_1835.nc preindustrial_road_CO_1836.nc preindustrial_road_CO_1837.nc preindustrial_road_CO_1838.nc preindustrial_road_CO_1839.nc preindustrial_road_CO_1840.nc preindustrial_road_CO_1841.nc preindustrial_road_CO_1842.nc preindustrial_road_CO_1843.nc preindustrial_road_CO_1844.nc preindustrial_road_CO_1845.nc preindustrial_road_CO_1846.nc preindustrial_road_CO_1847.nc preindustrial_road_CO_1848.nc preindustrial_road_CO_1849.nc preindustrial_road_CO_1850.nc preindustrial_road_CO_1851.nc preindustrial_road_CO_1852.nc preindustrial_road_CO_1853.nc preindustrial_road_CO_1854.nc preindustrial_road_CO_1855.nc preindustrial_road_CO_1856.nc preindustrial_road_CO_1857.nc preindustrial_road_CO_1858.nc preindustrial_road_CO_1859.nc preindustrial_road_CO_1860.nc preindustrial_road_CO_1861.nc preindustrial_road_CO_1862.nc preindustrial_road_CO_1863.nc preindustrial_road_CO_1864.nc preindustrial_road_CO_1865.nc preindustrial_road_CO_1866.nc preindustrial_road_CO_1867.nc preindustrial_road_CO_1868.nc preindustrial_road_CO_1869.nc preindustrial_road_CO_1870.nc preindustrial_road_CO_1871.nc preindustrial_road_CO_1872.nc preindustrial_road_CO_1873.nc preindustrial_road_CO_1874.nc preindustrial_road_CO_1875.nc preindustrial_road_CO_1876.nc preindustrial_road_CO_1877.nc preindustrial_road_CO_1878.nc preindustrial_road_CO_1879.nc preindustrial_road_CO_1880.nc preindustrial_road_CO_1881.nc preindustrial_road_CO_1882.nc preindustrial_road_CO_1883.nc preindustrial_road_CO_1884.nc preindustrial_road_CO_1885.nc preindustrial_road_CO_1886.nc preindustrial_road_CO_1887.nc preindustrial_road_CO_1888.nc preindustrial_road_CO_1889.nc preindustrial_road_CO_1890.nc preindustrial_road_CO_1891.nc preindustrial_road_CO_1892.nc preindustrial_road_CO_1893.nc preindustrial_road_CO_1894.nc preindustrial_road_CO_1895.nc preindustrial_road_CO_1896.nc preindustrial_road_CO_1897.nc preindustrial_road_CO_1898.nc preindustrial_road_CO_1899.nc preindustrial_road_CO_1900.nc preindustrial_road_CO_1901.nc preindustrial_road_CO_1902.nc preindustrial_road_CO_1903.nc preindustrial_road_CO_1904.nc preindustrial_road_CO_1905.nc preindustrial_road_CO_1906.nc preindustrial_road_CO_1907.nc preindustrial_road_CO_1908.nc preindustrial_road_CO_1909.nc preindustrial_road_CO_1910.nc preindustrial_road_CO_1911.nc preindustrial_road_CO_1912.nc preindustrial_road_CO_1913.nc preindustrial_road_CO_1914.nc preindustrial_road_CO_1915.nc preindustrial_road_CO_1916.nc preindustrial_road_CO_1917.nc preindustrial_road_CO_1918.nc preindustrial_road_CO_1919.nc preindustrial_road_CO_1920.nc preindustrial_road_CO_1921.nc preindustrial_road_CO_1922.nc preindustrial_road_CO_1923.nc preindustrial_road_CO_1924.nc preindustrial_road_CO_1925.nc preindustrial_road_CO_1926.nc preindustrial_road_CO_1927.nc preindustrial_road_CO_1928.nc preindustrial_road_CO_1929.nc preindustrial_road_CO_1930.nc preindustrial_road_CO_1931.nc preindustrial_road_CO_1932.nc preindustrial_road_CO_1933.nc preindustrial_road_CO_1934.nc preindustrial_road_CO_1935.nc preindustrial_road_CO_1936.nc preindustrial_road_CO_1937.nc preindustrial_road_CO_1938.nc preindustrial_road_CO_1939.nc preindustrial_road_CO_1940.nc preindustrial_road_CO_1941.nc preindustrial_road_CO_1942.nc preindustrial_road_CO_1943.nc preindustrial_road_CO_1944.nc preindustrial_road_CO_1945.nc preindustrial_road_CO_1946.nc preindustrial_road_CO_1947.nc preindustrial_road_CO_1948.nc preindustrial_road_CO_1949.nc preindustrial_road_CO_1950.nc preindustrial_road_CO_1951.nc preindustrial_road_CO_1952.nc preindustrial_road_CO_1953.nc preindustrial_road_CO_1954.nc preindustrial_road_CO_1955.nc preindustrial_road_CO_1956.nc preindustrial_road_CO_1957.nc preindustrial_road_CO_1958.nc preindustrial_road_CO_1959.nc preindustrial_road_CO_1960.nc preindustrial_road_CO_1961.nc preindustrial_road_CO_1962.nc preindustrial_road_CO_1963.nc preindustrial_road_CO_1964.nc preindustrial_road_CO_1965.nc preindustrial_road_CO_1966.nc preindustrial_road_CO_1967.nc preindustrial_road_CO_1968.nc preindustrial_road_CO_1969.nc preindustrial_road_CO_1970.nc preindustrial_road_CO_1971.nc preindustrial_road_CO_1972.nc preindustrial_road_CO_1973.nc preindustrial_road_CO_1974.nc preindustrial_road_CO_1975.nc preindustrial_road_CO_1976.nc preindustrial_road_CO_1977.nc preindustrial_road_CO_1978.nc preindustrial_road_CO_1979.nc preindustrial_road_CO_1980.nc preindustrial_road_CO_1981.nc preindustrial_road_CO_1982.nc preindustrial_road_CO_1983.nc preindustrial_road_CO_1984.nc preindustrial_road_CO_1985.nc preindustrial_road_CO_1986.nc preindustrial_road_CO_1987.nc preindustrial_road_CO_1988.nc preindustrial_road_CO_1989.nc preindustrial_road_CO_1990.nc preindustrial_road_CO_1991.nc preindustrial_road_CO_1992.nc preindustrial_road_CO_1993.nc preindustrial_road_CO_1994.nc preindustrial_road_CO_1995.nc preindustrial_road_CO_1996.nc preindustrial_road_CO_1997.nc preindustrial_road_CO_1998.nc preindustrial_road_CO_1999.nc preindustrial_road_CO_2000.nc preindustrial_road_CO_2001.nc preindustrial_road_CO_2002.nc preindustrial_road_CO_2003.nc preindustrial_road_CO_2004.nc preindustrial_road_CO_2005.nc preindustrial_road_CO_2006.nc preindustrial_road_CO_2007.nc preindustrial_road_CO_2008.nc preindustrial_road_CO_2009.nc preindustrial_road_CO_2010.nc preindustrial_road_CO_2011.nc preindustrial_road_CO_2012.nc preindustrial_road_CO_2013.nc preindustrial_road_CO_2014.nc preindustrial_road_CO_all.nc\n",
-       "</dd><dt><span>activity_id :</span></dt><dd>input4MIPs</dd><dt><span>comment :</span></dt><dd>This data supersedes 2016-06-18, 2016-06-18-sectorDimV2, 2016-07-26, 2016-07-26-sectorDim, and 2017-05-18 data versions. See README file at the project web site.</dd><dt><span>contact :</span></dt><dd>Steven J. Smith (ssmith@pnnl.gov)</dd><dt><span>data_structure :</span></dt><dd>grid</dd><dt><span>dataset_category :</span></dt><dd>emissions</dd><dt><span>dataset_version_number :</span></dt><dd>2017-08-30</dd><dt><span>external_variables :</span></dt><dd>gridcell_area</dd><dt><span>frequency :</span></dt><dd>mon</dd><dt><span>further_info_url :</span></dt><dd>http://www.globalchange.umd.edu/ceds/</dd><dt><span>grid :</span></dt><dd>0.5x0.5 degree latitude x longitude</dd><dt><span>grid_label :</span></dt><dd>gn</dd><dt><span>institution_id :</span></dt><dd>PNNL-JGCRI</dd><dt><span>mip_era :</span></dt><dd>CMIP6</dd><dt><span>product :</span></dt><dd>primary-emissions-data</dd><dt><span>realm :</span></dt><dd>atmos</dd><dt><span>references :</span></dt><dd>Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J.-I., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O&#x27;Rourke, P. R., and Zhang, Q.: Historical (1750-2014) anthropogenic emissions of reactive gases and aerosols from the Community Emission Data System (CEDS), Geosci. Model Dev. Discuss., doi:10.5194/gmd-2017-43, in review, 2017.</dd><dt><span>table_id :</span></dt><dd>input4MIPs</dd><dt><span>target_mip :</span></dt><dd>CMIP</dd><dt><span>variable_id :</span></dt><dd>BC_em_AIR_anthro</dd><dt><span>global_total_emission_1750 :</span></dt><dd>0 Tg/year</dd><dt><span>global_total_emission_1799 :</span></dt><dd>0 Tg/year</dd><dt><span>data_usage_tips :</span></dt><dd>Note that these are monthly average fluxes.</dd><dt><span>reporting_unit :</span></dt><dd>Mass flux of BC, reported as carbon mass</dd><dt><span>nominal_resolution :</span></dt><dd>50 km</dd><dt><span>source_id :</span></dt><dd>CEDS-2017-08-30</dd><dt><span>tracking_id :</span></dt><dd>hdl:21.14100/649247a5-afc6-4e25-b777-9d7a77a3b1ed</dd><dt><span>CDO :</span></dt><dd>Climate Data Operators version 1.7.0 (http://mpimet.mpg.de/cdo)</dd><dt><span>description :</span></dt><dd>Original data from CMIP6v6.1_DLR1.0_DECK_road_MISC_175001-201412.nc modified for hist-piNTCF.</dd><dt><span>prepared :</span></dt><dd>Created Wed Jan  2 11:59:14 2019 with prepare_hist-piNTCF.py.</dd></dl></div></li></ul></div></div>"
+       "</dd><dt><span>activity_id :</span></dt><dd>input4MIPs</dd><dt><span>comment :</span></dt><dd>This data supersedes 2016-06-18, 2016-06-18-sectorDimV2, 2016-07-26, 2016-07-26-sectorDim, and 2017-05-18 data versions. See README file at the project web site.</dd><dt><span>contact :</span></dt><dd>Steven J. Smith (ssmith@pnnl.gov)</dd><dt><span>data_structure :</span></dt><dd>grid</dd><dt><span>dataset_category :</span></dt><dd>emissions</dd><dt><span>dataset_version_number :</span></dt><dd>2017-08-30</dd><dt><span>external_variables :</span></dt><dd>gridcell_area</dd><dt><span>frequency :</span></dt><dd>mon</dd><dt><span>further_info_url :</span></dt><dd>http://www.globalchange.umd.edu/ceds/</dd><dt><span>grid :</span></dt><dd>0.5x0.5 degree latitude x longitude</dd><dt><span>grid_label :</span></dt><dd>gn</dd><dt><span>institution_id :</span></dt><dd>PNNL-JGCRI</dd><dt><span>mip_era :</span></dt><dd>CMIP6</dd><dt><span>product :</span></dt><dd>primary-emissions-data</dd><dt><span>realm :</span></dt><dd>atmos</dd><dt><span>references :</span></dt><dd>Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J.-I., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O&#x27;Rourke, P. R., and Zhang, Q.: Historical (1750-2014) anthropogenic emissions of reactive gases and aerosols from the Community Emission Data System (CEDS), Geosci. Model Dev. Discuss., doi:10.5194/gmd-2017-43, in review, 2017.</dd><dt><span>table_id :</span></dt><dd>input4MIPs</dd><dt><span>target_mip :</span></dt><dd>CMIP</dd><dt><span>variable_id :</span></dt><dd>BC_em_AIR_anthro</dd><dt><span>global_total_emission_1750 :</span></dt><dd>0 Tg/year</dd><dt><span>global_total_emission_1799 :</span></dt><dd>0 Tg/year</dd><dt><span>data_usage_tips :</span></dt><dd>Note that these are monthly average fluxes.</dd><dt><span>reporting_unit :</span></dt><dd>Mass flux of BC, reported as carbon mass</dd><dt><span>nominal_resolution :</span></dt><dd>50 km</dd><dt><span>source_id :</span></dt><dd>CEDS-2017-08-30</dd><dt><span>tracking_id :</span></dt><dd>hdl:21.14100/649247a5-afc6-4e25-b777-9d7a77a3b1ed</dd><dt><span>CDO :</span></dt><dd>Climate Data Operators version 1.7.0 (http://mpimet.mpg.de/cdo)</dd></dl></div></li></ul></div></div>"
       ],
       "text/plain": [
        "<xarray.Dataset>\n",
-       "Dimensions:    (time: 3180, lev: 1, lat: 360, lon: 720, bnds: 2)\n",
+       "Dimensions:    (lon: 720, bnds: 2, lat: 360, lev: 1, time: 3180)\n",
        "Coordinates:\n",
+       "  * lon        (lon) float64 -179.8 -179.2 -178.8 -178.2 ... 178.8 179.2 179.8\n",
        "  * lat        (lat) float64 -89.75 -89.25 -88.75 -88.25 ... 88.75 89.25 89.75\n",
        "  * lev        (lev) float64 45.0\n",
-       "  * lon        (lon) float64 -179.8 -179.2 -178.8 -178.2 ... 178.8 179.2 179.8\n",
        "  * time       (time) object 1750-01-16 00:00:00 ... 2014-12-16 00:00:00\n",
        "Dimensions without coordinates: bnds\n",
        "Data variables:\n",
-       "    CO_flux    (time, lev, lat, lon) float32 dask.array<chunksize=(120, 1, 360, 720), meta=np.ndarray>\n",
-       "    NH3_flux   (time, lev, lat, lon) float32 dask.array<chunksize=(120, 1, 360, 720), meta=np.ndarray>\n",
-       "    NOx_flux   (time, lev, lat, lon) float32 dask.array<chunksize=(120, 1, 360, 720), meta=np.ndarray>\n",
-       "    SO2_flux   (time, lev, lat, lon) float32 dask.array<chunksize=(120, 1, 360, 720), meta=np.ndarray>\n",
-       "    lat_bnds   (time, lat, bnds) float64 dask.array<chunksize=(120, 360, 2), meta=np.ndarray>\n",
-       "    lon_bnds   (time, lon, bnds) float64 dask.array<chunksize=(120, 720, 2), meta=np.ndarray>\n",
-       "    time_bnds  (time, bnds) object dask.array<chunksize=(120, 2), meta=np.ndarray>\n",
-       "Attributes: (12/41)\n",
+       "    lon_bnds   (lon, bnds) float64 ...\n",
+       "    lat_bnds   (lat, bnds) float64 ...\n",
+       "    time_bnds  (time, bnds) object ...\n",
+       "    CO_flux    (time, lev, lat, lon) float32 ...\n",
+       "    NH3_flux   (time, lev, lat, lon) float32 ...\n",
+       "    NOx_flux   (time, lev, lat, lon) float32 ...\n",
+       "    SO2_flux   (time, lev, lat, lon) float32 ...\n",
+       "Attributes: (12/39)\n",
        "    CDI:                         Climate Data Interface version 1.7.0 (http:/...\n",
        "    Conventions:                 CF-1.6\n",
-       "    history:                     Sat Mar 13 02:37:08 2021: /work/bd0080/b3090...\n",
+       "    history:                     Tue Aug 28 23:02:02 2018: cdo -O -Q copy /sc...\n",
        "    source:                      CEDS-2017-08-30: Community Emissions Data Sy...\n",
        "    institution:                 Pacific Northwest National Laboratory - Join...\n",
        "    reference1:                  Lamarque et al.(2010), doi:10.5194/acp-10-70...\n",
        "    ...                          ...\n",
+       "    data_usage_tips:             Note that these are monthly average fluxes.\n",
+       "    reporting_unit:              Mass flux of BC, reported as carbon mass\n",
        "    nominal_resolution:          50 km\n",
        "    source_id:                   CEDS-2017-08-30\n",
        "    tracking_id:                 hdl:21.14100/649247a5-afc6-4e25-b777-9d7a77a...\n",
-       "    CDO:                         Climate Data Operators version 1.7.0 (http:/...\n",
-       "    description:                 Original data from CMIP6v6.1_DLR1.0_DECK_roa...\n",
-       "    prepared:                    Created Wed Jan  2 11:59:14 2019 with prepar..."
+       "    CDO:                         Climate Data Operators version 1.7.0 (http:/..."
       ]
      },
-     "execution_count": 7,
+     "execution_count": 9,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -2141,7 +705,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 8,
+   "execution_count": 10,
    "id": "4cd472c4-a52b-4d43-94d0-24b6d3e42e3d",
    "metadata": {
     "tags": []
@@ -2156,7 +720,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 9,
+   "execution_count": 11,
    "id": "83759f6f-2c64-4c0a-a392-aa915093f3d5",
    "metadata": {
     "tags": []
@@ -2182,7 +746,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 10,
+   "execution_count": 12,
    "id": "cb911dad-93ab-4ad5-bbcf-372c1d17f7c9",
    "metadata": {
     "tags": []
@@ -2196,7 +760,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 14,
+   "execution_count": 13,
    "id": "ade27428-d000-479d-b279-f48270fd50c1",
    "metadata": {
     "tags": []
@@ -2208,7 +772,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 25,
+   "execution_count": 14,
    "id": "8a608640-13a1-46cc-9844-af3862a50f23",
    "metadata": {
     "tags": []
@@ -2220,7 +784,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 29,
+   "execution_count": 15,
    "id": "d9ab5edf-e5d7-4938-9426-45db65b20112",
    "metadata": {
     "tags": []
@@ -2232,7 +796,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 30,
+   "execution_count": 16,
    "id": "9a68eccf-408b-442e-87c3-d3ed948a2182",
    "metadata": {
     "tags": []
@@ -2240,7 +804,7 @@
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAHWCAYAAACmMzqDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9SElEQVR4nO3deXiU1f3//9dkm+wBEkgIBAguEAybidKgiCsIbihWijZqRVvEDVJ/VRaXajUu1KJfBQRBq62CLaJ8KkWiCGIJKBAQFVHWsCSEBEgge2bu3x9hBoZMQhaSeyZ5Pq5rLjP3nLnnfR9heOd9zn2OxTAMQwAAAAAAAEAL8jE7AAAAAAAAALQ9FKUAAAAAAADQ4ihKAQAAAAAAoMVRlAIAAAAAAECLoygFAAAAAACAFkdRCgAAAAAAAC2OohQAAAAAAABaHEUpAAAAAAAAtDiKUgAAAAAAAGhxFKUANMl3332n3/3ud4qPj1dgYKBCQ0N14YUX6qWXXtLhw4dd2lZWVmrWrFlKSUlRRESEgoKClJCQoMcff1wFBQUmXUHtLBaLnn766bN+3ssvv1yXX375WT8vAACAp7v77rvVo0ePs37ed955RxaLRbt37z7r5wbQfCyGYRhmBwHAO82dO1cTJkxQr169NGHCBPXp00eVlZVav3695s6dq/79+2vx4sWSpJKSEo0cOVJff/21fv/73+v6669XUFCQMjMzNX36dIWGhiojI0O9evUy+apOWrt2rbp27aquXbue1fP++OOPkqQ+ffqc1fMCAAB4uh07dqioqEgDBw48q+c9dOiQduzYoYEDB8pqtZ7VcwNoPhSlADRKZmamhgwZomuuuUYff/xxjX/8KyoqtGzZMt14442SpD/84Q+aM2eOFixYoDFjxri0/fnnn3XxxRera9eu2rx5s3x9fVvsOgAAAAAA5uD2PQCN8vzzz8tisWjOnDluR6MCAgKcBanc3FzNnz9fw4cPr1GQkqTzzz9fjz32mH744Qd9/PHHZ/zs9evX68Ybb1SHDh0UGBiogQMH6sMPP3Rp45jCvWLFCt13332KjIxUeHi47rzzThUXFys3N1e33Xab2rVrp86dO+vRRx9VZWWlyzlOv32vpKREjz76qPNWxQ4dOig5OVkffPCBs83OnTv1m9/8RrGxsbJarYqOjtZVV12lTZs2Odu4u33v8OHDmjBhgrp06aKAgAD17NlTU6dOVXl5eY2YHnzwQb333ntKSEhQcHCw+vfvr//85z8u7Q4dOqTf//73iouLk9VqVceOHXXJJZfo888/P2P/AgCA5vf000/LYrHohx9+0NixYxUREaHo6Gjdc889KiwsdGlbVlamyZMnKz4+XgEBAerSpYseeOABHT16VJJkGIZGjhypyMhIZWdnO99XUlKiCy64QAkJCSouLq4znqKiImee4/iMiRMn1nifIxd5++231atXLwUFBSk5OVlr166VYRh6+eWXFR8fr9DQUF155ZXavn27y/vd3b73r3/9S4MGDVJERISCg4PVs2dP3XPPPc7X7Xa7/vKXvzg/r127durXr59effVVZ5vabt+bP3+++vfv78zdbr75Zm3durVGTKGhodq+fbtGjhyp0NBQxcXF6Y9//GONXGzWrFnq37+/QkNDFRYWpt69e2vKlCl19i2A2vmZHQAA72Oz2bRixQolJSUpLi7ujO2//PJLVVVVadSoUbW2GTVqlKZMmaKMjAyNHj26znNde+21GjRokGbPnq2IiAjn7KuSkhLdfffdLu3vvfde3XLLLVqwYIGysrI0ZcoUVVVVadu2bbrlllv0+9//Xp9//rlefPFFxcbGKi0trdbPTktL03vvvae//OUvGjhwoIqLi/X999+7rIc1cuRI2Ww2vfTSS+rWrZvy8/O1Zs0aZ9LoTllZma644grt2LFDf/7zn9WvXz+tXr1a6enp2rRpkz799FOX9p9++qm+/fZbPfPMMwoNDdVLL72km2++Wdu2bVPPnj0lSampqdq4caOee+45nX/++Tp69Kg2btzokWt3AQDQlo0ePVpjxozRuHHjtGXLFk2ePFlSdTFFqi44jRo1Sl988YUmT56sIUOG6LvvvtNTTz2lzMxMZWZmymq16r333tOAAQN02223afXq1fL399eECRO0a9curVu3TiEhIbXGUFJSoqFDh2rfvn2aMmWK+vXrpx9++EFPPvmktmzZos8//1wWi8XZ/j//+Y+ysrL0wgsvyGKx6LHHHtN1112nu+66Szt37tTrr7+uwsJCpaWlafTo0dq0aZPL+0+VmZmpMWPGaMyYMXr66acVGBioPXv2aMWKFc42L730kp5++mlNmzZNl112mSorK/XTTz/VmV9JUnp6uqZMmaKxY8cqPT1dBQUFevrpp5WSkqJvv/1W5513nrNtZWWlbrzxRo0bN05//OMf9dVXX+nZZ59VRESEnnzySUnSggULNGHCBD300EOaPn26fHx8tH37dufSDAAawQCABsrNzTUkGb/5zW/q1f6FF14wJBnLli2rtU1paakhyRgxYkSd5+rdu7cxcOBAo7Ky0uX49ddfb3Tu3Nmw2WyGYRjG22+/bUgyHnroIZd2o0aNMiQZr7zyisvxAQMGGBdeeKHLMUnGU0895XyemJhojBo1qtbY8vPzDUnGjBkz6ryGoUOHGkOHDnU+nz17tiHJ+PDDD13avfjii4YkY/ny5S4xRUdHG0VFRc5jubm5ho+Pj5Genu48FhoaakycOLHOOAAAgHmeeuopQ5Lx0ksvuRyfMGGCERgYaNjtdsMwDGPZsmVu2y1cuNCQZMyZM8d57Ouvvzb8/PyMiRMnGvPnzzckGW+99dYZY0lPTzd8fHyMb7/91uX4v//9b0OSsXTpUucxSUZMTIxx/Phx57GPP/7YkGQMGDDAGbdhGMaMGTMMScZ3333nPHbXXXcZ3bt3dz6fPn26Ick4evRorfFdf/31xoABA+q8Bkfut2vXLsMwDOPIkSNGUFCQMXLkSJd22dnZhtVqNW6//XaXmNzlYiNHjjR69erlfP7ggw8a7dq1qzMOAA3D7XsAPEpto2iStH37dv3000+64447JElVVVXOx8iRI5WTk6Nt27a5vOf66693eZ6QkCBJuu6662oc37NnT52xXXzxxfrvf/+rxx9/XCtXrlRpaanL6x06dNA555yjl19+Wa+88oqysrJkt9vrvmBJK1asUEhIiG699VaX445ZX1988YXL8SuuuEJhYWHO59HR0erUqZNL/BdffLHeeecd/eUvf9HatWtr3JoIAAA8g2O5A4d+/fqprKxMeXl5kuScMXT6bPBf//rXCgkJcckTLrnkEj333HOaMWOG7r//fv32t7/VuHHjzhjDf/7zHyUmJmrAgAEu+dXw4cNlsVi0cuVKl/ZXXHGFy8wrR341YsQIl1zOcbyuHOuiiy6SJN1222368MMPtX///hptLr74Ym3evFkTJkzQZ599pqKiojNeU2ZmpkpLS2v0W1xcnK688soa+ZXFYtENN9zgcqxfv3418qujR49q7Nix+uSTT5Sfn3/GOADUjaIUgAaLiopScHCwdu3aVa/23bp1k6Q62zteq+t2wIMHD0qSHn30Ufn7+7s8JkyYIEk1koMOHTq4PA8ICKj1eFlZWZ3X8dprr+mxxx7Txx9/rCuuuEIdOnTQqFGj9Msvv0iqTma++OILDR8+XC+99JIuvPBCdezYUQ8//LCOHTtW63kLCgoUExNToyDXqVMn+fn51bjlLjIyssY5rFarS5Fs4cKFuuuuu/TWW28pJSVFHTp00J133qnc3Nw6rxEAALSs0/9dd6zV6fh3vaCgQH5+furYsaNLO4vFopiYmBp5wh133KGAgACVl5fr//v//r96xXDw4EF99913NfKrsLAwGYbRpPxKUp051mWXXaaPP/5YVVVVuvPOO9W1a1clJia6rNk5efJkTZ8+XWvXrtWIESMUGRmpq666SuvXr6/1vI5+6dy5c43XYmNja/RbcHCwAgMDXY5ZrVaX2FNTUzV//nzt2bNHo0ePVqdOnTRo0CBlZGTUGgeAulGUAtBgvr6+uuqqq7Rhwwbt27fvjO2vuOIK+fn51bmIueO1a665ptY2UVFRkqoTk2+//dbtY8CAAQ25lAYJCQnRn//8Z/3000/Kzc3VrFmztHbtWpdRte7du2vevHnKzc3Vtm3bNGnSJM2cObPOpDAyMlIHDx6UcdpmqHl5eaqqqnJed0NERUVpxowZ2r17t/bs2aP09HR99NFHNUYLAQCAZ4uMjFRVVZUOHTrkctwwDOXm5rrkCTabTXfccYfat2+vbt26ady4caqoqDjjZ0RFRalv37615ldPPPHEWb+uU91000364osvVFhYqJUrV6pr1666/fbblZmZKUny8/NTWlqaNm7cqMOHD+uDDz7Q3r17NXz4cJWUlLg9p6PYl5OTU+O1AwcONCq/kqTf/e53WrNmjQoLC/Xpp5/KMAxdf/31Z5xxD8A9ilIAGmXy5MkyDEP33Xef22SnsrJS//d//ydJiomJ0T333KPPPvtMCxcurNH2559/1osvvqgLLrigzsXQe/XqpfPOO0+bN29WcnKy28ept7U1p+joaN19990aO3astm3b5jYhOv/88zVt2jT17dtXGzdurPVcV111lY4fP16jaPfuu+86X2+Kbt266cEHH9Q111xTZxwAAMDzOPKAf/zjHy7HFy1apOLiYpc84amnntLq1av1z3/+UwsXLtTmzZvrNVvq+uuv144dOxQZGek2vzp9t7zmYrVaNXToUL344ouSpKysrBpt2rVrp1tvvVUPPPCADh8+XGO3PYeUlBQFBQXV6Ld9+/ZpxYoVTc6vQkJCNGLECE2dOlUVFRX64YcfmnQ+oK1i9z0AjZKSkqJZs2ZpwoQJSkpK0v33368LLrhAlZWVysrK0pw5c5SYmOicRfTKK69o27Zt+u1vf6uvvvpKN9xwg6xWq9auXavp06crLCxMixYtkq+vb52f++abb2rEiBEaPny47r77bnXp0kWHDx/W1q1btXHjRv3rX/9qtmseNGiQrr/+evXr10/t27fX1q1b9d577yklJUXBwcH67rvv9OCDD+rXv/61zjvvPAUEBGjFihX67rvv9Pjjj9d63jvvvFNvvPGG7rrrLu3evVt9+/bV119/reeff14jR47U1Vdf3aA4CwsLdcUVV+j2229X7969FRYWpm+//VbLli3TLbfc0tRuAAAALeiaa67R8OHD9dhjj6moqEiXXHKJc/e9gQMHKjU1VZKUkZGh9PR0PfHEE86CS3p6uh599FFdfvnluvnmm2v9jIkTJ2rRokW67LLLNGnSJPXr1092u13Z2dlavny5/vjHP2rQoEHNcn1PPvmk9u3bp6uuukpdu3bV0aNH9eqrr8rf319Dhw6VJN1www1KTExUcnKyOnbsqD179mjGjBnq3r27yw56p2rXrp2eeOIJTZkyRXfeeafGjh2rgoIC/fnPf1ZgYKCeeuqpBsd63333KSgoSJdccok6d+6s3NxcpaenKyIiwrk2FoCGoSgFoNHuu+8+XXzxxfrb3/6mF198Ubm5ufL399f555+v22+/XQ8++KCzbUhIiDIyMjR37ly9++67evfdd1VZWakePXro3nvv1Z/+9Ce3ayWd7oorrtA333yj5557ThMnTtSRI0cUGRmpPn366LbbbmvOy9WVV16pJUuW6G9/+5tKSkrUpUsX3XnnnZo6daqk6hlh55xzjmbOnKm9e/fKYrGoZ8+e+utf/6qHHnqo1vMGBgbqyy+/1NSpU/Xyyy/r0KFD6tKlix599NFGJUyBgYEaNGiQ3nvvPe3evVuVlZXq1q2bHnvsMf3pT39q9PUDAICWZ7FY9PHHH+vpp5/W22+/reeee05RUVFKTU3V888/L6vVqpycHP32t7/V5ZdfrieffNL53rS0NK1atUr33HOPBg4cWOuMp5CQEK1evVovvPCC5syZo127dikoKEjdunXT1Vdf3awzpQYNGqT169frscce06FDh9SuXTslJydrxYoVuuCCCyRV53+LFi3SW2+9paKiIsXExOiaa67RE088IX9//1rPPXnyZHXq1EmvvfaaFi5cqKCgIF1++eV6/vnnay1m1WXIkCF655139OGHH+rIkSOKiorSpZdeqnfffbfGml8A6sdinL6ICQAAAAAAANDMWFMKAAAAAAAALY6iFAAAAAAAAFocRSkAAAAAAAC0OIpSAAAAAAAAaHEUpQAAAAAAANDiKEoBAAAAAACgxfmZHYAnstvtOnDggMLCwmSxWMwOBwAAtBDDMHTs2DHFxsbKx4exu6YipwIAoG2qb05FUcqNAwcOKC4uzuwwAACASfbu3auuXbuaHYbXI6cCAKBtO1NORVHKjbCwMEnVnRceHm5yNAAAoKUUFRUpLi7OmQugacipAABom+qbU1GUcsMxvTw8PJwECgCANohbzc4OcioAANq2M+VULJYAAAAAAACAFkdRCgAAAAAAAC2OohQAAAAAAABaHEUpAAAAAAAAtDiKUgAAAAAAAGhxFKUAAAAAAADQ4ihKAQAAAAAAoMVRlAIAAAAAAECLoygFAAAAAACAFkdRCgAAAAAAAC2OohQAAAAAAABaHEUpAAAAAAAAtDiKUgAAAAAAAGhxFKUA1Kqkoko2u2F2GAAAAF7teHmV7ORUAFADRSkAbhWWVOpXz3+hu9/+xuxQAAAAvFZuYZku+svnemhBltmhAIDHoSgFwK3th46pqKxKm/YeNTsUAAAAr7U1p0illTZtyj5qdigA4HEoSgFw60hxpSSppMImw2C6OQAAQGMcKamQVL0sAgDAFUUpAG4dLa0uStnshsqr7CZHAwAA4J2OllTnVMUVNpMjAQDP42d2AAA809ETo3pS9WypQH9fSVKVza7dBcVi8hQAM1n9fNUtMtjsMADgjBwDfRVVdlXa7PL39XE+31NQbGZoAKCgAF91bW9eTkVRCoBbjlE9SSour1KHkABJ0ri/r9eqnw+ZFRYASJL6donQ/z10qdlhAMAZuQz0ldsUEVxdlBozJ1NZrDMFwGSXnBupf977K9M+n6IUALeOlp5MoIpPWQMhK/uIJCkiyF++PpYWjwsAJCk8iBQGgHdwGeirqFJEsL9sdkObT2wm0y7YXz4WcioA5giz+pv6+WR0ANxynSlVvQZCpc2uorLqAtWXj17unD0FAAAA9xy370knFzsvKq2U/cRSCN9Ovdp5Sx8AtDV8+wFw69SilCOBcuweY7FUz5QCAABA3U69fc8x0FdQXH0sLNCPghSANo1vQABuudy+V36iKFVcXahqHxzArXsAAAD1cPo6ndLJgb5IZp0DaOMoSgFwy1GAkk6O6h0+MarXPphZUgAAAPVx5NSZUhWn5VQUpQC0cRSlALhV6Gb9A0dSxVpSAAAAZ1Zls+tY2ckNY5w51YmiVIdgcioAbRtFKQA1VNrsOl5+MoFyjOo51j+gKAUAAHBmRacUpKSaa0qRUwFo6yhKAajh1LUPpFPXlCKBAgAAqK9Tb92TyKkA4HQUpQDUUFh6egJ1+ppSJFAAAABnUmOg78Tte4dLWFMKACSKUgDcOHJaAuVY/+Awo3oAAAD1dvpAX8lpC52zphSAto6iFIAaao7qVSdQLHQOAABQf6fuZixx+x4AnI6iFIAajp62/kFJuetMKaaaAwAAnNnR0tNnn5+YKcXtewAgiaIUADccM6UCfKu/Io6fVpRiqjkAAMCZOQb6auRUx5kpBQCS5Gd2AAA8x5LNBzT/613q1iFYktS5XaD2FJSopMImwzBYUwoAAKAeFnyTrUUb9zlzppM5VZXKKm3OpREY6APQ1lGUAuD08AdZkqRNe49KkmIjgrSnoETFFVUqrbSpvMouiaIUAABAXR7/aIvLc2dOVW5zzkj39bEoPIhfxwC0bdy+B6BWXdoHSZJKym3OWVIBfj4KDvA1MywAAACv4sypKqpOrtEZHCCLxWJmWABgOopSAJx6RoW4PO/SrjqBKi6vcllPigQKAACgdmFW1xlQJ3Mq2ynLIfi3eFwA4GkoSgFwqrIbLs+dCVRFlQrYeQ8AAKBefH1dB/BOzamcO++xnhQAUJQCcFJJRZXLc8dUc7sh5RaWSZIiKUoBAADUqaTc5vL81CURjpwY6IsMJacCAIpSAJyKT0mg/HwsOqdjqPP53sMlkpgpBQAAUJeKKrsqbHbnc6ufj7pHVu9sXGGz62BR9UAfM6UAgN33AJxgsxsqrawuSv1j3CD5WKSYiEAFB/iqpMKmvUdKJUkdgln/AAAAoDalFScH+RbdnyKbXYoOD3Qec+ZUDPQBAEUpANUcBSlJSu7RXoH+1TvsBQf4qaTCpn1HqmdKdQixmhIfAACANyg+sRxCgJ+Pkrp3cB4P8PNRRZX9lJyKohQAcPseAElSSXl1AuVjqZ5m7hBirS5O/XLwuCSpUzhFKQBoaTNnzlR8fLwCAwOVlJSk1atX19l+1apVSkpKUmBgoHr27KnZs2fXaLNo0SL16dNHVqtVffr00eLFi2s9X3p6uiwWiyZOnNjUSwFaPccancEBvi7HQwJOy6nCAgUAbR1FKQCSpOITU81DAvxksZzcMSY4oHpC5fETRaveMWEtHxwAtGELFy7UxIkTNXXqVGVlZWnIkCEaMWKEsrOz3bbftWuXRo4cqSFDhigrK0tTpkzRww8/rEWLFjnbZGZmasyYMUpNTdXmzZuVmpqq2267TevWratxvm+//VZz5sxRv379mu0agdbEsUZnSIDrTSk1cqrO5FQAYHpRqiEjfzk5Obr99tvVq1cv+fj4uB2tmzt3roYMGaL27durffv2uvrqq/XNN9804xUArUPxiQQp2Oo6qhd6ynOLRepFUQoAWtQrr7yicePG6d5771VCQoJmzJihuLg4zZo1y2372bNnq1u3bpoxY4YSEhJ077336p577tH06dOdbWbMmKFrrrlGkydPVu/evTV58mRdddVVmjFjhsu5jh8/rjvuuENz585V+/btm/MygVajuJaZUqHWk0WqQH8f9YgMadG4AMATmVqUaujIX3l5uTp27KipU6eqf//+btusXLlSY8eO1ZdffqnMzEx169ZNw4YN0/79+5vzUgCvV1JR96ieJMVHhrg8BwA0r4qKCm3YsEHDhg1zOT5s2DCtWbPG7XsyMzNrtB8+fLjWr1+vysrKOtucfs4HHnhA1113na6++up6xVteXq6ioiKXB9DWlJyYKRVsPS2nOmWgr1dMuHx9LAKAts7UolRDR/569OihV199VXfeeaciIiLctvnnP/+pCRMmaMCAAerdu7fmzp0ru92uL774ojkvBfB6zlG902ZKhZzynGnmANCy8vPzZbPZFB0d7XI8Ojpaubm5bt+Tm5vrtn1VVZXy8/PrbHPqORcsWKCNGzcqPT293vGmp6crIiLC+YiLi6v3e4HWwpFThdRYU+pkkSqBmecAIMnEolRjRv4ao6SkRJWVlerQocOZGwNtmHNUr46ZUgkx4S0aEwCg2qlr/UmSYRg1jp2p/enH6zrn3r179cgjj+gf//iHAgPrvxjz5MmTVVhY6Hzs3bu33u8FWgvH7POaOdXJIlVCZ3IqAJAk0+7DaczIX2M8/vjj6tKlS53TzsvLy1VeXu58zlRztEUltYzqnbr+QW8SKABoUVFRUfL19a2RG+Xl5dXIoRxiYmLctvfz81NkZGSdbRzn3LBhg/Ly8pSUlOR83Waz6auvvtLrr7+u8vJy+fq6/nshSVarVVYru7SibXMuiVBjnc5TcipmSgGAJA9Y6LyhI38N8dJLL+mDDz7QRx99VOcoH1PNgVNG9U5f/8BlVI8ECgBaUkBAgJKSkpSRkeFyPCMjQ4MHD3b7npSUlBrtly9fruTkZPn7+9fZxnHOq666Slu2bNGmTZucj+TkZN1xxx3atGmT24IUgGoljs1jTp8p5bIkAgN9ACCZOFOqMSN/DTF9+nQ9//zz+vzzz8+4hfHkyZOVlpbmfF5UVERhCm1OresfnChShQX6qUu7oBaPCwDaurS0NKWmpio5OVkpKSmaM2eOsrOzNX78eEnVecz+/fv17rvvSpLGjx+v119/XWlpabrvvvuUmZmpefPm6YMPPnCe85FHHtFll12mF198UTfddJM++eQTff755/r6668lSWFhYUpMTHSJIyQkRJGRkTWOA3BV7Nw8xv2aUl3aBSkiyL/F4wIAT2RaUerUkb+bb77ZeTwjI0M33XRTk8798ssv6y9/+Ys+++wzJScnn7E9U82B2teUciRUCTHhZ20WIwCg/saMGaOCggI988wzysnJUWJiopYuXaru3btLknJyclx2Lo6Pj9fSpUs1adIkvfHGG4qNjdVrr72m0aNHO9sMHjxYCxYs0LRp0/TEE0/onHPO0cKFCzVo0KAWvz6gtXEsiRBcy0AfM88B4CRT93Zv6MifJG3atEmSdPz4cR06dEibNm1SQECA+vTpI6n6lr0nnnhC77//vnr06OGciRUaGqrQ0NCWvUDAixTXkkBd3quT+m86oLsG9zAhKgCAJE2YMEETJkxw+9o777xT49jQoUO1cePGOs9566236tZbb613DCtXrqx3W6AtKy53vyTCNX2i9fnWg7rjV93NCAsAPJKpRamGjvxJ0sCBA50/b9iwQe+//766d++u3bt3S5JmzpypioqKGknWU089paeffrpZrwfwZo6ZUiGnJVA9okL0yQOXmBESAACA16lt85iEzuFa8uClZoQEAB7L1KKU1PCRP8eWxrVxFKcANExtM6UAAABQf441pU5fEgEAUJPpu+8B8AzO7YtJoAAAABrNsfteiJWBPgA4E4pSACRJxY7ti0mgAAAAGo2ZUgBQfxSlAEhiphQAAMDZ4FxTioE+ADgjilIAJLGmFAAAwNng3H2PgT4AOCOKUgAkSaUV7nffAwAAQP2VOnffI6cCgDOhKAVA0ilrSjFTCgAAoFHsdkMllSdmSnH7HgCcEUUpADIMw7mmFFPNAQAAGqesyibDqP6ZgT4AODOKUgBUYbOryl6dQTGqBwAA0DiO9aQsFinQj5wKAM6EohQAlZxIoCQp2J8ECgAAoDEcO+8F+/vKx8dicjQA4PkoSgFw7rxn9fORny9fCwAAAI3h3HmPjWMAoF747ROAcz0pdt4DAABovBLnznvMPAeA+qAoBYCd9wAAAM6CYjaOAYAGoSgF4ORMKRIoAACARis5MdAXwsYxAFAvFKUAnJwpRQIFAADQaMyUAoCGoSgFgJlSAAAAZ4FzTSkG+gCgXihKAXDuvhfEmlIAAACN5th9L8ifgT4AqA+KUgBU6pwpRVEKAACgsUqZKQUADUJRCoDyj1dIktoFB5gcCQAAgPfKLz6RUwX5mxwJAHgHilIAdOBoqSSpS7sgkyMBAADwXs6cqj05FQDUB0UpANp/IoGKpSgFAADQaPuPkFMBQENQlALgTKAY1QMAAGgcwzCcA33MPgeA+qEoBbRxlTa7Dh4rkyTFtgs0ORoAAADvVFhaqZITm8cwUwoA6oeiFNDG5RaWyTCkAD8fRYVYzQ4HAADAK+07MfM8KjRAgf7svgcA9UFRCmjjHAlUl3ZB8vGxmBwNAACAd+LWPQBoOIpSQBt3wLnIObfuAQAANNYBNo4BgAajKAW0cYzqAQAANN3+I+RUANBQFKWANu5kAhVsciQAAADeyznQx27GAFBvFKWANu5AIbfvAQAANBW37wFAw1GUAto450wpRvUAAAAajSURAKDhKEoBbZhhGCRQAAAATVRWaVP+8QpJ5FQA0BAUpYA2rKC4QuVVdlksUucIEigAAIDGcNy6Fxzgq3bB/iZHAwDeg6IU0Ib9nHtMktQpzKoAP74OAAAAGuPng9U5VZd2QbJYLCZHAwDeg99CgTbKZjf04rKfJElDzutocjQAAADeqaLKrpc/2yaJnAoAGoqiFNBGffBNtjbvK1SY1U9/uraX2eEAAAB4pbe+3qkdh4oVFRqgR64+z+xwAMCrUJQC2iC73dArGT9Lkh4d3kudwgJNjggAAMD7lFXa9PqK7ZKkqdclKCKI9aQAoCEoSgFtUH5xuQ4XV8hikcZe3M3scAAAALzSviOlKqmwKdTqp1EDupgdDgB4HYpSQBt0sLBcktQxlAXOAQAAGutgUZkkKSYikAXOAaAR+G0UaINyCqu3Le4cwW17AAAAjZVTWF2UIqcCgMahKAW0QY5RvehwEigAAIDGIqcCgKahKAW0QYzqAQAANB2zzwGgaShKAW1QbqFj/YMgkyMBAADwXidzKopSANAYFKWANijXuSin1eRIAAAAvJczp+L2PQBoFIpSQBvkHNULZ6YUAABAYzFTCgCahqIU0MYYhnHKTCkSKAAAgMaoqLIr/3iFJGZKAUBjmV6UmjlzpuLj4xUYGKikpCStXr261rY5OTm6/fbb1atXL/n4+GjixIlu2y1atEh9+vSR1WpVnz59tHjx4maKHvA+RWVVKqmwSSKBAgAAaCzHznsBvj7qEBJgcjQA4J1MLUotXLhQEydO1NSpU5WVlaUhQ4ZoxIgRys7Odtu+vLxcHTt21NSpU9W/f3+3bTIzMzVmzBilpqZq8+bNSk1N1W233aZ169Y156UAXsMxzbxdsL+CAnxNjgYAAMA7nTrz3GKxmBwNAHgnU4tSr7zyisaNG6d7771XCQkJmjFjhuLi4jRr1iy37Xv06KFXX31Vd955pyIiIty2mTFjhq655hpNnjxZvXv31uTJk3XVVVdpxowZzXglgPdgQU4AAICmO7lGJzkVADSWaUWpiooKbdiwQcOGDXM5PmzYMK1Zs6bR583MzKxxzuHDhzfpnEBrkltYKon1pAAAAJqCRc4BoOn8zPrg/Px82Ww2RUdHuxyPjo5Wbm5uo8+bm5vb4HOWl5ervLzc+byoqKjRnw94utzC6j/rjOoBAAA0HhvHAEDTmb7Q+en3XxuG0eR7sht6zvT0dEVERDgfcXFxTfp8wJPlFjFTCgAAoKm4fQ8Ams60olRUVJR8fX1rzGDKy8urMdOpIWJiYhp8zsmTJ6uwsND52Lt3b6M/H/B0OSRQAAAATZbDkggA0GSmFaUCAgKUlJSkjIwMl+MZGRkaPHhwo8+bkpJS45zLly+v85xWq1Xh4eEuD6C1yiuqvn0vmqIUAABAo+Udc+RUVpMjAQDvZdqaUpKUlpam1NRUJScnKyUlRXPmzFF2drbGjx8vqXoG0/79+/Xuu+8637Np0yZJ0vHjx3Xo0CFt2rRJAQEB6tOnjyTpkUce0WWXXaYXX3xRN910kz755BN9/vnn+vrrr1v8+gBPlH+8OoHqGEYCBQAA0BiGYZzMqUIZ6AOAxjK1KDVmzBgVFBTomWeeUU5OjhITE7V06VJ1795dkpSTk6Ps7GyX9wwcOND584YNG/T++++re/fu2r17tyRp8ODBWrBggaZNm6YnnnhC55xzjhYuXKhBgwa12HUBnspuN1RQXCFJigqlKAUAANAYxRU2lVXaJUlRYQEmRwMA3svUopQkTZgwQRMmTHD72jvvvFPjmGEYZzznrbfeqltvvbWpoQGtztHSStns1X+HIkNJoAAAABoj/8Ste8EBvgoOMP1XKgDwWqbvvgeg5TimmbcL9pe/L3/9AQAAGsORUzHzHACaht9KgTbEMapHAgUAANB4J4tSzDwHgKagKAW0IYdIoAAAAJrs0HHW6ASAs4GiFNCG5JNAAQAANJlz9jm7GQNAk1CUAtoQ1j8AAABoOnIqADg7KEoBbYhjVK8jo3oAAACN5ihKdWRJBABoEopSQBvCopwAAABNx5IIAHB2UJQC2hASKAAAgKZzDvQx+xwAmoSiFNCGsP4BAABA0zkXOienAoAmoSgFtBGGYajAMVOKUT0AAIBGKa2wqbjCJoklEQCgqShKAW1EUWmVKmx2SVJkCAkUAABAYzhmnlv9fBRq9TM5GgDwbhSlgDbi0IkEKizQT4H+viZHAwAA4J0OnbIcgsViMTkaAPBuFKWANuLk1sXcugcAANBYzvWkWA4BAJqMohTQRrDIOQAAQNM5djPuyHpSANBkFKWANuLkqB4JFAAAQGMx0AcAZw9FKaCNcIzqkUABgPeZOXOm4uPjFRgYqKSkJK1evbrO9qtWrVJSUpICAwPVs2dPzZ49u0abRYsWqU+fPrJarerTp48WL17s8vqsWbPUr18/hYeHKzw8XCkpKfrvf/97Vq8L8EYUpQDg7KEoBbQRuUVlkqTo8ECTIwEANMTChQs1ceJETZ06VVlZWRoyZIhGjBih7Oxst+137dqlkSNHasiQIcrKytKUKVP08MMPa9GiRc42mZmZGjNmjFJTU7V582alpqbqtttu07p165xtunbtqhdeeEHr16/X+vXrdeWVV+qmm27SDz/80OzXDHiy3MITOVUEORUANJXFMAzD7CA8TVFRkSIiIlRYWKjw8HCzwwHOitvnrtWaHQX625j+unlgV7PDAQCP5Ik5wKBBg3ThhRdq1qxZzmMJCQkaNWqU0tPTa7R/7LHHtGTJEm3dutV5bPz48dq8ebMyMzMlSWPGjFFRUZHLzKdrr71W7du31wcffFBrLB06dNDLL7+scePG1St2T+xPoKmu/3+r9f3+Is27K1lXJUSbHQ4AeKT65gDMlALaiJwTo3qdI4JMjgQAUF8VFRXasGGDhg0b5nJ82LBhWrNmjdv3ZGZm1mg/fPhwrV+/XpWVlXW2qe2cNptNCxYsUHFxsVJSUhp7OUCrkHOUnAoAzhY/swMA0PwMw9CBo6WSpC7tSKAAwFvk5+fLZrMpOtp1NkZ0dLRyc3Pdvic3N9dt+6qqKuXn56tz5861tjn9nFu2bFFKSorKysoUGhqqxYsXq0+fPrXGW15ervLycufzoqKiel0n4C3KKm0qKK5ep5OcCgCajplSQBtwuLhC5VV2WSysKQUA3shisbg8NwyjxrEztT/9eH3O2atXL23atElr167V/fffr7vuuks//vhjrZ+bnp6uiIgI5yMuLq7uCwO8jGPmeXCAr8KDGN8HgKaiKAW0AQdOTDPvGGpVgB9/7QHAW0RFRcnX17fGDKa8vLwaM50cYmJi3Lb38/NTZGRknW1OP2dAQIDOPfdcJScnKz09Xf3799err75aa7yTJ09WYWGh87F37956XyvgDRwzz2PbBdVZGAYA1A+/nQJtwIHC6gSqM9PMAcCrBAQEKCkpSRkZGS7HMzIyNHjwYLfvSUlJqdF++fLlSk5Olr+/f51tajung2EYLrfnnc5qtSo8PNzlAbQmjqJUZ3beA4CzgjmnQBtwcj0pEigA8DZpaWlKTU1VcnKyUlJSNGfOHGVnZ2v8+PGSqmcn7d+/X++++66k6p32Xn/9daWlpem+++5TZmam5s2b57Kr3iOPPKLLLrtML774om666SZ98skn+vzzz/X1118720yZMkUjRoxQXFycjh07pgULFmjlypVatmxZy3YA4EEcs89ZTwoAzg6KUkAbwM57AOC9xowZo4KCAj3zzDPKyclRYmKili5dqu7du0uScnJylJ2d7WwfHx+vpUuXatKkSXrjjTcUGxur1157TaNHj3a2GTx4sBYsWKBp06bpiSee0DnnnKOFCxdq0KBBzjYHDx5UamqqcnJyFBERoX79+mnZsmW65pprWu7iAQ+T45h9Tk4FAGcFRSmgDdjPVHMA8GoTJkzQhAkT3L72zjvv1Dg2dOhQbdy4sc5z3nrrrbr11ltrfX3evHkNihFoC5w5FbPPAeCsYE0poA3Icd6+x6geAABAYzlmn5NTAcDZQVEKaAMc6x+w0DkAAEDjGIbBQucAcJZRlAJauUqbXXnHqotSsUw1BwAAaJSi0iqVVNgkSbEM9AHAWUFRCmjlDhaVyW5I/r4WRYVYzQ4HAADAKznWk+oQEqBAf1+TowGA1oGiFNDKZReUSJJiIgLl42MxORoAAADvlH24WBK37gHA2URRCmjFCksq9cQn30uSEmMjTI4GAADAOx06Vq5n/7NVEjkVAJxNFKWAVsowDD34wUbtOFSszhGBevrGC8wOCQAAwOvY7YZ+/9567T9aqvioED0+orfZIQFAq0FRCmil9h0p1epf8uXva9G8uy5SdDhTzQEAABrqx5wiZWUfVXCAr+bffZHahwSYHRIAtBoUpYBWamtOkSTpvE5h6hMbbnI0AAAA3umn3GOSpH5dIxQfFWJyNADQulCUAlqpbScSqN4xYSZHAgAA4L225VYP9PWOYZAPAM42ilJAK/XTweqiVC+KUgAAAI3mmClFTgUAZx9FKaCV2kYCBQAA0GTkVADQfChKAa1QWaVNu/KLJTHVHAAAoLEOF1co71i5JOn8aIpSAHC2UZQCWqHtecdlsxuKCPJXdLjV7HAAAAC80k8n1pOK6xCkUKufydEAQOtDUQpohU5d5NxisZgcDQAAgHc6mVMx8xwAmgNFKaAV2naQnfcAAACait2MAaB5UZQCWqGTu8QwqgcAANBY7LwHAM2LohTQypRX2bRxzxFJUmIXilIAAACNUVRWqR8OFEqSEmMjTI4GAFon04tSM2fOVHx8vAIDA5WUlKTVq1fX2X7VqlVKSkpSYGCgevbsqdmzZ9doM2PGDPXq1UtBQUGKi4vTpEmTVFZW1lyXAHiUr3/J1/HyKkWHW0mgAAAAGumLrQdVaTN0bqdQ9YgKMTscAGiVTC1KLVy4UBMnTtTUqVOVlZWlIUOGaMSIEcrOznbbfteuXRo5cqSGDBmirKwsTZkyRQ8//LAWLVrkbPPPf/5Tjz/+uJ566ilt3bpV8+bN08KFCzV58uSWuizAVP/9PleSdO0FMfLxYZFzAACAxvjvluqcakRijMmRAEDrZeq+pq+88orGjRune++9V1L1DKfPPvtMs2bNUnp6eo32s2fPVrdu3TRjxgxJUkJCgtavX6/p06dr9OjRkqTMzExdcskluv322yVJPXr00NixY/XNN9+0zEUBJqq02ZXx40FJ0oi+nU2OBgAAwDsVl1dp1c+HJEkjEsmpAKC5mDZTqqKiQhs2bNCwYcNcjg8bNkxr1qxx+57MzMwa7YcPH67169ersrJSknTppZdqw4YNziLUzp07tXTpUl133XXNcBWAZ8ncUaDC0kpFhQbooh4dzA4HAADAK325LU/lVXZ1jwxWQmcWOQeA5mLaTKn8/HzZbDZFR0e7HI+OjlZubq7b9+Tm5rptX1VVpfz8fHXu3Fm/+c1vdOjQIV166aUyDENVVVW6//779fjjj9caS3l5ucrLy53Pi4qKmnBlgHlWbqse0bumT7R8uXUPAACgURw51bUXxMhiIacCgOZi+kLnp3/JG4ZR5xe/u/anHl+5cqWee+45zZw5Uxs3btRHH32k//znP3r22WdrPWd6eroiIiKcj7i4uMZeDmCqQ8eri6vndmJEDwAAoLEOHXPkVKEmRwIArZtpM6WioqLk6+tbY1ZUXl5ejdlQDjExMW7b+/n5KTIyUpL0xBNPKDU11blOVd++fVVcXKzf//73mjp1qnx8atbhJk+erLS0NOfzoqIiClPwSsfKqm9jDQ80dbk4AAAAr+bMqYL8TY4EAFo302ZKBQQEKCkpSRkZGS7HMzIyNHjwYLfvSUlJqdF++fLlSk5Olr9/9T8YJSUlNQpPvr6+MgzDOavqdFarVeHh4S4PwBsVlZJAAQAANFVRWZUkKTyQnAoAmpOpt++lpaXprbfe0vz587V161ZNmjRJ2dnZGj9+vKTqGUx33nmns/348eO1Z88epaWlaevWrZo/f77mzZunRx991Nnmhhtu0KxZs7RgwQLt2rVLGRkZeuKJJ3TjjTfK19e3xa8RaEmOBCqMmVIAAACN5hjoI6cCgOZl6rfsmDFjVFBQoGeeeUY5OTlKTEzU0qVL1b17d0lSTk6OsrOzne3j4+O1dOlSTZo0SW+88YZiY2P12muvafTo0c4206ZNk8Vi0bRp07R//3517NhRN9xwg5577rkWvz6gpTlnSjGqBwAA0GhFJ27fi2D2OQA0K4tR2z1tbVhRUZEiIiJUWFjIrXzwKglPLFNppU2r/3SF4joEmx0OAHgdcoCzi/6EN6qosuv8af+VJG1+cpgigilMAUBD1TcHMH33PQBnR0WVXaWVNknMlAIAAGgsxyLnkhTK7XsA0KwoSgGtBAkUAABA0znW6Ay1+snXx2JyNADQulGUAloJEigAAICmO7lGJ4N8ANDcKEoBrYRjphQJFAAAQOMdOzHQF84i5wDQ7ChKAa1EUSkJFAAAQFMVlbGbMQC0FIpSQCvhSKDCmCkFAADQaI7b98ipAKD5UZQCWoljjOoBAAA0GbfvAUDLoSgFtBLcvgcAANB0RazTCQAthqIU0Epw+x4AAEDTnbx9j4E+AGhuFKWAVuLk9sUkUAAAAI1V5Lx9j4E+AGhuFKWAVuIYCRQAAECTsU4nALQcilJAK8H2xQAAAE3HOp0A0HIaNaWiuLhYq1atUnZ2tioqKlxee/jhh89KYAAaxpFAsf4BAHgG8iXAO7FOJwC0nAZ/02ZlZWnkyJEqKSlRcXGxOnTooPz8fAUHB6tTp04kWYBJnDOluH0PAExHvgR4L9bpBICW0+Db9yZNmqQbbrhBhw8fVlBQkNauXas9e/YoKSlJ06dPb44YAdSDc00pEigAMB35EuC9Tq7TSU4FAM2twUWpTZs26Y9//KN8fX3l6+ur8vJyxcXF6aWXXtKUKVOaI0YA9eAc1SOBAgDTkS8B3slmN3Ss3DHQx+xzAGhuDS5K+fv7y2KxSJKio6OVnZ0tSYqIiHD+DKBlnZpAsf4BAJiPfAnwTsdPzJKSWKcTAFpCg397HThwoNavX6/zzz9fV1xxhZ588knl5+frvffeU9++fZsjRgBn4JpAUZQCALORLwHeybFGZ6C/jwL82KgcAJpbg79pn3/+eXXu3FmS9OyzzyoyMlL333+/8vLyNGfOnLMeIIAzOzWBsvr5mhwNAIB8CfBOzo1jmCUFAC2i3lMqjh8/rtDQUCUnJzuPdezYUUuXLm2WwADU38mti0mgAMBM5EuAdysqZTkEAGhJ9Z4pFRUVpREjRmjWrFnav39/c8YEoIEcCRQLcgKAuciXAO/mnCnFxjEA0CLqXZTatm2bRo4cqUWLFqlnz5666KKL9Oyzz+q7775rzvgA1AMJFAB4BvIlwLs5dzNm9jkAtIh6F6W6d++uhx56SJ9//rny8vKUlpamH374QZdddpni4+P1yCOPaMWKFbLZbM0ZLwA3duUXS5I6BAeYHAkAtG3kS4B3c+ZUIeRUANASGrWlREREhMaOHasFCxYoPz9fb775pux2u373u9+pY8eO+uc//3m24wRQC8Mw9NHGfZKkKxM6mRwNAMCBfAnwLja7oY+zqm+7vbI3ORUAtIQmL0Dj5+enYcOGadiwYfp//+//aePGjYz+AS1oy/5C/XzwuKx+Prqhf6zZ4QAA3CBfAjxf5o4CHSgsU3ign67pE212OADQJjS4KFXbmggWi0WBgYG64IILZLVamxwYgPr51/rqWVLXJsaw/gEAeAjyJcD7/GvDXknSjQNiFejva3I0ANA2NLgoNWDAAFksllpf9/f315gxY/Tmm28qMDCwScEBqFt5lU1LNh+QJN2a1NXkaAAADuRLgHcpKqvUsu9zJUm/ToozORoAaDsavKbU4sWLdd5552nOnDnatGmTsrKyNGfOHPXq1Uvvv/++5s2bpxUrVmjatGnNES+AU2zPO67C0kpFBPlr8DlRZocDADiBfAnwLj/sL1J5lV1d2gWpX9cIs8MBgDajwTOlnnvuOb366qsaPny481i/fv3UtWtXPfHEE/rmm28UEhKiP/7xj5o+ffpZDRaAq31HSiVJ3SOD5etT+4g8AKBlkS8B3mXfkRJJUnxUSJ2zHAEAZ1eDZ0pt2bJF3bt3r3G8e/fu2rJli6TqKes5OTlNjw5AnfafKEp1bR9kciQAgFORLwHeZf9RcioAMEODi1K9e/fWCy+8oIqKCuexyspKvfDCC+rdu7ckaf/+/YqOZscKoLntcxalgk2OBABwKvIlwLvsY6APAEzR4Nv33njjDd14443q2rWr+vXrJ4vFou+++042m03/+c9/JEk7d+7UhAkTznqwAFw5ppp3aUcCBQCehHwJ8C7OnIqiFAC0qAYXpQYPHqzdu3frH//4h37++WcZhqFbb71Vt99+u8LCwiRJqampZz1QADUx1RwAPBP5EuBdTuZUzD4HgJZU76LUPffco1dffVVhYWEKDQ3V+PHjmzMuAPXA7XsA4FnIlwDvU2WzK+domSQG+gCgpdV7Tam///3vKi0tbc5YADTAsbJKFZZWSmKqOQB4CvIlwPscPFauKrshPx+LOoUFmh0OALQp9S5KGYbRnHEAaCDHNPN2wf4KtTb4TlwAQDMgXwK8j2M349h2QfL1sZgcDQC0LQ3afc9i4Usa8BT7DrOeFAB4IvIlwLs4FjknpwKAlteg6RXnn3/+GROtw4cPNykgAPXDznsA4JnIlwDv4lijk5wKAFpeg4pSf/7znxUREdFcsQBoAHaJAQDPRL4EeJf9bBwDAKZpUFHqN7/5jTp16tRcsQBogJM77zGqBwCehHwJ8C77jnL7HgCYpd5rSrE+AmCeL7flaXveMZdjTDUHAM9DvgR4LsMwtPyHXO0pKHY57sypKEoBQItj9z3Aw+0pKNbv3v5W9/59vfOY3W5od351QtUtkqnmAOApyJcAz/XDgSL9/r0NeuiDLOexskqb8/a9uA7kVADQ0up9+57dbm/OOADUIqewTJK0u6BEecfK1CksUDvzi3WsvEqB/j46t2OoyRECABzIlwDPdeDEepzf7y9USUWVggP89GNOkarshiJDAhQbEWhyhADQ9tR7phQAcxwrq3L+/P3+QknSpr1HJUl9u0TIz5e/xgDQ2s2cOVPx8fEKDAxUUlKSVq9eXWf7VatWKSkpSYGBgerZs6dmz55do82iRYvUp08fWa1W9enTR4sXL3Z5PT09XRdddJHCwsLUqVMnjRo1Stu2bTur1wW0pOPl1TmV3ZB+PFAkSdqUfVSS1D+uHbffAoAJ+G0W8HDHyyudP3+3r7ootflEUap/13YmRAQAaEkLFy7UxIkTNXXqVGVlZWnIkCEaMWKEsrOz3bbftWuXRo4cqSFDhigrK0tTpkzRww8/rEWLFjnbZGZmasyYMUpNTdXmzZuVmpqq2267TevWrXO2WbVqlR544AGtXbtWGRkZqqqq0rBhw1RcXOzuYwGPd+pAnzOn2ndUkjQgrp0JEQEATC9KNcfI39GjR/XAAw+oc+fOCgwMVEJCgpYuXdpclwA0q+OnJFBb9rnOlBrQrZ0JEQEAWtIrr7yicePG6d5771VCQoJmzJihuLg4zZo1y2372bNnq1u3bpoxY4YSEhJ077336p577tH06dOdbWbMmKFrrrlGkydPVu/evTV58mRdddVVmjFjhrPNsmXLdPfdd+uCCy5Q//799fbbbys7O1sbNmxo7ksGmoVjppQkbTlt9jlFKQAwh6lFqeYY+auoqNA111yj3bt369///re2bdumuXPnqkuXLi11WcBZdeyUBOq7/YUqq7Rpa071lHNmSgFA61ZRUaENGzZo2LBhLseHDRumNWvWuH1PZmZmjfbDhw/X+vXrVVlZWWeb2s4pSYWF1b/Ed+jQocHXAXgC15lSR3WkuEJ7CkokkVMBgFnqvdB5czh15E+qHrX77LPPNGvWLKWnp9dof+rInyQlJCRo/fr1mj59ukaPHi1Jmj9/vg4fPqw1a9bI399fktS9e/eWuSCgGZw6U+rQsXKt+ClPVXZDUaEB6srWxQDQquXn58tmsyk6OtrleHR0tHJzc92+Jzc31237qqoq5efnq3PnzrW2qe2chmEoLS1Nl156qRITE2uNt7y8XOXl5c7nRUVFdV4f0JJOXRJhZ36x/rcjX5LUMypEEcH+ZoUFAG2aaTOlmmvkb8mSJUpJSdEDDzyg6OhoJSYm6vnnn5fNZqs1lvLychUVFbk8AE9x6qieJP19zW5J1SN6LMgJAG3D6d/3hmHU+W+Au/anH2/IOR988EF99913+uCDD+qMMz09XREREc5HXFxcne2BlnRqTmUY0nuZeyRVL3IOADCHaUWp5hj5k6SdO3fq3//+t2w2m5YuXapp06bpr3/9q5577rlaYyGBgidzrH/g+D1h3a7Dklj7AADagqioKPn6+tbIjfLy8mrkRA4xMTFu2/v5+SkyMrLONu7O+dBDD2nJkiX68ssv1bVr1zrjnTx5sgoLC52PvXv3nvEagZbimH1OTgUAnsP0hc7P9sif3W5Xp06dNGfOHCUlJek3v/mNpk6dWutioBIJFDybY1TvV/HVv0hYLNIl50bq1uS6fzEAAHi/gIAAJSUlKSMjw+V4RkaGBg8e7PY9KSkpNdovX75cycnJzqUNamtz6jkNw9CDDz6ojz76SCtWrFB8fPwZ47VarQoPD3d5AJ7CsU6nI6fy9bHo8l4ddUP/WDPDAoA2zbQ1pZpr5K9z587y9/eXr6+vs01CQoJyc3NVUVGhgICAGue1Wq2yWq1NvSSgWTjWP7h9UDc9Ovx8dW0frOjwQJOjAgC0lLS0NKWmpio5OVkpKSmaM2eOsrOzNX78eEnVg2v79+/Xu+++K0kaP368Xn/9daWlpem+++5TZmam5s2b53Lr3SOPPKLLLrtML774om666SZ98skn+vzzz/X111872zzwwAN6//339cknnygsLMyZg0VERCgoiDUN4X0cM6V+P7SnJl1zvs7pGKLIUH4HAAAzmTZTqrlG/i655BJt375ddrvd2ebnn39W586d3RakAE/nmCkVFuinpO4dKEgBQBszZswYzZgxQ88884wGDBigr776SkuXLnVu5JKTk+Oyc3F8fLyWLl2qlStXasCAAXr22Wf12muvOTeFkaTBgwdrwYIFevvtt9WvXz+98847WrhwoQYNGuRsM2vWLBUWFuryyy9X586dnY+FCxe23MUDZ9GxEwN9EUH+uji+AwUpAPAAFsNx/5sJFi5cqNTUVM2ePds58jd37lz98MMP6t69e42Rv127dikxMVF/+MMfnCN/48eP1wcffOBMtPbu3as+ffro7rvv1kMPPaRffvlF99xzjx5++GFNnTq1XnEVFRUpIiJChYWFTDuH6Ya+/KX2FJRo0f0pSurONtwA0JzIAc4u+hOeZOAzy3WkpFIZky7TedFhZocDAK1afXMA027fk6pH/goKCvTMM88oJydHiYmJ9Rr5mzRpkt544w3FxsbWGPmLi4vT8uXLNWnSJPXr109dunTRI488oscee6zFrw84GxxTzUOtbFUMAADQGIZhODePCQ009VcgAMApTP9GnjBhgiZMmOD2tXfeeafGsaFDh2rjxo11njMlJUVr1649G+EBpjtGAgUAANAk5VV2VdqqbxAJtZJTAYCnMH33PQC1K6+yqaKqen20MIpSAAAAjeJYo9NikUICyKkAwFNQlAI8mOPWPYkECgAAoLGct+4F+MnHx2JyNAAAB4pSgAdzJFAhAb7yJYECAABoFOcancw8BwCPQlEK8GDHSKAAAACa7Fh5pSTWkwIAT0NRCvBgjqJUWCA77wEAADTWyZyKohQAeBKKUoAHc65/wKgeAABAo528fY+BPgDwJBSlAA92/MRUc0b1AAAAGs8x0BfGQB8AeBSKUoAHc47qkUABAAA0GrPPAcAzUZQCPFgR6x8AAAA0WVEZs88BwBNRlAI82MlRPdY/AAAAaKzj7GgMAB6JohTgwUigAAAAmo7b9wDAM1GUAjwYi3ICAAA03XGWRAAAj8S3MuCB1u0s0KdbcnTgaKkkEigAAIDG+HJbnlb/nK9Dx8slSWGBLIkAAJ6E33QBD1NSUaUHP8jSoWPlzmPcvgcAANAwR0sq9PAHWTp2YpaUxO17AOBpuH0P8DBv/2+3S0FKIoECAABoqFkrd7gUpCQG+gDA01CUAjzIkeIKzV65Q5Jk9Tv515Pb9wAAAOovp7BU76zZLem0nIqBPgDwKBSlAA+yaOM+HSuvUu+YMP3p2t7O46FW1j8AAACorw/WZau8yq6LerTXhMvPdR5nTSkA8CwUpQAPsvdwiSTpqoROGnNRnCTJ18eimPBAM8MCAADwKnuPVG8Wc3VCtO74VTdJUkiAr9oFU5QCAE/C/FXAg+Qfr5AkRYVaFWr10+o/XaGSCpsiSKAAAADqLf/EbntRoVZFhVr15aOXy2Y3FOjva3JkAIBTUZQCPMihUxIoSYrrEGxmOAAAAF7JsWlMVFh1ThUfFWJmOACAWnD7HuBB8k8rSgEAAKDhTs4+DzA5EgBAXShKAR4k/8SoXscwEigAAIDGsNkNHS4+kVMx0AcAHo2iFOAhyqtsKiqrksRMKQAAgMY6UlIhuyFZLFKHEAb6AMCTUZQCPETBiWnm/r4WRQSxsDkAAEBjOJZDaB8cID9fft0BAE/GtzTgIRwJVGSIVRaLxeRoAAAAvFP+MdaTAgBvQVEK8BCOmVKRJFAAAACNVlB8cqAPAODZKEoBHuIQO+8BAAA02aETG8dEhZFTAYCnoygFeIh8ilIAAABNln+c2/cAwFtQlAI8hHP9gzASKAAAgMZioA8AvAdFKcBDOBKojiRQAAAAjUZOBQDeg6IU4CEY1QMAAGg6Z07F7HMA8HgUpQAPQVEKAACg6ZxLIpBTAYDHoygFeAjnopyM6gEAADSKYRgqKGagDwC8BUUpwANU2ew6UsKoHgAAQFMUllaq0mZIkiLZfQ8APB5FKcADHC6ukGFIPhapfTAJFAAAQGM4lkMID/ST1c/X5GgAAGdCUQrwADmFZZKkDiFW+fpYTI4GAADAOzlyqqgwZp4DgDegKAWYbN3OAv3+vfWSpJ4dQ0yOBgAAwDut3JanRxZskiT1jAo1NxgAQL34mR0A0JaVVdp037vrVVRWpXM6hui5UYlmhwQAAOB1Cksqdf8/Nqq00qY+ncP15PV9zA4JAFAPFKUAE/2Ue0xFZVVqH+yv/3voUgUH8FcSAACgoTbvO6rSSpu6tg/S4gcGs54UAHgJbt8DTLRl31FJUr+u7ShIAQAANNKW/YWSpIHd2lOQAgAvQlEKMJEjgerbJcLkSAAAALzXln2OnCrc5EgAAA1BUQow0Zb9RZKkRIpSAAAAjeYY6COnAgDvQlEKMElZpU2/HDwmSerblQQKAACgMY4UV2j/0VJJFKUAwNtQlAJM8lPuMVXZDXUICVBsRKDZ4QAAAHglxyypHpHBCg/0NzkaAEBDmF6UmjlzpuLj4xUYGKikpCStXr26zvarVq1SUlKSAgMD1bNnT82ePbvWtgsWLJDFYtGoUaPOctRA0506zdxisZgcDQAAgHfi1j0A8F6mFqUWLlyoiRMnaurUqcrKytKQIUM0YsQIZWdnu22/a9cujRw5UkOGDFFWVpamTJmihx9+WIsWLarRds+ePXr00Uc1ZMiQ5r4MoFGcO++RQAEAADSaY5HzfiyHAABex9Si1CuvvKJx48bp3nvvVUJCgmbMmKG4uDjNmjXLbfvZs2erW7dumjFjhhISEnTvvffqnnvu0fTp013a2Ww23XHHHfrzn/+snj17tsSlAA1SWFKpFT/lSSKBAgAAaKy8ojL9b3u+JKlf13bmBgMAaDDTilIVFRXasGGDhg0b5nJ82LBhWrNmjdv3ZGZm1mg/fPhwrV+/XpWVlc5jzzzzjDp27Khx48bVK5by8nIVFRW5PIDm9PLyn5R/vELndAzR5b06mR0OAACAV/rLp1t1rLxK/btG6KIeHcwOBwDQQKYVpfLz82Wz2RQdHe1yPDo6Wrm5uW7fk5ub67Z9VVWV8vOrR0j+97//ad68eZo7d269Y0lPT1dERITzERcX18CrAepv096j+ue66ltUn7u5rwL8TF/aDQAAwOt8/Uu+lmw+IB9LdU7l68ManQDgbUz/bfj0BZ4Nw6hz0Wd37R3Hjx07pt/+9reaO3euoqKi6h3D5MmTVVhY6Hzs3bu3AVcANMybq3bIMKRbBnbRr3pGmh0OAACAV5q1arsk6c6UHixyDgBeys+sD46KipKvr2+NWVF5eXk1ZkM5xMTEuG3v5+enyMhI/fDDD9q9e7duuOEG5+t2u12S5Ofnp23btumcc86pcV6r1Sqr1drUSwLOqLC0Ul9srV5LatyQeJOjAQAA8E4Hi8q0ZkeBJGncpeRUAOCtTJspFRAQoKSkJGVkZLgcz8jI0ODBg92+JyUlpUb75cuXKzk5Wf7+/urdu7e2bNmiTZs2OR833nijrrjiCm3atInb8mC6Zd/nqMJm1/nRoerTOdzscAAAALzSkk0HZBhScvf2iusQbHY4AIBGMm2mlCSlpaUpNTVVycnJSklJ0Zw5c5Sdna3x48dLqr6tbv/+/Xr33XclSePHj9frr7+utLQ03XfffcrMzNS8efP0wQcfSJICAwOVmJjo8hnt2rWTpBrHATMsztovSRo1sEudt6kCAACgdqfmVAAA72VqUWrMmDEqKCjQM888o5ycHCUmJmrp0qXq3r27JCknJ0fZ2dnO9vHx8Vq6dKkmTZqkN954Q7GxsXrttdc0evRosy4BqLcDR0u1dudhSdKN/WNNjgYAAMA7/XzwmH7MKZKfj0XX9e1sdjgAgCYwtSglSRMmTNCECRPcvvbOO+/UODZ06FBt3Lix3ud3dw7ADAu+qS6wXhzfQV3bM80cAACgMd4/sYvx5b06qX1IgMnRAACawvTd94C2oKzSpn+eSKDuSulhbjAAAABeqqisUv9aX71T9l2Du5scDQCgqShKAS1gyeYDKiiuUGxEoIZf4H53SQAAANTtw2/3qrjCpvM6herSc6PMDgcA0EQUpYBmZrMbevt/uyVJdw7uIT9f/toBAAA0VEWVXX/P3C1J+t0l8WwaAwCtAL8dA83IMAw9+58ftTWnSMEBvvrNRXFmhwQAAOB1DMPQ4x99p72HS9U+2F83s+seALQKFKWAZvTOmt16Z81uSdKLo/upXTCLcQIAADTUa19s10cb98vXx6JXxgxQUICv2SEBAM4CilJAM8k/Xq6Xlm2TJE0e0Vs39I81OSIAAADvs/dwif7fil8kSX8ZlagrenUyOSIAwNlCUQpoJm+t3qXSSpv6d43Q7y/raXY4AAAAXmnWqh2qshsacl6Uxl7czexwAABnEUUp4Cyostn12L+/0/TPtslmN3S4uELvnliI8+GrzmMhTgAAgHoor7LpkQVZeuPL7bLbDR04Wqp/rd8rqTqnAgC0Ln5mBwC0Bmt3HtbCEwnTjzlFKiytVEmFTRfEhuvK3kwxBwAAqI8vtubpk00HJEk/HChU9uESVdoMpfSM1EU9OpgcHQDgbKMoBZwFX/x00Pnzip/yJEkBvj6ael0Cs6QAAADq6Yutec6fl27JlSQF+fvq8RG9zQoJANCMKEoBZ8GXJwpR4y6N1/+252tgt3Z68Mrz1KVdkMmRAQAAeAe73dCqn6tzqj8M7amVPx3Sr3p20ANXnKtO4YEmRwcAaA4UpYAm2nnouHYXlMjf16JJ15yvJ67vY3ZIAAAAXue7/YXKP16hMKufHh3WS5NHJJgdEgCgmbHQOdBEjtv1BsVHKtRKnRcAAKAxVmytXg5hyPlR8vfl1xQAaAv4tgeayFGUuoIFzQEAABptxbYTOVUvcioAaCsoSgFNYLMb2rDniCRp6PlRJkcDAADgnUoqqvTDgSJJ0tDzO5ocDQCgpVCUApog+3CJyqvsCvT3UXxUqNnhAAAAeKVfDh6XYUhRoVYWNQeANoSiFNAE23KPSZLO6xQmXx+LydEAAFqrmTNnKj4+XoGBgUpKStLq1avrbL9q1SolJSUpMDBQPXv21OzZs2u0WbRokfr06SOr1ao+ffpo8eLFLq9/9dVXuuGGGxQbGyuLxaKPP/74bF4S4GLbweqcqlcMg3wA0JZQlAKa4OcTCdT50WEmRwIAaK0WLlyoiRMnaurUqcrKytKQIUM0YsQIZWdnu22/a9cujRw5UkOGDFFWVpamTJmihx9+WIsWLXK2yczM1JgxY5SamqrNmzcrNTVVt912m9atW+dsU1xcrP79++v1119v9msEfs4lpwKAtshiGIZhdhCepqioSBERESosLFR4eLjZ4cCDPfD+Rn36XY6mjOyt3192jtnhAACayBNzgEGDBunCCy/UrFmznMcSEhI0atQopaen12j/2GOPacmSJdq6davz2Pjx47V582ZlZmZKksaMGaOioiL997//dba59tpr1b59e33wwQc1zmmxWLR48WKNGjWqQbF7Yn/CM6XOW6fVv+TrhVv66jcXdzM7HABAE9U3B2CmFNAE2xjVAwA0o4qKCm3YsEHDhg1zOT5s2DCtWbPG7XsyMzNrtB8+fLjWr1+vysrKOtvUds76Ki8vV1FRkcsDqA9nThVDTgUAbQlFKaCRyqts2pVfLEnqRQIFAGgG+fn5stlsio6OdjkeHR2t3Nxct+/Jzc11276qqkr5+fl1tqntnPWVnp6uiIgI5yMuLq5J50PbcKS4QnnHyiVJ53ViTSkAaEsoSgGNtPNQsWx2Q2GBfophlxgAQDOyWFw30zAMo8axM7U//XhDz1kfkydPVmFhofOxd+/eJp0PbYNjjc4u7YIUFuhvcjQAgJbkZ3YAgLdyJFC9osOanMQDAOBOVFSUfH19a8xgysvLqzHTySEmJsZtez8/P0VGRtbZprZz1pfVapXVam3SOdD2OHMqZp4DQJvDTCmgkVj7AADQ3AICApSUlKSMjAyX4xkZGRo8eLDb96SkpNRov3z5ciUnJ8vf37/ONrWdE2hO29jNGADaLGZKAY1gGIb+t6NAkpRAUQoA0IzS0tKUmpqq5ORkpaSkaM6cOcrOztb48eMlVd8yt3//fr377ruSqnfae/3115WWlqb77rtPmZmZmjdvnsuueo888oguu+wyvfjii7rpppv0ySef6PPPP9fXX3/tbHP8+HFt377d+XzXrl3atGmTOnTooG7d2B0NZ4fdbmiNI6fqTE4FAG0NRSmgEdbvOaLNe48qwM9H1yZ2NjscAEArNmbMGBUUFOiZZ55RTk6OEhMTtXTpUnXv3l2SlJOTo+zsbGf7+Ph4LV26VJMmTdIbb7yh2NhYvfbaaxo9erSzzeDBg7VgwQJNmzZNTzzxhM455xwtXLhQgwYNcrZZv369rrjiCufztLQ0SdJdd92ld955p5mvGm3Fl9vytPNQscKsfrqydyezwwEAtDCL4Vj5Ek5FRUWKiIhQYWGhwsPDzQ4HHujev6/X51sPauzFcUq/pZ/Z4QAAzhJygLOL/sSZ3PZmpr7ZdVh/uKynJo9MMDscAMBZUt8cgDWlgHooLq9SYWmlJOn7/YX6fOtBSdK9Q3qaGRYAAIBXOVZWqWNl1TnV2p0F+mbXYfn5WPS7S+JNjgwAYAZu3wPOoLTCputeW639R0s1IrGzVvyUJ0m6pk+0zukYanJ0AAAA3qGwpFLXvvqVCoorNCIxRsu+r94B8qYBXRQTEWhydAAAM1CUAs5g/v92aXdBiSRpyeYDkqSLe3TQ8zf3NTMsAAAArzJz1XblFJZJkj7ZVJ1TXXZ+Rz15fR8zwwIAmIiiFFCHI8UVmr1yhyRpwuXnaFd+sXrFhOnBK86Vny93vwIAANTHgaOlevt/uyVJk64+X98fKFRy9/a6b0hP+fhYzA0OAGAailJAHV794hcdK69Sn87henRYL5ImAACARpj+2TZVVNk1KL6DHr7qXFks5FQAABY6B2q1clue3lmzW5I0eWRvClIAAACN8H+bD+ijrP2yWKTHR/SmIAUAcKIoBbiRd6xMj/5rsyQp9VfdNeS8jiZHBAAA4H32Hi7RlI+2SKpeCmFgt/YmRwQA8CQUpQA3FnyzV/nHK9Q7JkxTr0swOxwAAACv9Pc1u3WsvEoXdmuniVefb3Y4AAAPQ1EKcGPfkerd9q7r21mB/r4mRwMAAOCd9h0plSTdNKCL/NkkBgBwGv5lANzIO1YuSeoUbjU5EgAAAO+Vd6xMktQpjJwKAFATRSm0GXa7oT+8t15PffL9GdvmFZ0oSoUFNndYAAAAXqXSZlfqvHV6adlPZ2zLQB8AoC4UpdBm7D1Sos9+OKi/Z+5ReZWtzraOBKojo3oAAAAufso5ptW/5Gv+/3bJMIxa2xmGcbIoxUAfAMANilJoM/KPlzt/dsyEcqfKZldBMaN6AAAA7jhyqrJKu4pKq2ptV1RapYoquyQG+gAA7lGUQqtWWmHT2p0FstkN5R+vcB7PLSqr9T0FxRUyDMnHIkWGkEABAAAcK6vUup0FstsNl4G+unIqx3pS4YF+bBwDAHCLohRatb8u36bfzFmrTzbtV8GpRanCOhKoE7OookKt8vWxNHuMAAAAnu7Z//yoMXPWasVPeSoort9A38n1pLh1DwDgnp/ZAQDNaceh45KkbQePKTTg5B/3g/UY1ePWPQAAgGo7DhVLqs6pjpacLEodrGugj533AABnQFEKrdrhEyN5BwvLVBbk7zyeU2cCxYKcAAAAp3LmVEVlOlZ2ch2pOnMq527GFKUAAO6ZfvvezJkzFR8fr8DAQCUlJWn16tV1tl+1apWSkpIUGBionj17avbs2S6vz507V0OGDFH79u3Vvn17XX311frmm2+a8xLgwQqcCVS58muZal5wvFxb9hU6n5NAAQAAuCo4sY7UwaKyWteUyisq048Hik4+5/Y9AMAZmFqUWrhwoSZOnKipU6cqKytLQ4YM0YgRI5Sdne22/a5duzRy5EgNGTJEWVlZmjJlih5++GEtWrTI2WblypUaO3asvvzyS2VmZqpbt24aNmyY9u/f31KXBQ9y6qhewSkJ1KlTzR98P0s3vvG1Nu09Komp5gAAAKeqtNlVdGJ2VG5Rucs6nacuifC7d77Vja9/re15xySdOvucnAoA4J6pRalXXnlF48aN07333quEhATNmDFDcXFxmjVrltv2s2fPVrdu3TRjxgwlJCTo3nvv1T333KPp06c72/zzn//UhAkTNGDAAPXu3Vtz586V3W7XF1980VKXBQ9RVmlTSYVNUvUonrvd9wpLK7VuV4EMQ1rxU56kkwkUWxcDAABIR05bQ8plptSJgb4DR0v1w4EiVdkNrdx2SFL1zCmJnAoAUDvTilIVFRXasGGDhg0b5nJ82LBhWrNmjdv3ZGZm1mg/fPhwrV+/XpWVlW7fU1JSosrKSnXo0KHWWMrLy1VUVOTygPc7fMrteiUVNu09XOJ8frCoTHa7oW92HZbdqD62dmeBpFOLUkw1BwAAODWnOnS83OW5Y6Avc0eB89janYer2zLQBwA4A9OKUvn5+bLZbIqOjnY5Hh0drdzcXLfvyc3Nddu+qqpK+fn5bt/z+OOPq0uXLrr66qtrjSU9PV0RERHOR1xcXAOvBp7o1IRJksqr7M6fK22GDpdUuCRQm7KPqqzSpkNF7L4HAADgcPiU2eY2u6Eqx4ieqvOt8iqbMneezKm+2VUgm91g8xgAwBmZvtC5xWJxeW4YRo1jZ2rv7rgkvfTSS/rggw/00UcfKTCw9n8MJ0+erMLCQudj7969DbkEeKiC04pSkmSxSB1CAiRVTzc/NYGqsNm1cc8RHTrO+gcAAAAO7nKqMKufAvyqf5XIKyp3GegrKqvSxuwjOl5evQ4VA30AgNqYVpSKioqSr69vjVlReXl5NWZDOcTExLht7+fnp8jISJfj06dP1/PPP6/ly5erX79+dcZitVoVHh7u8oD3O+ImgeoQHKDYdtUFym25x7Q1p/pWzUvOrf7zs+yHXFXaqgudTDUHAABwXVPKISrMqpgTu+qt33NY+4+Wys/Hoovjq5fM+L/NByRJgf4+CrP6tVywAACvYlpRKiAgQElJScrIyHA5npGRocGDB7t9T0pKSo32y5cvV3Jysvz9/Z3HXn75ZT377LNatmyZkpOTz37w8AruRvWiQk8mUB9vqt6R8bxOobq+X6wk6dPvciRJ7YL9ZfXzbaFIAQAAPNepu+05RIUGOHOqjzZW51T949rpqt6dJJ3MqTqFBdZ5FwQAoG0z9fa9tLQ0vfXWW5o/f762bt2qSZMmKTs7W+PHj5dUfVvdnXfe6Ww/fvx47dmzR2lpadq6davmz5+vefPm6dFHH3W2eemllzRt2jTNnz9fPXr0UG5urnJzc3X8+PEWvz6Y63BxeY1jkaEBij6RQP1ve/U6ZCnnROpXPatnSjkKWY4kCwAAoK07fZ1OSYoMsSo6wjWn+lXPDjVzqghyKgBA7UydSztmzBgVFBTomWeeUU5OjhITE7V06VJ1795dkpSTk6Ps7Gxn+/j4eC1dulSTJk3SG2+8odjYWL322msaPXq0s83MmTNVUVGhW2+91eWznnrqKT399NMtcl3wDI4EqmOY1bn7S+QpM6XshhQS4Ks7U3qoR2Sw7h7cQxuzjygyJEB3De5hVtgAAAAexX1OFaDggOpZ5Xajepb52Iu7KTYiSL9O6qqfDx5TxzCr7h3S07S4AQCez/QbvCdMmKAJEya4fe2dd96pcWzo0KHauHFjrefbvXv3WYoM3s6RQCV0DtehY4ckSZEhAc4RO4tFem3sQJ3bKVSS9PSNF5gTKAAAgAdzm1OFWhURVL18hp+PRbPuSFLX9sGSpJd/3d+cQAEAXsf03feA5nIygQpzHosKDdA1faJ1Ze9OevnW/roqwf2i+gAAAKhWW051Xd/OurxXR702dqBSzoms7e0AANTK9JlSQHNxrGXQp/PJ3RQjQ61qFxyg+XdfZFZYAAAAXsVtThViVUxEoN753cVmhQUAaAWYKYVWyzGqd350mHx9qnd9iQq1mhkSAACAV7HbDR0pqVmUigoNMCskAEArQlEKrVKVza7C0kpJ1YWozifWkWJXPQAAgPo7VlYlm92QJHWLDFZ4YPWNFuyqBwA4G7h9D63S0dJKGdX5k9oH++v5m/vq+wOFSuwSXvcbAQAA4FRQXL3bXqjVT1Y/X03/dX/tPVKq7pEhJkcGAGgNKEqhVXLcutcu2F9+vj667PyOuuz8jiZHBQAA4F0cOVWHkOrb9YZdEGNmOACAVoaiFFoVwzC0/MeD2p53XJLUIZj1DgAAABrKMAx9uiVH23KPSZLah5BTAQDOPopSaFVmrtyhlz/b5nzegQQKAACgwV5Y9pPeXLXT+TySnAoA0AxY6BytxoJvsp0FKX/f6t32WIQTAACgYeZ+tdNZkPLzIacCADQfZkqhVfjsh1xNWbxFknT/5eco9VfdtWTzAY1IZN0DAACA+lq0YZ+eW7pVkvTYtb11Xd/O+nRLjm4aEGtyZACA1oiiFLzemh35euiDLNkN6bbkrvrT8F6yWCwaP/Qcs0MDAADwGhk/HtSfFn0nSbr30niNH9pTFotF919OTgUAaB4UpeDV/rV+r6Ys3qJKm6Fr+kTr+Zv7ymKxmB0WAACA1zAMQ39fs1vP/OdH2Q3ploFdNGVkAjkVAKDZUZSCVzIMQ/9vxXa9kvGzJGlk3xi9ctsA+fmyTBoAAEB9GYah55du1dzVuyRJv07qqudv6SsfHwpSAIDmR1EKXscwDJcdYR668lxNuvp8kicAAIAGsNsNTfvke72/LluS9PiI3vrDZT2ZIQUAaDEUpeBV7HZDT//fD3o3c48k6Ynr+2jcpfEmRwUAAOBdqmx2/enf3+mjrP2yWKQXb+mn2y6KMzssAEAbQ1EKHunA0VI9+cn32l1QoiqbXRFB/goN9NPRkkr9cKBIFov0/M19NfbibmaHCgAA4LF25Rfr6SU/aP/RUtnshsKD/BVm9VP+8XL9lHtMfj4WvTJmgG7sz+56AICWR1EKHufQsXL99q112plf7PZ1Xx+L/vrr/ho1sEsLRwYAAOA99h8t1R1z1+pAYZnb1wN8ffTGHRfqmj7RLRwZAADVKErBo1RU2XX3299oZ36xurQL0vO39FWQv6+KSit1vLxKPj4W9ekcpnM7hZkdKgAAgMcqqahS6lvrdKCwTD07huiZGxMV4OejoyUVKqmwycfHov5dI9Q9MsTsUAEAbRhFKXiUf67box8OFKlDSID+ce8gxUeRKAEAADTU3K92aWd+sWLCA/XPewepc0SQ2SEBAFCDj9kBAA6FJZV69YtfJEmPDutFQQoAAKAR8orK9OZXOyRJ065PoCAFAPBYzJRCi3p/XbY+3XJAdrtkyJBhSIYkwzBUUFyhoyWVOq9TqG5L7mp2qAAAAB7rrdU79eW2PLc51aFj5SqpsGlgt3a6rm9ns0MFAKBWFKXQYrbnHdcTn3wvm92os93U6xLk58skPgAAAHc27z2qv3y6tc42Fos07boEWSyWFooKAICGoyiFFvPSsp9ksxsafE6kxlwUJx+LRRaLZJFFPpbq5Ck6PFADu7U3O1QAAACPZBiGnl9aXZC6qncn3Tgg1m1O1bV9sBK7RJgcLQAAdaMohbMmu6BEn27Jkc1uP2UKuWQ3DBWXV2n5jwflY5GeuekCds8DAACoxfa841r+Y67s9pO35dmN6p+PlFRo3a7DCvDz0TOjEtWlHetFAQC8F0UpnBXF5VW6c/467S4oqbPdmIu6UZACAACoxdGSCt3x1lodLCqvs93vLulBQQoA4PUoSuGs+MunW7W7oESdwqy6sncnVS9fcHIKuUUWhQb6afzQc8wOFQAAwCMZhqGpH3+vg0Xl6tIuSEPOi3KbU7UL9tf9l5NTAQC8H0Up1Muy73P03NKtOlZWVT2N3DBkSNKJKeXHy6skSTPGDNDgc6PMDBUAAMBjLdqwT69k/KziitpzKj8fi2becaH6x7UzN1gAAJoZRSmc0Zrt+XrogyxV2ureNW/80HMoSAEAANRi+Q+5+v/+vVln2IhYacPOpyAFAGgTKEpBm/Ye1eSPtiivqEySY4HyE6N2ko6XVanKbui6vp016ZrzJTmmj0sWi0UWSQF+PuocEWhG+AAAAB4hc0eBnvzkex0urpBUM6c6VlYluyGNSY7TfZf1lFQzp7L6+ygmnJwKANA2UJRqQwzj5A4ujue/5B3XXfO/UWFpZZ3vvfTcKP31tv4K9Pdt/kABAAA8mLuc6rv9hRr3929VUmGr873DL4jWczcnys/Xp/kDBQDAw1GUauW25R7T/f/YoJ35xXW2G9itnZ4b1Ve+PhbniJ1UPXrn5+Oj7pHBslgsdZ4DAACgtdq896geeH+j9h0prbPdpedGadr1CbKoZk4V4OuruA5B5FQAAJxAUcrLFZdXKftwyYnRuupRO4ejJZWauDBL+ccr6jzHhd3a6e27L1ZEsH8zRwsAAOCZisoqtf9Iqduc6tCxcj2yIEtFZVV1nuPSc6P0ZmqSQqyk2AAA1Af/YnqxL7YeVNqHm894690FseGa/dskBQf4OtcrkE5uKxwe5MeIHQAAaLOWbD6gyYu+U/EZbr27qEd7vTZ2oAJ8fWrmVBaLIoIY4AMAoCEoSnmonMJSzVq5Q+t3H5HdcN2ixTAk+4n1oCQpPNBPVn/fGsUmi0Xq0zlc03/dX+1DAlr4CgAAAMyXXVCimSu3a/O+QhluciqbYWj7iZwqIshfAX4+JxYer27jyKku7NZeL97aT6HMggIA4KzhX9UW9o+1ezTzy+2nLIx54r8njjieHympUKXtDPsFS7p7cA9NGZmgAD8WywQAAG3H7FU79O6a3WfMqQ4XV6jKfuac6oErztGkq89nAXIAAFoQRakWVlxepQOFZfVqe3GPDvrdJT0UGlj9v8kxUlf9s9QxzKrzosOaKVIAAADPdaysst451ZDzopT6q+4KCqjeRfj0nKpzuyDFR4U0U6QAAKA2FKVa2M0XdtHgc6IknZwW7nDqNPGgAF/1YMc7AAAAt1J/1UPXXtBZUt05VajVT90ig1s4OgAAUB8UpVpYp7BAdQoLNDsMAAAArxYTEaiYCHIqAAC8GTfNAwAAAAAAoMVRlAIAAAAAAECLoygFAAAAAACAFkdRCgAAAAAAAC2OohQAAAAAAABaHEUpAAAAAAAAtDjTi1IzZ85UfHy8AgMDlZSUpNWrV9fZftWqVUpKSlJgYKB69uyp2bNn12izaNEi9enTR1arVX369NHixYubK3wAAIBmZ1a+1NDPBQAAaAhTi1ILFy7UxIkTNXXqVGVlZWnIkCEaMWKEsrOz3bbftWuXRo4cqSFDhigrK0tTpkzRww8/rEWLFjnbZGZmasyYMUpNTdXmzZuVmpqq2267TevWrWupywIAADhrzMqXGvq5AAAADWUxDMMw68MHDRqkCy+8ULNmzXIeS0hI0KhRo5Senl6j/WOPPaYlS5Zo69atzmPjx4/X5s2blZmZKUkaM2aMioqK9N///tfZ5tprr1X79u31wQcf1CuuoqIiRUREqLCwUOHh4Y29PAAA4GU8MQcwK19q6Oe644n9CQAAml99cwDTZkpVVFRow4YNGjZsmMvxYcOGac2aNW7fk5mZWaP98OHDtX79elVWVtbZprZzSlJ5ebmKiopcHgAAAGYzK19qzOdK5FQAAKBhTCtK5efny2azKTo62uV4dHS0cnNz3b4nNzfXbfuqqirl5+fX2aa2c0pSenq6IiIinI+4uLjGXBIAAMBZZVa+1JjPlcipAABAw5i+0LnFYnF5bhhGjWNnan/68Yaec/LkySosLHQ+9u7dW+/4AQAAmptZ+RI5FQAAaE5+Zn1wVFSUfH19a4y25eXl1RiVc4iJiXHb3s/PT5GRkXW2qe2ckmS1WmW1WhtzGQAAAM3GrHypMZ8rkVMBAICGMW2mVEBAgJKSkpSRkeFyPCMjQ4MHD3b7npSUlBrtly9fruTkZPn7+9fZprZzAgAAeCqz8qXGfC4AAEBDmTZTSpLS0tKUmpqq5ORkpaSkaM6cOcrOztb48eMlVU8B379/v959911J1TvHvP7660pLS9N9992nzMxMzZs3z2VXvUceeUSXXXaZXnzxRd1000365JNP9Pnnn+vrr7+ud1yOKe4szgkAQNvi+LffxM2JazArXzrT59YHORUAAG1TvXMqw2RvvPGG0b17dyMgIMC48MILjVWrVjlfu+uuu4yhQ4e6tF+5cqUxcOBAIyAgwOjRo4cxa9asGuf817/+ZfTq1cvw9/c3evfubSxatKhBMe3du9eQxIMHDx48ePBoo4+9e/c2Kq9pLmblS3V9bn2QU/HgwYMHDx5t+3GmnMpiGB40FOgh7Ha7Dhw4oLCwsDoX8zRDUVGR4uLitHfvXoWHh5sdjkehb2pH37hHv9SOvqkdfeNea+kXwzB07NgxxcbGysfH9P1gvB45lXeib2pH37hHv9SOvqkdfeNea+mX+uZUpt6+56l8fHzUtWtXs8OoU3h4uFf/AW1O9E3t6Bv36Jfa0Te1o2/caw39EhERYXYIrQY5lXejb2pH37hHv9SOvqkdfeNea+iX+uRUDAECAAAAAACgxVGUAgAAAAAAQIujKOVlrFarnnrqKVmtVrND8Tj0Te3oG/fol9rRN7Wjb9yjX+Bt+DNbO/qmdvSNe/RL7eib2tE37rW1fmGhcwAAAAAAALQ4ZkoBAAAAAACgxVGUAgAAAAAAQIujKAUAAAAAAIAWR1HKBF999ZVuuOEGxcbGymKx6OOPP3Z53WKxuH28/PLLLu0yMzN15ZVXKiQkRO3atdPll1+u0tJS5+tHjhxRamqqIiIiFBERodTUVB09erQFrrDxztQ3x48f14MPPqiuXbsqKChICQkJmjVrlkub8vJyPfTQQ4qKilJISIhuvPFG7du3z6VNW+0bB8MwNGLECLfn8ba+ORv9kpubq9TUVMXExCgkJEQXXnih/v3vf7u08bZ+kc7cNwcPHtTdd9+t2NhYBQcH69prr9Uvv/zifP3w4cN66KGH1KtXLwUHB6tbt256+OGHVVhY6HIeb+ubpvaLQ2v8Dk5PT9dFF12ksLAwderUSaNGjdK2bdtc2hiGoaefflqxsbEKCgrS5Zdfrh9++MGlTWv9HobnIaeqHTmVe+RTtSOnqh05lXvkVO6RTzUMRSkTFBcXq3///nr99dfdvp6Tk+PymD9/viwWi0aPHu1sk5mZqWuvvVbDhg3TN998o2+//VYPPvigfHxO/i+9/fbbtWnTJi1btkzLli3Tpk2blJqa2uzX1xRn6ptJkyZp2bJl+sc//qGtW7dq0qRJeuihh/TJJ58420ycOFGLFy/WggUL9PXXX+v48eO6/vrrZbPZnG3aat84zJgxQxaLxe15vK1vzka/pKamatu2bVqyZIm2bNmiW265RWPGjFFWVpazjbf1i1R33xiGoVGjRmnnzp365JNPlJWVpe7du+vqq69WcXGxJOnAgQM6cOCApk+fri1btuidd97RsmXLNG7cOJdzeVvfNLVfpNb7Hbxq1So98MADWrt2rTIyMlRVVaVhw4a5XPtLL72kV155Ra+//rq+/fZbxcTE6JprrtGxY8ecbVrr9zA8DzlV7cip3COfqh05Ve3Iqdwjp3KPfKqBDJhKkrF48eI629x0003GlVde6XJs0KBBxrRp02p9z48//mhIMtauXes8lpmZaUgyfvrppybF3FLc9c0FF1xgPPPMMy7HLrzwQmdfHD161PD39zcWLFjgfH3//v2Gj4+PsWzZMsMw2m7fOGzatMno2rWrkZOTU+M83t43je2XkJAQ491333Vp06FDB+Ott94yDMP7+8UwavbNtm3bDEnG999/7zxWVVVldOjQwZg7d26t5/nwww+NgIAAo7Ky0jAM7++bxvZLW/gONgzDyMvLMyQZq1atMgzDMOx2uxETE2O88MILzjZlZWVGRESEMXv2bMMw2s73MDwPOVXtyKncI5+qHTlV7cip3COnqh35VN2YKeXhDh48qE8//dSlip6Xl6d169apU6dOGjx4sKKjozV06FB9/fXXzjaZmZmKiIjQoEGDnMd+9atfKSIiQmvWrGnRazibLr30Ui1ZskT79++XYRj68ssv9fPPP2v48OGSpA0bNqiyslLDhg1zvic2NlaJiYnO626rfSNJJSUlGjt2rF5//XXFxMTUOEdr7Jv69Mull16qhQsX6vDhw7Lb7VqwYIHKy8t1+eWXS2qd/VJeXi5JCgwMdB7z9fVVQECAy3fJ6QoLCxUeHi4/Pz9Jra9v6tMvbek72HFbQYcOHSRJu3btUm5urst3rNVq1dChQ53X1Za/h+HZyKlckVO5Rz5VO3Iq98ip3COnOol8qm4UpTzc3//+d4WFhemWW25xHtu5c6ck6emnn9Z9992nZcuW6cILL9RVV13lvEc3NzdXnTp1qnG+Tp06KTc3t2WCbwavvfaa+vTpo65duyogIEDXXnutZs6cqUsvvVRS9XUHBASoffv2Lu+Ljo52Xndb7Rupetr14MGDddNNN7k9R2vsm/r0y8KFC1VVVaXIyEhZrVb94Q9/0OLFi3XOOedIap390rt3b3Xv3l2TJ0/WkSNHVFFRoRdeeEG5ubnKyclx+56CggI9++yz+sMf/uA81tr6pj790la+gw3DUFpami699FIlJiZKkjP26Ohol7anf8e21e9heDZyKlfkVO6RT9WOnMo9cir3yKmqkU+dmZ/ZAaBu8+fP1x133OFSYbbb7ZKkP/zhD/rd734nSRo4cKC++OILzZ8/X+np6ZLk9h53wzBqvffdG7z22mtau3atlixZou7du+urr77ShAkT1LlzZ1199dW1vu/0626LfbNkyRKtWLHC5Z5+d1pb39Tnz8y0adN05MgRff7554qKitLHH3+sX//611q9erX69u0rqfX1i7+/vxYtWqRx48apQ4cO8vX11dVXX60RI0a4bV9UVKTrrrtOffr00VNPPeXyWmvqm/r0S1v5Dn7wwQf13XffuR3lPf0a6nNdbeF7GJ6NnMoVOZV75FO1I6dyj5zKPXKqauRTZ0ZRyoOtXr1a27Zt08KFC12Od+7cWZLUp08fl+MJCQnKzs6WJMXExOjgwYM1znno0KEaFVlvUVpaqilTpmjx4sW67rrrJEn9+vXTpk2bNH36dF199dWKiYlRRUWFjhw54lJVzsvL0+DBgyW13b5ZsWKFduzYoXbt2rm8d/To0RoyZIhWrlzZ6vqmPv2yY8cOvf766/r+++91wQUXSJL69++v1atX64033tDs2bNbXb84JCUladOmTSosLFRFRYU6duyoQYMGKTk52aXdsWPHdO211yo0NFSLFy+Wv7+/87XW2Ddn6pe28B380EMPacmSJfrqq6/UtWtX53HHbSq5ubnOfpCqv2Md19VWv4fh2cipXJFTuUc+VTtyqrqRU7nX1nMq8qn64fY9DzZv3jwlJSWpf//+Lsd79Oih2NjYGttK/vzzz+revbskKSUlRYWFhfrmm2+cr69bt06FhYXOP8TeprKyUpWVlS47MUjV9yY7quxJSUny9/dXRkaG8/WcnBx9//33zutuq33z+OOP67vvvtOmTZucD0n629/+prfffltS6+ub+vRLSUmJJNXZprX1y+kiIiLUsWNH/fLLL1q/fr3L7QhFRUUaNmyYAgICtGTJEpcZBlLr7pva+qU1fwcbhqEHH3xQH330kVasWKH4+HiX1+Pj4xUTE+PyHVtRUaFVq1Y5r6utfg/Ds5FTuSKnco98qnbkVPVDTuVeW8upyKcaqCVWU4erY8eOGVlZWUZWVpYhyXjllVeMrKwsY8+ePc42hYWFRnBwsDFr1iy35/jb3/5mhIeHG//617+MX375xZg2bZoRGBhobN++3dnm2muvNfr162dkZmYamZmZRt++fY3rr7++2a+vKc7UN0OHDjUuuOAC48svvzR27txpvP3220ZgYKAxc+ZM5znGjx9vdO3a1fj888+NjRs3GldeeaXRv39/o6qqytmmrfbN6eRmZxVv65um9ktFRYVx7rnnGkOGDDHWrVtnbN++3Zg+fbphsViMTz/91Pk53tYvhnHmvvnwww+NL7/80tixY4fx8ccfG927dzduueUW5/uLioqMQYMGGX379jW2b99u5OTkOB/e/Pepqf1iGK33O/j+++83IiIijJUrV7r8/y4pKXG2eeGFF4yIiAjjo48+MrZs2WKMHTvW6Ny5s1FUVORs01q/h+F5yKlqR07lHvlU7cipakdO5R45lXvkUw1DUcoEX375pSGpxuOuu+5ytnnzzTeNoKAg4+jRo7WeJz093ejatasRHBxspKSkGKtXr3Z5vaCgwLjjjjuMsLAwIywszLjjjjuMI0eONNNVnR1n6pucnBzj7rvvNmJjY43AwECjV69exl//+lfDbrc7z1FaWmo8+OCDRocOHYygoCDj+uuvN7Kzs10+p632zencJVHe1jdno19+/vln45ZbbjE6depkBAcHG/369auxnbG39YthnLlvXn31VaNr166Gv7+/0a1bN2PatGlGeXn5Gd8vydi1a5eznbf1TVP7xaE1fgfX9v/77bffdrax2+3GU089ZcTExBhWq9W47LLLjC1btricp7V+D8PzkFPVjpzKPfKp2pFT1Y6cyj1yKvfIpxrGYhiGUfdcKgAAAAAAAODsYk0pAAAAAAAAtDiKUgAAAAAAAGhxFKUAAAAAAADQ4ihKAQAAAAAAoMVRlAIAAAAAAECLoygFAAAAAACAFkdRCgAAAAAAAC2OohQAAAAAAABaHEUpAAAAAAAAtDiKUgBaLcMwdPXVV2v48OE1Xps5c6YiIiKUnZ1tQmQAAADeg5wKQHOhKAWg1bJYLHr77be1bt06vfnmm87ju3bt0mOPPaZXX31V3bp1O6ufWVlZeVbPBwAAYDZyKgDNhaIUgFYtLi5Or776qh599FHt2rVLhmFo3Lhxuuqqq3TxxRdr5MiRCg0NVXR0tFJTU5Wfn+9877Jly3TppZeqXbt2ioyM1PXXX68dO3Y4X9+9e7csFos+/PBDXX755QoMDNQ//vEPMy4TAACgWZFTAWgOFsMwDLODAIDmNmrUKB09elSjR4/Ws88+q2+//VbJycm67777dOedd6q0tFSPPfaYqqqqtGLFCknSokWLZLFY1LdvXxUXF+vJJ5/U7t27tWnTJvn4+Gj37t2Kj49Xjx499Ne//lUDBw6U1WpVbGysyVcLAADQPMipAJxNFKUAtAl5eXlKTExUQUGB/v3vfysrK0vr1q3TZ5995myzb98+xcXFadu2bTr//PNrnOPQoUPq1KmTtmzZosTERGcCNWPGDD3yyCMteTkAAACmIKcCcDZx+x6ANqFTp076/e9/r4SEBN18883asGGDvvzyS4WGhjofvXv3liTndPIdO3bo9ttvV8+ePRUeHq74+HhJqrGQZ3JycsteDAAAgEnIqQCcTX5mBwAALcXPz09+ftVfe3a7XTfccINefPHFGu06d+4sSbrhhhsUFxenuXPnKjY2Vna7XYmJiaqoqHBpHxIS0vzBAwAAeAhyKgBnC0UpAG3ShRdeqEWLFqlHjx7OpOpUBQUF2rp1q958800NGTJEkvT111+3dJgAAAAejZwKQFNw+x6ANumBBx7Q4cOHNXbsWH3zzTfauXOnli9frnvuuUc2m03t27dXZGSk5syZo+3bt2vFihVKS0szO2wAAACPQk4FoCkoSgFok2JjY/W///1PNptNw4cPV2Jioh555BFFRETIx8dHPj4+WrBggTZs2KDExERNmjRJL7/8stlhAwAAeBRyKgBNwe57AAAAAAAAaHHMlAIAAAAAAECLoygFAAAAAACAFkdRCgAAAAAAAC2OohQAAAAAAABaHEUpAAAAAAAAtDiKUgAAAAAAAGhxFKUAAAAAAADQ4ihKAQAAAAAAoMVRlAIAAAAAAECLoygFAAAAAACAFkdRCgAAAAAAAC2OohQAAAAAAABa3P8PXDEIICWzII8AAAAASUVORK5CYII=",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAHWCAYAAACmMzqDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACMJ0lEQVR4nOzdeXxU5dn/8e9kkkz2yb6RBZB9R1AEF0AFRUURW624VmutiC0P+tMibcWnFRSty6PV1ta6b23d6lIVRVALKPsmIEsgCSSEbJN9ksyc3x+TGY2QsCU5M5PP+/U6LzLn3HPmmpE2N9dc93VbDMMwBAAAAAAAAHShELMDAAAAAAAAQPdDUgoAAAAAAABdjqQUAAAAAAAAuhxJKQAAAAAAAHQ5klIAAAAAAADociSlAAAAAAAA0OVISgEAAAAAAKDLkZQCAAAAAABAlyMpBQAAAAAAgC5HUgpAh9m4caN++tOfqlevXoqIiFBMTIxOPvlkLVq0SOXl5a3GNjU16amnntLYsWNlt9sVGRmpgQMH6te//rXKyspMegdts1gsmj9/foffd8KECZowYUKH3xcAAMAs119/vXr27Nnh933uuedksVi0Z8+eDr83AHNYDMMwzA4CQOD761//qpkzZ6p///6aOXOmBg0apKamJq1evVp//etfNXz4cL311luSpLq6Ol1wwQX68ssv9fOf/1wXXXSRIiMjtWLFCj300EOKiYnR4sWL1b9/f5Pf1XdWrlyprKwsZWVldeh9v/nmG0nSoEGDOvS+AAAAZtm1a5eqqqo0cuTIDr3vwYMHtWvXLo0cOVI2m61D7w3AHCSlAJywFStW6Mwzz9SkSZP09ttvHzJJaGxs1IcffqiLL75YknTzzTfr6aef1muvvaYrrrii1dhvv/1Wp556qrKysrRhwwZZrdYuex8AAAAAgK7D8j0AJ2zBggWyWCx6+umnD/utVXh4uC8hVVxcrL///e8677zzDklISVK/fv101113acuWLXr77beP+NqrV6/WxRdfrMTEREVERGjkyJH6xz/+0WqMt9R7yZIluummm5SUlKS4uDhde+21qq2tVXFxsS6//HLFx8crIyNDd9xxh5qamlrd44fL9+rq6nTHHXf4liomJiZq9OjRevXVV31jdu/erZ/85CfKzMyUzWZTWlqazjnnHK1fv9435nDL98rLyzVz5kz16NFD4eHh6t27t+bNmyen03lITLNmzdKLL76ogQMHKioqSsOHD9d7773XatzBgwf185//XNnZ2bLZbEpJSdHpp5+uTz755IifLwAAOH7z58+XxWLRli1bdOWVV8putystLU033HCDHA5Hq7ENDQ2aO3euevXqpfDwcPXo0UO33nqrKisrJUmGYeiCCy5QUlKS8vPzfc+rq6vT4MGDNXDgQNXW1rYbT1VVlW/+4n2N2bNnH/I87xzj2WefVf/+/RUZGanRo0dr5cqVMgxDDz74oHr16qWYmBidffbZ2rlzZ6vnH2753j//+U+NGTNGdrtdUVFR6t27t2644QbfdbfbrT/84Q++14uPj9ewYcP02GOP+ca0tXzv73//u4YPH+6bk1166aXaunXrITHFxMRo586duuCCCxQTE6Ps7Gzdfvvth8yxnnrqKQ0fPlwxMTGKjY3VgAEDdPfdd7f72QI4PqFmBwAgsLlcLi1ZskSjRo1Sdnb2Ecd/9tlnam5u1rRp09ocM23aNN19991avHixLrvssnbvdf7552vMmDH685//LLvd7qu+qqur0/XXX99q/M9+9jNNnz5dr732mtatW6e7775bzc3N2r59u6ZPn66f//zn+uSTT/TAAw8oMzNTc+bMafO158yZoxdffFF/+MMfNHLkSNXW1mrz5s2t+mFdcMEFcrlcWrRokXJyclRaWqrly5f7JpeH09DQoIkTJ2rXrl269957NWzYMH3xxRdauHCh1q9fr/fff7/V+Pfff1+rVq3S//7v/yomJkaLFi3SpZdequ3bt6t3796SpGuuuUZr167Vfffdp379+qmyslJr1671y95dAAAEo8suu0xXXHGFbrzxRm3atElz586V5EmmSJ6E07Rp0/Tpp59q7ty5OvPMM7Vx40bdc889WrFihVasWCGbzaYXX3xRI0aM0OWXX64vvvhCYWFhmjlzpvLy8vTVV18pOjq6zRjq6uo0fvx4FRYW6u6779awYcO0ZcsW/e53v9OmTZv0ySefyGKx+Ma/9957Wrdune6//35ZLBbddddduvDCC3Xddddp9+7deuKJJ+RwODRnzhxddtllWr9+favnf9+KFSt0xRVX6IorrtD8+fMVERGhvXv3asmSJb4xixYt0vz58/Wb3/xGZ511lpqamrRt27Z2502StHDhQt1999268sortXDhQpWVlWn+/PkaO3asVq1apb59+/rGNjU16eKLL9aNN96o22+/XZ9//rl+//vfy26363e/+50k6bXXXtPMmTN122236aGHHlJISIh27tzpa7kAoIMZAHACiouLDUnGT37yk6Maf//99xuSjA8//LDNMfX19YYkY8qUKe3ea8CAAcbIkSONpqamVucvuugiIyMjw3C5XIZhGMazzz5rSDJuu+22VuOmTZtmSDIefvjhVudHjBhhnHzyya3OSTLuuece3+MhQ4YY06ZNazO20tJSQ5Lx6KOPtvsexo8fb4wfP973+M9//rMhyfjHP/7RatwDDzxgSDI+/vjjVjGlpaUZVVVVvnPFxcVGSEiIsXDhQt+5mJgYY/bs2e3GAQAAOt4999xjSDIWLVrU6vzMmTONiIgIw+12G4ZhGB9++OFhx73++uuGJOPpp5/2nfvyyy+N0NBQY/bs2cbf//53Q5Lxt7/97YixLFy40AgJCTFWrVrV6vy//vUvQ5LxwQcf+M5JMtLT042amhrfubffftuQZIwYMcIXt2EYxqOPPmpIMjZu3Og7d9111xm5ubm+xw899JAhyaisrGwzvosuusgYMWJEu+/BO6fLy8szDMMwKioqjMjISOOCCy5oNS4/P9+w2WzGjBkzWsV0uDnWBRdcYPTv39/3eNasWUZ8fHy7cQDoOCzfA+C32vq2TZJ27typbdu26aqrrpIkNTc3+44LLrhARUVF2r59e6vnXHTRRa0eDxw4UJJ04YUXHnJ+79697cZ26qmn6j//+Y9+/etfa+nSpaqvr291PTExUSeddJIefPBBPfzww1q3bp3cbnf7b1jSkiVLFB0drR/96Eetznurvj799NNW5ydOnKjY2Fjf47S0NKWmpraK/9RTT9Vzzz2nP/zhD1q5cuUhSxMBAEDn8rYx8Bo2bJgaGhpUUlIiSb6KoR9Wef/4xz9WdHR0q9//p59+uu677z49+uijuuWWW3T11VfrxhtvPGIM7733noYMGaIRI0a0mjedd955slgsWrp0aavxEydObFV55Z03TZkypdUczXu+vbnTKaecIkm6/PLL9Y9//EP79u07ZMypp56qDRs2aObMmfroo49UVVV1xPe0YsUK1dfXH/K5ZWdn6+yzzz5k3mSxWDR16tRW54YNG3bIvKmyslJXXnml3nnnHZWWlh4xDgDHj6QUgBOSnJysqKgo5eXlHdX4nJwcSWp3vPdae8sBDxw4IEm64447FBYW1uqYOXOmJB0yiUhMTGz1ODw8vM3zDQ0N7b6P//u//9Ndd92lt99+WxMnTlRiYqKmTZumHTt2SPJMej799FOdd955WrRokU4++WSlpKTol7/8paqrq9u8b1lZmdLT0w9JyKWmpio0NPSQJXdJSUmH3MNms7VKkr3++uu67rrr9Le//U1jx45VYmKirr32WhUXF7f7HgEAQMf44e9rbw9O7+/rsrIyhYaGKiUlpdU4i8Wi9PT0Q37/X3XVVQoPD5fT6dT/+3//76hiOHDggDZu3HjIvCk2NlaGYZzQvElSu3Ons846S2+//baam5t17bXXKisrS0OGDGnVi3Pu3Ll66KGHtHLlSk2ZMkVJSUk655xztHr16jbv6/1cMjIyDrmWmZl5yOcWFRWliIiIVudsNlur2K+55hr9/e9/1969e3XZZZcpNTVVY8aM0eLFi9uMA8DxIykF4IRYrVadc845WrNmjQoLC484fuLEiQoNDW23ibn32qRJk9ock5ycLMkzgVm1atVhjxEjRhzLWzkm0dHRuvfee7Vt2zYVFxfrqaee0sqVK1t9+5abm6tnnnlGxcXF2r59u/7nf/5HTz75ZLuTx6SkJB04cEDGDzZGLSkpUXNzs+99H4vk5GQ9+uij2rNnj/bu3auFCxfqzTffPORbRQAAYI6kpCQ1Nzfr4MGDrc4bhqHi4uJWv/9dLpeuuuoqJSQkKCcnRzfeeKMaGxuP+BrJyckaOnRom/Om3/72tx3+vr7vkksu0aeffiqHw6GlS5cqKytLM2bM0IoVKyRJoaGhmjNnjtauXavy8nK9+uqrKigo0Hnnnae6urrD3tOb7CsqKjrk2v79+49r3iRJP/3pT7V8+XI5HA69//77MgxDF1100REr6QEcO5JSAE7Y3LlzZRiGbrrppsNOipqamvTuu+9KktLT03XDDTfoo48+0uuvv37I2G+//VYPPPCABg8e3G4z9P79+6tv377asGGDRo8efdjj+8vaOlNaWpquv/56XXnlldq+ffthJ079+vXTb37zGw0dOlRr165t817nnHOOampqDknavfDCC77rJyInJ0ezZs3SpEmT2o0DAAB0He/v95deeqnV+TfeeEO1tbWtfv/fc889+uKLL/Tyyy/r9ddf14YNG46qWuqiiy7Srl27lJSUdNh50w93y+ssNptN48eP1wMPPCBJWrdu3SFj4uPj9aMf/Ui33nqrysvLD9ltz2vs2LGKjIw85HMrLCzUkiVLTnjeFB0drSlTpmjevHlqbGzUli1bTuh+AA7F7nsATtjYsWP11FNPaebMmRo1apRuueUWDR48WE1NTVq3bp2efvppDRkyxFdF9PDDD2v79u26+uqr9fnnn2vq1Kmy2WxauXKlHnroIcXGxuqNN96Q1Wpt93X/8pe/aMqUKTrvvPN0/fXXq0ePHiovL9fWrVu1du1a/fOf/+y09zxmzBhddNFFGjZsmBISErR161a9+OKLGjt2rKKiorRx40bNmjVLP/7xj9W3b1+Fh4dryZIl2rhxo37961+3ed9rr71Wf/rTn3Tddddpz549Gjp0qL788kstWLBAF1xwgc4999xjitPhcGjixImaMWOGBgwYoNjYWK1atUoffvihpk+ffqIfAwAA6ACTJk3Seeedp7vuuktVVVU6/fTTfbvvjRw5Utdcc40kafHixVq4cKF++9vf+hIuCxcu1B133KEJEybo0ksvbfM1Zs+erTfeeENnnXWW/ud//kfDhg2T2+1Wfn6+Pv74Y91+++0aM2ZMp7y/3/3udyosLNQ555yjrKwsVVZW6rHHHlNYWJjGjx8vSZo6daqGDBmi0aNHKyUlRXv37tWjjz6q3NzcVjvofV98fLx++9vf6u6779a1116rK6+8UmVlZbr33nsVERGhe+6555hjvemmmxQZGanTTz9dGRkZKi4u1sKFC2W32329sQB0HJJSADrETTfdpFNPPVWPPPKIHnjgARUXFyssLEz9+vXTjBkzNGvWLN/Y6OhoLV68WH/961/1wgsv6IUXXlBTU5N69uypn/3sZ7rzzjsP2yvphyZOnKivv/5a9913n2bPnq2KigolJSVp0KBBuvzyyzvz7erss8/Wv//9bz3yyCOqq6tTjx49dO2112revHmSPBVhJ510kp588kkVFBTIYrGod+/e+uMf/6jbbrutzftGRETos88+07x58/Tggw/q4MGD6tGjh+64447jmlhFRERozJgxevHFF7Vnzx41NTUpJydHd911l+68887jfv8AAKDjWCwWvf3225o/f76effZZ3XfffUpOTtY111yjBQsWyGazqaioSFdffbUmTJig3/3ud77nzpkzR8uWLdMNN9ygkSNHtlnxFB0drS+++EL333+/nn76aeXl5SkyMlI5OTk699xzO7VSasyYMVq9erXuuusuHTx4UPHx8Ro9erSWLFmiwYMHS/LM69544w397W9/U1VVldLT0zVp0iT99re/VVhYWJv3njt3rlJTU/V///d/ev311xUZGakJEyZowYIFbSaz2nPmmWfqueee0z/+8Q9VVFQoOTlZZ5xxhl544YVDen4BOHEW44eNSwAAAAAAAIBORk8pAAAAAAAAdDmSUgAAAAAAAOhyJKUAAAAAAADQ5UhKAQAAAAAAoMuRlAIAAAAAAECXIykFAAAAAACALhdqdgD+wO12a//+/YqNjZXFYjE7HAAA4McMw1B1dbUyMzMVEtJ9vt9jvgQAAI7WUc+XDBM9+eSTxtChQ43Y2FgjNjbWOO2004wPPvjAd93tdhv33HOPkZGRYURERBjjx483Nm/e3OoeDQ0NxqxZs4ykpCQjKirKmDp1qlFQUHBMcRQUFBiSODg4ODg4ODiO+jjW+UagY77EwcHBwcHBcazHkeZLFsMwDJnk3XffldVqVZ8+fSRJzz//vB588EGtW7dOgwcP1gMPPKD77rtPzz33nPr166c//OEP+vzzz7V9+3bFxsZKkm655Ra9++67eu6555SUlKTbb79d5eXlWrNmjaxW61HF4XA4FB8fr4KCAsXFxXXa+wUAAIGvqqpK2dnZqqyslN1uNzucLsN8CQAAHK2jnS+ZmpQ6nMTERD344IO64YYblJmZqdmzZ+uuu+6SJDmdTqWlpemBBx7QzTffLIfDoZSUFL344ou64oorJEn79+9Xdna2PvjgA5133nlH9ZpVVVWy2+1yOBxMsgAAQLu667yhu75vAABw7I523uA3jRBcLpdee+011dbWauzYscrLy1NxcbEmT57sG2Oz2TR+/HgtX75ckrRmzRo1NTW1GpOZmakhQ4b4xgAAAAAAAMD/mN7ofNOmTRo7dqwaGhoUExOjt956S4MGDfIlldLS0lqNT0tL0969eyVJxcXFCg8PV0JCwiFjiouL23xNp9Mpp9Ppe1xVVdVRbwcAAAAAAABHwfRKqf79+2v9+vVauXKlbrnlFl133XX65ptvfNd/uLuLYRhH3PHlSGMWLlwou93uO7Kzs0/sTQAAAAAAAOCYmJ6UCg8PV58+fTR69GgtXLhQw4cP12OPPab09HRJOqTiqaSkxFc9lZ6ersbGRlVUVLQ55nDmzp0rh8PhOwoKCjr4XQEAAAAAAKA9pielfsgwDDmdTvXq1Uvp6elavHix71pjY6OWLVumcePGSZJGjRqlsLCwVmOKioq0efNm35jDsdlsiouLa3UAAAAAAACg65jaU+ruu+/WlClTlJ2drerqar322mtaunSpPvzwQ1ksFs2ePVsLFixQ37591bdvXy1YsEBRUVGaMWOGJMlut+vGG2/U7bffrqSkJCUmJuqOO+7Q0KFDde6555r51gAAAAAAANAOU5NSBw4c0DXXXKOioiLZ7XYNGzZMH374oSZNmiRJuvPOO1VfX6+ZM2eqoqJCY8aM0ccff6zY2FjfPR555BGFhobq8ssvV319vc455xw999xzslqtZr0tAAAAAAAAHIHFMAzD7CDMVlVVJbvdLofDwVI+AADQru46b+iu7xsAABy7o503+F1PKQAAAAAAAAQ/klIAAAAAAADociSlAAAAAAAA0OVISgEAAAAAAKDLkZQCAAAAAABAlyMpBQBAEGlocqnZ5TY7DAAAAPiZusZms0M4BEkpAACCREl1g0b9frF++twqGYZhdjgAAADwE699na9Bv/tI/9lUZHYorZCUAgAgSGwocKi20aUvdpTqfT+bcAAAAMA8r68ukCS9t9G/5ogkpQAACBL7K+t9Py/6cLuczS4TowEAAIA/cNQ3aUNBpSRpbX6FucH8AEkpAACCxPeTUvnldXrlq3wTowEAAEBXaGx2a/M+R5vtG1bsKpW75VKRo0FFjvrDjjMDSSkAAILEfkeDJKl3crQk6QOW8AEAAAS9+/+zTRc9/qXeXr/vsNc/31Ha6vH6/MouiOrokJQCACBIeCulLhuVJUnaUOhQYzM78QEAAASrZpdbb60rlCS9t+HQLyQNw9Dn3x6UJGUnRkqS1rUs5fMHJKUAAAgS3qTUuJOSlBAVpsZmt7bsdxzzfQzD0COLv9WsV9Zq3lubfD0IAAAA4F++yitXRV2TJGn5rrJDeoruLatTYUW9wqwW/fzM3pKktXv9p68USSkAAIJAs8utA1We5Xs9EiI1KjdBkrTmOCYdH39zQI99ukPvbSzSy1/la97bmzo0VgAAAHSM77drqG9yafWe1nO/FbvLJEkjcxJ0ep9kSdKmff5TTU9SCgCAIHCg2im3IYVbQ5QcbdPJLUmpY91hxe32VElJ0sT+KZKkrUXVamhiJz8AAAB/4nIb+mjLAUnfLc1b1rJUz2vzPk/V/MicePVKjlZ8VJiczW59U1TVtcG2gaQUAABBwLt0L90eoZAQi0blfFcp1dZOLIfzn83F2lZcrVhbqB65YoSSY2xyuQ2/mbgAAADAY/WecpXWOGWPDNOcSf0kScu2/yAptd8zhxuSaZfFYtGYXomS/GdDHJJSAAAEAW9SKjM+QpI0LCteoSEWHahyal/l0W37axiGHvvUUyV1wxm9FB8VrmFZdknSpsJj700FAACAzvPuxv2SpEmD0jShX6pCLNL2A9Uqcnjmfs0ut7a1fLE4ODNOkvTjUdmSpH+tKTyk/5QZSEoBABAE9vmSUp7S7chwq2/y8fm3pW0+7/tW7CrTtwdqFB1u1Q1n9JIkDe3hSUptJCkFAADgNxqb3Xpvo6faadqIHkqIDtfQrHhJ0le7yyVJu0tr5Wx2Kzrcqp5J0ZKkCf1TlB4XofLaRi3+5oApsX8fSSkAAIJAUaWnyXmmPdJ3bnw/T0+o+f/eog83Fx/xHi+s2CtJuvTkHrJHhkmShmd7k1KVHRkuAAAATsDS7SWqrGtSaqxNY09KkiSN/sFGN95+UoMy4xQSYpEkhVpDdPnoLEnSq1/nd3XYhyApBQBAENj/g0opSbr17D46f3C6Gl1uzXx5jT5p59uwIke9Fm/1XL92bE/f+SEtlVI7D9ao1tncCZEDAADgWL29fp8k6ZIRmbK2JJx+uPvylv3epXv2Vs+9/JRsWSzSf3eWaW9ZbVeFfFihpr46AADoEPt+0FNKkmyhVj0xY6Tu/NdGvblun3752jrdf9kw7TxQLVks6psao5iIUFU3NOufqwvkchs6rXei+qXF+u6RGhuhDHuEihwN2rK/Sqe2NMcEAACAOcpqnPpka4kk6dKRWb7z3qTUtuIq1TibfZVS3pYOXlkJUTpnQJoiw61yuY9+Q5zOQFIKAIAgcLhKKclTov3Aj4bpQHWD/ruzTL98dV279/n5Wb0POTe0h11FjgZtLKwkKQUAAGCiGmezbnh+tRqb3RqYEaeBGd99mZgWF6GshEgVVtRrXX6Fb/fkH1ZKSdJfrx0li8XSZXG3haQUAAABzlHXpKoGz9K6HyalJCnMGqInrxqlq/62UntK6zShf4qiw0O182CNGpvdsoZYdHJOgqYMTdcpPQ9NOo3umaCPvzmgv3+Zpx+PypY9KqzT3xMAAABaMwxDN7+4WhsKKhUfFaZHrxhxSGJpVG6CCivq9fzyPapuaFa4NUR902IOuZc/JKQkklIAAAS8bcWeb8F6xEcqxnb4X+32yDC9O+sMScc+CblqTK5e+Spfe8rq9Jt3Nuv/fnLoBAgAAACda2OhQ//dWaaIsBC9eMMY9U+PPWTMqNwEvbN+v2953zkDUxVm9d924v4bGQAAOCpbW0qzv1++fTgWi+W4kknRtlA9csUIWUMsenfDfn22veS44gQAAMDxW9yyac3E/qkamnXokjxJOjknwfdzz6Qo3T99WJfEdrxISgEAEOC2FlVLkgZmxB1h5PEbmZOga07LlSS9tW5/p70OAAAADs+blJo0KK3NMQPSY5WVEKm4iFA9fe1ov2+7wPI9AAACnHf53oD0zktKSdK0kT303PI9WrL1gBqaXIoIs3bq6wEAAMAjv6xO2w9Uyxpi0dkDUtscF2oN0Qe/OlMul6GE6PAujPD4UCkFAEAAc7kNbT/grZRqf/neiRqeZVemPUK1jS59/u3BTn0tAACA7qiqoUnXP/u1/rGqoNX5j78pliSd0jNB8VHtJ5viIsICIiElkZQCACCg5ZXWqqHJrcgwq3KTojv1tSwWi6YMzZAk/Wdzcae+FgAAQHe0eMsBLd1+UPPe3qRvW754lKSPt3iX7qWbFVqnICkFAEAA8y7d65ceK2tI5++Id8FQz0Tok28OyNns6vTXAwAA6E72ltVKkppchua9tUlut6G1+RX6ek+5rCEWnT+EpBQAAPAT3p33BnXy0j2vkdkJSo+LULWzWR9sKuqS1wQAAOgu9pTV+X5etadCf/pspx5Z/K0k6bKTe6hHfKRZoXUKklIAAASwrth57/tCQiy6+rQcSdJflu2WYRhd8roAAADdwZ6WSqkz+iRLkv64+Ft9saNUoSEW3XZ2XzND6xQkpQAACGDeXgP907qmUkqSrj4tV1HhVm0rrtbnO0q77HUBAACCmWEYyiv1JKV+c9FA/ebCgbK0dGf48ehsZSdGmRhd5wg1OwAAAHB8Gpvd2l9ZL0nqldy5Tc6/Lz4qXFeemqNnvszTn5fu0vh+KV322gAAAMGqsq5J1Q3NkqTcxGgNODNO/dJitXT7Qf3ynD4mR9c5SEoBABCgCivq5DakyDCrUmJtXfraN5zRS898macVu8tU3dCk2IiwLn19AAAAf1JZ16iXv8rX1qIqVdQ1amL/VF12cpYSosOP+h55LUv3MuwRigy3SpLO6peis4L4C0CSUgAABKi95Z5GmDmJUbJYOn/nve/rER+phKgwVdQ1aV9lvQakk5QCAADd07JvD+rOf23QgSqn79x/d5bp4cXf6ulrRuuMvslHdR/vznu5ScG3TK8t9JQCACBA5bfszpJj0sQlK8HzuoXl9aa8PgAAgNmW7yrV9c9+rQNVTvVOjtbcKQP0u4sGaUB6rOoaXfrZC6u0YlfZUd1rT6lnbtczqevaMpiNpBQAAAEqv6VSKtekppdZCZ4tiQsr6o4wEgAAIPg0NLk0981NMgzpwqEZev+XZ+rm8SfphjN66Z1Zp2ti/xQ1NLn18xdWy1HXdMT7eXfe69mFvULNRlIKAIAAkV9Wpxpns+/x3pZKKbNKvL9LSlEpBQAAup/HPt2hvWV1So+L0MLLhvr6QEmSLdSqp64epZNSolXtbNZHW4p91xqaXNpTWivDMFrdb0+Zt1KK5XsAAMCPbC2q0sQ/LtWc19f7zuWXe75NyzGpxNu3fI+klF9ZuHChLBaLZs+e7TtnGIbmz5+vzMxMRUZGasKECdqyZYt5QQIAEOCqGpr0ty92S5L+95LBijvMpi8RYVZNPzlLkvTuxv0qdjTomme+0rD5H2vCQ0v17H/3tBr/XU8pKqUAAIAf+e/OUrnchpZ9e1BNLrcMw/Cf5XuVLN/zF6tWrdLTTz+tYcOGtTq/aNEiPfzww3riiSe0atUqpaena9KkSaqurjYpUgAAAtu6/Eo1uQzlJEZp8uD0NsddNCxDkmcuN+uVtfpiR6kaXW5J0l8+36Wmlp+LHQ2qbFniR6NzAADgV7bsr5IkOZvd2lZUrZJqpxqa3LKGWNSjJTnU1aiU8i81NTW66qqr9Ne//lUJCQm+84Zh6NFHH9W8efM0ffp0DRkyRM8//7zq6ur0yiuvmBgxAACBa82ecknS6NyEdsflJkVreJZdbkNavbdC4aEheuOWsUqJtelAlVMfbCqSJN3/n62SpBHZ8YoKD+3c4P0ISSkAAALAlv0O38/rCyp8/aQy4yMUZjXn17k3GVZZ16TqhiM370TnuvXWW3XhhRfq3HPPbXU+Ly9PxcXFmjx5su+czWbT+PHjtXz58jbv53Q6VVVV1eoAAAAeq/dWSJJG9Ww/KSVJU4dn+n7+1Tl9NSo3UVePyZUk/f3LPH24uUhvr9+vEItnKWB3QlIKAAA/19Dk0q6Dtb7H6woqv+s5kGhez4EYW6gSojz9E/ZVUi1lptdee01r167VwoULD7lWXOxprJqWltbqfFpamu/a4SxcuFB2u913ZGdnd2zQAAAEqGaXW+sLKiVJo3MTjzj+4hGZSogK06jcBP38rN6SpKtOy1G4NUQbCh36xUtrJUnXju2pYVnxnRW2XyIpBQCAn9teXC2X+7vdWdYXVPr6SeWY3HPAt4SvnKSUWQoKCvSrX/1KL730kiIiItocZ7FYWj02DOOQc983d+5cORwO31FQUNBhMQMAEMi2FVerrtGl2IhQ9U2NOeL41NgIrbz7HL3289N8Fe7JMTb97MxeslikyDCrRuUm6PbJ/To7dL/TfRYqAgAQoLz9pIb0iNPmfVXafbBWn2wtkWT+lsFZCZHatM+hwgqanZtlzZo1Kikp0ahRo3znXC6XPv/8cz3xxBPavn27JE/FVEZGhm9MSUnJIdVT32ez2WSz2TovcAAAAtTqln5SJ+ckKCSk7S94vs8Waj3k3J3nD9Adk/sf9T2CEZVSAAD4OW8/qdP7JPt2Y9laVKUYW6guGJrR3lM7nW8HPpqdm+acc87Rpk2btH79et8xevRoXXXVVVq/fr169+6t9PR0LV682PecxsZGLVu2TOPGjTMxcgAAApO3n9SRmpwfje6ckJKolAIAwO95K6UGZ9pV7GjwNTm/79IhvuVzZmEHPvPFxsZqyJAhrc5FR0crKSnJd3727NlasGCB+vbtq759+2rBggWKiorSjBkzzAgZAADTOZtd+tOSnZo8OF1DetiP6bnr8islSaM6ICnV3ZGUAgDAj7nchrYVe5NScZKkd9bv15WnZuuSET3MDE3Sd5VS3xRVqcnlNm0nQLTvzjvvVH19vWbOnKmKigqNGTNGH3/8sWJjY80ODQAAU/xrTaH+b8lOLf32oP4964yjfl5ZjdO3wcvQrGNLZuFQJKUAAPBj+eV1amhyKyIsRD2TotU7OVon58SrR3yk2aFJ8nxDaI8MU355nZ5auku/PKev2SFB0tKlS1s9tlgsmj9/vubPn29KPAAA+Juvdnv6Qm0sdOhgtVMpsUfXR3HTPk9bhd4p0YqNCOu0+LoLU7/OXLhwoU455RTFxsYqNTVV06ZN8zXj9Lr++utlsVhaHaeddlqrMU6nU7fddpuSk5MVHR2tiy++WIWFhV35VgAA6BR7SmslST2TomUN8fwezEqIanfXtK4UHxWuey8eLEn6v093aHPLRA0AAMBfGYahr/PKfY8///bgUT93U6FnrjPsGJf84fBMTUotW7ZMt956q1auXKnFixerublZkydPVm1tbatx559/voqKinzHBx980Or67Nmz9dZbb+m1117Tl19+qZqaGl100UVyuVxd+XYAAOhweS1JqV7J0SZH0rZLRmTq/MHpanYb+v1735gdDgAAQLsKK+pVXNXge7z0GJJSG1u+gDvWPlQ4PFOX73344YetHj/77LNKTU3VmjVrdNZZZ/nO22w2paenH/YeDodDzzzzjF588UWde+65kqSXXnpJ2dnZ+uSTT3Teeed13hsAAKCTeZNSPf04KWWxWHTPxYO0ZFuJvsor18rdZTqtd5LZYQEAABzWVy1VUrERoapuaNYXOw7K5TZkPcxOeMt3lio51qZ+aZ4+jL5Kqaz4Los3mPlVN1KHw/MfNzExsdX5pUuXKjU1Vf369dNNN92kkpIS37U1a9aoqalJkydP9p3LzMzUkCFDtHz58sO+jtPpVFVVVasDAAB/tKespVIqyX+TUpKUYY/U5adkSfIs4wMAAPBXq1qSUleMzlZcRKgq65p01d9Watqf/qsix3c7Cn/+7UHN+NtXmvzI55rx15VavqtUxVUNsli+24AGJ8ZvklKGYWjOnDk644wzWm1rPGXKFL388stasmSJ/vjHP2rVqlU6++yz5XQ6JUnFxcUKDw9XQkLrrRjT0tJUXFx82NdauHCh7Ha778jOzu68NwYAwAnwLd9L8e+klCTdMqGPwqwWLd9VptV7yo/8BAAAABN83TJPGXtSks7smyJJWrm7XOsLKvXm2n2+ce9t3O/7efmuMl33968lSSelxCjaxr5xHcFvklKzZs3Sxo0b9eqrr7Y6f8UVV+jCCy/UkCFDNHXqVP3nP//Rt99+q/fff7/d+xmG0WYT2Llz58rhcPiOgoKCDnsfAAB0lIYml2/L4Z5+XiklST3iIzV9pKda6pWv802OBgAA4FAHq53KK62VxSKNzk3UzIkn6Yw+yRrb0npg5e4ySZLLbejTrZ5VWg/+aJj6pcWoyWVIosl5R/KLpNRtt92mf//73/rss8+UlZXV7tiMjAzl5uZqxw7P0oD09HQ1NjaqoqKi1biSkhKlpaUd9h42m01xcXGtDgAA/E1BeZ0MQ4q1hSo5JtzscI7Kj0d7fo9/tLlYDU1sOAIAAPzLjpJqSVJuYpTsUWEanGnXSz8bo3suHiRJWr2nQk0ut9bmV6istlFxEaGaNrKHnv3pqUqNtUmSRubEmxV+0DE1KWUYhmbNmqU333xTS5YsUa9evY74nLKyMhUUFCgjI0OSNGrUKIWFhWnx4sW+MUVFRdq8ebPGjRvXabEDANDZvt/kvK3qX39zck6CesRHqrbR5ft2EQAAwF/kl9VJknJ/UIXeLzVWCVFhqm9yaWOhQ4u/OSBJOntAqsKsIeoRH6l//mKsfnPhQP14NC2AOoqpSalbb71VL730kl555RXFxsaquLhYxcXFqq/3LFWoqanRHXfcoRUrVmjPnj1aunSppk6dquTkZF166aWSJLvdrhtvvFG33367Pv30U61bt05XX321hg4d6tuNDwCAQBQIO+/9UEiIRZeMyJQkvbN+3xFGAwAAdK09vqRUVKvzISEWjen13RK+j7d4elRPHpzuG5ObFK2fndlbEWHWLoo2+JmalHrqqafkcDg0YcIEZWRk+I7XX39dkmS1WrVp0yZdcskl6tevn6677jr169dPK1asUGxsrO8+jzzyiKZNm6bLL79cp59+uqKiovTuu+/KauUvCgAgcPl23gugpJQkXTKihyRp6faDctQ1mRwNAADAd/LLPfOrH1ZKSdJpvRMlSU9+tlN7yupkCw3RWf1SujS+7sbUdvGGYbR7PTIyUh999NER7xMREaHHH39cjz/+eEeFBgCA6Xw77yVHHWGkf+mfHqsB6bHaVlyt/2wu0k9OzTE7JAAAAEnSXm+lVOKh86vTTvJUStU2evpi3jN1sGLYZa9T+UWjcwAAcKjdB1uW7wXAzns/dLFvCd/+I4wEAADoGoZhfK+n1KFJqX6psUqL8zQzv/uCAZoxhi/WOhspPwAA/FBFbaNKqp2SpL5psUcY7X8uHp6pRR9u18q8MhU7GpRujzA7JAAA0M1V1DWp2tksSco+TKVUSIhFL944RsWOBpbtdREqpQAA8ENbi6okSTmJUQFZNp6VEKVTeibIMKR3N1AtBQAAzOft15lhj2izWXm/tFgSUl2IpBQAAH7om5ak1MCMwKuS8rq4peH5OxvYhQ8AAJjPu3Qv5zBVUjAHSSkAAPzQ1qJqSdLAjDiTIzl+Fw7NkDXEos37qlTsaDA7HAAA0M3tbaefFMxBUgoAAD+0rdhbKRW4SanE6HD1TvY0ad/a8n4AAADMsrfcs3wvNwA3kQlWJKUAAPAzTS63dhyokSQNTA/cpJQkDWhJqnl7ZAEAAJilvZ33YA6SUgAA+JndB2vV6HIrxhaqrIRIs8M5Id6eWNtaliMCAACYZY83KZVIpZS/ICkFAICf8VYVDUiPVUiIxeRoToy30msby/cAAICJKusaVVrjlCT1TKZSyl+QlAIAwM/4klIBvPOel/c97DpYq4Yml8nRAACA7sq7s3F2YqRiI8JMjgZeJKUAAPAz3x7wLHUbEOD9pCQpPS5C8VFhcrkN7SypMTscAADQTfl2Ng6C+VUwISkFAICfKXI0SFLA95OSJIvFogHpLX2liukrBQAAzOGtRA/knY2DEUkpAAD8zMFqT7+D1NgIkyPpGN6KL3bgAwAAZiEp5Z9CzQ4AAAB8p7HZrbLaRklSWpzN5Gg6xqCWyd8nWw8oIixEPx6VrZ7J7HoDAAC6RpPLrR0HPG0EBpGU8itUSgEA4Ee8u8KEhliUEBVucjQdY2iWXZK0t6xOf/psl+77YKvJEQEAgO5k98FaNbrcirGFBkV7hGBCUgoAAD9S4lu6Z1NIiMXkaDrGwIw4PXz5cE0/uYck0fAcAAB0qW+KHJKkAemxQTO/ChYkpQAA8CMHqjxNzlPigqOflNf0k7N0x+T+kqTCijq53IbJEQEAgO7Ct/MeS/f8DkkpAAD8yPcrpYJNelyEwkND1OQytL+y3uxwAABAN0GTc/9FUgoAAD9S0lIpFSxNzr8vJMSi7JY+DvnldSZHAwAAuovdB2slSf3SYkyOBD9EUgoAAD9SUuWtlAqu5XteuUmeXff2lpGUAgAAna+hyaX9Dk+FNrv/+h+SUgAA+JGS6uCtlJKknMQoSdLe8lqTIwEAAN1BQXmdDEOKsYUqKTo4djYOJiSlAADwIweCvFLKm5TKp1IKAAB0gbxSzxdhPZOjZLGw856/ISkFAIAf8TY6TwnCRueSlJvUUilFUgoAAHQB75zD20IA/oWkFAAAfqLZ5VZZrScplRYXnJVS3qRUfnmdDMMwORoAABDs8so8lVK9SEr5JZJSAAD4idKaRhmGZA2xBG3Pg6yEKFksUo2zWeW1jWaHAwAAgtzelqSU94sx+BeSUgAA+Alvk/OUGJtCQoKz50FEmFXpLVVge8tZwgcAADrXnlLPfKMXO+/5JZJSAAD4iRJvk/Mg3XnPi2bnAACgKzQ0ubTfUS+JnlL+iqQUAAB+4kBLpVRqkDY596LZOQAA6AqFFXUyDCnGFqrkmOBsjRDoSEoBAOAnvJVSKbHB2eTcK90eKem75YoAAACdIa/Uu/NelCyW4GyNEOhISgEA4CeKWsrLM+3BnZRKafmmsrTGaXIkAAAgmHmbnPekn5TfIikFAICfKHJ4Kocy4iNNjqRzJcd4lieW1rD7HgAA6Dyb9jkkST3Zec9vkZQCAMBP7KtsqZSKD+5KqeSWnlkHq6mUAgAAneNAVYM+2FQkSTp3YJrJ0aAtoWYHAAAAJMMwtL8lKdUjyCulUnyVUiSlAABAxzIMQ4YhPb98j5pchkbnJmhkToLZYaENJKUAAPADlXVNamhyS5LSg7ynlLdSqq7RpbrGZkWFMx0BAAAnrqzGqXMfXqYwa4jqG12SpJ+d2dvkqNAelu8BAOAHvEv3kmNssoVaTY6mc0WHWxUR5pmClFbTVwoAAHSM1XsrVFHXpJJqp6qdzeqZFKVJg1i658/4ahIAAD/gbXLeI8j7SUmSxWJRcoxNhRX1OljjVA7NRwEAQAfIL6uTJA3KiNNJqTG6ekyOrCEWk6NCe0hKAQDgB7z9pDLswd1PysublKKvFAAA6Ch7y2slSRMHpOj/nTfA5GhwNFi+BwCAH9jv23mv+ySlJJqdAwCAjrO3pVIqNzHa5EhwtEhKAQDgB/a3LN/L7AbL9yQpJTZcEj2lAABAx8kv9ySlaA0QOEhKAQDgB7pbpVRKS6XUwZoGkyMBAADBoNnl1r4Kz3wql6RUwCApBQCAH+huSank2Jble1RKAQCADrC/skHNbkPhoSFKi+0elefBgKQUAAAma3a5daCqey3fo6cUAADoSN4m5zmJUQphx72AQVIKAACTHah2ym1IYVaLkqNtZofTJUhKAQCAjvRdk3OW7gUSklIAAJjMu3Qvwx7Zbb7ZS45paXRew/I9AABw4vaWtVRK0U8qoJCUAgDAZEUtO++l27vH0j3pu55SNc5mNTS5TI4GAAAEOiqlAhNJKQAATFbS0k8qLa77JKVibaGyhXqmIQerWcIHAABOTH55S1IqKdrkSHAsSEoBAGCygy19lVJiukc/KUmyWCy+vlIH6SsFAABOgGEYvqQUy/cCC0kpAABM5q0USo3rPkkp6bslfCVVJKUAAMDxK6l2qq7RpRCLlJUQaXY4OAYkpQAAMJk3KdWdKqUkqW9qjCRp075KcwMBAAABbdfBGklSTmKUbKFWk6PBsSApBQCAyXxJqdjulZQanZsgSVq9p8LkSAAAQCDbddCz817vlBiTI8GxMjUptXDhQp1yyimKjY1Vamqqpk2bpu3bt7caYxiG5s+fr8zMTEVGRmrChAnasmVLqzFOp1O33XabkpOTFR0drYsvvliFhYVd+VYAADhu3TYp1dOTlFpfUKnGZrfJ0QAAgEC1u6VS6qQUmpwHGlOTUsuWLdOtt96qlStXavHixWpubtbkyZNVW1vrG7No0SI9/PDDeuKJJ7Rq1Sqlp6dr0qRJqq6u9o2ZPXu23nrrLb322mv68ssvVVNTo4suukguF1tMAwD8W5PLrfK6RkndLyl1UkqMEqLC5Gx2a8t+h9nhAACAAOWtlDqJSqmAE2rmi3/44YetHj/77LNKTU3VmjVrdNZZZ8kwDD366KOaN2+epk+fLkl6/vnnlZaWpldeeUU333yzHA6HnnnmGb344os699xzJUkvvfSSsrOz9cknn+i8887r8vcFAMDRKq9tlGFI1hCLEqLCzQ6nS1ksFo3KTdAnW0u0Zm+FRuYkmB0SAAAIQN5KKZbvBR6/6inlcHi+JU1MTJQk5eXlqbi4WJMnT/aNsdlsGj9+vJYvXy5JWrNmjZqamlqNyczM1JAhQ3xjfsjpdKqqqqrVAQCAGbxL95Kiw2UNsZgcTdcb3dPzO3/VnnKTIwEAAIGoocmlfZX1kli+F4j8JillGIbmzJmjM844Q0OGDJEkFRcXS5LS0tJajU1LS/NdKy4uVnh4uBISEtoc80MLFy6U3W73HdnZ2R39dgAAOCrepFRqXPdauuflbXa+Zm+FDMMwORoAABBo8kprZRiSPTJMidHdq+o8GPhNUmrWrFnauHGjXn311UOuWSytvzk2DOOQcz/U3pi5c+fK4XD4joKCguMPHACAE+Brch7TPZNSQ7PsCg8NUWlNozbto68UAAA4Nrt9/aSij5gngP/xi6TUbbfdpn//+9/67LPPlJWV5Tufnp4uSYdUPJWUlPiqp9LT09XY2KiKioo2x/yQzWZTXFxcqwMAADMcrOmeO+952UKtunBohiTp6c93mxwNAAAINLvoJxXQTE1KGYahWbNm6c0339SSJUvUq1evVtd79eql9PR0LV682HeusbFRy5Yt07hx4yRJo0aNUlhYWKsxRUVF2rx5s28MAAD+qqSqQVL3TUpJ0s/P6i1J+mBTkfaW1R5hNA7nqaee0rBhw3xfto0dO1b/+c9/fNcNw9D8+fOVmZmpyMhITZgwQVu2bDExYgAAOoa3yTk77wUmU5NSt956q1566SW98sorio2NVXFxsYqLi1Vf72lSZrFYNHv2bC1YsEBvvfWWNm/erOuvv15RUVGaMWOGJMlut+vGG2/U7bffrk8//VTr1q3T1VdfraFDh/p24wMAwF/5KqW66fI9SRqYEacJ/VPkNqS/fkG11PHIysrS/fffr9WrV2v16tU6++yzdckll/gST4sWLdLDDz+sJ554QqtWrVJ6eromTZqk6upqkyMHAODE7C71fKHVmybnAcnUpNRTTz0lh8OhCRMmKCMjw3e8/vrrvjF33nmnZs+erZkzZ2r06NHat2+fPv74Y8XGxvrGPPLII5o2bZouv/xynX766YqKitK7774rq9VqxtsCAOCo+XpKxUaYHIm5vNVSb67dp2aX2+RoAs/UqVN1wQUXqF+/furXr5/uu+8+xcTEaOXKlTIMQ48++qjmzZun6dOna8iQIXr++edVV1enV155xezQAQA4IYUVnqKWnMQokyPB8Qg188WPZpcdi8Wi+fPna/78+W2OiYiI0OOPP67HH3+8A6MDAKDzfZeU6r6VUpJ0Wq8kRYdbVdvo0s6DNRqQTr/H4+VyufTPf/5TtbW1Gjt2rPLy8lRcXKzJkyf7xthsNo0fP17Lly/XzTfffNj7OJ1OOZ1O3+OqqqpOjx0AgGPR0ORSeW2jJCnTHmlyNDgeftHoHACA7oqklEdIiEWDe9glSZsK2YXveGzatEkxMTGy2Wz6xS9+obfeekuDBg3ybRjzww1g0tLSDtlM5vsWLlwou93uO7Kzszs1fgAAjlWxw9ObMyrcqrhIU2tucJxISgEAYJJaZ7NqG12SpNRunpSSpGHepNQ+klLHo3///lq/fr1WrlypW265Rdddd52++eYb3/UfbpNtGEa7W2fPnTtXDofDdxQUFHRa7AAAHI/9Ds/SvXR7RLu/0+C/SCUCAGCSkpYqqcgwq6Jt/EoemuVJSm2kUuq4hIeHq0+fPpKk0aNHa9WqVXrsscd01113SZKKi4uVkZHhG19SUnJI9dT32Ww22WwkSwEA/stbKcXSvcBFpRQAACbZWeLZwrhnMrvFSNKwrHhJ0taiKjXR7PyEGYYhp9OpXr16KT09XYsXL/Zda2xs1LJlyzRu3DgTIwQA4MQUtSSl0u3de8OYQMbXsgAAmOTbA9WSpP5pMSZH4h9yE6MUawtVtbNZOw7UaFAmzc6P1t13360pU6YoOztb1dXVeu2117R06VJ9+OGHslgsmj17thYsWKC+ffuqb9++WrBggaKiojRjxgyzQwcA4LgVtSzfyyQpFbBISgEAYBJvUqpfeqzJkfiHkBCLhvSwa8XuMm3aV0lS6hgcOHBA11xzjYqKimS32zVs2DB9+OGHmjRpkiTpzjvvVH19vWbOnKmKigqNGTNGH3/8sWJj+bsHAAhcRZXeSimW7wUqklIAAJhke7G3UorEgNewLG9SyqErTjE7msDxzDPPtHvdYrFo/vz5mj9/ftcEBABAF/Au38uIp1IqUNFTCgAAEzS73Np9sFaS1I+klM/w7HhJ0mfbDtJXCgAAtMu7fC+D5XsBi6QUAAAm2FNWp0aXW1HhVvWIp+Tc6+wBqUqOsWlfZb3eXrfP7HAAAICfamhyqaKuSZKUEcdcKlCRlAIAwATeflJ902IVEmIxORr/ERFm1c/P6iVJenLpLrnchskRAQAAf+RduhcVblVcJJ2JAhVJKQAATPBdPyl23vuhq8bkKj4qTHmltXp/U5HZ4QAAAD9UVOlZupduj5DFwhd8gYqkFAAAJvDtvEc/qUNE20J17Wm5kqQPNpKUAgAAh/JWSmWy815AIykFAIAJtpOUateZ/VIkSav3lsswWMIHAABa8zY5T6fJeUAjKQUAQBdrcrm1t6xOktSX5XuHNSzLrvDQEJXWNCqvtNbscAAAgJ/5rlKKpFQgIykFAEAXKyivk8ttKDLMqvQ4JlKHYwu1aniWXZK0ek+FydEAAAB/4/3SKishyuRIcCJISgEA0MX2lHkmUblJUTTmbMcpPRMlSav2lJscCQAA8CeGYWjL/ipJ0qDMOJOjwYkgKQUAQBfLK/Us3euVHG1yJP6NpBQAADic/Y4GOeqbFBpioRVCgCMpBQBAF9vTUm7ek6RUu07OTZDFIu0pq1NJdYPZ4QAAAD+xZZ9DktQnNUa2UKvJ0eBEkJQCAKCLeZfv9UoiKdUee2SY+rfsTvjZthKTowEAAP7Cu3RvcKbd5EhwokhKAQDQxfKolDpqU4dnSpIe/OhbOeqbTI4GAAD4g2+KvEkp+kkFOpJSAAB0IWezS/sr6yVJPZPZLeZIfnZmL/VOiVZpjVOLPtxmdjgAAMAPfEOT86BBUgoAgC5UUF4vtyFFh1uVEmMzOxy/Zwu1asGlQyVJL3+Vr4LyOpMjAgAAZqqsa9S+li/4SEoFPpJSAAB0oe83ObdYLCZHExhO652kIT08k85txdUmRwMAAMzkrZLKToxUXESYydHgRJGUAgCgC3mbnNNP6tjkJno+r3wqpQAA6Na8/aQGZVAlFQxISgEA0IW8Tc7Zee/YZCd6+m/ltyT1AABA97S7ZS7Vr2WHXgQ2klIAAHQhdt47PjnepBSVUgAAdGt5B1vmUnzBFxRISgEA0EXcbkOb9zkkSf35du+Y5CaRlAIAALRCCDYkpQAA6CJ5ZbWqamiWLTREAzJISh0Lb6VUQUW93G7D5GgAAIAZ6htdKnI0SJJ6k5QKCiSlAADoIuvzKyVJQ3vYFWblV/CxyLBHyBpiUWOzWyXVTrPDAQAAJvBWSdkjw5QQHW5yNOgIzIgBAOgi6wsqJUkjsuNNjSMQhVpD1CM+UpK0l2bnAAB0S3u8G8ZQJRU0SEoBANBFvEmpkTkJ5gYSoGh2DgBA97abpFTQISkFAEAXaGhyaWtRlSRpRE68ucEEqJyWZucFJKUAAOiWvJVS7LwXPEhKAQDQBTbvc6jZbSgl1qZMe4TZ4QQkKqUAAOje8ryVUikkpYIFSSkAALrA9/tJWSwWc4MJUCSlAADo3ryNzntRKRU0SEoBANAFNhY6JNHk/ER4k1Jb9lfpJ0+v0BtrCk2OCAAAdJWqhiaV1jRKknomR5kcDTpKqNkBAADQHWze70lKDc6MMzmSwNUzOVqRYVbVN7m0cne5tuyr0oXDMhQRZjU7NAAA0Mm8/aSSY2yKjQgzORp0FCqlAADoZLXOZl8PhMGZdpOjCVwxtlC9ccs4PXLFcGXaI1TtbNbH3xwwOywAANAFCivqJUk5iZEmR4KORFIKAIBOtq24SoYhpcXZlBJrMzucgDYoM06XjszSZaOyJElvrmUJHwAA3cGBqgZJUjobxgQVklIAAHSyLfurJFEl1ZEuHdlDkvT5twdV0jJJBQAAwau45fd9WhxJqWBCUgoAgE62ZZ83KUU/qY7SOyVGJ+fEy21ID360XbXOZrNDAgAAneiAg6RUMCIpBQBAJ9tSRJPzznDduJ6SpH+uKdTZf1zq69sFAACCz4EqpyQpnaRUUCEpBQBAJ2psdmt7cbUklu91tEtG9NCfrz5ZWQmROlDl1PPL95gdEgAA6CTenlKpcfTnDCYkpQAA6EQ7SqrV5DIUFxGqrAR2i+lo5w/J0G8vGiRJWvbtQZOjAQAAncXX6JxKqaBCUgoAgE7kbXI+KDNOFovF5GiC07iTkhQaYlFeaa32lrGEDwCAYFPd0KTaRpckekoFG5JSAAB0om/Yea/TxUaEaVRugiTPbnwAACC4ePtJxdpCFW0LNTkadCSSUgAAdKIt+z1Nzof0oMl5ZxrfP0USS/gAAAhG3qV7aXaqpIINSSkAADqJ221QKdVFxvfzJKWW7yqTs9llcjQAAKAjFTtaklI0OQ86x1X3Vltbq2XLlik/P1+NjY2trv3yl7/skMAAAAh0e8pqVdvoki00RL2To80OJ6gNyohTSqxNB6udWrOnQuP6JJsd0lFhTgUAwJEdqPYmpaiUCjbHnJRat26dLrjgAtXV1am2tlaJiYkqLS1VVFSUUlNTmUABANDC2+R8QEacQq0UJ3cmi8Wi009K0tvr92v5rrKASEoxpwIA4OgccLDzXrA65hny//zP/2jq1KkqLy9XZGSkVq5cqb1792rUqFF66KGHjulen3/+uaZOnarMzExZLBa9/fbbra5ff/31slgsrY7TTjut1Rin06nbbrtNycnJio6O1sUXX6zCwsJjfVsAAHS4Lb6le/ST6greRNR/d5WaHMnR6cg5FQAAwczb6JxKqeBzzEmp9evX6/bbb5fVapXVapXT6VR2drYWLVqku++++5juVVtbq+HDh+uJJ55oc8z555+voqIi3/HBBx+0uj579my99dZbeu211/Tll1+qpqZGF110kVwu+kkAAMzlbXJOUqprjDspSZK0sdCh6oYmk6M5so6cUwEAEMyKq1i+F6yOefleWFiYLBaLJCktLU35+fkaOHCg7Ha78vPzj+leU6ZM0ZQpU9odY7PZlJ6efthrDodDzzzzjF588UWde+65kqSXXnpJ2dnZ+uSTT3TeeecdUzwAAHQUw6DJeVfLSohSblKU9pbV6eu8cp0zMM3skNrVkXMqAACCWUkVjc6D1TFXSo0cOVKrV6+WJE2cOFG/+93v9PLLL2v27NkaOnRohwe4dOlSpaamql+/frrppptUUlLiu7ZmzRo1NTVp8uTJvnOZmZkaMmSIli9f3uGxAABwtIqrGlRW2yhriEUD0mPNDqfbGHdSyxK+nWUmR3JkXT2nAgAgELndhkqqPcv30u1USgWbY05KLViwQBkZGZKk3//+90pKStItt9yikpISPf300x0a3JQpU/Tyyy9ryZIl+uMf/6hVq1bp7LPPltPp+QtZXFys8PBwJSQktHpeWlqaiouL27yv0+lUVVVVqwMAgI60qdCzdK9PSowiwqwmR9N9nN7Hs4RveQD0lerKORUAAIHqQHWDmt2GQixSSgyVUsHmqJfv1dTUKCYmRqNHj/adS0lJOaTHU0e64oorfD8PGTJEo0ePVm5urt5//31Nnz69zecZhuErhz+chQsX6t577+3QWAEA+L71BZWSpBHZ8abG0d2M7e1JSm0rrlZpjVPJfjh5NWNOBQBAoNrQMqfqlxbLbsZB6Kj/iyYnJ2vKlCl66qmntG/fvs6MqU0ZGRnKzc3Vjh07JEnp6elqbGxURUVFq3ElJSVKS2u7j8TcuXPlcDh8R0FBQafGDQDofjYUVkqShpOU6lJJMTZNHZ6pm87sJbfbMDucw/KHORUAAIFiXX6lJGlkTkL7AxGQjjoptX37dl1wwQV644031Lt3b51yyin6/e9/r40bN3ZmfK2UlZWpoKDAV+o+atQohYWFafHixb4xRUVF2rx5s8aNG9fmfWw2m+Li4lodAAB0FLfb0MYCz/I9KqW63uNXjtS8Cwcp1U936PGHORUAAIFibb6nCGVkTry5gaBTHHVSKjc3V7fddps++eQTlZSUaM6cOdqyZYvOOuss9erVS7/61a+0ZMkSuVyuo37xmpoarV+/XuvXr5ck5eXlaf369crPz1dNTY3uuOMOrVixQnv27NHSpUs1depUJScn69JLL5Uk2e123Xjjjbr99tv16aefat26dbr66qs1dOhQ3258AAB0td2lNap2NisyzKp+aTFmhwM/0xlzKgAAglGTy62NLX06T6ZSKigd14JMu92uK6+8Uq+99ppKS0v1l7/8RW63Wz/96U+VkpKil19++ajus3r1ao0cOVIjR46UJM2ZM0cjR47U7373O1mtVm3atEmXXHKJ+vXrp+uuu079+vXTihUrFBv73S5GjzzyiKZNm6bLL79cp59+uqKiovTuu+/KaqWpLADAHOtbqqSG9rDT+wDt6qg5FQAAwWhrUZWczW7FRYSqd3K02eGgE1gMw+jQhgtr166Vy+XSKaec0pG37VRVVVWy2+1yOBws5QMAnLDfvL1JL63M101n9tK8CweZHQ46WFfNG/xtTsV8CQDQ1Z5fvkf3/HuLxvdL0fM3nGp2ODgGRztvOOrd97za6ndgsVgUERGhwYMHy2bzv51uAADoKht8/aQoM0fbmFMBANA++kkFv2NOSo0YMUIWi6XN62FhYbriiiv0l7/8RRER/tlgFACAzuKoa9LWoipJ0vBsu8nRwJ8xpwIAoH3rCyol0U8qmB1zo4u33npLffv21dNPP63169dr3bp1evrpp9W/f3+98soreuaZZ7RkyRL95je/6Yx4AQDwa//euF/NbkP902LVIz7S7HDgx5hTAQDQtlpns/aW1UmSBmeybDxYHXOl1H333afHHntM5513nu/csGHDlJWVpd/+9rf6+uuvFR0drdtvv10PPfRQhwYLAIC/+9eaQknSj0dntVsFAzCnAgCgbTtLaiRJyTHhSophOXuwOuZKqU2bNik3N/eQ87m5udq0aZMkTzl6UVHRiUcHAEAA2XGgWhsKKhUaYtG0kT3MDgd+jjkVAABt+/ZAtSSpb2qsyZGgMx1zUmrAgAG6//771djY6DvX1NSk+++/XwMGDJAk7du3T2lpaR0XJQAAAeCfLVVSE/qnKplv9HAEzKkAAGjbjpZKqX5pMSZHgs50zMv3/vSnP+niiy9WVlaWhg0bJovFoo0bN8rlcum9996TJO3evVszZ87s8GABAPBX1Q1N+sfqAknSj0ZlmRwNAgFzKgAA2uarlEqjUiqYHXNSaty4cdqzZ49eeuklffvttzIMQz/60Y80Y8YMxcZ6/rJcc801HR4oAAD+7Pnle1RZ16TeydE6d2Cq2eEgADCnAgCgbTsOeCulSEoFs6NOSt1www167LHHFBsbq5iYGP3iF7/ozLgAAAgYVQ1N+usXeZKkX53bV6HWY14dj26EORUAAO2rdTZrX2W9JJbvBbujnjU///zzqq+v78xYAAAISC+u2CtHfZP6pMboomGZZocDP8ecCgCA9nn7SaXE2hQfFW5yNOhMR52UMgyjM+MAACBgLdlWIkn62Rm9ZA2xmBwN/B1zKgAA2uftJ0WVVPA7pvUFFgsTbQAAvq+x2a1N+xySpDG9k0yOBoGCORUAAG3b4W1ynko/qWB3TI3O+/Xrd8RJVHl5+QkFBABAINmy36HGZrcSo8PVMynK7HAQIJhTAQDQtm+KqiTR5Lw7OKak1L333iu73d5ZsQAAEHDW5ldKkkZmx1P9gqPGnAoAgMNzNru0Zm+FJGl0zwSTo0FnO6ak1E9+8hOlprLNNQAAXmvzPZOmk3OZNOHodeScauHChXrzzTe1bds2RUZGaty4cXrggQfUv39/3xjDMHTvvffq6aefVkVFhcaMGaM//elPGjx4cIfEAABAR1mXX6mGJreSY2zqm0pPqWB31D2l+PYXAIBDrWv5Jm9kTry5gSBgdPScatmyZbr11lu1cuVKLV68WM3NzZo8ebJqa2t9YxYtWqSHH35YTzzxhFatWqX09HRNmjRJ1dXVHRoLAAAnavnOUknSuJOSyEN0A0ddKcVOMQAAtFbsaNB+R4NCLNLwrHizw0GA6Og51Ycfftjq8bPPPqvU1FStWbNGZ511lgzD0KOPPqp58+Zp+vTpkqTnn39eaWlpeuWVV3TzzTd3aDwAAJyI5bvKJHmSUgh+R10p5Xa7WboHAMD3eJfu9U+PU7TtmFbEoxvr7DmVw+HZDTIxMVGSlJeXp+LiYk2ePNk3xmazafz48Vq+fHmnxQEAwLGqdTZrfUGlJOn0PsnmBoMuwQwaAIDj9PqqAknSab0TTY4E8DAMQ3PmzNEZZ5yhIUOGSJKKi4slSWlpaa3GpqWlae/evW3ey+l0yul0+h5XVVV1QsQAAHzn6z3lanYbykqIVHYiuxp3B0ddKQUAAL6zoaBSy749KGuIRT8d18vscABJ0qxZs7Rx40a9+uqrh1z7YV8OwzDa7dWxcOFC2e1235Gdnd3h8QIA8H0rd7N0r7shKQUAwHF4fMlOSdIlIzKVk8Q3eTDfbbfdpn//+9/67LPPlJWV5Tufnp4u6buKKa+SkpJDqqe+b+7cuXI4HL6joKCgcwIHAKDFhpale6PY1bjbICkFAMAxWrGrTJ9sPSCLRbp1Yh+zw0E3ZxiGZs2apTfffFNLlixRr16tK/d69eql9PR0LV682HeusbFRy5Yt07hx49q8r81mU1xcXKsDAIDO4nIb2rzPs1R8GBvIdBv0lAIA4BgUVtTp1lfWSpIuH5Wtk1JiTI4I3d2tt96qV155Re+8845iY2N9FVF2u12RkZGyWCyaPXu2FixYoL59+6pv375asGCBoqKiNGPGDJOjBwDAY/fBGtU4mxUZZlXfVOZX3QVJKQAAjpLbbegXL61ReW2jhvSI0/yLB5sdEqCnnnpKkjRhwoRW55999lldf/31kqQ777xT9fX1mjlzpioqKjRmzBh9/PHHio2N7eJoAQA4vA2Fnt1jh/SIU6iVRV3dBUkpAACO0vYD1dq8r0qRYVb95ZrRigy3mh0SIMMwjjjGYrFo/vz5mj9/fucHBADAcfD2kxrO0r1uhfQjAABHaX3LZGlkTrx6xEeaGwwAAEAQ2VhYKUkalh1vahzoWiSlAAA4SuvyKyRJI5gsAQAAdBhns0tbi6olScOz7CZHg65EUgoAgKP0XaUU2xQDAAB0lG1F1Wp0uRUfFaacxCizw0EXIikFAMBRqG5o0o6SGklUSgEAAHQk39K9rHhZLBZzg0GXIikFAMBR2FTokGFIPeIjlRJrMzscAACAoLG+wLPz3giW7nU7JKUAADgK61qW7o3IiTc1DgAAgGDz/UopdC8kpQAAOArr8islSSNZugcAANBhapzN2nnQ0yJhWDaVUt0NSSkAAI7C5n0tZeUkpQAAADqMt0VCpj1CqbERZoeDLkZSCgCAI6h1Nqu4qkGS1Dc11uRoAAAAggdL97o3klIAABxBXmmtJCkxOlz2qDCTowEAAAgeG1qSUsOpRu+WSEoBAHAEe8o8SaleydEmRwIAABBcNrTsvDecnfe6JZJSAAAcQd5BT1KqZxJJKQAAgI5SWuPUvsp6WSzSEJJS3RJJKQAAjsC7fK93CkkpAACAjuLd3fiklBjFRdAioTsiKQUAwBHksXwPAACgw63Nr5AknZwTb24gMA1JKQAAjsBbKcXyPQAAgI6zdq83KZVgciQwC0kpAADaUVHbqMq6JklSz+Qok6MBAAAIDs0utzYWepqcn5xLUqq7IikFAEA7vEv30uMiFBUeanI0AAAAwWFbcbXqm1yKjQhVn5QYs8OBSUhKAQDQjj2l9JMCAADoaN5+UiOy4xUSYjE5GpiFpBQAAO3w9ZMiKQUAANBh6CcFiaQUAADt2lZcLUnqTVIKAACgw6zNr5REP6nujqQUAABt2FtWqyXbSiRJY09KMjkaAACA4LC1qEr55XUKt4bo5Jx4s8OBiUhKAQDQhic/2yWX29CE/ika0sNudjgAAABB4e31+yRJEwekKDYizORoYCaSUgAAHEZBeZ3eWFsoSbrt7L4mRwMAABAc3G5D767fL0maNqKHydHAbCSlAAA4jJe/ylez29AZfZI1il4HAAAAHWLVnnLtdzQoNiJUEwekmh0OTEZSCgCAw/j4m2JJ0k9OzTY5EgAAgODxzgZPldSUIemKCLOaHA3MZmpS6vPPP9fUqVOVmZkpi8Wit99+u9V1wzA0f/58ZWZmKjIyUhMmTNCWLVtajXE6nbrtttuUnJys6OhoXXzxxSosLOzCdwEACDY7S2q0+2CtwqwWje+XYnY4AAAAQWPt3gpJ0qRB6SZHAn9galKqtrZWw4cP1xNPPHHY64sWLdLDDz+sJ554QqtWrVJ6eromTZqk6upq35jZs2frrbfe0muvvaYvv/xSNTU1uuiii+RyubrqbQAAgszibw5IksaelEzzTQAAgA5U5GiQJOUmRZkcCfxBqJkvPmXKFE2ZMuWw1wzD0KOPPqp58+Zp+vTpkqTnn39eaWlpeuWVV3TzzTfL4XDomWee0Ysvvqhzzz1XkvTSSy8pOztbn3zyic4777wuey8AgOCxuGXp3qRBaSZHAgAAEDxqnc1y1DdJkjLsESZHA3/gtz2l8vLyVFxcrMmTJ/vO2Ww2jR8/XsuXL5ckrVmzRk1NTa3GZGZmasiQIb4xAAAci5LqBq0rqJQkTRpIUgoAAKCjFDnqJUmxEaFUo0OSyZVS7Sku9nxLnZbW+h8EaWlp2rt3r29MeHi4EhISDhnjff7hOJ1OOZ1O3+OqqqqOChsAEOA+2lwsw5CGZdmVzjd4AAAAHWZfpWfpXo/4SJMjgb/w20opL4vF0uqxYRiHnPuhI41ZuHCh7Ha778jOZmclAIDHm+v2SZIuHp5pciQAAADBpajSUynF0j14+W1SKj3d04n/hxVPJSUlvuqp9PR0NTY2qqKios0xhzN37lw5HA7fUVBQ0MHRAwAC0Z7SWq3Lr1SIhaQUAABAR9vfkpTKpFIKLfw2KdWrVy+lp6dr8eLFvnONjY1atmyZxo0bJ0kaNWqUwsLCWo0pKirS5s2bfWMOx2azKS4urtUBAMBbLVVSZ/RNUWoc3+ABAAB0pP0tO++RlIKXqT2lampqtHPnTt/jvLw8rV+/XomJicrJydHs2bO1YMEC9e3bV3379tWCBQsUFRWlGTNmSJLsdrtuvPFG3X777UpKSlJiYqLuuOMODR061LcbHwAAR8MwDL293pOUmj6yh8nRAAAABJ/vKqX48g8epialVq9erYkTJ/oez5kzR5J03XXX6bnnntOdd96p+vp6zZw5UxUVFRozZow+/vhjxcbG+p7zyCOPKDQ0VJdffrnq6+t1zjnn6LnnnpPVau3y9wMACFzbD1Rrb1mdIsOsmjyYXfcAAAA6WlFLpVSGnUopeJialJowYYIMw2jzusVi0fz58zV//vw2x0REROjxxx/X448/3gkRAgC6i3X5lZKkkTnxigr3281pAQAAApJhGL5KKXbfg5ff9pQCAKArrcv3bJoxMife3EAAAACCUHlto5zNblksUhq9O9GCpBQAAPpepVR2grmBAAAABKH9lZ6leykxNoWHkoqAB38TAADdnqO+STtKaiRJI6iUAgAA6HD7WpbuZbB0D99DUgoA0O1tLKyUJOUkRik5xmZuMAAAAEGoyOHtJ8XSPXyHpBQAoNv7fpNzAAAAdLzCipZKKXbew/eQlAIAdHu+JufZ8eYGAgAAEKS+2HFQkjQoI87kSOBPSEoBALq9DYUOSdKIHJqcAwAAdLSdJTX69kCNwqwWnTswzexw4EdISgEAujVHXZPKaxslSf3SYkyOBgAAIPh8uLlIknR6n2TZo8JMjgb+hKQUAKBb21teK0lKibUpKjzU5GgAAACCzwebiiVJU4akmxwJ/A1JKQBAt7a3rE6SlJsYZXIkAAAAwWdPaa2+KaqSNcSiSYNISqE1klIAgG4tv9yTlMpJIikFAADQ0Z5bvkeSNLZ3khKjw80NBn6HpBQAoFvbW+ZZvpdDpRQAAECH2lNaq5dW7pUk3TLhJJOjgT8iKQUA6NZ8y/eolAIAAOhQiz7apma3oQn9U3R6n2Szw4EfIikFAOiWnM0uSd9bvpcYbWY4AAAAQWXxNwf0waZihVikuVMGmh0O/BRJKQBAt/OvNYXq/5sP9caaQhVXNUiiUgoAAKCj7D5Yozmvr5ck/fT0XuqfHmtuQPBbJKUAAN3OB5uKJEkL/7NNhiFFh1uVRONNAACAE+Z2G7r1lXWqdjbr1J6J+vWUAWaHBD9GUgoA0O1s3ueQJJXWOCVJOUnRslgsZoYEAAAQFDYUVmprUZWiw6164qqRCrOSdkDb+NsBAOhWSqoaVFLtbHUul533AAAAOsRHWw5IkiYMSFVqbITJ0cDfkZQCAHQrm/c7DjlHPykAAIATZxiGPt5SLEk6b3C6ydEgEJCUAgB0K5v3VUmSzhucpsgwqyQph6QUAADACdtZUqPdpbUKt4ZoYv8Us8NBACApBQDoVrz9pE7tlaSbzuyl1Fibxvdj0gQAAHCiPmqpkjq9T5JiI8JMjgaBINTsAAAA6Epb9nsqpYZkxmlM7yTNmdzf5IgAAACCwydbSySxdA9Hj0opAEC3UV7bqH2V9ZKkQZlxJkcDAAAQPBqaXL6K9DP6JpscDQIFSSkAQLfhnSj1So6mpBwAAKADbd7nULPbUGqsTT3iI80OBwGCpBQAoNtYvadckjQsy25yJAAAAMFlXX6lJGlkTrwsFou5wSBgkJQCAHQbX+wslSSd3oeScgAAgI60rqBCkjQyJ8HkSBBISEoBALoFR32TNhRUSpLOICkFAADQobyVUiOy402NA4GFpBQAoFtYsatMbkPqnRKtTPocAAAAdJgiR72KHA0KsdAmAceGpBQAoFv4cudBSdKZVEkBAAB0qPUtVVID0uMUFR5qbjAIKCSlAADdwpc7PP2kzuibYnIkAAAAwWX1Xm8/qXhzA0HAISkFAAh6a/MrtKesTtYQi07rnWh2OAAAAEGjtMap11cVSJLO7EtFOo4NSSkAQFA7UNWgW15aI0maMiRdsRFhJkcEAAAQPB795FvVOJs1LMuuyYPSzQ4HAYakFAAgKK3ZW65fvrpOFz/xpQ5UOdU3NUYLpw81OyygU3z++eeaOnWqMjMzZbFY9Pbbb7e6bhiG5s+fr8zMTEVGRmrChAnasmWLOcECAILGzpJqvfq1p0pq3gUDFRJiMTkiBBqSUgCAoPTrNzbp3xv260CVU8kxNv3tutFUSSFo1dbWavjw4XriiScOe33RokV6+OGH9cQTT2jVqlVKT0/XpEmTVF1d3cWRAgCCyZNLd8nlNjRpUJrG9E4yOxwEINriAwCCTo2zWTsP1kiSnr5mlMb1SVaMjV95CF5TpkzRlClTDnvNMAw9+uijmjdvnqZPny5Jev7555WWlqZXXnlFN998c1eGCgAIEgeqGvTuhv2SpFsn9jE5GgQqKqUAAEHnm/1VMgwpwx6hyYPTSUihW8vLy1NxcbEmT57sO2ez2TR+/HgtX768zec5nU5VVVW1OgAA8HphxR41uQyd0jNBI7LjzQ4HAYqkFAAg6Gza55AkDelhNzkSwHzFxcWSpLS0tFbn09LSfNcOZ+HChbLb7b4jOzu7U+MEAASOusZmvfxVviTpxjN6mxwNAhlJKQBA0NnckpQaSlIK8LFYWjefNQzjkHPfN3fuXDkcDt9RUFDQ2SECAALESyv3qrKuSTmJUZo0KO3ITwDawHoGAEDQ2eyrlIozORLAfOnpnu25i4uLlZGR4TtfUlJySPXU99lsNtlstk6PDwAQWGqdzfrzst2SpFkT+8jKjns4AVRKAQCCSl1js3a1NDln+R4g9erVS+np6Vq8eLHvXGNjo5YtW6Zx48aZGBkAIBA9t3yPymsb1TMpStNP7mF2OAhwVEoBAILKN/ur5DaktDibUmMjzA4H6BI1NTXauXOn73FeXp7Wr1+vxMRE5eTkaPbs2VqwYIH69u2rvn37asGCBYqKitKMGTNMjBoAEGgamlx6+nNPldSvzu2rUCt1LjgxJKUAAEHF1+Q8kyopdB+rV6/WxIkTfY/nzJkjSbruuuv03HPP6c4771R9fb1mzpypiooKjRkzRh9//LFiY2PNChkAEIC+2FEqR32TMu0Rung4VVI4cSSlAABB5avd5ZJYuofuZcKECTIMo83rFotF8+fP1/z587suKABA0Pl4i2fX1smD0+klhQ5BrR0AIKDVNTbrN29v0jvr96mkqkGfbD0gSTpvcLrJkQEAAASPZpfbN8+aPJgd99AxqJQCAAS0hz/+Vi+tzNdrXxfovMHpanYbGp2boEGZ7LwHAADQUdbsrVBFXZPskWE6tWei2eEgSFApBQAIWJv3OfT3/+ZJkprdht7fVCRJumZsrplhAQAABJ2Pv/FUSZ0zMJUG5+gw/E0CAAQkwzA0761NchvSxP4pSooOlyQlRYfr/CEs3QMAAOhIS7aVSJImD2LpHjoOSSkAQEBas7dCGwodigq36oHLhunBHw9TrC1Us87uI1uo1ezwAAAAgoajrkl5pbWSpNN6J5kcDYIJPaUAAAHprXX7JElThmQoNS5CZ8dFaOP8ybJY2AkGAACgI23e75AkZSdGKj4q3ORoEEyolAIABBxns0vvbfT0j7p0ZA/feRJSAAAAHW/zPk9SamgPu8mRINj4dVJq/vz5slgsrY709O/6hBiGofnz5yszM1ORkZGaMGGCtmzZYmLEAICusHT7QTnqm5QWZ9PYkyghBwAA6EybWpJSgzNJSqFj+XVSSpIGDx6soqIi37Fp0ybftUWLFunhhx/WE088oVWrVik9PV2TJk1SdXW1iREDADra3rJa3fLSGm0oqJQkvbm2UJJ0yYgesoZQHQUAANCZtuyvkkSlFDqe3yelQkNDlZ6e7jtSUlIkeaqkHn30Uc2bN0/Tp0/XkCFD9Pzzz6uurk6vvPKKyVEDADrSXz7frf9sLtasV9dq+a5SfbTFsyXx9JN7HOGZAAAAOB67Dtbo5hdX64sdB31NzoeQlEIH8/uk1I4dO5SZmalevXrpJz/5iXbv3i1JysvLU3FxsSZPnuwba7PZNH78eC1fvrzdezqdTlVVVbU6AAD+a/nOUklSQXm9rn92lSTpR6OyNCA9zsywAAAAgtaTn+3SR1sO6MbnV0uSesRHKjGaJufoWH6dlBozZoxeeOEFffTRR/rrX/+q4uJijRs3TmVlZSouLpYkpaWltXpOWlqa71pbFi5cKLvd7juys7M77T0AAE5MYUWd9pTV+R43NrsVFxGqX08ZYGJUAAAAwcvlNrRkm6cyvbHZLUka0oMvA9Hx/DopNWXKFF122WUaOnSozj33XL3//vuSpOeff9435oc7LRmGccTdl+bOnSuHw+E7CgoKOj54AECHWL6zTJI0Midekwd5voiYe8FAJcfYzAwLAAAgaK3Nr1BFXZOiwq2+/p1DaHKOThBqdgDHIjo6WkOHDtWOHTs0bdo0SVJxcbEyMjJ8Y0pKSg6pnvohm80mm41/zABAIPiyZeneGX2SNevsPtpTWqf+6bEmRwUAABC8PvnGUyV13uB0jcyJ14sr9uriEZkmR4Vg5NeVUj/kdDq1detWZWRkqFevXkpPT9fixYt91xsbG7Vs2TKNGzfOxCgBAB3FMAwt3+VJSp3eJ1m2UCsJKQAAgE62eKsnKXXuwDRdO7anFs8Zr9ykaJOjQjDy60qpO+64Q1OnTlVOTo5KSkr0hz/8QVVVVbruuutksVg0e/ZsLViwQH379lXfvn21YMECRUVFacaMGWaHDgDoANsPVKu0plGRYVaNzIk3OxwAAICgt+tgjXYfrFWY1aKz+iWbHQ6CnF8npQoLC3XllVeqtLRUKSkpOu2007Ry5Url5uZKku68807V19dr5syZqqio0JgxY/Txxx8rNpZv0QEgGPxnk2fjitN6J8oWajU5GgAAgOD35tpCSdK4k5IVGxFmcjQIdn6dlHrttdfavW6xWDR//nzNnz+/awICAHQZwzD0zvp9kkQPAwAAgC7Q5HLr9VWepNRPTmGXenS+gOopBQAIbB9uLtI/Vh/djqfrCyq1p6xOkWFWTR6U3smRAQAAYPE3B1Ra41RKrE3nDmp/AzGgI/h1pRQAIHgUOxo08+W1chtS/7RYDc+Ob3f8O+v3S5ImD05TtI1fVwAAAJ3tla/yJUlXjM5WmJUaFnQ+/pYBALrEG2sL5TY8P7+2Kr/dsU0ut97d4ElKTRvRo7NDAwAA6JYMw1Cts1mGYejpz3fpy52lslikn5zK0j10Db56BgB0OsMwWi3be2f9fs27cJBi2qiAemNNocpqG5UcY9MZfdn1BQAAoDPc8+8temHFXiVFh6ustlGS9IvxJykrIcrkyNBdUCkFAOh0X+WVa29ZnaLDreqZFKW6Rpf+3bI874eczS49vmSnJOkX43tTOg4AANAJ6hqb9c/Vnqbm3oTUby4cqLvOH2BmWOhmqJQCAHSqNXvLtfA/2yR5dtE7KSVGf3h/q55fvkeXj85S6A+STq+vKtC+ynqlxdl09Wm5ZoQMAAAQ9JZtP6j6JpeyEiL16BUjlBRjU6/kaLPDQjfD188AgE7z4oo9uuypFdpQUKnw0BBdc1pP/WhUluIiQrX9QLX+/t8831jDMPSPVQW6vyWBdevEPooIs5oVOgAAQFD7YHOxJOmCoRka3TORhBRMQVIKANApDMPQ01/sliRdNCxDH/zyDA3KjFN8VLh+c+EgSdIfP/5We0prJUkPfrRdd76xUXWNLp3eJ0lXnEKDTQAAgM7Q0OTSkq0HJElThqSbHA26M5JSAIBOsa6gUgXl9YoKt+rBHw1Xn9RY37Ufj87S6X2S5Gx267fvbNbBaqf+9qWnaur/nddfL9wwRrZQqqQAAAA6w+ffHlRto0uZ9giNyI43Oxx0YySlAACdwtvIfPKgNEWGt04wWSwWLbh0qMKsFn2xo1S/em2dGpvdGp4dr5kTTpI1xGJGyAAAAEGp1tmshf/Zqn+uLlCzy60/febZVOb8IRmyWJh3wTw0OgcAdDiX29B7G4skeZqbH05uUrSuOa2n/v7fPC3fVSZJuunMXkyMAAAAOlB5baN++twqbSiolCT9c02hNhQ6FBsRqp+f1dvc4NDtUSkFAOgwTS63nly6U1f/7SuV1jiVEBWmM/umtDn+trP7KDbC8/1Ij/hInT+YngYAAAAdpaHJpRl/XakNBZWKbNlA5uu8cknS7y4apHR7hJnhASSlAAAnZkNBpZ79b572VdZr1itrtejD7Vqx21P59KNRWQqztv2rJiE6XHedP0CSNGdSP4W2MxYAAADH5vElO7StuFrJMTa9e9vpmn1uX0nSpEFp+tGoLJOjAySLYRiG2UGYraqqSna7XQ6HQ3FxcWaHAwABw+02NPb+T3Wgyuk7F24N0Z3n99eo3AQNz4pXyFH0h2pocikijMbmCAzddd7QXd83AAQKwzC0rqBSgzLiFBFm1Tf7q3TxE1+q2W3oz1eP0vktu+ztq6xXRlzEUc3RgON1tPMGekoBAI7b5v0OHahyymKRDMOTkPrLtaM0sX/qMd2HhBQAAMCJefXrAt391iYNz47XQz8aplmvrFWz29CUIem+hJTkaZkA+AuSUgCA4/bp1hJJ0vmD0/Wrc/vKFmpVr+Rok6MCAADoXtxuQ09/vkuSp7XC5Ec/l2FImfYI3XvxYJOjA9pGUgoAcNyWbPMkpSYOSNWAdJbzAAAAmGHJthLtKatTbESoQkMsqqhrUs+kKL30szFKjaOZOfwXSSkAwHEpqWrQpn0OSTrm5XoAAADoOM98mSdJmnFqji4/JVsfbCzSFadmKzWWhBT8G0kpAMBx+Wy7p0pqeHa8UmJtJkcDAADQPa3Lr9CK3WWyhlh07bie6hEfqdvO6Wt2WMBRYe9tAMBxeXvdfknS2VRJAQAAmMLlNvS7d7ZIki4ZkUkTcwQcklIAgGP21e4yrdhdpjCrRT8anWV2OAAAAEFj8TcH9Pcv8+R2G0cc++rX+dq0z6FYW6h+PWVAF0QHdCyW7wEAjtljn+6QJF0+Optv5AAAADrIroM1mvnyGjW5DNU4m/XLdpbh7Smt1aIPt0mSbp/cj/5RCEgkpQAAR2V/Zb2ueHqFahqaVVHXpDCrRTMn9jE7LAAAgKBgGIbm/3uLmlyeCqlHPvlWQ3vYNXHAoa0Sqhqa9LMXVquqoVkjc+J19Wm5XR0u0CFYvgcAOCqvfZ2vgvJ6VdQ1SZKuGpNLlRQAAEAHKK1x6unPd+uLHaUKt4ZoypB0GYY08+W1+nTrAd84wzD0352lmvHXldpZUqP0uAj95epRCrXyT3sEJiqlAABHZBiG3tngaWx+9wUDNCo3UcOy7CZHBQAAEPjeWb9Pc/6xQa6WHlI/P6u3fnlOX9W+sFqff3tQN72wWvdPH6bLT8nWfe9v1d++zJMkxdhC9ddrRys1jmV7CFwkpQAAR7Sh0KG9ZXWKDLPq6tNyFRXOrw8AAIAT5ahv0vx/b5HLbWhAeqymDMnQLRNOUnhoiJ65brTufnOT/rmmUL9+c6O27Hfo+RV7JUnXjc3VrRP7kJBCwONfFQCAI3pn/T5J0uTBaSSkAAAAOsifPtupirom9U2N0Xu3ndFqGV6YNUSLfjRMIRaLXl9d4EtIzZxwku48n532EBz4lwUA4BBNLrc+3Vqid9bv086SGhVU1EmSLhmRaXJkAAAAgc0wDL2/qUj/3VmqN9Z4vvi7+8KBh+0LZbFY9IdLh6ioqkGff3tQp/RM0JxJ/bo6ZKDTkJQCALRSUduoG59fpbX5la3OZ9gjdEafFHOCAgAACGAVtY3asr9KOYlR+uPi7Xpn/X7ftXMGpGpCv7bnWGHWED19zSgt+/agzuiTTFNzBBWSUgAAn32V9br2ma+062CtYiNCNWNMjs7okyxriEX90mIVHsokCAAA4FgYhqHrn/1aGwodvnPWEIuuHZur0bmJmjQoTRaLpd17RIRZdd7g9M4OFehyJKUAAJKkwoo6/eTplSqsqFemPULP33Cq+qbFmh0WAABAQFu6/aA2FDpkDbHIMAwlxdj02E9GaNxJyWaHBpiOpBQAdEOGYejPy3ZrR0m1zuqbovLaRj3zZZ72VdarZ1KUXrnpNGXGR5odJgAAQEAzDENPfLZTknTjGb00Z1I/hVtDFBLSfmUU0F2QlAKAbuj55Xv0wIfbJElvrt3nO98rOVqv3nSa0u1sLwwAAHCiVu4u15q9FQoPDdHPzuiliDCr2SEBfoWkFAB0I85ml97bUKTfv79VknT+4HTtq6xXtM2qcwem6UejshQfFW5ylAAAAIGv1tms37y9SZJ0xehspcbxpR/wQySlACDIGYahr/LK9fa6ffpgU5GqGpolSdNH9tAfLx9+xMaaAAAAODZut6F5b23SroO1So+L0Oxz+5odEuCXSEoBQBDbX1mv37y9WUu2lfjOpcXZNP3kLP3qnL4kpAAAADpQXWOz5r21WZ9sPaDqhmZZQyx6fMZIJcXYzA4N8EskpQAgSBiGod++s1lLtpaof3qs6hpdWptfoSaXoXBriKaf3EMXj8jUmF5JstJcEwAAoMM9sWSn3lrn6dcZFW7Vby4cpFN6JpocFeC/SEoBQJB45ss8vbQyX5K039HgOz86N0H3XzZUfVJjzQoNAAAg6O0tq9XfvsiTJP3xx8N1yYhMhVpDTI4K8G8kpQAggFU3NOn9jUXaWVKjZ5fvkST98uw+So61yRpi0eknJSs3KYplegAAAJ3E7Ta0vrBSD/xnmxpdbp3ZN1nTT+7B/As4CiSlACAAFTnq9cGmYj352U6V1Tb6zk8bkan/mdSPSRAAAEAn23WwRs8v36OPthTrQJVTkhQaYtHvLhrEXAw4SiSlACCAbC2q0ry3NmltfqXvXK/kaI3vl6L+6bF8KwcAANDJapzNevzTHXrmyzw1uw1JUnS4VWcPTNM1p+WqbxotE4CjRVIKAALAjgPVen1VgZ5fsUdNLkMhFmlYVrwuG5Wln5ySrTD6FQAAAHSqWmezPtxcrEUfbfNVRp09IFVXn5ajcSclKyLManKEQOAhKQUAfqqyrlHvbtivf60p1IZCh+/85EFp+v20IUqLizAxOgAAgODmdht6+et8Ldl6QAdrnNpeXK0ml6cyKjcpSvdMHaSzB6SZHCUQ2EhKAYAfMQxDa/ZW6Nn/7tHibw6o0eWW5OlPMHFAqq48NVsT+6eyRA8AAKCTuN2Gdh2s0YIPtuqz7QdbXctNitLlo7N14xm9qIwCOgBJKQAwUVVDk7YVVeub/Q59U1SlDQUObT9Q7bs+KCNOl43K0iUjMpUcYzMxUgAAgOCVV1qrDzYVafWecq3Nr5SjvkmSZAsN0S/P6asB6bHqkxqj3KRokyMFggtJKQDoIoZhqNHlVkmVU6+vKtC7G/drb1ndIePCQ0M0fWQPXTM2V4Mz7SZECgAAELxqnc36Oq9c+eV12lZcpXX5ldpWXN1qTERYiEbnJmrehQM1MCPOpEiB4EdSCgA6mMttaOXuMn2wqUgbCit1sNqpqvpmNTS7ZBiHju8RH6mBGXEalBmnQRlxOqVngpKoigIAAOhwX+4o1f/71wYVORpanbeGWHR6n2RN7J+iUbkJGpgRx0YyQBcgKQUAHcTlNvRVXpn+8N5WfVNU1e7YU3sl6rqxPTXupCQlRId3UYQAAADdR35Znf67q1T/3VmqNXsrVFnXpPomlyQpPS5Cw7Ls6pUSrRFZ8TqlVyKtEgATkJQCgBNwsNqp9zbu1zvr92trUZWczZ7G5LG2UF00PEMT+qcq0x4pe2SYIsJCZAuzKjLMqvBQvnkDAADoSKU1Ti3fVab/7ijVf3eVqrCi/pAxFot01Zgc3X3BQEWF889hwGz8rxAA2tHkcquyrkmVdY0qr21URV2T9lXWa0NBpdYVVKigvPVkxxYaoh+NytKcSf1YggcAANCBDMNQVUOzymqcKqtt1MFqp749UK1v9lfpm6KqQ5JQoSEWjcyJ17iTkjXupCRlxkcqLjJM9sgwk94BgB8KmqTUk08+qQcffFBFRUUaPHiwHn30UZ155plmhwUgQHi/Wduyz6GD1U4VVtZr98EaldY0HvG5w7LsuuzkLI3vl6LsxChZQyxdEDEAHDvmSwD8SWOzW7tLa1RYXq9mtyG3YXj+dBtqcrlV5GjQnrJa7S2r076KepXVOtXkOkyDzu8ZlBGn0/skaVyfZJ3aM1HRtqD5Jy8QlILif6Gvv/66Zs+erSeffFKnn366/vKXv2jKlCn65ptvlJOTY3Z4ADqB0TJpaWx2y9nslrPZJWeTW476Jh2sdqq0xqnyOk9CyWqxqLbRpVpns2qdzapp+bPW6VK1s1lFjnpV1jW1+VoWi2SPDFNiVLjio8KUHGPT0B52jcxJ0LBsu+Ii+LYNgP9jvgSgKzW73Cqva2yZlzWqtNqpgzVOlVY7daDaqR0HqrXrYM0Rk0yHE2sLVVJMuJJibOqVHK1BLRvGDEyPkz2KeRkQSCyGcbi9oALLmDFjdPLJJ+upp57ynRs4cKCmTZumhQsXHvH5VVVVstvtcjgciotju08EP8Mw5DYkt2HI5TZktPzsbjnvve659t1Yt/HdWJe79djvX3e5D38vZ7NLDU0uNTS5Vd/k+bm+5XGD93GjSw3Nbs+fLde//7P3+c5ml9wd/P9eAzPidGrPBKXbI5Vhj9BJKTHqkeDpB0X1EwCvQJ03MF8CApP3iziX9zAMuVzGIZVFnjFuudxSs9std8ufru89t/l7z3cZ351zuw93n+9eo8llqNbZrKqGJlXVe/9sUlVDs6rqm9TQ5PLN91zGd/c5GrG2UPVMjlZ4aIisFousId8daXE25SZFKzcpStkJUUqJtSkxOlwRYdZO/tQBnKijnTcEfKVUY2Oj1qxZo1//+tetzk+ePFnLly8/7HOcTqecTqfvcVVV+7tknYgNBZX6xUtrDjnfVirQ0OEvtJc6bOtS2885ttdo+/5t3OcY4znW+7R14VjjbP85bY3vmM+u7ffQ+f9tAj8NfXjh1hDZQkMUExGqlFibkmM8kxaLPBOkKJtV0bZQxYSHev60ef6MtlmVbo9Qj/hIxVLxBCBI+ft8adfBGl39t6/avH6k311t/f48uuce4Xq7A9p/9vHM37577hHufZyve6L3PlLg7cd1Aq+rI32ex//f4oivfQJ//4702kd6z94v/AJViEVKjA5XcozNNz/z/Bmu3skxGpARqx7xkbJY+PIP6K4CPilVWloql8ultLS0VufT0tJUXFx82OcsXLhQ9957b1eE51sLDQSqEIsUYrEoxGKRxSJZQ7772XNeLY+/+9kacrjrki3UqshwqyLCQhQZZlVEy+H52XPO1nIuKtzqGxPZ8rN3XESYVbbQENlCrbKFhSjcGqIQKpkAoE3+Pl9yuQ3mS8BxCA2xKCTEotDvVReFtszVQkMsslotP6g+Cmn9nJZrodbvnvPD+1lbxkXbQhUXGaa4iFDZI8Nafg5TXGSoIsKsvnuFtIwPs1oUHxVOtTmAdgV8Usrrh9l1wzDazLjPnTtXc+bM8T2uqqpSdnZ2p8Q1MCNO784647DXjvULgbbGW3T4C4cb3xH38Ixv43yb7+kYYmzz3m3c4xhjOdb3ekz3NinGw55uY6w3wRRiUatEUojFopCQQ68DAIKHv86XchKj2pwveR3vr6QjPa+t37lHem6n3bf92x7hddt/9vG+7pHmA+0/t73nHX+8J/K89t7P8b4Xz3M74b+5RQoNaVnW9r0Ekzd5BACBLuCTUsnJybJarYd8y1dSUnLIt4FeNptNNlvXbNUebQvV0Cx7l7wWAADA4fj7fCkizMp8CQCAbijE7ABOVHh4uEaNGqXFixe3Or948WKNGzfOpKgAAAD8B/MlAADgjwK+UkqS5syZo2uuuUajR4/W2LFj9fTTTys/P1+/+MUvzA4NAADALzBfAgAA/iYoklJXXHGFysrK9L//+78qKirSkCFD9MEHHyg3N9fs0AAAAPwC8yUAAOBvLMaR9mbtBqqqqmS32+VwOBQXF2d2OAAAwI9113lDd33fAADg2B3tvCHge0oBAAAAAAAg8JCUAgAAAAAAQJcjKQUAAAAAAIAuR1IKAAAAAAAAXY6kFAAAAAAAALocSSkAAAAAAAB0OZJSAAAAAAAA6HIkpQAAAAAAANDlSEoBAAAAAACgy5GUAgAAAAAAQJcLNTsAf2AYhiSpqqrK5EgAAIC/884XvPOH7oL5EgAAOFpHO18iKSWpurpakpSdnW1yJAAAIFBUV1fLbrebHUaXYb4EAACO1ZHmSxaju33Ndxhut1v79+9XbGysLBaL2eEcoqqqStnZ2SooKFBcXJzZ4fglPqP28fm0j8/nyPiM2sfnc2TB9BkZhqHq6mplZmYqJKT7dEJgvhT4+Izax+dzZHxG7ePzaR+fz5EF02d0tPMlKqUkhYSEKCsry+wwjiguLi7g/2J2Nj6j9vH5tI/P58j4jNrH53NkwfIZdacKKS/mS8GDz6h9fD5HxmfUPj6f9vH5HFmwfEZHM1/qPl/vAQAAAAAAwG+QlAIAAAAAAECXIykVAGw2m+655x7ZbDazQ/FbfEbt4/NpH5/PkfEZtY/P58j4jNDZ+Dt2ZHxG7ePzOTI+o/bx+bSPz+fIuuNnRKNzAAAAAAAAdDkqpQAAAAAAANDlSEoBAAAAAACgy5GUAgAAAAAAQJcjKdVFPv/8c02dOlWZmZmyWCx6++23W123WCyHPR588MFW41asWKGzzz5b0dHRio+P14QJE1RfX++7XlFRoWuuuUZ2u112u13XXHONKisru+AdnpgjfT41NTWaNWuWsrKyFBkZqYEDB+qpp55qNcbpdOq2225TcnKyoqOjdfHFF6uwsLDVmED9fKSO+Yy8DMPQlClTDnufQP2MOuLzKS4u1jXXXKP09HRFR0fr5JNP1r/+9a9WYwL185GO/BkdOHBA119/vTIzMxUVFaXzzz9fO3bs8F0vLy/Xbbfdpv79+ysqKko5OTn65S9/KYfD0eo+gfoZnejn4xWs/z+9cOFCnXLKKYqNjVVqaqqmTZum7du3txpjGIbmz5+vzMxMRUZGasKECdqyZUurMcH+/9U4McyX2sd86ciYL7WP+dKRMV9qH/Ol9jFfOnYkpbpIbW2thv//9u4+psr6/+P4C5Qbb1FMQIYi1cob0HmzTIfpjJBSp+FaU2d3zqzEma7Naixb/qGV9yPTLKnmH2opyuZGaaBiIZrBxGWoiLkUxBDR1ATk/f3Def1+R/QcSjzG4fnYzj/X9TkX1+eFffbap3Nx+vdXWlrabc+XlZW5vNatWyc/Pz9NnDjRGZOXl6ekpCQlJiZq//79OnDggFJSUuTv/3+/xsmTJ6uwsFBZWVnKyspSYWGhpk6des/nd7c85TNnzhxlZWVp/fr1OnLkiObMmaNZs2Zp27Ztzpg333xTGRkZ2rBhg/bu3au//vpLY8eO1fXr150xzTUfqWkyumn58uXy8/O77XWaa0ZNkc/UqVNVXFyszMxMFRUVKTk5Wc8//7wKCgqcMc01H8l9RmamCRMm6MSJE9q2bZsKCgoUHR2thIQEXb58WZJ05swZnTlzRosXL1ZRUZG+/PJLZWVladq0aS7Xaq4Z3W0+km+v07t379bMmTO1b98+7dixQ3V1dUpMTHSZ/0cffaSlS5cqLS1NBw4cUEREhJ566ildunTJGePrazXuDn3JPfqSZ/Ql9+hLntGX3KMvuUdf+hcMXifJMjIy3I4ZP368jRo1yuXYkCFDLDU19Y7v+fXXX02S7du3zzmWl5dnkuy33367q3v2ptvl07dvX/vggw9cjg0cONDJ48KFCxYQEGAbNmxwzp8+fdr8/f0tKyvLzHwnH7N/l9FNhYWFFhUVZWVlZQ2u4ysZ/dt82rVrZ19//bXLmNDQUPv888/NzHfyMWuYUXFxsUmyw4cPO8fq6uosNDTU1q5de8frbNq0yQIDA622ttbMfCejf5tPS1mnzcwqKipMku3evdvMzOrr6y0iIsIWLVrkjPn7778tJCTEVq9ebWYtb63G3aEvuUdf8oy+5B59yTP6knv0Jc/oS57xSan/oLNnz2r79u0uu+kVFRXKz89XWFiYhg0bpvDwcI0YMUJ79+51xuTl5SkkJERDhgxxjj3++OMKCQnRTz/95NU5NLX4+HhlZmbq9OnTMjPl5OTo6NGjGj16tCTp4MGDqq2tVWJiovOeyMhIxcbGOnP35XwkzxlJ0pUrVzRp0iSlpaUpIiKiwTV8OaPG5BMfH6+NGzfq/Pnzqq+v14YNG3Tt2jWNHDlSkm/nc+3aNUlScHCwc6xVq1YKDAx0WWduVV1drY4dO6p169aSfDejxuTT0tbpm48hhIaGSpJKS0tVXl7usg4HBQVpxIgRztxYq9GU6EsN0Zc8oy+5R19yj77kHn2pIfqSZ2xK/Qd99dVX6tChg5KTk51jJ06ckCS9//77mj59urKysjRw4EA9+eSTzjO65eXlCgsLa3C9sLAwlZeXe+fm75GVK1eqT58+ioqKUmBgoJKSkrRq1SrFx8dLujH3wMBAde7c2eV94eHhztx9OR/Jc0bSjY9kDxs2TOPHj7/tNXw5o8bks3HjRtXV1alLly4KCgrSjBkzlJGRoYceekiSb+fTq1cvRUdH65133lFVVZVqamq0aNEilZeXq6ys7Lbvqays1IIFCzRjxgznmK9m1Jh8WtI6bWaaO3eu4uPjFRsbK0nO/YeHh7uMvXUdbulrNZoOfakh+pJn9CX36Evu0Zfcoy+5oi81Tuv7fQNoaN26dZoyZYrLDnN9fb0kacaMGXr55ZclSQMGDNAPP/ygdevWaeHChZJ02+fezeyOz8M3FytXrtS+ffuUmZmp6Oho7dmzR2+88Ya6deumhISEO77v1rn7aj6S54wyMzOVnZ3t8rz/7fhqRo35N5Samqqqqirt3LlTDzzwgLZu3arnnntOubm5iouLk+S7+QQEBGjz5s2aNm2aQkND1apVKyUkJOjpp5++7fiLFy9qzJgx6tOnj+bPn+9yzhczakw+LWmdTklJ0aFDh277f4VvnUdj5taS1mo0HfpSQ/Qlz+hL7tGX3KMvuUdfckVfahw2pf5jcnNzVVxcrI0bN7oc79atmySpT58+Lsd79+6tU6dOSZIiIiJ09uzZBtc8d+5cg53Y5uTq1at69913lZGRoTFjxkiS+vXrp8LCQi1evFgJCQmKiIhQTU2NqqqqXHaUKyoqNGzYMEm+m4/UuIyys7NVUlKiTp06ubx34sSJGj58uHbt2uWzGTUmn5KSEqWlpenw4cPq27evJKl///7Kzc3VJ598otWrV/tsPjcNGjRIhYWFqq6uVk1Njbp27aohQ4Zo8ODBLuMuXbqkpKQktW/fXhkZGQoICHDO+XJGnvJpKev0rFmzlJmZqT179igqKso5fvMRl/LycicL6cY6fHNuLX2tRtOhLzVEX/KMvuQefalx6Evu0ZduoC81Ho/v/cd88cUXGjRokPr37+9yvGfPnoqMjGzwdZJHjx5VdHS0JGno0KGqrq7W/v37nfP5+fmqrq52/vE2R7W1taqtrXX5NgbpxvPJN3faBw0apICAAO3YscM5X1ZWpsOHDztz99V8pMZl9Pbbb+vQoUMqLCx0XpK0bNkypaenS/LdjBqTz5UrVyTJ7RhfzedWISEh6tq1q44dO6aff/7Z5fGFixcvKjExUYGBgcrMzHT5hILUMjK6Uz6+vk6bmVJSUrRlyxZlZ2crJibG5XxMTIwiIiJc1uGamhrt3r3bmVtLX6vRdOhLDdGXPKMvuUdf+mfoS+7Rl+hLjeaNv6YOs0uXLllBQYEVFBSYJFu6dKkVFBTY77//7oyprq62tm3b2qeffnrbayxbtsw6duxo33zzjR07dsxSU1MtODjYjh8/7oxJSkqyfv36WV5enuXl5VlcXJyNHTv2ns/vbnnKZ8SIEda3b1/LycmxEydOWHp6ugUHB9uqVauca7z22msWFRVlO3futF9++cVGjRpl/fv3t7q6OmdMc83HrGkyupVu860rzTWju82npqbGHn74YRs+fLjl5+fb8ePHbfHixebn52fbt293fk5zzcfMc0abNm2ynJwcKykpsa1bt1p0dLQlJyc777948aINGTLE4uLi7Pjx41ZWVua8fOG/s7vNx8y31+nXX3/dQkJCbNeuXS6/+ytXrjhjFi1aZCEhIbZlyxYrKiqySZMmWbdu3ezixYvOGF9fq3F36Evu0Zc8oy+5R1/yjL7kHn3JPfrSP8emlJfk5OSYpAavF1980RmzZs0aa9OmjV24cOGO11m4cKFFRUVZ27ZtbejQoZabm+tyvrKy0qZMmWIdOnSwDh062JQpU6yqquoezarpeMqnrKzMXnrpJYuMjLTg4GB79NFHbcmSJVZfX+9c4+rVq5aSkmKhoaHWpk0bGzt2rJ06dcrl5zTXfMyaJqNb3a5kNdeMmiKfo0ePWnJysoWFhVnbtm2tX79+Db7yuLnmY+Y5oxUrVlhUVJQFBARYjx49LDU11a5du+bx/ZKstLTUGddcM7rbfG7y1XX6Tr/79PR0Z0x9fb3Nnz/fIiIiLCgoyJ544gkrKipyuY6vr9W4O/Ql9+hLntGX3KMveUZfco++5B596Z/zMzNz/1kqAAAAAAAAoGnxN6UAAAAAAADgdWxKAQAAAAAAwOvYlAIAAAAAAIDXsSkFAAAAAAAAr2NTCgAAAAAAAF7HphQAAAAAAAC8jk0pAAAAAAAAeB2bUgAAAAAAAPA6NqUAAAAAAADgdWxKAfB5ZqaEhASNHj26wblVq1YpJCREp06dug93BgAA8N9AXwJwP7ApBcDn+fn5KT09Xfn5+VqzZo1zvLS0VPPmzdOKFSvUo0ePJv2ZtbW1TXo9AACAe4m+BOB+YFMKQIvQvXt3rVixQm+99ZZKS0tlZpo2bZqefPJJPfbYY3rmmWfUvn17hYeHa+rUqfrzzz+d92ZlZSk+Pl6dOnVSly5dNHbsWJWUlDjnT548KT8/P23atEkjR45UcHCw1q9ffz+mCQAA8K/RlwB4m5+Z2f2+CQDwlgkTJujChQuaOHGiFixYoAMHDmjw4MGaPn26XnjhBV29elXz5s1TXV2dsrOzJUmbN2+Wn5+f4uLidPnyZb333ns6efKkCgsL5e/vr5MnTyomJkY9e/bUkiVLNGDAAAUFBSkyMvI+zxYAAOCfoy8B8BY2pQC0KBUVFYqNjVVlZaW+/fZbFRQUKD8/X999950z5o8//lD37t1VXFysRx55pME1zp07p7CwMBUVFSk2NtYpWcuXL9fs2bO9OR0AAIAmR18C4C08vgegRQkLC9Orr76q3r1769lnn9XBgweVk5Oj9u3bO69evXpJkvOR85KSEk2ePFkPPvigOnbsqJiYGElq8Mc+Bw8e7N3JAAAA3AP0JQDe0vp+3wAAeFvr1q3VuvWN5a++vl7jxo3Thx9+2GBct27dJEnjxo1T9+7dtXbtWkVGRqq+vl6xsbGqqalxGd+uXbt7f/MAAABeQF8C4A1sSgFo0QYOHKjNmzerZ8+eTvH6/yorK3XkyBGtWbNGw4cPlyTt3bvX27cJAABw39CXANwrPL4HoEWbOXOmzp8/r0mTJmn//v06ceKEvv/+e73yyiu6fv26OnfurC5duuizzz7T8ePHlZ2drblz597v2wYAAPAa+hKAe4VNKQAtWmRkpH788Uddv35do0ePVmxsrGbPnq2QkBD5+/vL399fGzZs0MGDBxUbG6s5c+bo448/vt+3DQAA4DX0JQD3Ct++BwAAAAAAAK/jk1IAAAAAAADwOjalAAAAAAAA4HVsSgEAAAAAAMDr2JQCAAAAAACA17EpBQAAAAAAAK9jUwoAAAAAAABex6YUAAAAAAAAvI5NKQAAAAAAAHgdm1IAAAAAAADwOjalAAAAAAAA4HVsSgEAAAAAAMDr2JQCAAAAAACA1/0PrrW5oMCYND0AAAAASUVORK5CYII=",
       "text/plain": [
        "<Figure size 1200x480 with 2 Axes>"
       ]
@@ -2272,8 +836,56 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 34,
-   "id": "477d45ca-1be2-41e2-b6d3-8b48ddbd7025",
+   "execution_count": 19,
+   "id": "07a908a1-5a7d-4dd8-8ae5-260bfba993aa",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHFCAYAAAAUpjivAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAABovUlEQVR4nO3dd3xUVd7H8c9MekIykE5ICL2G3gRRQBBQAZF1saKsWFaBlSIqrq67j7uLuvYGFpQVRCwUsdGbSA9ECELoPSGEhAnpZe7zR2DWSAuQ5E4m3/frNa9nc+fMze/eJyZfzjn3HIthGAYiIiIibspqdgEiIiIiFUlhR0RERNyawo6IiIi4NYUdERERcWsKOyIiIuLWFHZERETErSnsiIiIiFtT2BERERG3prAjIiIibk1hR0RK2bp1K3/605+oX78+vr6+1KhRg/bt2/Pyyy+Tnp5eqm1hYSGTJ0+ma9eu2Gw2/Pz8aN68OU8//TQnT5406QouzGKx8Pe//73cz9uzZ0969uxZ7ucVkfJh0XYRInLWhx9+yGOPPUbTpk157LHHaNGiBYWFhWzatIkPP/yQNm3aMHfuXABycnK4+eabWb16NQ8//DADBgzAz8+PtWvX8sorr1CjRg0WL15M06ZNTb6q/1m3bh3R0dFER0eX63l//fVXAFq0aFGu5xWR8qGwIyIArF27luuuu44bb7yRefPm4ePjU+r9goICFixYwKBBgwB45JFH+OCDD5g1axZ33HFHqba7du2ic+fOREdH88svv+Dh4VFp1yEi8nsaxhIRAP79739jsVj44IMPzgk6AN7e3s6gk5KSwscff0y/fv3OCToATZo04amnnmL79u3Mmzfvkt9706ZNDBo0iODgYHx9fWnXrh1ffvllqTbTpk3DYrGwbNkyHnroIUJCQggKCuK+++4jOzublJQUhg4dSs2aNalduzZPPPEEhYWFpc7x+2GsnJwcnnjiCeeQXXBwMB07duTzzz93ttm3bx933nknUVFR+Pj4EBERQe/evUlISHC2Od8wVnp6Oo899hh16tTB29ubBg0a8Ne//pX8/Pxzaho1ahTTp0+nefPm+Pv706ZNG7777rtS7U6cOMHDDz9MTEwMPj4+hIWFce2117JkyZJL3l+R6s7T7AJExHzFxcUsW7aMDh06EBMTc8n2y5cvp6ioiMGDB1+wzeDBg3nmmWdYvHgxf/jDHy56rv79+9OlSxemTJmCzWZz9hbl5OQwfPjwUu0ffPBBhgwZwqxZs9iyZQvPPPMMRUVFJCUlMWTIEB5++GGWLFnCSy+9RFRUFOPGjbvg9x43bhzTp0/nn//8J+3atSM7O5vExMRS841uvvlmiouLefnll6lbty5paWmsWbOGU6dOXfC8eXl59OrVi7179/KPf/yD1q1b89NPPzFp0iQSEhL4/vvvS7X//vvv2bhxI//3f/9HjRo1ePnll7nttttISkqiQYMGAAwbNozNmzfzr3/9iyZNmnDq1Ck2b97sknOjRFyOISLVXkpKigEYd955Z5nav/jiiwZgLFiw4IJtcnNzDcC46aabLnquZs2aGe3atTMKCwtLHR8wYIBRu3Zto7i42DAMw/jkk08MwBg9enSpdoMHDzYA47XXXit1vG3btkb79u1LHQOM559/3vl1XFycMXjw4AvWlpaWZgDGG2+8cdFr6NGjh9GjRw/n11OmTDEA48svvyzV7qWXXjIAY9GiRaVqioiIMDIzM53HUlJSDKvVakyaNMl5rEaNGsaYMWMuWoeInJ+GsUSkQlkslgu+t2fPHnbu3Mk999wDQFFRkfN18803k5ycTFJSUqnPDBgwoNTXzZs3B+CWW2455/jBgwcvWlvnzp358ccfefrpp1mxYgW5ubml3g8ODqZhw4b85z//4bXXXmPLli04HI6LXzCwbNkyAgICuP3220sdP9tLtXTp0lLHe/XqRWBgoPPriIgIwsPDS9XfuXNnpk2bxj//+U/WrVt3zhCdiFyYwo6IEBoair+/P/v37y9T+7p16wJctP3Z9y42LHb8+HEAnnjiCby8vEq9HnvsMQDS0tJKfSY4OLjU197e3hc8npeXd9HreOutt3jqqaeYN28evXr1Ijg4mMGDB7N7926gJKgtXbqUfv368fLLL9O+fXvCwsL4y1/+wunTpy943pMnTxIZGXlO0AsPD8fT0/OcoaeQkJBzzuHj41MqfH3xxRfcf//9fPTRR3Tt2pXg4GDuu+8+UlJSLnqNIqKwIyKAh4cHvXv3Jj4+niNHjlyyfa9evfD09Lzo5OOz7914440XbBMaGgrAxIkT2bhx43lfbdu2vZxLuSwBAQH84x//YOfOnaSkpDB58mTWrVvHwIEDnW1iY2OZOnUqKSkpJCUlMXbsWN577z0mTJhwwfOGhIRw/PhxjN897JqamkpRUZHzui9HaGgob7zxBgcOHODgwYNMmjSJOXPmnDOnSUTOpbAjIkBJ4DAMg4ceeoiCgoJz3i8sLOTbb78FIDIykgceeICFCxfyxRdfnNN2165dvPTSS7Rs2fKik5ibNm1K48aN+eWXX+jYseN5X78d3qlIERERDB8+nLvuuoukpCRycnLOadOkSROeffZZWrVqxebNmy94rt69e5OVlXVOGPz000+d71+NunXrMmrUKG688caL1iEiJfQ0logA0LVrVyZPnsxjjz1Ghw4dePTRR2nZsiWFhYVs2bKFDz74gLi4OGevx2uvvUZSUhL33nsvq1atYuDAgfj4+LBu3TpeeeUVAgMDmT179iXX2Hn//fe56aab6NevH8OHD6dOnTqkp6ezY8cONm/ezFdffVVh19ylSxcGDBhA69atqVWrFjt27GD69Ol07doVf39/tm7dyqhRo/jjH/9I48aN8fb2ZtmyZWzdupWnn376gue97777ePfdd7n//vs5cOAArVq1YvXq1fz73//m5ptvpk+fPpdVp91up1evXtx99900a9aMwMBANm7cyIIFCxgyZMjV3gYRt6ewIyJODz30EJ07d+b111/npZdeIiUlBS8vL5o0acLdd9/NqFGjnG0DAgJYvHgxH374IZ9++imffvophYWF1KtXjwcffJAnn3zyvHNRfq9Xr15s2LCBf/3rX4wZM4aMjAxCQkJo0aIFQ4cOrcjL5YYbbmD+/Pm8/vrr5OTkUKdOHe677z7++te/AiU9WA0bNuS9997j8OHDWCwWGjRowKuvvsro0aMveF5fX1+WL1/OX//6V/7zn/9w4sQJ6tSpwxNPPMHzzz9/2XX6+vrSpUsXpk+fzoEDBygsLKRu3bo89dRTPPnkk1d8/SLVhVZQFhEREbemOTsiIiLi1hR2RERExK0p7IiIiIhbU9gRERERt6awIyIiIm5NYUdERETcmtbZARwOB8eOHSMwMPCimxaKiIiI6zAMg9OnTxMVFYXVeuH+G4Ud4NixYxfdrFBERERc1+HDh4mOjr7g+wo74Nx75/DhwwQFBZlcjYiIiJRFZmYmMTExl9xDT2EHnENXQUFBCjsiIiJVzKWmoGiCsoiIiLg1hR0RERFxawo7IiIi4tYUdkRERMStKeyIiIiIW1PYEREREbemsCMiIiJuTWFHRERE3JrCjoiIiLg1hR0RERFxawo7IiIi4tYUdkRERMStKeyIuLns/CKzSxARMZXCjogbm7XhEC2fX8jYLxLIzCs0uxwREVMo7Ii4sS83HQZg7paj3PTGT2w8kG5yRSIilU9hR8RNnczKZ8vhUwDUqenH0VO53PH+Wl5dlERhscPc4kREKpHCjoibWpF0AsOAllFBLBhzHUPa18FhwNvL9nD7lLUcSMs2u0QRkUqhsCPippbtTAWgd7NwAn29eG1oW96+qx1Bvp78cvgUN7/1E19uPIxhGCZXKiJSsRR2RNxQQZGDVbtOAHBD8wjn8YFtolgw5nq61A8mp6CYJ2dv5bHPNmvysoi4NYUdETe06UA6p/OLCK3hTes6tlLvRdX0Y+ZD1/BU/2Z4Wi38mJjCM3O2mVSpiEjFU9gRcUNLzwxh9WoajtVqOed9D6uFR3s2ZNbD12C1wHdbk9mwX09qiYh7UtgRcUPO+TrNwy/armO9YO7qXBeAf3y7nWKH5u+IiPtR2BFxM/tOZLE/LRsvDwvdG4ddsv24G5sQ5OvJ9mOZfHVmXR4REXeisCPiZs726lzTIIQaPp6XbB9Sw4cxfZoA8J+FSZqsLCJu59K/CUWkSlm6oyTs3NDs4kNYvzWsayyfrT/I3hPZvLVkN88OaFFR5VUpqZl5/HVeIolH7Xh5WPH2tJb8Xw9Lqa/j6gTxRN+mWCznzo8SEfMp7Ii4EXtuoXNLiMsJO14eVv42sCX3f7yBaWsOcFeXujQMq1FRZVYJa/eeZPTnW0jLyr9k25W7TtCqjo3+cbUroTIRuVwKOyJu5KfdJyhyGDQKr0FsSMBlfbZHkzB6Nwtn6c5U/vndr3zyp84VVKVrczgMpqzayysLk3AY0CwykL8NbIGPpwcFRQ4Ki//3Kig2WJl0gtmbj/DKol3c2CISj/M8/SYi5lLYEXEjy3b8b9XkK/HXW5qzavcJliedYPnOVHpd4XmqKntOIeO+THA+uj+kfR3+NbgVft4eF/xMz6ZhLNlxnD2pWczbcpQ/dIiurHJFpIw0QVnETRQ7DJYnXf58nd9qEFaDP11bH4AXvv+VgqLqs2Fo4lE7A975iaU7U/H2tDJpSCte/WObiwYdgCBfLx7t2RCA15fsqlb3TKSqMDXsTJo0iU6dOhEYGEh4eDiDBw8mKSmpVJusrCxGjRpFdHQ0fn5+NG/enMmTJ5dqk5+fz+jRowkNDSUgIIBBgwZx5MiRyrwUEdMlHM4gI6eQIF9POsTWuuLzjLqhEaE1vNl3IptP1x4ovwJdlGEYzFx/iCGT13A4PZeYYD/mPNqNuzrXLfOE4/u71iMs0IcjGbl8ocf3RVyOqWFn5cqVjBw5knXr1rF48WKKioro27cv2dn/24157NixLFiwgBkzZrBjxw7Gjh3L6NGj+eabb5xtxowZw9y5c5k1axarV68mKyuLAQMGUFxcbMZliZji7FNYPZuG4+lx5f9pB/l6MaFfUwDeXLq7TBN0q6qCIgcTvt7KM3O3UVDkoE/zcL4bdR1xv9ti41L8vD0YfUMjAN5eupvcAv3uEXElpoadBQsWMHz4cFq2bEmbNm345JNPOHToEPHx8c42a9eu5f7776dnz57Uq1ePhx9+mDZt2rBp0yYA7HY7U6dO5dVXX6VPnz60a9eOGTNmsG3bNpYsWWLWpYlUurKumlwWt3eIIa5OEKfzinh10a6rPp8ryi0o5uHpm/g6/ghWCzzVvxkfDOuIzd/ris53Z6e6RNfyI/V0frXoEROpSlxqzo7dbgcgODjYeax79+7Mnz+fo0ePYhgGy5cvZ9euXfTr1w+A+Ph4CgsL6du3r/MzUVFRxMXFsWbNmvN+n/z8fDIzM0u9RKqyIxk57Ew5jdVS8lTV1fKwWnh+YEsAZm08xOrdaRiG+2wlkZlXyH0fr2dF0gl8vaxMHd6JR3s2PO8+YmXl7Wl1Ls44eeVeLc4o4kJcJuwYhsG4cePo3r07cXFxzuNvvfUWLVq0IDo6Gm9vb/r37897771H9+7dAUhJScHb25tatUrPUYiIiCAlJeW832vSpEnYbDbnKyYmpuIuTKQSLD/Tq9MxNpia/t7lcs5O9YIZ2CYKw4B7p67nxtdX8e7yPRw9lVsu5zdLWlY+d32wjo0HMgj09WT6iC70alo+T53d1q4ODcMCOJVTyEc/7S+Xc4rI1XOZsDNq1Ci2bt3K559/Xur4W2+9xbp165g/fz7x8fG8+uqrPPbYY5ccojIM44KTCydOnIjdbne+Dh/WhEKp2s4+Kn1DOQxh/db/DWrJ4LZR+Hha2ZOaxX8WJnHti8u484O1fLnxMKerWO/FsVO5DH1/LduPZRIS4M2sh6+hU73gS3+wjDysFsb3LZnvNPWnfaRnF5TbuUXkyrnEOjujR49m/vz5rFq1iujo/61RkZubyzPPPMPcuXO55ZZbAGjdujUJCQm88sor9OnTh8jISAoKCsjIyCjVu5Oamkq3bt3O+/18fHzw8fGp2IsSqSQ5BUWs2XsSuPL1dS6kVoA3b9zZjv/LK2TBthTmbDnCun3pztdz3yRyY4sI7ukSyzUNgl16u4R9J7IYNnUDR0/lEmXzZcaDXWhQAatE928ZSVydIBKPZjJ5xR7+eou23hAxm6k9O4ZhMGrUKObMmcOyZcuoX79+qfcLCwspLCzEai1dpoeHBw5HyVoWHTp0wMvLi8WLFzvfT05OJjEx8YJhR8Sd/LznJAVFDmKC/WgUXjFbPAT5ejG0UwyzHu7Kz0/fwIR+TWkUXoP8IgffbU3mrg/Xceu7P/P91mSKHa43t2f7MTtD31/L0VO5NAgL4OtHu1VI0AGwWi08caZ3579rD5Jsr9rDfiLuwNSenZEjRzJz5ky++eYbAgMDnXNsbDYbfn5+BAUF0aNHDyZMmICfnx+xsbGsXLmSTz/9lNdee83ZdsSIEYwfP56QkBCCg4N54oknaNWqFX369DHz8kQqxbKdxwHo3SyiUnpW6tT0Y2SvRjzWsyGJRzOZtfEQX8cfYesROyNnbqZusD8PXlefP3aIueSCfBUtr7CYjQfSeeyzzZzOK6JlVBD/faAzoTUqtme3R5MwOtWrxcYDGby9bA//vq1VhX4/Ebk4i2HiIxYX+sX8ySefMHz4cKBkAvLEiRNZtGgR6enpxMbG8vDDDzN27Fjn5/Py8pgwYQIzZ84kNzeX3r17895775V54nFmZiY2mw273U5QUFC5XJtIZTAMgy7/XlryuPMDnbm+HJ7EuhIns/L579qDTF97gIycknk8tfy9uK9rPe7rGktwgDcZOYUczcjlSEYOR0/lciQjl6Onckm25+JptWLz83K+gvw8S33t7Vm6d9dC6d8d6dkFpGTmkWzPJflUHsn2kv99thaATvVqMXV4J4J8r+zR8su1YX86Q99fi6fVwtLxPS57rzIRubSy/v02Ney4CoUdqaoSj9oZ8PZq/L092PK3G/HxNLcnJaegiK82HeGj1fs4nF4yfOPtacXDYiG30JyF9ny9rPRrGcmLQ1pXek/T/R9vYOWuEwxuG8Ubd7ar1O8tUh2U9e+3S0xQFpErs+jXkiGs6xqHmh50APy9Pbm/Wz3u6VKXBdtTeH/lPrYdtTvfDwv0oU5NP6Jr+VGnlh/RNf2IqumHw4BTOQXYcwvJzC3E/rtX0UXmARkGBPl5UtvmR22bL5E2X6JsfkTafKlt88Xm52XaxOkn+jZl5a4TzEs4Rk5BMU/f1KzC5gqJyIUp7IhUUXmFxcxcfwiAm+Jqm1xNaZ4eVga0juKWVrXZnZqFp9VCVE0/fL3MD2SVqVW0jcd7N+btZbtZ9Otxlu1M5Z4udXm8TxOCA8pnPSQRuTSXWWdHRC7P7M1HSMvKJ8rmyy2tXSvsnGWxWGgSEUiDsBrVLuicNfbGJiwccz03NAunyGHw37UH6fHycqas3EueSUN7ItWNwo5IFVTsMPhg1T4AHryuAV5XsfGnVLzGEYF8PLwTnz3YhRa1gzidX8SLP+6k96sr+SbhKA4XfFxfxJ3oN6RIFfRjYjIHT+ZQ09+LOztru5Oq4tpGoXw3ujuv/rENkUG+HD2Vy+OzErh9yhpO5Wi1ZZGKorAjUsUYhsGUlXsBuL9rPfy9NfWuKrFaLfyhQzTLn+jJhH5NCfD2YPOhUzw6YzOFxQ6zyxNxSwo7IlXM6j1pJB7NxNfLyv3d6pldjlwhP28PRvZqxJzHriXA24O1+07yt2+2u9Xu8iKuQmFHpIo526tzZ6e6eqLHDTSNDOTtu9thtcDnGw7x8c8HzC5JxO0o7IhUIVuPnOLnPSfxsFp48Lr6l/6AVAk3NIvgmZubA/Cv739l+Zld7EWkfCjsiFQhZ3t1bm0TRXQtf5OrkfI0ont97uwUg8OA0Z9vISnltNklibgNhR2RKmJ/WjY/JpZslvtIj4YmVyPlzWKx8H+3xnFNg2Cy8ot4YNpG0rLyzS5LxC0o7IhUER+s2othwA3NwmkaGWh2OVIBvD2tTL6nA/VC/Dl6KpdHpseTX6SFB0WulsKOSBWQmpnH7PijADzaU7067qxWgDcf3d+JQF9P4g9mMHH2Nj2hJXKVFHZEqoCPfz5AQbGDDrG16FQv2OxypII1Cq/Be/e0x8NqYc6Wo7y3Yq/ZJYlUaQo7Ii4uM6+Qz9YdBOBRzdWpNq5rHMbfB7YA4D8Lk5i8Yq96eESukMKOiIv7bN0hTucX0Ti8Bjc0Cze7HKlEw7rW45HrGwDw0oKdPDV7KwVFWmVZ5HIp7Ii4sLzCYqau3g/An3s0xGq1mFyRVLaJNzfn7wNbYLXAl5uOcN/H67WPlshlUtgRcWFzNh8lLSufKJsvg9pGmV2OmGT4tfWZen8navh4sm5fOre9t4Z9J7LMLkukylDYEXFhszYeAuCB7vXx8tB/rtVZr2bhfP1oV+rU9GN/Wja3vbeGtXtPml2WSJWg354iLmp/WjZbj9jxsFq4rV0ds8sRF9AsMoh5I6+lbUxN7LmFDJu6ni83Hja7LBGXp7Aj4qLmJxwD4NpGoYTU8DG5GnEVYYE+zHr4Gga0rk2Rw+DJ2VuZ9OMOPaklchEKOyIuyDAMvvmlZBHBW9toro6U5uvlwVt3tuMvNzQC4P2V+1iyQ5uHilyIwo6IC9p+LJN9J7Lx8bTSt2WE2eWIC7JaLYzr25T7u8YC8P3WYyZXJOK6FHZEXNC3v5T84erdPJxAXy+TqxFXNvBMz9/Snalag0fkAhR2RFyMw2Ew/0zYGaQhLLmE9nVrERbow+m8Itbu09NZIuejsCPiYjYdzCDZnkegjyc9m2rFZLk4q9XCjS1KhjoXJKaYXI2Ia1LYEXEx889MTO4XF4mvl4fJ1UhV0L9lJACLfz1OsUNPZYn8nsKOiAspLHbw/dZkAG7VislSRtc0CCHI15O0rHw2H8owuxwRl6OwI+JCVu9JIyOnkNAa3nRtEGJ2OVJFeHta6d1cQ1kiF6KwI+JCzi4kOKB1FJ7aHkIuQ78zQ1kLt6dogUGR39FvU5Gr8K/vf6Xnf5Zz6GTOVZ8rt6CYRdtL/lU+UE9hyWXq0SQMXy8rRzJy2X4s0+xyRFyKqWFn0qRJdOrUicDAQMLDwxk8eDBJSUnntNuxYweDBg3CZrMRGBjINddcw6FDh5zv5+fnM3r0aEJDQwkICGDQoEEcOXKkMi9FqqE9qaf5aPV+DpzM4cUFO676fEt3Hie7oJjoWn60r1vz6guUasXP24OeTUqe3lu4XUNZIr9lathZuXIlI0eOZN26dSxevJiioiL69u1Ldna2s83evXvp3r07zZo1Y8WKFfzyyy8899xz+Pr6OtuMGTOGuXPnMmvWLFavXk1WVhYDBgyguLjYjMuSauLd5Xs5O1rww7YU4g9e3cTQs0NYg9pEYbFYrrY8qYb6xWnejsj5WAwXGtw9ceIE4eHhrFy5kuuvvx6AO++8Ey8vL6ZPn37ez9jtdsLCwpg+fTp33HEHAMeOHSMmJoYffviBfv36XfL7ZmZmYrPZsNvtBAUFld8Fids6kJbNDa+uwGFA53rBbDiQTofYWnz9565XFFTsuYV0+ucSCoodLBhzHc0i9XMol8+eW0iHFxZT5DBYOr4HDcNqmF2SSIUq699vl5qzY7fbAQgODgbA4XDw/fff06RJE/r160d4eDhdunRh3rx5zs/Ex8dTWFhI3759nceioqKIi4tjzZo15/0++fn5ZGZmlnqJXI73VuzBYUDPpmG8dVc7fL2sxB/MuOLhg4WJKRQUO2gaEaigI1fM5udFt0ahgIayRH7LZcKOYRiMGzeO7t27ExcXB0BqaipZWVm8+OKL9O/fn0WLFnHbbbcxZMgQVq5cCUBKSgre3t7UqlWr1PkiIiJISTn/f+yTJk3CZrM5XzExMRV7ceJWDqfnMGdzycJ/o29oTKTNl4euawDASwuSKCy+/P2Jzu5wPkhr68hV6ndm49iFGsoScXKZsDNq1Ci2bt3K559/7jzmcJT80bj11lsZO3Ysbdu25emnn2bAgAFMmTLlouczDOOCwwkTJ07Ebrc7X4cPHy6/CxG3N2XlXoocBtc2CqFDbEnIfqRHQ0JreLM/LZuZ6w9d4gylpWbmsXZvyZ5G2gtLrtaNLSKwWOCXI3aOnco1uxwRl+ASYWf06NHMnz+f5cuXEx0d7TweGhqKp6cnLVq0KNW+efPmzqexIiMjKSgoICOj9OTQ1NRUIiIizvv9fHx8CAoKKvUSKYsUex5fbSp50m/0DY2dx2v4ePJ4nyYAvLl0N5l5hWU+53dbk3EY0K5uTWKC/cu3YKl2wgN96XgmhC/SUJYIYHLYMQyDUaNGMWfOHJYtW0b9+vVLve/t7U2nTp3OeRx9165dxMbGAtChQwe8vLxYvHix8/3k5GQSExPp1q1bxV+EVCtTVu6loNhB53rBXPO7FY7v7BRDg7AA0rMLmLJib5nPeXaH81vVqyPl5OwCgwsUdkQAk8POyJEjmTFjBjNnziQwMJCUlBRSUlLIzf1f1+uECRP44osv+PDDD9mzZw/vvPMO3377LY899hgANpuNESNGMH78eJYuXcqWLVu49957adWqFX369DHr0sQNpZ7O4/MNJT2Ko3s3Oud9Lw8rT/dvBsDU1fvLNIRw6GQOCYdPYbXALa0VdqR8nA07G/ank55dYHI1IuYzNexMnjwZu91Oz549qV27tvP1xRdfONvcdtttTJkyhZdffplWrVrx0UcfMXv2bLp37+5s8/rrrzN48GCGDh3Ktddei7+/P99++y0eHtoxWsrPRz/tJ7/IQduYmnQ/88TL793YIoLO9YLJL3Lw6qJdFz1fUbGDj3/eD8C1jUIJC/Qp95qleooJ9qdlVBAOA5b8etzsckRM51Lr7JhF6+zIpaRnF9D9pWXkFBTz8fCO3NDs/PPBABIOn2Lwuz9jscD3o6+jRVTpnynDMFi4/TivLEpiT2oWAG/c0ZbB7epU6DVI9fLW0t28tngXNzQL5+PhncwuR6RCVMl1dkRc1dTV+8gpKCauThC9moZftG3bmJoMaF0bw4BJP5beRmLdvpMMmbyGP8+IZ09qFjX9vXhuQAtu1SPnUs76x5UMZa3enUZWfpHJ1YiYy9PsAkRcnT2nkP+uOQjAqF6Ny7RC8pP9mrFwewo/7U5j5a4ThNXw4eWFO1mRdAIAPy8PHryuPg9d34AgX68KrV+qp8bhNWgQGsC+tGyW70zV5rJSrSnsiFzCtDUHyMovomlEIH1bXHj46rfqhvhzX9d6TF29n798voXMvEIMAzytFu7qXJfRvRsRHuh76ROJXCGLxULflpFMWbmXBdtTFHakWtMwlshFnM4rdE4iHnVDI6zWsu97NfqGRgT5emLPLQk6A9tEsWRcD14YHKegI5Xi7FDWip2p5BVqY2SpvtSzI3IR09cdxJ5bSIOwAG5uVfuyPlvT35t37m7Pj4kp3NOlLnF1bBVUpcj5ta5jo7bNl2R7Hn/5fAvPDWihhSulWlLPjsgFFBU7mPbzAQBG9WqEx2X06px1fZMwJg1ppaAjprBaLYzp0xirBRb9epw+r63k1UVJ5BRowrJULwo7Ihfw0+40Uk/nExzgzQAt+CdV1B2d6vLD49fRrWEI+UUO3l62hxteWck3CUfRyiNSXSjsiFzA15tL9sAa1CYKb0/9pyJVV7PIID57sAtT7u1ATLAfKZl5PD4rgdunrGXrkVNmlydS4fQbXOQ87DmFLN5esvLs7R2iL9FaxPVZLBb6x0WyeGwPJvRrir+3B/EHM7j13Z+Z8NUv2HPKvnmtSFWjsCNyHt9uPUZBsYNmkYG0jNKq2uI+fL08GNmrEcvG92RIuzoYBnwVf4RB765mZ0qm2eWJVAiFHZHz+Dq+ZAjr9g7RZVpEUKSqibT58todbZn9aDeia/lx8GQOt727hvm/HDO7NJFyp7Aj8jt7UrNIOHwKD6uFW9tqvypxbx1ia/HtqO5c1ziU3MJi/vL5Fv71/a8UFTvMLk2k3CjsiPzO7DMTk3s2CdNO5FIt1ArwZtqfOvNoz4YAfPjTfoZN3cDJrHyTKxMpHwo7Ir9R7DCYu/koAH/QxGSpRjysFp7q34zJ97QnwNuDtftOMvDt1fxy+JTZpYlcNYUdkd/4eU8aKZl52Py86N384rubi7ijm1rVZt7Ia2kQGsAxex5/fH8tX248bHZZIldFYUfkN2b/Zm0dH08Pk6sRMUfjiEDmjbqWPs0jKChy8OTsrby9dLfZZYlcMYUdkTMy8wpZuD0F0No6IkG+XnwwrANj+jQG4NXFu/hs/UGTqxK5Mgo7Imf8sDWZvEIHjcJr0Dpae1mJlOyt1YTRNzQC4Nl5ifywLdnkqkQun8KOyBlnh7C0to5IaeNubMLdXepiGDBmVgI/70kzuySRy6KwIwIcSMtm44EMrBa4rZ3W1hH5LYvFwgu3xnFTXCQFxQ4e/nQT247YzS5LpMwUdkSAOWd6da5rHEZEkK/J1Yi4Hg+rhTfubEu3hiFkFxQz/JMN7DuRZXZZImWisCPVnsNhMFtr64hcko+nB+8P60BcnSBOZhcwbOoGUux5ZpclckkKO1Ltrdt/kqOncgn09aRviwizyxFxaYG+Xkz7U2fqhwZw9FQu9328nlM5BWaXJXJRCjtS7Z3d9HNgmyh8vbS2jsilhNbw4dMHOhMe6MOu41mM+O8mcguKzS5L5IIUdqRay84vYkFiydo6f2ivISyRsooJ9mf6iC4E+XoSfzCD0Z9v1uah4rIUdqRa+2FbMjkFxTQIDaB93ZpmlyNSpTSNDOTj4Z3w8bSyZEcqf5u/HcMwzC5L5BwKO1KtnR3C+oPW1hG5Ih3rBfPmne2wWGDm+kO8u3yP2SWJnENhR6qtxKN21u9Px8Nq0do6Ilehf1wk/xjUEoBXFu3iq03aOFRci8KOVFtTVu4FYEDr2kTV9DO5GpGq7b6u9fhzj4YATJyzjZW7Tphckcj/KOxItXTwZLZzj5+zv6BF5Oo82a8pg9tGUeQweHRGPIlHtcqyuAaFHamWPli1D4cBPZuG0bx2kNnliLgFq9XCy7e34dpGIeQUFDP8k40cTs8xuywRc8POpEmT6NSpE4GBgYSHhzN48GCSkpIu2P6RRx7BYrHwxhtvlDqen5/P6NGjCQ0NJSAggEGDBnHkyJEKrl6qqtTTeXx1ZmLyo+rVESlX3p5Wptzbgea1g0jLyuf+TzaQka1FB8VcpoadlStXMnLkSNatW8fixYspKiqib9++ZGdnn9N23rx5rF+/nqioqHPeGzNmDHPnzmXWrFmsXr2arKwsBgwYQHGxFrmSc037+QAFRQ7a1a1J5/rBZpcj4nZKVlnuRJ2afuw7kc2I/24kr1C/j8U8poadBQsWMHz4cFq2bEmbNm345JNPOHToEPHx8aXaHT16lFGjRvHZZ5/h5eVV6j273c7UqVN59dVX6dOnD+3atWPGjBls27aNJUuWVOblSBVwOq+Q6esOAiW9OnrcXKRiRAT5Mu1PnQjy9WTzoVO8svDCvfYiFc2l5uzY7SWT2YKD//evbYfDwbBhw5gwYQItW7Y85zPx8fEUFhbSt29f57GoqCji4uJYs2ZNxRctVcrM9Yc4nVdEo/Aa9GmufbBEKlLjiEBeG9oWgJkbDmkPLTGNy4QdwzAYN24c3bt3Jy4uznn8pZdewtPTk7/85S/n/VxKSgre3t7UqlWr1PGIiAhSUlLO+5n8/HwyMzNLvcT95RcVM3X1fgAeub4BVqt6dUQqWu/m4TSvHUROQTHT1x40uxypplwm7IwaNYqtW7fy+eefO4/Fx8fz5ptvMm3atMsebjAM44KfmTRpEjabzfmKiYm5qtqlapi7+Sipp/OpbfPl1rZaRFCkMlgsFv7cowEA09Yc0NwdMYVLhJ3Ro0czf/58li9fTnT0/zZj/Omnn0hNTaVu3bp4enri6enJwYMHGT9+PPXq1QMgMjKSgoICMjIySp0zNTWViIjzD1NMnDgRu93ufB0+rNU+3V2xw+D9VfsAGNG9Pt6eLvGjL1It3NKqNnVq+nEyu0CrK4spTP2NbxgGo0aNYs6cOSxbtoz69euXen/YsGFs3bqVhIQE5ysqKooJEyawcOFCADp06ICXlxeLFy92fi45OZnExES6det23u/r4+NDUFBQqZe4t0XbU9iflo3Nz4u7Otc1uxyRasXTw8pD15X8fv/gp33aHV0qnaeZ33zkyJHMnDmTb775hsDAQOccG5vNhp+fHyEhIYSEhJT6jJeXF5GRkTRt2tTZdsSIEYwfP56QkBCCg4N54oknaNWqFX369Kn0axLXYxgGk89sDXF/11gCfEz9sReploZ2iuHNpbs5nJ7Lj4kpDGxz7jIiIhXF1J6dyZMnY7fb6dmzJ7Vr13a+vvjii8s6z+uvv87gwYMZOnQo1157Lf7+/nz77bd4eHhUUOVSlazde5KtR+z4elm5v1s9s8sRqZb8vT2d//1NWbkXwzDMLUiqFYuhnzgyMzOx2WzY7XYNabmhYVPX89PuNO7vGss/bo279AdEpEJkZBfQ7cVl5BYWM31EZ65rHGZ2SVLFlfXvt2ZpiltLPGrnp91peFgtPHhdA7PLEanWagV4c0enkqdf31+5z+RqpDpR2BG3dnauzsDWtYkJ9je5GhEZ0b0+HlYLq/ekse2IdkWXyqGwI24rK7+IhYklk94fvl4bfoq4gphgfwa2rg3AlFV7Ta5GqguFHXFbGw+kU+QwiAn2o0WU5mKJuIpHepT84+PHbckcPHnuxs8i5U1hR9zWur0nAejaIOQSLUWkMjWvHUSPJmE4DPjwJ83dkYqnsCNua+2+M2GnocKOiKv585nena82HSEtK9/kasTdKeyIW8rMKyTxaMnkx2vUsyPicq5pEEybmJrkFzn475oDZpcjbk5hR9zShn3pOAyoF+JPbZuf2eWIyO9YLBYePbNB6KdrD5KdX2RyReLOtG6+uCUNYYm4vhtbRFI/NID9adl0+fdSvDwseFgtWCwWPCwWrJaSUOTjZWXcjU0Y0FpbTMiVUc+OuKV1Z8KOhrBEXJeH1cKYPo2BkqUiMnIKScsq4MTpfFIy8zhmz+PoqVz2ncjmlYVJ2mJCrph6dsTtnMop4NfkTEBPYom4ulvb1qFL/RCy8oswDAOHAcUOA4dhYBhQUFzMPR+t58DJHLYdtdM6uqbZJUsVpLAjbmf9/nQMAxqGBRAe5Gt2OSJyCZG2i/932qd5BN9tTWZ+wjGFHbkiGsYSt7N2r+briLiTQW1K5up8u/UYxQ4NZcnlU9gRt3N2vk7XBqEmVyIi5aFH0zCCfD05npnPhv3pZpcjVZDCjriVk1n57Ew5DZSs4yEiVZ+Ppwc3xZXspzX/l2MmVyNVkcKOuJX1Z/7V1zQikJAaPiZXIyLlZVDbkqGsH7YlU1DkMLkaqWoUdsStnJ2vo14dEfdyTYMQwgJ9sOcW8tPuE2aXI1WMwo64FS0mKOKePKwWBrTWUJZcGYUdcRupp/PYk5qFxQJd6ivsiLibs09lLdp+nJwCbS8hZaewI25j3b6S+TrNIoOoFeBtcjUiUt7axtSkbrA/uYXFLNmRanY5UoUo7Ijb+N8j5+rVEXFHFovF2bszP0FDWVJ2CjviNtZpMUERt3f2qayVu1I5lVNgcjVSVSjsiFs4npnHvrRsrBboXF9PYom4qyYRgTSLDKSw2GBBYorZ5UgVobAjbuHsI+cto2zY/LxMrkZEKtLAs0NZeipLykhhR9yC9sMSqT7OzttZu+8kxzPzTK5GqgKFHXELazU5WaTaiAn2p33dmhgGfLc12exypApQ2JEq7+ipXA6l5+BhtdCxXi2zyxGRSjBIQ1lyGRR2pMo7O4QVV8dGoK/m64hUB7e0jsJqgV8On+JAWrbZ5YiLU9iRKs85X0dDWCLVRligD9c2CgXgW/XuyCUo7EiVZhjG/xYT1ORkkWrl7FNZ3/xyDMMwTK5GXJnCjlRph9NzOXoqF0+rhY6xmq8jUp30axmJt4eVPalZ7Eg+bXY54sIUdqRKW7svDYA2MTUJ8PE0uRoRqUw2Py96NQsDNFFZLs7UsDNp0iQ6depEYGAg4eHhDB48mKSkJOf7hYWFPPXUU7Rq1YqAgACioqK47777OHas9A91fn4+o0ePJjQ0lICAAAYNGsSRI0cq+3LEBGc3/9R8HZHq6ZbWJUNZK5K0MahcmKlhZ+XKlYwcOZJ169axePFiioqK6Nu3L9nZJTPrc3Jy2Lx5M8899xybN29mzpw57Nq1i0GDBpU6z5gxY5g7dy6zZs1i9erVZGVlMWDAAIqLi824LKkkhmFoMUGRau6aM9vDJB0/TWZeocnViKuyGC40q+vEiROEh4ezcuVKrr/++vO22bhxI507d+bgwYPUrVsXu91OWFgY06dP54477gDg2LFjxMTE8MMPP9CvX79Lft/MzExsNht2u52goKByvSapOEkpp+n3xiq8Pa388re++Hl7mF2SiJjgupeXcTg9l/8+0JkeTcLMLkcqUVn/frvUnB273Q5AcPCFN3K02+1YLBZq1qwJQHx8PIWFhfTt29fZJioqiri4ONasWXPec+Tn55OZmVnqJVXP0p3HAbi2YYiCjkg11im25G/GpgPpJlcirsplwo5hGIwbN47u3bsTFxd33jZ5eXk8/fTT3H333c4El5KSgre3N7VqlX4SJyIigpSU8++IO2nSJGw2m/MVExNTvhcjlWLZjpIx+huaR5hciYiYqcOZldM3HcgwuRJxVS4TdkaNGsXWrVv5/PPPz/t+YWEhd955Jw6Hg/fee++S5zMMA4vFct73Jk6ciN1ud74OHz58VbVL5UvPLmDzoZJfbDc0Cze5GhExU8czPTsJh09RWOwwuRpxRS4RdkaPHs38+fNZvnw50dHR57xfWFjI0KFD2b9/P4sXLy41LhcZGUlBQQEZGaUTfWpqKhER5/8Xv4+PD0FBQaVeUrWs3JWKw4BmkYHUqelndjkiYqLG4TUI8vUkt7CYHcmaliDnMjXsGIbBqFGjmDNnDsuWLaN+/frntDkbdHbv3s2SJUsICSn91E2HDh3w8vJi8eLFzmPJyckkJibSrVu3Cr8GMceynScA6N1cvToi1Z3VaqFDrIay5MJMDTsjR45kxowZzJw5k8DAQFJSUkhJSSE3NxeAoqIibr/9djZt2sRnn31GcXGxs01BQQEANpuNESNGMH78eJYuXcqWLVu49957adWqFX369DHz8qSCFBY7WHlmTY0bmmm+johAx3pnJikf1CRlOZepS85OnjwZgJ49e5Y6/sknnzB8+HCOHDnC/PnzAWjbtm2pNsuXL3d+7vXXX8fT05OhQ4eSm5tL7969mTZtGh4eekLHHcUfzCAzr4jgAG/axtQ0uxwRcQG/7dm52JxNqZ5MDTuXWuKnXr16ZdrczdfXl7fffpu33367vEoTF7ZsZ0mvTs+mYXhY9QtNRKBNdE08rRZST+dzJCOXmGB/s0sSF+ISE5RFLsfSHSXr6/TWEJaInOHn7UHLOjZAQ1lyLoUdqVIOpGWz90Q2nlYL1zUJNbscEXEhnTRJWS7gioaxsrOzWblyJYcOHXJOFD7rL3/5S7kUJnI+Z4ewOtULJsjXy+RqRMSVdKxXi49W7yf+oMKOlHbZYWfLli3cfPPN5OTkkJ2dTXBwMGlpafj7+xMeHq6wIxXqbNjRI+ci8nsdYv+3Kag9txCbn/5BJCUuexhr7NixDBw4kPT0dPz8/Fi3bh0HDx6kQ4cOvPLKKxVRowgAp/MKWb+/ZJdzrZosIr8XFuhDbIg/hoFzhXURuIKwk5CQwPjx4/Hw8MDDw4P8/HxiYmJ4+eWXeeaZZyqiRhEAVu9Oo7DYoH5oAA3Caphdjoi4oLOPoMdr3o78xmWHHS8vL+f6BRERERw6dAgoWdzv7P8WqQhLd55dSFC9OiJyfp20uKCcx2XP2WnXrh2bNm2iSZMm9OrVi7/97W+kpaUxffp0WrVqVRE1iuBwGKw4s2pyb4UdEbmAjmd6ds5uCurloYeO5Qp6dv79739Tu3ZtAF544QVCQkJ49NFHSU1N5YMPPij3AkUAth61k5ZVQKCPp3NZeBGR32sYVgObnxd5hQ62H9OmoFKizD07WVlZ1KhRg44dOzqPhYWF8cMPP1RIYSK/tezMQoLXNwnD21P/UhOR8zu7KeiynalsOpCuLWUEuIyendDQUG666SYmT57M0aNHK7ImkXNovo6IlFXHemcmKWu9HTmjzGEnKSmJm2++mdmzZ9OgQQM6derECy+8wNatWyuyPhFS7HlsP5aJxVKyH5aIyMV0jD07STmjTPsrivsrc9iJjY1l9OjRLFmyhNTUVMaNG8f27du5/vrrqV+/Po8//jjLli2juLi4IuuVaujsQoLtYmoSUsPH5GpExNW1jrbh5WHhxOl8Dqfnml2OuIArmvxgs9m46667mDVrFmlpabz//vs4HA7+9Kc/ERYWxmeffVbedUo1tmznmY0/m2vjTxG5NF8vD+K0Kaj8xlXP9PT09KRv3768/fbbHDx4kCVLltCkSZPyqE2EvMJiVu9JAzRfR0TK7uwj6Bu1uKBwBevsXGiOjsViwdfXl5YtW+Ljo6EGKR9r954kr9BBlM2XZpGBZpcjIlVEx3rBfPjTfuLVsyNcQdhp27atcwXl8/Hy8uKOO+7g/fffx9fX96qKE1l6ZgjrhubhF/25ExH5rbPbRuw6noU9pxCbvzYFrc4uexhr7ty5NG7cmA8++ICEhAS2bNnCBx98QNOmTZk5cyZTp05l2bJlPPvssxVRr1QjhmGwbMfZVZM1X0dEyi60hg/1QwMAbQoqV9Cz869//Ys333yTfv36OY+1bt2a6OhonnvuOTZs2EBAQADjx4/XLuhyVfanZXPMnoe3p5WuDUPMLkdEqpgOsbXYn5bNpoPp9NKcv2rtsnt2tm3bRmxs7DnHY2Nj2bZtG1Ay1JWcnHz11Um1tmF/yVh7u5ia+Hp5mFyNiFQ1mqQsZ1122GnWrBkvvvgiBQUFzmOFhYW8+OKLNGvWDICjR48SEaFhB7k6Z8NOl/raC0tELt/ZffR+OXyKgiKHydWImS57GOvdd99l0KBBREdH07p1aywWC1u3bqW4uJjvvvsOgH379vHYY4+Ve7FSvaw/E3Y6KeyIyBVoGBZALX8vMnIK2X7MTru6tcwuSUxy2WGnW7duHDhwgBkzZrBr1y4Mw+D222/n7rvvJjCw5NHgYcOGlXuhUr0cPZXL0VO5eFgttNcvKBG5AhZLyaagS3akEn8wQ2GnGitz2HnggQd48803CQwMpEaNGvz5z3+uyLqkmtt4plcnro6NAJ/LzuQiIgB0iA1myY5U1u49yYPXNTC7HDFJmefs/Pe//yU3V3uMSOVYr/k6IlIOejUr2Tx46c5U7YJejZU57GjnWKlMG/afBKBTPYUdEblyzSKDGNoxGoDn5ydS7NDfsurosp7G0gq2UhnSsvLZeyIbgE71NMYuIlfnyf7NCPT1JPFoJrM2HjK7HDHBZYWdJk2aEBwcfNGXyNU6O1+nWWQgNf29Ta5GRKq60Bo+jL+xZIPq/yxMIiO74BKfEHdzWTM///GPf2Cz2SqqFhEANhwoCTudNV9HRMrJvdfEMmvjYXamnOaVRUn867ZWZpckleiyws6dd95JeLiW3JaKdXYxQYUdESkvnh5W/j6oJXd+sI6ZGw5xV+e6xNXRP96rizIPY2m+jlSGzLxCfk3OBKCzJieLSDm6pkEIg9pEYRjwt28ScWiycrVh6tNYkyZNolOnTgQGBhIeHs7gwYNJSko65/v+/e9/JyoqCj8/P3r27Mn27dtLtcnPz2f06NGEhoYSEBDAoEGDOHLkSLnXKxUv/kAGhgH1QvwJD/I1uxwRcTPP3Nwcf28PNh86xdwtR80uRypJmcOOw+Eo9yGslStXMnLkSNatW8fixYspKiqib9++ZGdnO9u8/PLLvPbaa7zzzjts3LiRyMhIbrzxRk6fPu1sM2bMGObOncusWbNYvXo1WVlZDBgwgOLi4nKtVyreeg1hiUgFirT58pfejQGY9ONOMvMKTa5IKoPFcKEFdE6cOEF4eDgrV67k+uuvxzAMoqKiGDNmDE899RRQ0osTERHBSy+9xCOPPILdbicsLIzp06dzxx13AHDs2DFiYmL44Ycf6Nev3yW/b2ZmJjabDbvdTlBQUIVeo1zcHyavIf5gBq/8sQ23d4g2uxwRcUMFRQ76v7GKfWnZjOhen+cGtDC7JLlCZf37fdm7nlcku90O4HyEff/+/aSkpNC3b19nGx8fH3r06MGaNWsAiI+Pp7CwsFSbqKgo4uLinG1+Lz8/n8zMzFIvMV9uQTFbj5wCNF9HRCqOt6eV5we1BGDamgPsOn76Ep+Qqs5lwo5hGIwbN47u3bsTFxcHQEpKCgARERGl2kZERDjfS0lJwdvbm1q1al2wze9NmjQJm83mfMXExJT35cgV2HI4g8Jig8ggX2KC/cwuR0TcWI8mYfRtEUGxw+Dv87drlwA35zJhZ9SoUWzdupXPP//8nPd+/ySYYRiXfDrsYm0mTpyI3W53vg4fPnzlhUu5+e0j53r6T0Qq2nMDWuDjaWXN3pN8vy3Z7HKkArlE2Bk9ejTz589n+fLlREf/b55GZGQkwDk9NKmpqc7ensjISAoKCsjIyLhgm9/z8fEhKCio1EvMp/V1RKQyxQT78+ceDQGY8NVWFm4//2iAVH2mhh3DMBg1ahRz5sxh2bJl1K9fv9T79evXJzIyksWLFzuPFRQUsHLlSrp16wZAhw4d8PLyKtUmOTmZxMREZxtxfQVFDjYfKgms2ulcRCrLoz0bcn2TMHILi/nzjHimrNyrIS03ZGrYGTlyJDNmzGDmzJkEBgaSkpJCSkoKubm5QMnw1ZgxY/j3v//N3LlzSUxMZPjw4fj7+3P33XcDYLPZGDFiBOPHj2fp0qVs2bKFe++9l1atWtGnTx8zL08uQ+IxO3mFDmr5e9EovIbZ5YhINeHr5cHH93fkvq6xGAa8+ONOnvx6KwVFDrNLk3J0WdtFlLfJkycD0LNnz1LHP/nkE4YPHw7Ak08+SW5uLo899hgZGRl06dKFRYsWERgY6Gz/+uuv4+npydChQ8nNzaV3795MmzYNDw+PyroUuUpnh7A61dN8HRGpXJ4eVv7v1jgahtXgH99u56v4IxxMz+H9eztQK0CbEbsDl1pnxyxaZ8d8D0zbyLKdqTx7S3MevK6B2eWISDW1IimV0TO3cDq/iNgQf6be30m9zS6sSq6zI9VTscNg45mdzrvUDzG5GhGpzno2DWf2Y92IruXHwZM5DHnvZ37ek2Z2WXKVFHbEdEkppzmdV0SAtwfNawde+gMiIhWoSUQg34y8lg6xtcjMK+K+jzfwdbz2W6zKFHbEdBv2nwSgQ71gPD30Iyki5gup4cNnD3bhtnZ1KHYY/HXuNo5n5pldllwh/WUR021wDmHpkXMRcR2+Xh68NrQNnerVIr/IwTvL9phdklwhhR0xlWEYWkxQRFyWxWJhfN+mAMzaeIjD6TkmVyRXQmFHTLU/LZu0rAK8Pa20jraZXY6IyDmuaRBC90ahFBYbvLV0t9nlyBVQ2BFTne3VaRtTEx9PrYskIq5pfN8mAMzefIR9J7JMrkYul8KOmOps2NF8HRFxZe3q1qJP83AcBryxRL07VY3CjphqvebriEgVMfbGkt6db7ceY2dKpsnVyOVQ2BHT7EnN4uipXDysFtrXrWV2OSIiF9UyysYtrWtjGPDaol1mlyOXQWFHTPPp2gMA9GwSRoCPqdu0iYiUydg+TbBaYNGvx/nl8Cmzy5EyUtgRU9hzC50rkj7Qvb7J1YiIlE2j8Brc1i4agFcXq3enqlDYEVN8ufEwOQXFNI0IpFtD7YclIlXH470b42m1sGrXCedDFuLaFHak0hUVO5i25gAAD3Svh8ViMbcgEZHLUDfEn6GdYgB4ZVEShmGYXJFcisKOVLrFvx7n6KlcggO8ubVtHbPLERG5bKNvaIS3p5UN+9NZrV3RXZ7CjlS6j3/eD8Ddnevi66WFBEWk6qlt8+PeLrEAvLJol3p3XJzCjlSqbUfsbDyQgafVwrCusWaXIyJyxR7t2RA/Lw9+OXyKJTtSzS5HLkJhRyrVJ2d6dQa0rk1EkK/J1YiIXLmwQB/+dG09AF747lcOpGWbW5BckMKOVJrUzDy+3XoM0OPmIuIeHr6+AbVtvhxKz2HQO6tZueuE2SXJeSjsSKWZse4ghcUGHWJr0Tq6ptnliIhctZr+3nwz8lra1a1JZl4Rf/pkA++v3Ks5PC5GYUcqRV5hMZ+tPwTAA9eqV0dE3Ed4kC+zHr6GOzrG4DBg0o87eXxWArkFxWaXJmco7EilmP/LMU5mFxBl86VfywizyxERKVc+nh68+IdWvHBrSzytFub/cow/TF7DkYwcs0sTFHakEhiGwcerSyYm39+tHp4e+rETEfdjsVgY1rUenz3YhZAAb35NzmTQOz+zZq/W4TGb/upIhVu77yQ7U07j5+XBnZ3qml2OiEiF6tIghG9HdyeuThDp2QUMm7qBGesOml1WtaawIxXuk58PAPCHDnWw+XuZW4yISCWIqunH13/uxm3t6lDsMPjbN4kkHrWbXVa1pbAjFergyWyW7DgOwPBumpgsItWHr5cHrw1tw4DWtXEY8Oy8RBwOPaVlBoUdqVDT1hzAMKBn0zAahdcwuxwRkUplsVh4bkALavh4knD4FF9uOmx2SdWSwo5UmNN5hXy16QgAf9Lj5iJSTUUE+TKmT2MAXlqwk4zsApMrqn4UdqTC/Lgthaz8IhqEBXB941CzyxERMc3wbvVoFhlIRk4hLy9MMrucakdhRyrM15tLenVu7xCNxWIxuRoREfN4elj5v1vjAJi18RAJh0+ZW1A1o7AjFeJweg4b9qdjscBt7eqYXY6IiOk61w9mSPs6GAY8O28bxZqsXGlMDTurVq1i4MCBREVFYbFYmDdvXqn3s7KyGDVqFNHR0fj5+dG8eXMmT55cqk1+fj6jR48mNDSUgIAABg0axJEjRyrxKuR85mw+CsC1DUOpbfMzuRoREdcw8abmBPp6kng0k5nrtfZOZTE17GRnZ9OmTRveeeed874/duxYFixYwIwZM9ixYwdjx45l9OjRfPPNN842Y8aMYe7cucyaNYvVq1eTlZXFgAEDKC7WniRmMQyDOVtKAueQ9urVERE5KyzQhwn9mgLwn4VJpGXlm1xR9WBq2Lnpppv45z//yZAhQ877/tq1a7n//vvp2bMn9erV4+GHH6ZNmzZs2rQJALvdztSpU3n11Vfp06cP7dq1Y8aMGWzbto0lS5ZU5qXIb8QfzODgyRz8vT3oHxdpdjkiIi7lni6xtIwKIjOviBd/3Gl2OdWCS8/Z6d69O/Pnz+fo0aMYhsHy5cvZtWsX/fr1AyA+Pp7CwkL69u3r/ExUVBRxcXGsWbPmgufNz88nMzOz1EvKz+wzQ1g3xdXG39vT5GpERFyLh9XCC4NLJit/HX+ETQfSTa7I/bl02Hnrrbdo0aIF0dHReHt7079/f9577z26d+8OQEpKCt7e3tSqVavU5yIiIkhJSbngeSdNmoTNZnO+YmJiKvQ6qpO8wmK+23oMKNkeQkREztW+bi3u7FTyt+fZeYkUFTtMrsi9uXzYWbduHfPnzyc+Pp5XX32Vxx577JJDVIZhXPRR54kTJ2K3252vw4e1omV5WbLjOKfziqhT049r6oeYXY6IiMt6sn8zavp7sTPlNJ+u1WTliuSyYwy5ubk888wzzJ07l1tuuQWA1q1bk5CQwCuvvEKfPn2IjIykoKCAjIyMUr07qampdOvW7YLn9vHxwcfHp8KvoTqaHV8yMfm2dnWwWrW2jojIhQQHePNkv2Y8M3cbk37cQUZOASN7NcLXy8Ps0tyOy/bsFBYWUlhYiNVaukQPDw8cjpLuvg4dOuDl5cXixYud7ycnJ5OYmHjRsCMVI/V0Hqt2pwFwm57CEhG5pDs7xTCgdW0Kiw3eXraH/m+sYvWZ36NSfkzt2cnKymLPnj3Or/fv309CQgLBwcHUrVuXHj16MGHCBPz8/IiNjWXlypV8+umnvPbaawDYbDZGjBjB+PHjCQkJITg4mCeeeIJWrVrRp08fsy6r2pqfcIxih0G7ujVpGKZNP0VELsVqtfD2Xe0Y0Lo2z8/fzoGTOdw7dT23tavDX29pTmgNjUKUB4thGKYt4bhixQp69ep1zvH777+fadOmkZKSwsSJE1m0aBHp6enExsby8MMPM3bsWOecnLy8PCZMmMDMmTPJzc2ld+/evPfee5c16TgzMxObzYbdbicoKKjcrq+6uenNn9iRnMkLg+MYdk2s2eWIiFQpp/MKeXXRLv679gCGATY/L565uRl/7BCjaQEXUNa/36aGHVehsHP1fj2Wyc1v/YS3h5UNf+1NTX9vs0sSEamSEg6f4pk52/g1uWRZlM71gvn3kDgahQeaXJnrKevfb5edsyNVy5wzm372bh6uoCMichXaxtRk/qhrefaW5vh5ebDhQDp/mLyWUzkFZpdWZSnsyFUrKnYwL+HM2jrto02uRkSk6vP0sPLgdQ1YPO566oX4Y88tZEHihdePk4tT2JGr9tPuNNKy8gkJ8KZH0zCzyxERcRvRtfz5Y8eSOajfbU02uZqqS2FHrtrXZ4awBrWNwstDP1IiIuVpYOsoANbsTePEaW0ceiX0l0muij23kMW/Hgc0hCUiUhHqhvjTJtqGw4AFierduRIKO3JVvt+aTEGRg6YRgbSM0pNsIiIVYcCZ3p1vNZR1RRR25KqcfQprSPs6F92PTERErtwtrWsDsPFAOin2PJOrqXoUduSK7Uk9zaaDGVgtMLidtocQEakoUTX96BhbC8OA77epd+dyKezIFXtpQRIAfZpHEBHka3I1IiLubWCbM0NZvxwzuZKqR2FHrsiG/eks/vU4HlYLT/ZvanY5IiJu76ZWkVgtJSssH07PMbucKkVhRy6bYRj864cdANzRKUZLmIuIVILwQF+61A8BNJR1uRR25LJ9tzWZXw6fwt/bgzF9GptdjohItaGhrCujsCOXJb+omJcX7gTgkesbEh6ouToiIpWlf1wkHlYL249lsu9EltnlVBkKO3JZpq89yOH0XMIDfXjo+vpmlyMiUq0EB3jTvVEooO0jLofCjpSZPaeQt5ftAWB83yb4e3uaXJGISPUz4MyaO99t1VBWWSnsSJm9u2IP9txCmkYEcnuHGLPLERGplvq2jMTbw8qu41kkpZw2u5wqQWFHyuRweg7Tfj4AwNM3N8PDqtWSRUTMYPPz4vomYYB6d8pKYUfK5D8LkygodnBtoxB6nvmPTEREzDGwzdmhrGQMwzC5GtensCOXtPXIKeb/cgyLBSbe1Fx7YImImKxP8wh8vazsT8tm+7FMs8txeQo7clGGYfCv70sWELytbR3i6thMrkhERAJ8PLmhWTgA32oo65IUduSilu5IZf3+dHw8rYzvp20hRERcxYDWJQsMfveLhrIuRWFHLqio2MGkH0t6dR7oXp86Nf1MrkhERM7q1TScAG8Pjp7KZcvhU2aX49IUduSC5iUcY++JbIIDvHm0Z0OzyxERkd/w8/agT4sIoKR3Ry5Mq8LJeRU7DN5bXrKA4CPXNyDI18vkikRE5PcGto7im4RjzN58hKOncih2gMMwKHYYzv9b7DBoEFaDZ25uRmA1/V2usCPn9d3WY+xLy6amvxf3XhNrdjkiInIe1zUJJTjAm/TsAhZuP37Bduv3p7P3RBb//VNn/Lw9KrFC16CwI+dwOAzePdOrM+La+gT46MdERMQV+Xh6MPOhLmzYn47VYsHDasHDYsFqteBhBavFQn6hgxe++5UN+9N59LN4PhjWEW/P6jWLRX/F5ByLfk1h1/EsAn09uf/aemaXIyIiF9EsMohmkUEXbVM/LIBhU9ezIukEY77Ywlt3tsPTo/oEnupzpVImhmE4N/sc3q2e5uqIiLiBTvWCS3p0PKz8sC2Fp+dsw+GoPo+rK+xIKcuTUtl+LBN/bw8euLa+2eWIiEg5ub5JGG/d1Q4Pq4Wv44/wf9/9Wm3W51HYESfDMHhraUmvzrBrYqkV4G1yRSIiUp76x0Xyn9tbAzBtzQFeW7zL5Ioqh8KOOP285yQJh0/h62XlwesamF2OiIhUgCHto3nh1pYAvL1sD1NW7jW5oopnathZtWoVAwcOJCoqCovFwrx5885ps2PHDgYNGoTNZiMwMJBrrrmGQ4cOOd/Pz89n9OjRhIaGEhAQwKBBgzhy5EglXoX7eGvZbgDu6lyXsEAfk6sREZGKMqxrPZ7q3wyAF3/cycer91NQ5DC5qopjatjJzs6mTZs2vPPOO+d9f+/evXTv3p1mzZqxYsUKfvnlF5577jl8fX2dbcaMGcPcuXOZNWsWq1evJisriwEDBlBcXFxZl+EW1u87yYb96Xh7WHnkeq2WLCLi7h7t2ZCRvUp+3//fd7/S6u8LuX3yGv79ww4WJCZzPDPP5ArLj8VwkdlJFouFuXPnMnjwYOexO++8Ey8vL6ZPn37ez9jtdsLCwpg+fTp33HEHAMeOHSMmJoYffviBfv36lel7Z2ZmYrPZsNvtBAVd/PE9dzVs6np+2p3GPV3q8q/bWpldjoiIVALDMHhjyW7+u/YAp3IKz3m/Tk0/2tatSY8mYdzePhqr1WJClRdW1r/fLjtnx+Fw8P3339OkSRP69etHeHg4Xbp0KTXUFR8fT2FhIX379nUei4qKIi4ujjVr1phQddW05VAGP+1Ow9Nq4c891KsjIlJdWCwWxt7YhC3P3cjS8T145Y9tuLtLXZrXDsJqgaOncvl+azJPfr2Vd84sNlsVueyigqmpqWRlZfHiiy/yz3/+k5deeokFCxYwZMgQli9fTo8ePUhJScHb25tatWqV+mxERAQpKSkXPHd+fj75+fnOrzMzMyvsOqqCd86sq3NbuzrEBPubXI2IiFQ2i8VCw7AaNAyrwe0dogHIyi9i6+FTLNuZyker9/Pm0t1c2yiEDrHBJld7+Vy6Zwfg1ltvZezYsbRt25ann36aAQMGMGXKlIt+1jAMLJYLd7VNmjQJm83mfMXExJRr7VVJ4lE7S3emYrXAY70amV2OiIi4iBo+nnRrFMqzA1owuG0UxQ6Dx2clkJl37nCXq3PZsBMaGoqnpyctWrQodbx58+bOp7EiIyMpKCggIyOjVJvU1FQiIiIueO6JEydit9udr8OHD5f/BVQRZ3t1BraJon5ogMnViIiIK/q/wXHEBPtxJCOXZ+cmVrnFCF027Hh7e9OpUyeSkpJKHd+1axexsSW7cHfo0AEvLy8WL17sfD85OZnExES6det2wXP7+PgQFBRU6lUd7Tp+mgXbS4b7RqpXR0RELiDI14s37ihZfXn+L8eYu+Wo2SVdFlPn7GRlZbFnz/8mPO3fv5+EhASCg4OpW7cuEyZM4I477uD666+nV69eLFiwgG+//ZYVK1YAYLPZGDFiBOPHjyckJITg4GCeeOIJWrVqRZ8+fUy6qqrjraUl6+rcFBdJk4hAk6sRERFX1iG2FmN6N+bVxbt4bl4iHWJrERtSNUYETO3Z2bRpE+3ataNdu3YAjBs3jnbt2vG3v/0NgNtuu40pU6bw8ssv06pVKz766CNmz55N9+7dned4/fXXGTx4MEOHDuXaa6/F39+fb7/9Fg8PD1OuqarYffw0329LBmD0DY1NrkZERKqCx3o1onP9YLILivnLrAQKi6vGQoQus86OmarjOjuPz9rCNwnH6Nsigg/u62h2OSIiUkUcO5VL/zdWkZlXxMheDZnQr5lptVT5dXak4uw9kcW3vxwD4C+91asjIiJlF1XTjxf/ULKZ6Hsr9rJ270mTK7o0hZ1q6J1le3AY0Kd5BHF1bGaXIyIiVczNrWpzZ6cYDAPGfpHAqZwCs0u6KIWdambfiSy+SSiZRf+4enVEROQK/W1gCxqEBpCSmcfTs7e59OPoCjvVzLvL9+Iw4IZm4bSKVq+OiIhcGX9vT966qx1eHhYWbE/hq/gjZpd0QQo71cjBk9nMU6+OiIiUk7g6Nsb3bQrAC9/+SrI91+SKzk9hpxp5Z9keih0GPZuG0SamptnliIiIG3jouga0janJ6fwiJs5xzeEshZ1q4tDJHOacWfFST2CJiEh58bBaeOWPrfH2tLIi6YRLDmcp7FQT7y4v6dW5rnEo7evWuvQHREREyqhReCDjbmwCwAvfud5wlsJONXA4PYfZm0uS9pg+6tUREZHy5xzOynO94SyFnWrgvRV7KXIYdG8USofYYLPLERERN/T74ayvXWg4S2HHzR09lcvX8YcBzdUREZGK1Sg8kLF9Soaz/u+7X0mx55lcUQmFHTf33vI9FBYbdG0QQuf66tUREZGK9dB19WnjHM7a6hLDWQo7buzYqVy+3FTSq/O45uqIiEgl8PSw8srtrfH2sLI86QSzNx81uySFHXf25pLdFBYbdKkfzDUNQswuR0REqonGEYGMPfN01j++3W76cJbCjpvaffw0X52Zq/Nk/6YmVyMiItXNb4eznplr7tNZCjtu6qUFO3EY0K9lhJ7AEhGRSvfb4axlO1NNHc5S2HFD6/edZMmOVDysFp7s38zsckREpJpqHBHImBsbU8vfiwBvD9Pq8DTtO0uFMAyDST/uBODOTjE0DKthckUiIlKdPXxdA4Z2jCG0ho9pNahnx838mJhCwuFT+Ht76AksERExnaeH1dSgAwo7bqWw2MHLC0p6dR68rgHhgb4mVyQiImI+hR038vmGQxw4mUNoDW8evr6B2eWIiIi4BIUdN5GVX8SbS3YD8HjvxtTw0XQsERERUNhxGx+s2sfJ7ALqhwZwZ+e6ZpcjIiLiMhR23EBqZh4f/bQPgAn9muLlof+3ioiInKW/im7gjaW7ySkopm1MTW6KizS7HBEREZeisFPF7T2RxRcbS7aFeObm5lgsFpMrEhERcS0KO1Xcywt2Uuww6NM8nM71tS2EiIjI7ynsVGGrdp1g4fbjWC3wlLaFEBEROS+FnSoq/mA6f54RD8CdnevSOCLQ5IpERERck8JOFbT1yCmGf7yRnIJirmscyt8GtDC7JBEREZelsFPF7EjOZNjUDZzOL6Jz/WA+GNYRXy/zdpIVERFxdQo7Vcie1Czu/Wg99txC2tWtycfDO+HnraAjIiJyMaaGnVWrVjFw4ECioqKwWCzMmzfvgm0feeQRLBYLb7zxRqnj+fn5jB49mtDQUAICAhg0aBBHjhyp2MJNcPBkNvd8tI6T2QW0jApi2p86a0sIERGRMjA17GRnZ9OmTRveeeedi7abN28e69evJyoq6pz3xowZw9y5c5k1axarV68mKyuLAQMGUFxcXFFlV7qjp3K5+8P1HM/Mp2lEINNHdMHm52V2WSIiIlWCqV0DN910EzfddNNF2xw9epRRo0axcOFCbrnlllLv2e12pk6dyvTp0+nTpw8AM2bMICYmhiVLltCvX78Kq72yHM/M4+4P13H0VC4NQgOY8WAXggO8zS5LRESkynDpOTsOh4Nhw4YxYcIEWrZsec778fHxFBYW0rdvX+exqKgo4uLiWLNmzQXPm5+fT2ZmZqmXK0o9E3QOnswhJtiPzx7qQligj9lliYiIVCkuHXZeeuklPD09+ctf/nLe91NSUvD29qZWrVqljkdERJCSknLB806aNAmbzeZ8xcTElGvd5WH9vpPc8vZq9p7IJsrmy8wHr6G2zc/sskRERKoclw078fHxvPnmm0ybNu2y93syDOOin5k4cSJ2u935Onz48NWWW24Mw+DDVfu4+6P1nDidT5OIGnz+8DXEBPubXZqIiEiV5LJh56effiI1NZW6devi6emJp6cnBw8eZPz48dSrVw+AyMhICgoKyMjIKPXZ1NRUIiIiLnhuHx8fgoKCSr1cwem8Qh77bDP/+mEHxQ6DW9tGMW/ktcSGBJhdmoiISJXlsmFn2LBhbN26lYSEBOcrKiqKCRMmsHDhQgA6dOiAl5cXixcvdn4uOTmZxMREunXrZlbpV2TX8dPc+u7P/JiYgpeHhRdubckbd7TF31uPl4uIiFwNU/+SZmVlsWfPHufX+/fvJyEhgeDgYOrWrUtISEip9l5eXkRGRtK0aVMAbDYbI0aMYPz48YSEhBAcHMwTTzxBq1atnE9nVQXfJBzl6dnbyC0sprbNl3fvaU/7urUu/UERERG5JFPDzqZNm+jVq5fz63HjxgFw//33M23atDKd4/XXX8fT05OhQ4eSm5tL7969mTZtGh4err+ycEGRg399/yv/XXsQgO6NQnnzzraE1NATVyIiIuXFYhiGYXYRZsvMzMRms2G32yt1/s4/v/uVj1bvB2BUr0aMvbEJHtbLm4wtIiJSXZX177cmhJhk74kspq05AMDbd7VjYJtzV4cWERGRq+eyE5Td3aQfdlDkMOjdLFxBR0REpAIp7Jhg9e40luxIxdNq4ZlbmptdjoiIiFtT2KlkRcUOXvjuVwCGdY2lYVgNkysSERFxbwo7leyLTYdJOn4am58Xj/dubHY5IiIibk9hpxJl5hXy2qJdAIzp05ia/tq9XEREpKIp7FSid5fv4WR2AQ3CArj3mlizyxEREakWFHYqyaGTOXyy+gAAz97SHC8P3XoREZHKoL+4lWTSjzsoKHZwXeNQejUNN7scERGRakNhpxKs23eSHxNTsFrg2VtaYLFolWQREZHKorBTwYodhvNR87s616VpZKDJFYmIiFQvCjsVbPbmI2w/lkmgjyfjbmxidjkiIiLVjsJOBcrOL+I/C5MAGN27kXYzFxERMYHCTgWavGIvJ07nExviz/3d6pldjoiISLWksFOB8ouK8bBamHhTc3w8PcwuR0REpFqyGIZhmF2E2TIzM7HZbNjtdoKCgsr13AdPZlM32F9PYImIiJSzsv799qzEmqql2JAAs0sQERGp1jSMJSIiIm5NYUdERETcmsKOiIiIuDWFHREREXFrCjsiIiLi1hR2RERExK0p7IiIiIhbU9gRERERt6awIyIiIm5NYUdERETcmsKOiIiIuDWFHREREXFrCjsiIiLi1rTrOWAYBlCyVbyIiIhUDWf/bp/9O34hCjvA6dOnAYiJiTG5EhEREblcp0+fxmazXfB9i3GpOFQNOBwOjh07RmBgIBaLpVK/d2ZmJjExMRw+fJigoKBK/d7uQPfv6ukeXh3dv6une3h1qvP9MwyD06dPExUVhdV64Zk56tkBrFYr0dHRptYQFBRU7X5Iy5Pu39XTPbw6un9XT/fw6lTX+3exHp2zNEFZRERE3JrCjoiIiLg1hR2T+fj48Pzzz+Pj42N2KVWS7t/V0z28Orp/V0/38Oro/l2aJiiLiIiIW1PPjoiIiLg1hR0RERFxawo7IiIi4tYUdkRERMStKexcpVWrVjFw4ECioqKwWCzMmzev1PvHjx9n+PDhREVF4e/vT//+/dm9e/c551m7di033HADAQEB1KxZk549e5Kbm+t8PyMjg2HDhmGz2bDZbAwbNoxTp05V8NVVjqu9hwcOHMBisZz39dVXXznbues9LI+fwZSUFIYNG0ZkZCQBAQG0b9+er7/+ulQbd71/UD73cO/evdx2222EhYURFBTE0KFDOX78eKk27noPJ02aRKdOnQgMDCQ8PJzBgweTlJRUqo1hGPz9738nKioKPz8/evbsyfbt20u1yc/PZ/To0YSGhhIQEMCgQYM4cuRIqTbueA/L6/598MEH9OzZk6CgICwWy3nvizvev7JQ2LlK2dnZtGnThnfeeeec9wzDYPDgwezbt49vvvmGLVu2EBsbS58+fcjOzna2W7t2Lf3796dv375s2LCBjRs3MmrUqFJLX999990kJCSwYMECFixYQEJCAsOGDauUa6xoV3sPY2JiSE5OLvX6xz/+QUBAADfddJPzXO56D8vjZ3DYsGEkJSUxf/58tm3bxpAhQ7jjjjvYsmWLs4273j+4+nuYnZ1N3759sVgsLFu2jJ9//pmCggIGDhyIw+Fwnstd7+HKlSsZOXIk69atY/HixRQVFdG3b99SP2Mvv/wyr732Gu+88w4bN24kMjKSG2+80bk3IcCYMWOYO3cus2bNYvXq1WRlZTFgwACKi4udbdzxHpbX/cvJyaF///4888wzF/xe7nj/ysSQcgMYc+fOdX6dlJRkAEZiYqLzWFFRkREcHGx8+OGHzmNdunQxnn322Que99dffzUAY926dc5ja9euNQBj586d5XsRJrvSe/h7bdu2NR544AHn19XlHl7p/QsICDA+/fTTUucKDg42PvroI8Mwqs/9M4wru4cLFy40rFarYbfbnW3S09MNwFi8eLFhGNXrHqamphqAsXLlSsMwDMPhcBiRkZHGiy++6GyTl5dn2Gw2Y8qUKYZhGMapU6cMLy8vY9asWc42R48eNaxWq7FgwQLDMKrPPbyS+/dby5cvNwAjIyOj1PHqcv/ORz07FSg/Px8AX19f5zEPDw+8vb1ZvXo1AKmpqaxfv57w8HC6detGREQEPXr0cL4PJT0/NpuNLl26OI9dc8012Gw21qxZU0lXY46y3MPfi4+PJyEhgREjRjiPVdd7WNb71717d7744gvS09NxOBzMmjWL/Px8evbsCVTf+wdlu4f5+flYLJZSi7r5+vpitVqdbarTPbTb7QAEBwcDsH//flJSUujbt6+zjY+PDz169HBee3x8PIWFhaXaREVFERcX52xTXe7hldy/sqgu9+98FHYqULNmzYiNjWXixIlkZGRQUFDAiy++SEpKCsnJyQDs27cPgL///e889NBDLFiwgPbt29O7d2/nnICUlBTCw8PPOX94eDgpKSmVd0EmKMs9/L2pU6fSvHlzunXr5jxWXe9hWe/fF198QVFRESEhIfj4+PDII48wd+5cGjZsCFTf+wdlu4fXXHMNAQEBPPXUU+Tk5JCdnc2ECRNwOBzONtXlHhqGwbhx4+jevTtxcXEAzuuLiIgo1TYiIsL5XkpKCt7e3tSqVeuibdz9Hl7p/SuL6nD/LkRhpwJ5eXkxe/Zsdu3aRXBwMP7+/qxYsYKbbroJDw8PAOd4/iOPPMKf/vQn2rVrx+uvv07Tpk35+OOPneeyWCznnN8wjPMedydluYe/lZuby8yZM0v16pxVHe9hWe/fs88+S0ZGBkuWLGHTpk2MGzeOP/7xj2zbts3ZpjrePyjbPQwLC+Orr77i22+/pUaNGthsNux2O+3bty91n6vDPRw1ahRbt27l888/P+e9319nWa79923c/R6W9/271Dmu9DxVjafZBbi7Dh06kJCQgN1up6CggLCwMLp06ULHjh0BqF27NgAtWrQo9bnmzZtz6NAhACIjI895qgPgxIkT5yR9d3Spe/hbX3/9NTk5Odx3332ljlfne3ip+7d3717eeecdEhMTadmyJQBt2rThp59+4t1332XKlCnV+v5B2X4G+/bty969e0lLS8PT05OaNWsSGRlJ/fr1gerxMzh69Gjmz5/PqlWriI6Odh6PjIwESnoWzv7Og5Jh/LPXHhkZSUFBARkZGaV6d1JTU529tO5+D6/m/pWFu9+/i1HPTiWx2WyEhYWxe/duNm3axK233gpAvXr1iIqKOucxw127dhEbGwtA165dsdvtbNiwwfn++vXrsdvtpYZq3N2F7uFvTZ06lUGDBhEWFlbquO7hhe9fTk4OQKmn/6BkXsrZnkfdvxJl+RkMDQ2lZs2aLFu2jNTUVAYNGgS49z00DINRo0YxZ84cli1b5gx4Z9WvX5/IyEgWL17sPFZQUMDKlSud196hQwe8vLxKtUlOTiYxMdHZxl3vYXncv7Jw1/tXJqZMi3Yjp0+fNrZs2WJs2bLFAIzXXnvN2LJli3Hw4EHDMAzjyy+/NJYvX27s3bvXmDdvnhEbG2sMGTKk1Dlef/11IygoyPjqq6+M3bt3G88++6zh6+tr7Nmzx9mmf//+RuvWrY21a9caa9euNVq1amUMGDCgUq+1opTHPTQMw9i9e7dhsViMH3/88bzfx13v4dXev4KCAqNRo0bGddddZ6xfv97Ys2eP8corrxgWi8X4/vvvne3c9f4ZRvn8DH788cfG2rVrjT179hjTp083goODjXHjxpVq46738NFHHzVsNpuxYsUKIzk52fnKyclxtnnxxRcNm81mzJkzx9i2bZtx1113GbVr1zYyMzOdbf785z8b0dHRxpIlS4zNmzcbN9xwg9GmTRujqKjI2cYd72F53b/k5GRjy5YtxocffmgAxqpVq4wtW7YYJ0+edLZxx/tXFgo7V+nsI36/f91///2GYRjGm2++aURHRxteXl5G3bp1jWeffdbIz88/5zyTJk0yoqOjDX9/f6Nr167GTz/9VOr9kydPGvfcc48RGBhoBAYGGvfcc885jxVWVeV1DydOnGhER0cbxcXF5/0+7noPy+P+7dq1yxgyZIgRHh5u+Pv7G61btz7nUXR3vX+GUT738KmnnjIiIiIMLy8vo3Hjxsarr75qOByOUm3c9R6e794BxieffOJs43A4jOeff96IjIw0fHx8jOuvv97Ytm1bqfPk5uYao0aNMoKDgw0/Pz9jwIABxqFDh0q1ccd7WF737/nnn7/kedzx/pWFxTAMo6J6jURERETMpjk7IiIi4tYUdkRERMStKeyIiIiIW1PYEREREbemsCMiIiJuTWFHRERE3JrCjoiIiLg1hR0RERFxawo7IlIlGIZBnz596Nev3znvvffee9hsNufmuSIiv6WwIyJVgsVi4ZNPPmH9+vW8//77zuP79+/nqaee4s0336Ru3brl+j0LCwvL9XwiYg6FHRGpMmJiYnjzzTd54okn2L9/P4ZhMGLECHr37k3nzp25+eabqVGjBhEREQwbNoy0tDTnZxcsWED37t2pWbMmISEhDBgwgL179zrfP3DgABaLhS+//JKePXvi6+vLjBkzzLhMESln2htLRKqcwYMHc+rUKf7whz/wwgsvsHHjRjp27MhDDz3EfffdR25uLk899RRFRUUsW7YMgNmzZ2OxWGjVqhXZ2dn87W9/48CBAyQkJGC1Wjlw4AD169enXr16vPrqq7Rr1w4fHx+ioqJMvloRuVoKOyJS5aSmphIXF8fJkyf5+uuv2bJlC+vXr2fhwoXONkeOHCEmJoakpCSaNGlyzjlOnDhBeHg427ZtIy4uzhl23njjDR5//PHKvBwRqWAaxhKRKic8PJyHH36Y5s2bc9tttxEfH8/y5cupUaOG89WsWTMA51DV3r17ufvuu2nQoAFBQUHUr18f4JxJzR07dqzcixGRCudpdgEiIlfC09MTT8+SX2EOh4OBAwfy0ksvndOudu3aAAwcOJCYmBg+/PBDoqKicDgcxMXFUVBQUKp9QEBAxRcvIpVKYUdEqrz27dsze/Zs6tWr5wxAv3Xy5El27NjB+++/z3XXXQfA6tWrK7tMETGJhrFEpMobOXIk6enp3HXXXWzYsIF9+/axaNEiHnjgAYqLi6lVqxYhISF88MEH7Nmzh2XLljFu3DizyxaRSqKwIyJVXlRUFD///DPFxcX069ePuLg4Hn/8cWw2G1arFavVyqxZs4iPjycuLo6xY8fyn//8x+yyRaSS6GksERERcWvq2RERERG3prAjIiIibk1hR0RERNyawo6IiIi4NYUdERERcWsKOyIiIuLWFHZERETErSnsiIiIiFtT2BERERG3prAjIiIibk1hR0RERNyawo6IiIi4tf8Hs7GuQzddrQgAAAAASUVORK5CYII=",
+      "text/plain": [
+       "<Figure size 640x480 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "N = 57\n",
+    "dates = pd.date_range(\"1/1/1958\", periods=57, freq='Y')\n",
+    "\n",
+    "plt.plot(dates, test)\n",
+    "plt.title('CO emissions')\n",
+    "plt.xlabel('Year')\n",
+    "plt.ylabel('Tg/a')\n",
+    "\n",
+    "fig.tight_layout()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 21,
+   "id": "3ca295d7-f1d4-45ee-a714-b16a3efbc5b5",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "road_nox_cams_data = {'NOx': [20.254938, 19.907722, 19.806725, 19.77026, 20.054379, 19.864965, 19.770472, 19.93526, 19.816465, \n",
+    "             19.135, 19.298807, 19.74603, 20.573029, 20.924507, 21.31049, 21.698856, 21.44433, 21.099398,\n",
+    "             20.825493, 20.567923, 20.377531, 20.099348, 19.887207, 19.652971\n",
+    "            ]\n",
+    "    }\n",
+    "road_nox_cams = pd.DataFrame(data=road_nox_cams_data, index=pd.date_range(\"1/1/2000\", periods=24, freq='Y'))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 22,
+   "id": "6618812b-ff57-4549-ac5a-b91eec125b5a",
    "metadata": {
     "tags": []
    },
@@ -2281,2586 +893,460 @@
     {
      "data": {
       "text/html": [
-       "<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
-       "<defs>\n",
-       "<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
-       "<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
-       "<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
-       "<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
-       "</symbol>\n",
-       "<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
-       "<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
-       "<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
-       "<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
-       "<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
-       "</symbol>\n",
-       "</defs>\n",
-       "</svg>\n",
-       "<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
-       " *\n",
-       " */\n",
-       "\n",
-       ":root {\n",
-       "  --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
-       "  --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
-       "  --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
-       "  --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
-       "  --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
-       "  --xr-background-color: var(--jp-layout-color0, white);\n",
-       "  --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
-       "  --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
-       "}\n",
-       "\n",
-       "html[theme=dark],\n",
-       "body[data-theme=dark],\n",
-       "body.vscode-dark {\n",
-       "  --xr-font-color0: rgba(255, 255, 255, 1);\n",
-       "  --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
-       "  --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
-       "  --xr-border-color: #1F1F1F;\n",
-       "  --xr-disabled-color: #515151;\n",
-       "  --xr-background-color: #111111;\n",
-       "  --xr-background-color-row-even: #111111;\n",
-       "  --xr-background-color-row-odd: #313131;\n",
-       "}\n",
-       "\n",
-       ".xr-wrap {\n",
-       "  display: block !important;\n",
-       "  min-width: 300px;\n",
-       "  max-width: 700px;\n",
-       "}\n",
-       "\n",
-       ".xr-text-repr-fallback {\n",
-       "  /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
-       "  display: none;\n",
-       "}\n",
-       "\n",
-       ".xr-header {\n",
-       "  padding-top: 6px;\n",
-       "  padding-bottom: 6px;\n",
-       "  margin-bottom: 4px;\n",
-       "  border-bottom: solid 1px var(--xr-border-color);\n",
-       "}\n",
-       "\n",
-       ".xr-header > div,\n",
-       ".xr-header > ul {\n",
-       "  display: inline;\n",
-       "  margin-top: 0;\n",
-       "  margin-bottom: 0;\n",
-       "}\n",
-       "\n",
-       ".xr-obj-type,\n",
-       ".xr-array-name {\n",
-       "  margin-left: 2px;\n",
-       "  margin-right: 10px;\n",
-       "}\n",
-       "\n",
-       ".xr-obj-type {\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-sections {\n",
-       "  padding-left: 0 !important;\n",
-       "  display: grid;\n",
-       "  grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
-       "}\n",
-       "\n",
-       ".xr-section-item {\n",
-       "  display: contents;\n",
-       "}\n",
-       "\n",
-       ".xr-section-item input {\n",
-       "  display: none;\n",
-       "}\n",
-       "\n",
-       ".xr-section-item input + label {\n",
-       "  color: var(--xr-disabled-color);\n",
-       "}\n",
-       "\n",
-       ".xr-section-item input:enabled + label {\n",
-       "  cursor: pointer;\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-section-item input:enabled + label:hover {\n",
-       "  color: var(--xr-font-color0);\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary {\n",
-       "  grid-column: 1;\n",
-       "  color: var(--xr-font-color2);\n",
-       "  font-weight: 500;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary > span {\n",
-       "  display: inline-block;\n",
-       "  padding-left: 0.5em;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:disabled + label {\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in + label:before {\n",
-       "  display: inline-block;\n",
-       "  content: 'â–º';\n",
-       "  font-size: 11px;\n",
-       "  width: 15px;\n",
-       "  text-align: center;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:disabled + label:before {\n",
-       "  color: var(--xr-disabled-color);\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:checked + label:before {\n",
-       "  content: 'â–¼';\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:checked + label > span {\n",
-       "  display: none;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary,\n",
-       ".xr-section-inline-details {\n",
-       "  padding-top: 4px;\n",
-       "  padding-bottom: 4px;\n",
-       "}\n",
-       "\n",
-       ".xr-section-inline-details {\n",
-       "  grid-column: 2 / -1;\n",
-       "}\n",
-       "\n",
-       ".xr-section-details {\n",
-       "  display: none;\n",
-       "  grid-column: 1 / -1;\n",
-       "  margin-bottom: 5px;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:checked ~ .xr-section-details {\n",
-       "  display: contents;\n",
-       "}\n",
-       "\n",
-       ".xr-array-wrap {\n",
-       "  grid-column: 1 / -1;\n",
-       "  display: grid;\n",
-       "  grid-template-columns: 20px auto;\n",
-       "}\n",
-       "\n",
-       ".xr-array-wrap > label {\n",
-       "  grid-column: 1;\n",
-       "  vertical-align: top;\n",
-       "}\n",
-       "\n",
-       ".xr-preview {\n",
-       "  color: var(--xr-font-color3);\n",
-       "}\n",
-       "\n",
-       ".xr-array-preview,\n",
-       ".xr-array-data {\n",
-       "  padding: 0 5px !important;\n",
-       "  grid-column: 2;\n",
-       "}\n",
-       "\n",
-       ".xr-array-data,\n",
-       ".xr-array-in:checked ~ .xr-array-preview {\n",
-       "  display: none;\n",
-       "}\n",
-       "\n",
-       ".xr-array-in:checked ~ .xr-array-data,\n",
-       ".xr-array-preview {\n",
-       "  display: inline-block;\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list {\n",
-       "  display: inline-block !important;\n",
-       "  list-style: none;\n",
-       "  padding: 0 !important;\n",
-       "  margin: 0;\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list li {\n",
-       "  display: inline-block;\n",
-       "  padding: 0;\n",
-       "  margin: 0;\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list:before {\n",
-       "  content: '(';\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list:after {\n",
-       "  content: ')';\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list li:not(:last-child):after {\n",
-       "  content: ',';\n",
-       "  padding-right: 5px;\n",
-       "}\n",
-       "\n",
-       ".xr-has-index {\n",
-       "  font-weight: bold;\n",
-       "}\n",
-       "\n",
-       ".xr-var-list,\n",
-       ".xr-var-item {\n",
-       "  display: contents;\n",
-       "}\n",
-       "\n",
-       ".xr-var-item > div,\n",
-       ".xr-var-item label,\n",
-       ".xr-var-item > .xr-var-name span {\n",
-       "  background-color: var(--xr-background-color-row-even);\n",
-       "  margin-bottom: 0;\n",
-       "}\n",
-       "\n",
-       ".xr-var-item > .xr-var-name:hover span {\n",
-       "  padding-right: 5px;\n",
-       "}\n",
-       "\n",
-       ".xr-var-list > li:nth-child(odd) > div,\n",
-       ".xr-var-list > li:nth-child(odd) > label,\n",
-       ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
-       "  background-color: var(--xr-background-color-row-odd);\n",
-       "}\n",
-       "\n",
-       ".xr-var-name {\n",
-       "  grid-column: 1;\n",
-       "}\n",
-       "\n",
-       ".xr-var-dims {\n",
-       "  grid-column: 2;\n",
-       "}\n",
-       "\n",
-       ".xr-var-dtype {\n",
-       "  grid-column: 3;\n",
-       "  text-align: right;\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-var-preview {\n",
-       "  grid-column: 4;\n",
-       "}\n",
-       "\n",
-       ".xr-index-preview {\n",
-       "  grid-column: 2 / 5;\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-var-name,\n",
-       ".xr-var-dims,\n",
-       ".xr-var-dtype,\n",
-       ".xr-preview,\n",
-       ".xr-attrs dt {\n",
-       "  white-space: nowrap;\n",
-       "  overflow: hidden;\n",
-       "  text-overflow: ellipsis;\n",
-       "  padding-right: 10px;\n",
-       "}\n",
-       "\n",
-       ".xr-var-name:hover,\n",
-       ".xr-var-dims:hover,\n",
-       ".xr-var-dtype:hover,\n",
-       ".xr-attrs dt:hover {\n",
-       "  overflow: visible;\n",
-       "  width: auto;\n",
-       "  z-index: 1;\n",
-       "}\n",
-       "\n",
-       ".xr-var-attrs,\n",
-       ".xr-var-data,\n",
-       ".xr-index-data {\n",
-       "  display: none;\n",
-       "  background-color: var(--xr-background-color) !important;\n",
-       "  padding-bottom: 5px !important;\n",
-       "}\n",
-       "\n",
-       ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
-       ".xr-var-data-in:checked ~ .xr-var-data,\n",
-       ".xr-index-data-in:checked ~ .xr-index-data {\n",
-       "  display: block;\n",
-       "}\n",
-       "\n",
-       ".xr-var-data > table {\n",
-       "  float: right;\n",
-       "}\n",
-       "\n",
-       ".xr-var-name span,\n",
-       ".xr-var-data,\n",
-       ".xr-index-name div,\n",
-       ".xr-index-data,\n",
-       ".xr-attrs {\n",
-       "  padding-left: 25px !important;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs,\n",
-       ".xr-var-attrs,\n",
-       ".xr-var-data,\n",
-       ".xr-index-data {\n",
-       "  grid-column: 1 / -1;\n",
-       "}\n",
-       "\n",
-       "dl.xr-attrs {\n",
-       "  padding: 0;\n",
-       "  margin: 0;\n",
-       "  display: grid;\n",
-       "  grid-template-columns: 125px auto;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs dt,\n",
-       ".xr-attrs dd {\n",
-       "  padding: 0;\n",
-       "  margin: 0;\n",
-       "  float: left;\n",
-       "  padding-right: 10px;\n",
-       "  width: auto;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs dt {\n",
-       "  font-weight: normal;\n",
-       "  grid-column: 1;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs dt:hover span {\n",
-       "  display: inline-block;\n",
-       "  background: var(--xr-background-color);\n",
-       "  padding-right: 10px;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs dd {\n",
-       "  grid-column: 2;\n",
-       "  white-space: pre-wrap;\n",
-       "  word-break: break-all;\n",
-       "}\n",
-       "\n",
-       ".xr-icon-database,\n",
-       ".xr-icon-file-text2,\n",
-       ".xr-no-icon {\n",
-       "  display: inline-block;\n",
-       "  vertical-align: middle;\n",
-       "  width: 1em;\n",
-       "  height: 1.5em !important;\n",
-       "  stroke-width: 0;\n",
-       "  stroke: currentColor;\n",
-       "  fill: currentColor;\n",
-       "}\n",
-       "</style><pre class='xr-text-repr-fallback'>&lt;xarray.DataArray &#x27;CO_flux&#x27; (time: 3180, lev: 1, lat: 360, lon: 720)&gt;\n",
-       "dask.array&lt;concatenate, shape=(3180, 1, 360, 720), dtype=float32, chunksize=(120, 1, 360, 720), chunktype=numpy.ndarray&gt;\n",
-       "Coordinates:\n",
-       "  * lat      (lat) float64 -89.75 -89.25 -88.75 -88.25 ... 88.75 89.25 89.75\n",
-       "  * lev      (lev) float64 45.0\n",
-       "  * lon      (lon) float64 -179.8 -179.2 -178.8 -178.2 ... 178.8 179.2 179.8\n",
-       "  * time     (time) object 1750-01-16 00:00:00 ... 2014-12-16 00:00:00\n",
-       "Attributes:\n",
-       "    units:    kg m-2 s-1</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.DataArray</div><div class='xr-array-name'>'CO_flux'</div><ul class='xr-dim-list'><li><span class='xr-has-index'>time</span>: 3180</li><li><span class='xr-has-index'>lev</span>: 1</li><li><span class='xr-has-index'>lat</span>: 360</li><li><span class='xr-has-index'>lon</span>: 720</li></ul></div><ul class='xr-sections'><li class='xr-section-item'><div class='xr-array-wrap'><input id='section-eb6399a8-d885-4c86-a532-64bef43a435f' class='xr-array-in' type='checkbox' checked><label for='section-eb6399a8-d885-4c86-a532-64bef43a435f' title='Show/hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-array-preview xr-preview'><span>dask.array&lt;chunksize=(120, 1, 360, 720), meta=np.ndarray&gt;</span></div><div class='xr-array-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table style=\"border-collapse: collapse;\">\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 3.07 GiB </td>\n",
-       "                        <td> 118.65 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (3180, 1, 360, 720) </td>\n",
-       "                        <td> (120, 1, 360, 720) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Dask graph </th>\n",
-       "                        <td colspan=\"2\"> 31 chunks in 63 graph layers </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Data type </th>\n",
-       "                        <td colspan=\"2\"> float32 numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"487\" height=\"104\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"4\" y1=\"0\" x2=\"4\" y2=\"25\" />\n",
-       "  <line x1=\"9\" y1=\"0\" x2=\"9\" y2=\"25\" />\n",
-       "  <line x1=\"13\" y1=\"0\" x2=\"13\" y2=\"25\" />\n",
-       "  <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n",
-       "  <line x1=\"22\" y1=\"0\" x2=\"22\" y2=\"25\" />\n",
-       "  <line x1=\"27\" y1=\"0\" x2=\"27\" y2=\"25\" />\n",
-       "  <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n",
-       "  <line x1=\"36\" y1=\"0\" x2=\"36\" y2=\"25\" />\n",
-       "  <line x1=\"40\" y1=\"0\" x2=\"40\" y2=\"25\" />\n",
-       "  <line x1=\"45\" y1=\"0\" x2=\"45\" y2=\"25\" />\n",
-       "  <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n",
-       "  <line x1=\"54\" y1=\"0\" x2=\"54\" y2=\"25\" />\n",
-       "  <line x1=\"58\" y1=\"0\" x2=\"58\" y2=\"25\" />\n",
-       "  <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n",
-       "  <line x1=\"67\" y1=\"0\" x2=\"67\" y2=\"25\" />\n",
-       "  <line x1=\"72\" y1=\"0\" x2=\"72\" y2=\"25\" />\n",
-       "  <line x1=\"76\" y1=\"0\" x2=\"76\" y2=\"25\" />\n",
-       "  <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n",
-       "  <line x1=\"86\" y1=\"0\" x2=\"86\" y2=\"25\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"25\" />\n",
-       "  <line x1=\"95\" y1=\"0\" x2=\"95\" y2=\"25\" />\n",
-       "  <line x1=\"99\" y1=\"0\" x2=\"99\" y2=\"25\" />\n",
-       "  <line x1=\"104\" y1=\"0\" x2=\"104\" y2=\"25\" />\n",
-       "  <line x1=\"108\" y1=\"0\" x2=\"108\" y2=\"25\" />\n",
-       "  <line x1=\"113\" y1=\"0\" x2=\"113\" y2=\"25\" />\n",
-       "  <line x1=\"117\" y1=\"0\" x2=\"117\" y2=\"25\" />\n",
-       "  <line x1=\"118\" y1=\"0\" x2=\"118\" y2=\"25\" />\n",
-       "  <line x1=\"118\" y1=\"0\" x2=\"118\" y2=\"25\" />\n",
-       "  <line x1=\"119\" y1=\"0\" x2=\"119\" y2=\"25\" />\n",
-       "  <line x1=\"119\" y1=\"0\" x2=\"119\" y2=\"25\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >3180</text>\n",
-       "  <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,140.000000,12.706308)\">1</text>\n",
-       "\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"190\" y1=\"0\" x2=\"204\" y2=\"14\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"190\" y1=\"39\" x2=\"204\" y2=\"54\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"190\" y1=\"0\" x2=\"190\" y2=\"39\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"204\" y1=\"14\" x2=\"204\" y2=\"54\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"190.0,0.0 204.9485979497544,14.948597949754403 204.9485979497544,54.22111034444378 190.0,39.27251239468938\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"190\" y1=\"0\" x2=\"232\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"204\" y1=\"14\" x2=\"247\" y2=\"14\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"190\" y1=\"0\" x2=\"204\" y2=\"14\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"232\" y1=\"0\" x2=\"247\" y2=\"14\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"190.0,0.0 232.5174518299924,0.0 247.4660497797468,14.948597949754403 204.9485979497544,14.948597949754403\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"204\" y1=\"14\" x2=\"247\" y2=\"14\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"204\" y1=\"54\" x2=\"247\" y2=\"54\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"204\" y1=\"14\" x2=\"204\" y2=\"54\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"247\" y1=\"14\" x2=\"247\" y2=\"54\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"204.9485979497544,14.948597949754403 247.4660497797468,14.948597949754403 247.4660497797468,54.22111034444378 204.9485979497544,54.22111034444378\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"226.207324\" y=\"74.221110\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >720</text>\n",
-       "  <text x=\"267.466050\" y=\"34.584854\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,267.466050,34.584854)\">360</text>\n",
-       "  <text x=\"187.474299\" y=\"66.746811\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,187.474299,66.746811)\">1</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></div></li><li class='xr-section-item'><input id='section-9e878705-2c68-4ac8-af14-d7b5d7908d99' class='xr-section-summary-in' type='checkbox'  checked><label for='section-9e878705-2c68-4ac8-af14-d7b5d7908d99' class='xr-section-summary' >Coordinates: <span>(4)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>lat</span></div><div class='xr-var-dims'>(lat)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>-89.75 -89.25 ... 89.25 89.75</div><input id='attrs-3b8c6545-34e1-4361-80a3-677a6ed84c59' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-3b8c6545-34e1-4361-80a3-677a6ed84c59' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-cfc84405-3c67-4390-9482-7cb3e8f7d335' class='xr-var-data-in' type='checkbox'><label for='data-cfc84405-3c67-4390-9482-7cb3e8f7d335' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>latitude</dd><dt><span>long_name :</span></dt><dd>latitude</dd><dt><span>units :</span></dt><dd>degrees_north</dd><dt><span>axis :</span></dt><dd>Y</dd><dt><span>bounds :</span></dt><dd>lat_bnds</dd></dl></div><div class='xr-var-data'><pre>array([-89.75, -89.25, -88.75, ...,  88.75,  89.25,  89.75])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>lev</span></div><div class='xr-var-dims'>(lev)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>45.0</div><input id='attrs-e414943d-4ad6-492b-9983-ce809fb1c139' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-e414943d-4ad6-492b-9983-ce809fb1c139' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-9941c163-f677-4145-a8af-e8da3afdffed' class='xr-var-data-in' type='checkbox'><label for='data-9941c163-f677-4145-a8af-e8da3afdffed' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>meters</dd><dt><span>axis :</span></dt><dd>Z</dd></dl></div><div class='xr-var-data'><pre>array([45.])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>lon</span></div><div class='xr-var-dims'>(lon)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>-179.8 -179.2 ... 179.2 179.8</div><input id='attrs-9f2a0908-6e08-43f2-b3ed-00e5f848d72f' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-9f2a0908-6e08-43f2-b3ed-00e5f848d72f' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-1e22f357-7996-4fa8-ad74-7d0297a6500b' class='xr-var-data-in' type='checkbox'><label for='data-1e22f357-7996-4fa8-ad74-7d0297a6500b' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>longitude</dd><dt><span>long_name :</span></dt><dd>longitude</dd><dt><span>units :</span></dt><dd>degrees_east</dd><dt><span>axis :</span></dt><dd>X</dd><dt><span>bounds :</span></dt><dd>lon_bnds</dd></dl></div><div class='xr-var-data'><pre>array([-179.75, -179.25, -178.75, ...,  178.75,  179.25,  179.75])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>time</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>1750-01-16 00:00:00 ... 2014-12-...</div><input id='attrs-b3b1bed7-cfc6-42e7-97fe-7d1713df889f' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-b3b1bed7-cfc6-42e7-97fe-7d1713df889f' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-037123f2-ed52-40ef-aa2a-e50a484d1376' class='xr-var-data-in' type='checkbox'><label for='data-037123f2-ed52-40ef-aa2a-e50a484d1376' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>time</dd><dt><span>long_name :</span></dt><dd>time</dd><dt><span>bounds :</span></dt><dd>time_bnds</dd><dt><span>axis :</span></dt><dd>T</dd></dl></div><div class='xr-var-data'><pre>array([cftime.DatetimeNoLeap(1750, 1, 16, 0, 0, 0, 0, has_year_zero=True),\n",
-       "       cftime.DatetimeNoLeap(1750, 2, 15, 0, 0, 0, 0, has_year_zero=True),\n",
-       "       cftime.DatetimeNoLeap(1750, 3, 16, 0, 0, 0, 0, has_year_zero=True), ...,\n",
-       "       cftime.DatetimeNoLeap(2014, 10, 16, 0, 0, 0, 0, has_year_zero=True),\n",
-       "       cftime.DatetimeNoLeap(2014, 11, 16, 0, 0, 0, 0, has_year_zero=True),\n",
-       "       cftime.DatetimeNoLeap(2014, 12, 16, 0, 0, 0, 0, has_year_zero=True)],\n",
-       "      dtype=object)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-8023f350-7a11-456b-9ea2-706cdd7c24c1' class='xr-section-summary-in' type='checkbox'  ><label for='section-8023f350-7a11-456b-9ea2-706cdd7c24c1' class='xr-section-summary' >Indexes: <span>(4)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>lat</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-a8fe6c1d-ebf6-4ea3-a365-93bbb0fa70c0' class='xr-index-data-in' type='checkbox'/><label for='index-a8fe6c1d-ebf6-4ea3-a365-93bbb0fa70c0' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([-89.75, -89.25, -88.75, -88.25, -87.75, -87.25, -86.75, -86.25, -85.75,\n",
-       "       -85.25,\n",
-       "       ...\n",
-       "        85.25,  85.75,  86.25,  86.75,  87.25,  87.75,  88.25,  88.75,  89.25,\n",
-       "        89.75],\n",
-       "      dtype=&#x27;float64&#x27;, name=&#x27;lat&#x27;, length=360))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>lev</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-da283252-fcd9-4e73-a52e-31a9fd831e2c' class='xr-index-data-in' type='checkbox'/><label for='index-da283252-fcd9-4e73-a52e-31a9fd831e2c' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([45.0], dtype=&#x27;float64&#x27;, name=&#x27;lev&#x27;))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>lon</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-f3774d64-9923-48a0-8577-fe09e75f105a' class='xr-index-data-in' type='checkbox'/><label for='index-f3774d64-9923-48a0-8577-fe09e75f105a' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([-179.75, -179.25, -178.75, -178.25, -177.75, -177.25, -176.75, -176.25,\n",
-       "       -175.75, -175.25,\n",
-       "       ...\n",
-       "        175.25,  175.75,  176.25,  176.75,  177.25,  177.75,  178.25,  178.75,\n",
-       "        179.25,  179.75],\n",
-       "      dtype=&#x27;float64&#x27;, name=&#x27;lon&#x27;, length=720))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>time</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-5bcb9f09-779a-4beb-91c2-b5abf04c19a3' class='xr-index-data-in' type='checkbox'/><label for='index-5bcb9f09-779a-4beb-91c2-b5abf04c19a3' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(CFTimeIndex([1750-01-16 00:00:00, 1750-02-15 00:00:00, 1750-03-16 00:00:00,\n",
-       "             1750-04-16 00:00:00, 1750-05-16 00:00:00, 1750-06-16 00:00:00,\n",
-       "             1750-07-16 00:00:00, 1750-08-16 00:00:00, 1750-09-16 00:00:00,\n",
-       "             1750-10-16 00:00:00,\n",
-       "             ...\n",
-       "             2014-03-16 00:00:00, 2014-04-16 00:00:00, 2014-05-16 00:00:00,\n",
-       "             2014-06-16 00:00:00, 2014-07-16 00:00:00, 2014-08-16 00:00:00,\n",
-       "             2014-09-16 00:00:00, 2014-10-16 00:00:00, 2014-11-16 00:00:00,\n",
-       "             2014-12-16 00:00:00],\n",
-       "            dtype=&#x27;object&#x27;, length=3180, calendar=&#x27;noleap&#x27;, freq=&#x27;None&#x27;))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-ebb38418-892e-410f-bf57-533e2a01839d' class='xr-section-summary-in' type='checkbox'  checked><label for='section-ebb38418-892e-410f-bf57-533e2a01839d' class='xr-section-summary' >Attributes: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>kg m-2 s-1</dd></dl></div></li></ul></div></div>"
-      ],
-      "text/plain": [
-       "<xarray.DataArray 'CO_flux' (time: 3180, lev: 1, lat: 360, lon: 720)>\n",
-       "dask.array<concatenate, shape=(3180, 1, 360, 720), dtype=float32, chunksize=(120, 1, 360, 720), chunktype=numpy.ndarray>\n",
-       "Coordinates:\n",
-       "  * lat      (lat) float64 -89.75 -89.25 -88.75 -88.25 ... 88.75 89.25 89.75\n",
-       "  * lev      (lev) float64 45.0\n",
-       "  * lon      (lon) float64 -179.8 -179.2 -178.8 -178.2 ... 178.8 179.2 179.8\n",
-       "  * time     (time) object 1750-01-16 00:00:00 ... 2014-12-16 00:00:00\n",
-       "Attributes:\n",
-       "    units:    kg m-2 s-1"
-      ]
-     },
-     "execution_count": 34,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "co_flux_road_misc"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 11,
-   "id": "9f09b681-2ab3-4c85-b8b2-21ca4de0a490",
-   "metadata": {
-    "tags": []
-   },
-   "outputs": [],
-   "source": [
-    "test = total_emissions(co_flux_road_misc[2500:,:,:,:])"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 20,
-   "id": "79b71a02-1bf2-4bc2-82cb-cbc6125d525a",
-   "metadata": {
-    "tags": []
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
-       "<defs>\n",
-       "<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
-       "<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
-       "<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
-       "<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
-       "</symbol>\n",
-       "<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
-       "<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
-       "<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
-       "<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
-       "<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
-       "</symbol>\n",
-       "</defs>\n",
-       "</svg>\n",
-       "<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
-       " *\n",
-       " */\n",
-       "\n",
-       ":root {\n",
-       "  --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
-       "  --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
-       "  --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
-       "  --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
-       "  --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
-       "  --xr-background-color: var(--jp-layout-color0, white);\n",
-       "  --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
-       "  --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
-       "}\n",
-       "\n",
-       "html[theme=dark],\n",
-       "body[data-theme=dark],\n",
-       "body.vscode-dark {\n",
-       "  --xr-font-color0: rgba(255, 255, 255, 1);\n",
-       "  --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
-       "  --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
-       "  --xr-border-color: #1F1F1F;\n",
-       "  --xr-disabled-color: #515151;\n",
-       "  --xr-background-color: #111111;\n",
-       "  --xr-background-color-row-even: #111111;\n",
-       "  --xr-background-color-row-odd: #313131;\n",
-       "}\n",
-       "\n",
-       ".xr-wrap {\n",
-       "  display: block !important;\n",
-       "  min-width: 300px;\n",
-       "  max-width: 700px;\n",
-       "}\n",
-       "\n",
-       ".xr-text-repr-fallback {\n",
-       "  /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
-       "  display: none;\n",
-       "}\n",
-       "\n",
-       ".xr-header {\n",
-       "  padding-top: 6px;\n",
-       "  padding-bottom: 6px;\n",
-       "  margin-bottom: 4px;\n",
-       "  border-bottom: solid 1px var(--xr-border-color);\n",
-       "}\n",
-       "\n",
-       ".xr-header > div,\n",
-       ".xr-header > ul {\n",
-       "  display: inline;\n",
-       "  margin-top: 0;\n",
-       "  margin-bottom: 0;\n",
-       "}\n",
-       "\n",
-       ".xr-obj-type,\n",
-       ".xr-array-name {\n",
-       "  margin-left: 2px;\n",
-       "  margin-right: 10px;\n",
-       "}\n",
-       "\n",
-       ".xr-obj-type {\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-sections {\n",
-       "  padding-left: 0 !important;\n",
-       "  display: grid;\n",
-       "  grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
-       "}\n",
-       "\n",
-       ".xr-section-item {\n",
-       "  display: contents;\n",
-       "}\n",
-       "\n",
-       ".xr-section-item input {\n",
-       "  display: none;\n",
-       "}\n",
-       "\n",
-       ".xr-section-item input + label {\n",
-       "  color: var(--xr-disabled-color);\n",
-       "}\n",
-       "\n",
-       ".xr-section-item input:enabled + label {\n",
-       "  cursor: pointer;\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-section-item input:enabled + label:hover {\n",
-       "  color: var(--xr-font-color0);\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary {\n",
-       "  grid-column: 1;\n",
-       "  color: var(--xr-font-color2);\n",
-       "  font-weight: 500;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary > span {\n",
-       "  display: inline-block;\n",
-       "  padding-left: 0.5em;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:disabled + label {\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in + label:before {\n",
-       "  display: inline-block;\n",
-       "  content: 'â–º';\n",
-       "  font-size: 11px;\n",
-       "  width: 15px;\n",
-       "  text-align: center;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:disabled + label:before {\n",
-       "  color: var(--xr-disabled-color);\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:checked + label:before {\n",
-       "  content: 'â–¼';\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:checked + label > span {\n",
-       "  display: none;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary,\n",
-       ".xr-section-inline-details {\n",
-       "  padding-top: 4px;\n",
-       "  padding-bottom: 4px;\n",
-       "}\n",
-       "\n",
-       ".xr-section-inline-details {\n",
-       "  grid-column: 2 / -1;\n",
-       "}\n",
-       "\n",
-       ".xr-section-details {\n",
-       "  display: none;\n",
-       "  grid-column: 1 / -1;\n",
-       "  margin-bottom: 5px;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:checked ~ .xr-section-details {\n",
-       "  display: contents;\n",
-       "}\n",
-       "\n",
-       ".xr-array-wrap {\n",
-       "  grid-column: 1 / -1;\n",
-       "  display: grid;\n",
-       "  grid-template-columns: 20px auto;\n",
-       "}\n",
-       "\n",
-       ".xr-array-wrap > label {\n",
-       "  grid-column: 1;\n",
-       "  vertical-align: top;\n",
-       "}\n",
-       "\n",
-       ".xr-preview {\n",
-       "  color: var(--xr-font-color3);\n",
-       "}\n",
-       "\n",
-       ".xr-array-preview,\n",
-       ".xr-array-data {\n",
-       "  padding: 0 5px !important;\n",
-       "  grid-column: 2;\n",
-       "}\n",
-       "\n",
-       ".xr-array-data,\n",
-       ".xr-array-in:checked ~ .xr-array-preview {\n",
-       "  display: none;\n",
-       "}\n",
-       "\n",
-       ".xr-array-in:checked ~ .xr-array-data,\n",
-       ".xr-array-preview {\n",
-       "  display: inline-block;\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list {\n",
-       "  display: inline-block !important;\n",
-       "  list-style: none;\n",
-       "  padding: 0 !important;\n",
-       "  margin: 0;\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list li {\n",
-       "  display: inline-block;\n",
-       "  padding: 0;\n",
-       "  margin: 0;\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list:before {\n",
-       "  content: '(';\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list:after {\n",
-       "  content: ')';\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list li:not(:last-child):after {\n",
-       "  content: ',';\n",
-       "  padding-right: 5px;\n",
-       "}\n",
-       "\n",
-       ".xr-has-index {\n",
-       "  font-weight: bold;\n",
-       "}\n",
-       "\n",
-       ".xr-var-list,\n",
-       ".xr-var-item {\n",
-       "  display: contents;\n",
-       "}\n",
-       "\n",
-       ".xr-var-item > div,\n",
-       ".xr-var-item label,\n",
-       ".xr-var-item > .xr-var-name span {\n",
-       "  background-color: var(--xr-background-color-row-even);\n",
-       "  margin-bottom: 0;\n",
-       "}\n",
-       "\n",
-       ".xr-var-item > .xr-var-name:hover span {\n",
-       "  padding-right: 5px;\n",
-       "}\n",
-       "\n",
-       ".xr-var-list > li:nth-child(odd) > div,\n",
-       ".xr-var-list > li:nth-child(odd) > label,\n",
-       ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
-       "  background-color: var(--xr-background-color-row-odd);\n",
-       "}\n",
-       "\n",
-       ".xr-var-name {\n",
-       "  grid-column: 1;\n",
-       "}\n",
-       "\n",
-       ".xr-var-dims {\n",
-       "  grid-column: 2;\n",
-       "}\n",
-       "\n",
-       ".xr-var-dtype {\n",
-       "  grid-column: 3;\n",
-       "  text-align: right;\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-var-preview {\n",
-       "  grid-column: 4;\n",
-       "}\n",
-       "\n",
-       ".xr-index-preview {\n",
-       "  grid-column: 2 / 5;\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-var-name,\n",
-       ".xr-var-dims,\n",
-       ".xr-var-dtype,\n",
-       ".xr-preview,\n",
-       ".xr-attrs dt {\n",
-       "  white-space: nowrap;\n",
-       "  overflow: hidden;\n",
-       "  text-overflow: ellipsis;\n",
-       "  padding-right: 10px;\n",
-       "}\n",
-       "\n",
-       ".xr-var-name:hover,\n",
-       ".xr-var-dims:hover,\n",
-       ".xr-var-dtype:hover,\n",
-       ".xr-attrs dt:hover {\n",
-       "  overflow: visible;\n",
-       "  width: auto;\n",
-       "  z-index: 1;\n",
-       "}\n",
-       "\n",
-       ".xr-var-attrs,\n",
-       ".xr-var-data,\n",
-       ".xr-index-data {\n",
-       "  display: none;\n",
-       "  background-color: var(--xr-background-color) !important;\n",
-       "  padding-bottom: 5px !important;\n",
-       "}\n",
-       "\n",
-       ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
-       ".xr-var-data-in:checked ~ .xr-var-data,\n",
-       ".xr-index-data-in:checked ~ .xr-index-data {\n",
-       "  display: block;\n",
-       "}\n",
-       "\n",
-       ".xr-var-data > table {\n",
-       "  float: right;\n",
-       "}\n",
-       "\n",
-       ".xr-var-name span,\n",
-       ".xr-var-data,\n",
-       ".xr-index-name div,\n",
-       ".xr-index-data,\n",
-       ".xr-attrs {\n",
-       "  padding-left: 25px !important;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs,\n",
-       ".xr-var-attrs,\n",
-       ".xr-var-data,\n",
-       ".xr-index-data {\n",
-       "  grid-column: 1 / -1;\n",
-       "}\n",
-       "\n",
-       "dl.xr-attrs {\n",
-       "  padding: 0;\n",
-       "  margin: 0;\n",
-       "  display: grid;\n",
-       "  grid-template-columns: 125px auto;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs dt,\n",
-       ".xr-attrs dd {\n",
-       "  padding: 0;\n",
-       "  margin: 0;\n",
-       "  float: left;\n",
-       "  padding-right: 10px;\n",
-       "  width: auto;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs dt {\n",
-       "  font-weight: normal;\n",
-       "  grid-column: 1;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs dt:hover span {\n",
-       "  display: inline-block;\n",
-       "  background: var(--xr-background-color);\n",
-       "  padding-right: 10px;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs dd {\n",
-       "  grid-column: 2;\n",
-       "  white-space: pre-wrap;\n",
-       "  word-break: break-all;\n",
-       "}\n",
-       "\n",
-       ".xr-icon-database,\n",
-       ".xr-icon-file-text2,\n",
-       ".xr-no-icon {\n",
-       "  display: inline-block;\n",
-       "  vertical-align: middle;\n",
-       "  width: 1em;\n",
-       "  height: 1.5em !important;\n",
-       "  stroke-width: 0;\n",
-       "  stroke: currentColor;\n",
-       "  fill: currentColor;\n",
-       "}\n",
-       "</style><pre class='xr-text-repr-fallback'>&lt;xarray.DataArray &#x27;CO_flux&#x27; (time: 680, lev: 1, lat: 360, lon: 720)&gt;\n",
-       "dask.array&lt;getitem, shape=(680, 1, 360, 720), dtype=float32, chunksize=(120, 1, 360, 720), chunktype=numpy.ndarray&gt;\n",
-       "Coordinates:\n",
-       "  * lat      (lat) float64 -89.75 -89.25 -88.75 -88.25 ... 88.75 89.25 89.75\n",
-       "  * lev      (lev) float64 45.0\n",
-       "  * lon      (lon) float64 -179.8 -179.2 -178.8 -178.2 ... 178.8 179.2 179.8\n",
-       "  * time     (time) object 1958-05-16 00:00:00 ... 2014-12-16 00:00:00\n",
-       "Attributes:\n",
-       "    units:    kg m-2 s-1</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.DataArray</div><div class='xr-array-name'>'CO_flux'</div><ul class='xr-dim-list'><li><span class='xr-has-index'>time</span>: 680</li><li><span class='xr-has-index'>lev</span>: 1</li><li><span class='xr-has-index'>lat</span>: 360</li><li><span class='xr-has-index'>lon</span>: 720</li></ul></div><ul class='xr-sections'><li class='xr-section-item'><div class='xr-array-wrap'><input id='section-e0249104-e99a-4fe7-a84f-d0aa82a9add3' class='xr-array-in' type='checkbox' checked><label for='section-e0249104-e99a-4fe7-a84f-d0aa82a9add3' title='Show/hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-array-preview xr-preview'><span>dask.array&lt;chunksize=(20, 1, 360, 720), meta=np.ndarray&gt;</span></div><div class='xr-array-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table style=\"border-collapse: collapse;\">\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 672.36 MiB </td>\n",
-       "                        <td> 118.65 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (680, 1, 360, 720) </td>\n",
-       "                        <td> (120, 1, 360, 720) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Dask graph </th>\n",
-       "                        <td colspan=\"2\"> 11 chunks in 64 graph layers </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Data type </th>\n",
-       "                        <td colspan=\"2\"> float32 numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"550\" height=\"124\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"113\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"113\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"3\" y1=\"0\" x2=\"3\" y2=\"25\" />\n",
-       "  <line x1=\"23\" y1=\"0\" x2=\"23\" y2=\"25\" />\n",
-       "  <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n",
-       "  <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n",
-       "  <line x1=\"83\" y1=\"0\" x2=\"83\" y2=\"25\" />\n",
-       "  <line x1=\"103\" y1=\"0\" x2=\"103\" y2=\"25\" />\n",
-       "  <line x1=\"105\" y1=\"0\" x2=\"105\" y2=\"25\" />\n",
-       "  <line x1=\"107\" y1=\"0\" x2=\"107\" y2=\"25\" />\n",
-       "  <line x1=\"109\" y1=\"0\" x2=\"109\" y2=\"25\" />\n",
-       "  <line x1=\"111\" y1=\"0\" x2=\"111\" y2=\"25\" />\n",
-       "  <line x1=\"113\" y1=\"0\" x2=\"113\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 113.33333333333331,0.0 113.33333333333331,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"56.666667\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >680</text>\n",
-       "  <text x=\"133.333333\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,133.333333,12.706308)\">1</text>\n",
-       "\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"183\" y1=\"0\" x2=\"197\" y2=\"14\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"183\" y1=\"60\" x2=\"197\" y2=\"74\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"183\" y1=\"0\" x2=\"183\" y2=\"60\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"197\" y1=\"14\" x2=\"197\" y2=\"74\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"183.0,0.0 197.9485979497544,14.948597949754403 197.9485979497544,74.9485979497544 183.0,60.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"183\" y1=\"0\" x2=\"303\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"197\" y1=\"14\" x2=\"317\" y2=\"14\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"183\" y1=\"0\" x2=\"197\" y2=\"14\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"303\" y1=\"0\" x2=\"317\" y2=\"14\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"183.0,0.0 303.0,0.0 317.9485979497544,14.948597949754403 197.9485979497544,14.948597949754403\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"197\" y1=\"14\" x2=\"317\" y2=\"14\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"197\" y1=\"74\" x2=\"317\" y2=\"74\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"197\" y1=\"14\" x2=\"197\" y2=\"74\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"317\" y1=\"14\" x2=\"317\" y2=\"74\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"197.9485979497544,14.948597949754403 317.9485979497544,14.948597949754403 317.9485979497544,74.9485979497544 197.9485979497544,74.9485979497544\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"257.948598\" y=\"94.948598\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >720</text>\n",
-       "  <text x=\"337.948598\" y=\"44.948598\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,337.948598,44.948598)\">360</text>\n",
-       "  <text x=\"180.474299\" y=\"87.474299\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,180.474299,87.474299)\">1</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></div></li><li class='xr-section-item'><input id='section-5f276f59-45f6-4ffa-83b7-8eef45fdaf29' class='xr-section-summary-in' type='checkbox'  checked><label for='section-5f276f59-45f6-4ffa-83b7-8eef45fdaf29' class='xr-section-summary' >Coordinates: <span>(4)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>lat</span></div><div class='xr-var-dims'>(lat)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>-89.75 -89.25 ... 89.25 89.75</div><input id='attrs-9a42019d-34d4-414e-84c8-1f3af26a4888' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-9a42019d-34d4-414e-84c8-1f3af26a4888' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-9478f593-8c78-43ff-81db-f65e603aaaef' class='xr-var-data-in' type='checkbox'><label for='data-9478f593-8c78-43ff-81db-f65e603aaaef' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>latitude</dd><dt><span>long_name :</span></dt><dd>latitude</dd><dt><span>units :</span></dt><dd>degrees_north</dd><dt><span>axis :</span></dt><dd>Y</dd><dt><span>bounds :</span></dt><dd>lat_bnds</dd></dl></div><div class='xr-var-data'><pre>array([-89.75, -89.25, -88.75, ...,  88.75,  89.25,  89.75])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>lev</span></div><div class='xr-var-dims'>(lev)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>45.0</div><input id='attrs-d745e724-438c-4419-bdf8-70c6958f1024' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-d745e724-438c-4419-bdf8-70c6958f1024' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-a8916605-2c60-4cdc-8e25-e6a2a6dfdb4a' class='xr-var-data-in' type='checkbox'><label for='data-a8916605-2c60-4cdc-8e25-e6a2a6dfdb4a' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>meters</dd><dt><span>axis :</span></dt><dd>Z</dd></dl></div><div class='xr-var-data'><pre>array([45.])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>lon</span></div><div class='xr-var-dims'>(lon)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>-179.8 -179.2 ... 179.2 179.8</div><input id='attrs-cd2d8f57-5f02-4b6b-a204-2065d2b8a7d7' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-cd2d8f57-5f02-4b6b-a204-2065d2b8a7d7' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-9166f664-3c0d-40cb-8312-c614b5d7ab25' class='xr-var-data-in' type='checkbox'><label for='data-9166f664-3c0d-40cb-8312-c614b5d7ab25' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>longitude</dd><dt><span>long_name :</span></dt><dd>longitude</dd><dt><span>units :</span></dt><dd>degrees_east</dd><dt><span>axis :</span></dt><dd>X</dd><dt><span>bounds :</span></dt><dd>lon_bnds</dd></dl></div><div class='xr-var-data'><pre>array([-179.75, -179.25, -178.75, ...,  178.75,  179.25,  179.75])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>time</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>1958-05-16 00:00:00 ... 2014-12-...</div><input id='attrs-3ff7c6cc-cb14-44f5-b226-02f4264e21c0' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-3ff7c6cc-cb14-44f5-b226-02f4264e21c0' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-4d0bb490-4a29-4ccf-94cf-98d662e45962' class='xr-var-data-in' type='checkbox'><label for='data-4d0bb490-4a29-4ccf-94cf-98d662e45962' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>time</dd><dt><span>long_name :</span></dt><dd>time</dd><dt><span>bounds :</span></dt><dd>time_bnds</dd><dt><span>axis :</span></dt><dd>T</dd></dl></div><div class='xr-var-data'><pre>array([cftime.DatetimeNoLeap(1958, 5, 16, 0, 0, 0, 0, has_year_zero=True),\n",
-       "       cftime.DatetimeNoLeap(1958, 6, 16, 0, 0, 0, 0, has_year_zero=True),\n",
-       "       cftime.DatetimeNoLeap(1958, 7, 16, 0, 0, 0, 0, has_year_zero=True), ...,\n",
-       "       cftime.DatetimeNoLeap(2014, 10, 16, 0, 0, 0, 0, has_year_zero=True),\n",
-       "       cftime.DatetimeNoLeap(2014, 11, 16, 0, 0, 0, 0, has_year_zero=True),\n",
-       "       cftime.DatetimeNoLeap(2014, 12, 16, 0, 0, 0, 0, has_year_zero=True)],\n",
-       "      dtype=object)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-dd98b8d8-7af8-4145-89a8-37a2c86b604d' class='xr-section-summary-in' type='checkbox'  ><label for='section-dd98b8d8-7af8-4145-89a8-37a2c86b604d' class='xr-section-summary' >Indexes: <span>(4)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>lat</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-272d0735-7356-4fa5-a54c-a5386299d92b' class='xr-index-data-in' type='checkbox'/><label for='index-272d0735-7356-4fa5-a54c-a5386299d92b' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([-89.75, -89.25, -88.75, -88.25, -87.75, -87.25, -86.75, -86.25, -85.75,\n",
-       "       -85.25,\n",
-       "       ...\n",
-       "        85.25,  85.75,  86.25,  86.75,  87.25,  87.75,  88.25,  88.75,  89.25,\n",
-       "        89.75],\n",
-       "      dtype=&#x27;float64&#x27;, name=&#x27;lat&#x27;, length=360))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>lev</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-a5687bdc-aa1e-4a20-9920-00b682cc329b' class='xr-index-data-in' type='checkbox'/><label for='index-a5687bdc-aa1e-4a20-9920-00b682cc329b' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([45.0], dtype=&#x27;float64&#x27;, name=&#x27;lev&#x27;))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>lon</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-5b44e6f9-68ac-453d-ae56-5b1817b013a4' class='xr-index-data-in' type='checkbox'/><label for='index-5b44e6f9-68ac-453d-ae56-5b1817b013a4' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([-179.75, -179.25, -178.75, -178.25, -177.75, -177.25, -176.75, -176.25,\n",
-       "       -175.75, -175.25,\n",
-       "       ...\n",
-       "        175.25,  175.75,  176.25,  176.75,  177.25,  177.75,  178.25,  178.75,\n",
-       "        179.25,  179.75],\n",
-       "      dtype=&#x27;float64&#x27;, name=&#x27;lon&#x27;, length=720))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>time</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-ea333511-325d-4dc3-a034-39fad64807b4' class='xr-index-data-in' type='checkbox'/><label for='index-ea333511-325d-4dc3-a034-39fad64807b4' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(CFTimeIndex([1958-05-16 00:00:00, 1958-06-16 00:00:00, 1958-07-16 00:00:00,\n",
-       "             1958-08-16 00:00:00, 1958-09-16 00:00:00, 1958-10-16 00:00:00,\n",
-       "             1958-11-16 00:00:00, 1958-12-16 00:00:00, 1959-01-16 00:00:00,\n",
-       "             1959-02-15 00:00:00,\n",
-       "             ...\n",
-       "             2014-03-16 00:00:00, 2014-04-16 00:00:00, 2014-05-16 00:00:00,\n",
-       "             2014-06-16 00:00:00, 2014-07-16 00:00:00, 2014-08-16 00:00:00,\n",
-       "             2014-09-16 00:00:00, 2014-10-16 00:00:00, 2014-11-16 00:00:00,\n",
-       "             2014-12-16 00:00:00],\n",
-       "            dtype=&#x27;object&#x27;, length=680, calendar=&#x27;noleap&#x27;, freq=&#x27;None&#x27;))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-abb9e982-6dba-4658-9dca-e94a85fb26d7' class='xr-section-summary-in' type='checkbox'  checked><label for='section-abb9e982-6dba-4658-9dca-e94a85fb26d7' class='xr-section-summary' >Attributes: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>kg m-2 s-1</dd></dl></div></li></ul></div></div>"
-      ],
-      "text/plain": [
-       "<xarray.DataArray 'CO_flux' (time: 680, lev: 1, lat: 360, lon: 720)>\n",
-       "dask.array<getitem, shape=(680, 1, 360, 720), dtype=float32, chunksize=(120, 1, 360, 720), chunktype=numpy.ndarray>\n",
-       "Coordinates:\n",
-       "  * lat      (lat) float64 -89.75 -89.25 -88.75 -88.25 ... 88.75 89.25 89.75\n",
-       "  * lev      (lev) float64 45.0\n",
-       "  * lon      (lon) float64 -179.8 -179.2 -178.8 -178.2 ... 178.8 179.2 179.8\n",
-       "  * time     (time) object 1958-05-16 00:00:00 ... 2014-12-16 00:00:00\n",
-       "Attributes:\n",
-       "    units:    kg m-2 s-1"
-      ]
-     },
-     "execution_count": 20,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "co_flux_road_misc[2500:,:,:,:]"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 21,
-   "id": "07a908a1-5a7d-4dd8-8ae5-260bfba993aa",
-   "metadata": {
-    "tags": []
-   },
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHFCAYAAAAKbwgcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6AklEQVR4nO3deXxU1d3H8e9kYYAAgyEkISYsUlZZZCkQHhVwYXsA0SqyNIAorliVWhH1EazKJmqtK1AFwVZcKNYuRrAgbqySCCpG2YQCYSdhM5PlPH/QuTBkIcDce83k83695vVi7pzcOfck7e/nOb97rscYYwQAAFDBRbjdAQAAgFAgqQEAAGGBpAYAAIQFkhoAABAWSGoAAEBYIKkBAABhgaQGAACEBZIaAAAQFkhqAABAWCCpASqhdevW6aabblKjRo1UtWpV1ahRQ+3bt9e0adN04MCBoLb5+fl6+eWXlZqaKp/Pp2rVqqlFixZ68MEHtX//fpeuoHQej0cTJ04M+Xm7d++u7t27h/y8AELHw2MSgMpl1qxZuvPOO9WsWTPdeeedatmypfLz87VmzRrNmjVLbdu21cKFCyVJx44dU9++ffXZZ5/p1ltvVb9+/VStWjUtX75c06dPV40aNbR48WI1a9bM5as6acWKFUpOTlZycnJIz/vtt99Kklq2bBnS8wIIHZIaoBJZvny5LrvsMl199dV677335PV6gz73+/1KT0/XgAEDJEm33XabZs6cqfnz5+vGG28Mavv999+rU6dOSk5O1ldffaXIyEjHrgMASsLyE1CJTJo0SR6PRzNnziyW0EhSlSpVrIQmOztbr732mnr16lUsoZGkpk2baty4cfrmm2/03nvvnfG716xZowEDBig2NlZVq1ZVu3bt9Pbbbwe1mTNnjjwej5YsWaLRo0erTp06qlWrloYPH66jR48qOztbgwYNUu3atVWvXj3df//9ys/PDzrH6ctPx44d0/33328ttcXGxqpjx4568803rTabN2/W4MGDlZSUJK/Xq4SEBF155ZXKzMy02pS0/HTgwAHdeeeduvDCC1WlShVddNFFevjhh5WXl1esT2PGjNG8efPUokULVa9eXW3bttU//vGPoHZ79+7VrbfeqpSUFHm9XtWtW1f/8z//o48++uiM4wtAinK7AwCcUVhYqCVLlqhDhw5KSUk5Y/ulS5eqoKBAAwcOLLXNwIED9dBDD2nx4sX61a9+Vea5evfurc6dO+uVV16Rz+ezZn+OHTumkSNHBrW/5ZZbdN1112n+/PnKyMjQQw89pIKCAmVlZem6667Trbfeqo8++khTp05VUlKSxo4dW+p3jx07VvPmzdMTTzyhdu3a6ejRo/r666+D6oH69u2rwsJCTZs2TfXr19e+ffv0xRdf6NChQ6We96efflKPHj20adMmPfbYY2rTpo0+/fRTTZ48WZmZmfrnP/8Z1P6f//ynVq9erd///veqUaOGpk2bpmuvvVZZWVm66KKLJElpaWlau3atnnzySTVt2lSHDh3S2rVrf5a1S8DPkgFQKWRnZxtJZvDgweVqP2XKFCPJpKenl9rm+PHjRpLp06dPmedq3ry5adeuncnPzw863q9fP1OvXj1TWFhojDFm9uzZRpK5++67g9oNHDjQSDLPPPNM0PFLLrnEtG/fPuiYJDNhwgTrfatWrczAgQNL7du+ffuMJPOHP/yhzGvo1q2b6datm/X+lVdeMZLM22+/HdRu6tSpRpJZtGhRUJ8SEhJMbm6udSw7O9tERESYyZMnW8dq1Khh7r333jL7AaB0lXL56ZNPPlH//v2VlJQkj8dTrqlzu7/PGKOJEycqKSlJ1apVU/fu3fXNN9+c1/fec8896tChg7xery655JJy/cxtt92mxo0bq1q1aqpbt66uueYafffdd0FtDh48qLS0NPl8Pvl8PqWlpZX6X7T79+9XcnKyPB5PsTYffvihunTpopo1a6pu3br61a9+pS1btlifjxw5Uh6Pp9jr4osvDjrPggUL1LJlS3m9XrVs2dIqcg2YOHFisXMkJiaWazzOldN/Y27zeDylfrZx40Z99913GjZsmCSpoKDAevXt21e7du1SVlZW0M/069cv6H2LFi0kSf/7v/9b7PiPP/5YZt86deqkDz74QA8++KA+/vhjHT9+POjz2NhYNW7cWE899ZSeeeYZZWRkqKioqOwLlrRkyRLFxMTo+uuvDzoemHX697//HXS8R48eqlmzpvU+ISFB8fHxQf3v1KmT5syZoyeeeEIrVqwotrQGoGyVMqk5evSo2rZtqxdeeOFn833Tpk3TM888oxdeeEGrV69WYmKirr76ah0+fLjUn/F4PNq6dWupnxtjNGrUqBLrIUrToUMHzZ49Wxs2bNCHH34oY4x69uypwsJCq83QoUOVmZmp9PR0paenKzMzU2lpaSWe7+abb1abNm2KHd+8ebOuueYaXXHFFcrMzNSHH36offv26brrrrPaPPfcc9q1a5f12r59u2JjY3XDDTdYbZYvX64bb7xRaWlp+uqrr5SWlqZBgwZp5cqVQd938cUXB51r/fr15R6Tc+H031h5xMXFqXr16kGJY1nq168vSWW2D3xW1nLW7t27JUn333+/oqOjg1533nmnJGnfvn1BPxMbGxv0vkqVKqUe/+mnn8q8jj/+8Y8aN26c3nvvPfXo0UOxsbEaOHCgfvjhB0kn/nf073//W7169dK0adPUvn171a1bV7/5zW/K/N/f/v37lZiYWCyhi4+PV1RUVLElozp16hQ7h9frDUqy3nrrLY0YMUJ/+tOflJqaqtjYWA0fPlzZ2dllXiOA/3J5psh1kszChQuDjuXl5Znf/e53JikpyVSvXt106tTJLF261LbvKyoqMomJiWbKlCnWsZ9++sn4fD7zyiuvlHmuLVu2nPE7J0yYYNq2bXtO/f3qq6+MJLNx40ZjjDHffvutkWRWrFhhtVm+fLmRZL777rugn33ppZdMt27dzL///W8jyRw8eND67J133jFRUVHWsoMxxrz//vvG4/EYv99fYl8WLlxoPB6P2bp1q3Vs0KBBpnfv3kHtevXqFbTEUp7rd/p37pb+/fubqKgos3379jO23bVrl4mKijK9evUqtc2kSZOMJPPuu++W2ua7774zksz48ePN6tWrS3wFlmUCy0+rV68OOseECROMJLN3796g4yNGjDAxMTFBx3Ta8tOpsrOzzezZs01CQoJp1qxZiW2ysrLM448/biIjI81tt91mHT99+WnQoEGmRo0apqioKOjnd+/ebSSZBx98MKhPd911V7HvatCggRkxYkSJ/fjxxx/N888/b2JiYsr8HQA4qVLO1JzJTTfdpM8//1zz58/XunXrdMMNN6h3797Wf9mF2pYtW5Sdna2ePXtax7xer7p166YvvvjClu8sj6NHj2r27Nlq1KiR9V/iy5cvl8/nU+fOna12Xbp0kc/nC+rrt99+q9///veaO3euIiKK/5l17NhRkZGRmj17tgoLC5WTk6N58+apZ8+eio6OLrE/r776qq666io1aNDAOrZ8+fKgcZOkXr16FRu3H374QUlJSWrUqJEGDx6szZs3B33u9O/cLePHj5cxRqNHj5bf7y/2eX5+vv7+979LkhITEzVq1Ch9+OGHeuutt4q1/f777zV16lRdfPHFZRYTN2vWTE2aNNFXX32ljh07lvg6dVnGTgkJCRo5cqSGDBmirKwsHTt2rFibpk2b6pFHHlHr1q21du3aUs915ZVX6siRI8WWFufOnWt9fj7q16+vMWPG6Oqrry6zHwBO4u6n02zatElvvvmm/vOf/ygpKUnSiWnz9PR0zZ49W5MmTQr5dwamlhMSEoKOJyQknLFewA4vvfSSHnjgAR09elTNmzfX4sWLren/7OxsxcfHF/uZ+Ph46zry8vI0ZMgQPfXUU6pfv36xBEKSGjZsqEWLFumGG27QbbfdpsLCQqWmpupf//pXiX3atWuXPvjgA/3lL38JOp6dnV3iuJ06Xd+5c2fNnTtXTZs21e7du/XEE0+oa9eu+uabb1SnTh1XfuduSU1N1csvv6w777xTHTp00B133KGLL75Y+fn5ysjI0MyZM9WqVSv1799fkvTMM88oKytLv/71r606Ia/XqxUrVmj69OmqWbOmFixYcMY9ambMmKE+ffqoV69eGjlypC688EIdOHBAGzZs0Nq1a/XOO+/Yds2dO3dWv3791KZNG11wwQXasGGD5s2bp9TUVFWvXl3r1q3TmDFjdMMNN6hJkyaqUqWKlixZonXr1unBBx8s9bzDhw/Xiy++qBEjRmjr1q1q3bq1PvvsM02aNEl9+/bVVVdddVb9zMnJUY8ePTR06FA1b95cNWvW1OrVq5Wenh60LAugdCQ1p1m7dq2MMWratGnQ8by8PGtNfOvWrWrUqFGZ57nrrrvOup7i9LV5Y0zQsT59+ujTTz8NanPxxRcHtTly5MhZfWdJhg0bpquvvlq7du3S9OnTNWjQIH3++eeqWrVqif08va/jx49XixYt9Otf/7rU78jOztYtt9yiESNGaMiQITp8+LAeffRRXX/99Vq8eHGx75gzZ45q165d4oxAecYtoHXr1kpNTVXjxo31+uuva+zYsa7+zt0wevRoderUSc8++6ymTp2q7OxsRUdHq2nTpho6dKjGjBljtY2JidHixYs1a9YszZ07V3PnzlV+fr4aNmyoW265RQ888ECJtSKn69Gjh1atWqUnn3xS9957rw4ePKg6deqoZcuWGjRokJ2XqyuuuELvv/++nn32WR07dkwXXnihhg8frocffljSiRmpxo0b66WXXtL27dvl8Xh00UUX6emnn9bdd99d6nmrVq2qpUuX6uGHH9ZTTz2lvXv36sILL9T999+vCRMmnHU/q1atqs6dO2vevHnaunWr8vPzVb9+fY0bN04PPPDAOV8/UJmQ1JymqKhIkZGR+vLLL4v912eNGjUkSRdeeKE2bNhQ5nkuuOCCcn9n4E6c7Oxs1atXzzq+Z8+eoFmIP/3pT0FFhU2aNNG//vUvXXjhheX+rvII3NXUpEkTdenSRRdccIEWLlyoIUOGKDEx0Sr8PNXevXutvi5ZskTr16/Xu+++K+lEkiGdKFR9+OGH9dhjj+nFF19UrVq1NG3aNOscb7zxhlJSUrRy5Up16dLFOm6M0Wuvvaa0tDRrxiggMTGxWBHl6eN2upiYGLVu3dpaWnLjd+62tm3bas6cOeVqGyjoDRT1nqs2bdqUuIx1qpEjRxbbs0Y6cQdbSc9zmjNnTrHrMKdtkj558mRNnjy51O+Mj4/X7Nmzy+yXJH388cfFjsXGxurll1/Wyy+/XObPnt6ngFML/b1e7xnPA6BsJDWnadeunQoLC7Vnzx5ddtllJbaJjo5W8+bNQ/adjRo1UmJiohYvXqx27dpJOrFd/bJlyzR16lSrXUnJS4MGDdSwYcOQ9aUkxhhrh9TU1FTl5ORo1apV6tSpkyRp5cqVysnJUdeuXSWduMX61ORr9erVGjVqlD799FM1btxY0oldXk9PIALvT7+ddtmyZdq4caNuvvnmYn1LTU3V4sWLdd9991nHFi1aZPWlJHl5edqwYYP1+3Xjdw4ACL1KmdQcOXJEGzdutN5v2bJFmZmZio2NVdOmTTVs2DANHz5cTz/9tNq1a6d9+/ZpyZIlat26tfr27RvS76tfv748Ho/uvfdeTZo0SU2aNFGTJk00adIkVa9eXUOHDj3n69y4caOOHDmi7OxsHT9+3NryvWXLlqpSpYp27NihK6+8UnPnzlWnTp20efNmvfXWW+rZs6fq1q2rHTt2aOrUqapWrZp13S1atFDv3r01evRozZgxQ5KsBx0GHmoYSFwCArfrtmjRQrVr15Z0Yr+RZ599Vr///e+t5aeHHnpIDRo0sBK7gFdffVWdO3dWq1atil3jPffco8svv1xTp07VNddco7/97W/66KOP9Nlnn1lt7r//fvXv31/169fXnj179MQTTyg3N1cjRoyQJFd+5wAAG7h015Wrli5daiQVewVurfT7/ebRRx81DRs2NNHR0SYxMdFce+21Zt26dbZ8nzEnbuueMGGCSUxMNF6v11x++eVm/fr1ZZ5XZ7ilu1u3biV+b+BntmzZYiRZty7v2LHD9OnTx8THx5vo6GiTnJxshg4dWuxW7f3795thw4aZmjVrmpo1a5phw4YF3a5d2vWf3ubNN9807dq1MzExMaZu3bpmwIABZsOGDUFtDh06ZKpVq2ZmzpxZ6vnfeecd06xZMxMdHW2aN29uFixYEPT5jTfeaOrVq2eio6NNUlKSue6668w333wT1MaN3zkAILR4SjcAAAgL7FMDAADCAkkNAAAIC5WqULioqEg7d+5UzZo1y3wAHwAA+Pkwxujw4cNKSkoqcZf6gEqV1OzcubPMB+8BAICfr+3btys5ObnUzytVUhN4vsz27dtVq1Ytl3sDAADKIzc3VykpKWd8TlylSmoCS061atUiqQEAoII5U+kIhcIAACAskNQAAICwQFIDAADCAkkNAAAICyQ1AAAgLJDUAACAsEBSAwAAwgJJDQAACAskNQAAICyQ1AAAgLBAUgMAAMICSQ0AAAgLleqBlm7ak/uT/IVFbncDAABbxdXwqmp0pCvfTVLjgJc+3qhp6VludwMAANvNHdVJlzet68p3k9Q4IGPbIUlSVIRHkRFlPzYdAICKLMLjXpwjqXFA/n+Xnab8qo2u75Dscm8AAAhPFAo7wF9wIqmJjmSWBgAAu5DUOCAwU1MlkuEGAMAuRFkH+AuNJCmapAYAANsQZR2QH1h+imK4AQCwC1HWAYHlJ2pqAACwD0mNA6ipAQDAfkRZB+T/t6amCstPAADYpkJF2U8++UT9+/dXUlKSPB6P3nvvPbe7VC5+a/mpQg03AAAVSoWKskePHlXbtm31wgsvuN2Vs3Jyn5oKNdwAAFQoFWpH4T59+qhPnz5ud+OsUVMDAID9KlRSc7by8vKUl5dnvc/NzXWlH9bdT1Hc/QQAgF3Ceupg8uTJ8vl81islJcXxPhhjrEJhlp8AALBPWEfZ8ePHKycnx3pt377d8T4EEhqJpAYAADuF9fKT1+uV1+t1tQ+BpSdJ8nJLNwAAtiHK2uzUpIaZGgAA7FOhZmqOHDmijRs3Wu+3bNmizMxMxcbGqn79+i72rHSBPWoiPFJkBIXCAADYpUIlNWvWrFGPHj2s92PHjpUkjRgxQnPmzHGpV2VjjxoAAJxRoZKa7t27yxhz5oY/I9YjEkhqAACwFZHWZif3qGGoAQCwE5HWZieXn6inAQDATiQ1NsvnYZYAADiCSGszq6aG5ScAAGxFpLUZD7MEAMAZRFqb+Vl+AgDAEURam1EoDACAM0hqbEahMAAAziDS2syqqaFQGAAAWxFpbZZfcOLuJ2ZqAACwF5HWZn7ufgIAwBFEWpvxmAQAAJxBpLXZyUJh7n4CAMBOJDU2C9zSzfITAAD2ItLazF9IoTAAAE4g0tqMfWoAAHAGkdZm+YEdhaOoqQEAwE4kNTbjgZYAADiDSGuzQE0NSQ0AAPYi0tqMfWoAAHAGkdZmFAoDAOAMIq3NTu5TQ6EwAAB2IqmxGTM1AAA4g0hrMzbfAwDAGURam53cp4ahBgDATkRam53cp4aaGgAA7ERSYzMrqWGmBgAAWxFpbUZNDQAAziDS2oy7nwAAcAaR1maBfWpIagAAsBeR1mY80BIAAGcQaW128tlP3P0EAICdSGpsxvITAADOINLaLP+/dz+x/AQAgL2ItDZjnxoAAJxBpLVRUZFRQRH71AAA4AQirY38/52lkaRoHpMAAICtSGpslB+U1DDUAADYiUhro0CRsERSAwCA3Yi0NgrM1ERGeBQZwfITAAB2Iqmx0ck9akhoAACwG0mNjXhEAgAAziHa2sjaeI89agAAsB3R1kbWc5+YqQEAwHZEWxvl8dwnAAAcQ7S10cmZGgqFAQCwG0mNjVh+AgDAOURbG/EwSwAAnEO0tZG/gIdZAgDgFKKtjdinBgAA5xBtbWTV1LD8BACA7Yi2Njo5U8PdTwAA2K3CJDUHDx5UWlqafD6ffD6f0tLSdOjQIbe7VSY/+9QAAOCYChNthw4dqszMTKWnpys9PV2ZmZlKS0tzu1tl8hdSKAwAgFOi3O5AeWzYsEHp6elasWKFOnfuLEmaNWuWUlNTlZWVpWbNmrncw5KxTw0AAM6pENF2+fLl8vl8VkIjSV26dJHP59MXX3xR6s/l5eUpNzc36OWk/ILAPjXU1AAAYLcKkdRkZ2crPj6+2PH4+HhlZ2eX+nOTJ0+2anB8Pp9SUlLs7GYx3NINAIBzXI22EydOlMfjKfO1Zs0aSZLHU3y2wxhT4vGA8ePHKycnx3pt377dtmspCTU1AAA4x9WamjFjxmjw4MFltmnYsKHWrVun3bt3F/ts7969SkhIKPVnvV6vvF7veffzXLFPDQAAznE1qYmLi1NcXNwZ26WmpionJ0erVq1Sp06dJEkrV65UTk6Ounbtanc3zxm3dAMA4JwKcfdTixYt1Lt3b40ePVozZsyQJN16663q16/fz/bOJ4nN9wAAcFKFmUL485//rNatW6tnz57q2bOn2rRpo3nz5rndrTL5uaUbAADHVIiZGkmKjY3VG2+84XY3zko+hcIAADiGaGujwD41FAoDAGA/oq2NAjU1XmZqAACwHdHWRlZNDTsKAwBgO5IaG/HsJwAAnEO0tRH71AAA4ByirY0Cdz/x7CcAAOxHtLURy08AADiHaGujk5vvUSgMAIDdSGpsxAMtAQBwDtHWRvkF1NQAAOAUoq2NrAdaMlMDAIDtiLY24oGWAAA4h2hro5P71FAoDACA3UhqbGQtPzFTAwCA7Yi2NiksMio6USfM8hMAAA4g2tokMEsjcUs3AABOINraxH9KUsPyEwAA9iPa2iS/4JSZGgqFAQCwHUmNTQIPs4yO9MjjIakBAMBuJDU24WGWAAA4i4hrk7wCkhoAAJxExLUJMzUAADiLiGuTkxvvUU8DAIATSGpsYs3UsEcNAACOIOLaxF9w4u4n9qgBAMAZRFybUFMDAICziLg2YfkJAABnEXFt4i+gUBgAACeR1NjEz/ITAACOIuLa5ORjEhhiAACcQMS1CYXCAAA4i4hrE2vzvShqagAAcAJJjU1OFgozxAAAOIGIaxNqagAAcBYR1ybsUwMAgLOIuDZh+QkAAGcRcW1y8u4nCoUBAHACSY1N2HwPAABnEXFtwj41AAA4i4hrk/yCE3c/VaFQGAAARxBxbWJtvsdMDQAAjiDi2sRPoTAAAI4iqbEJ+9QAAOAsIq5NAvvUUCgMAIAziLg2CTwmgZoaAACcQcS1CfvUAADgLCKuTdhRGAAAZ5HU2MS6pZtCYQAAHEHEtYm1+R7LTwAAOIKIaxNu6QYAwFlEXJvkcUs3AACOqjAR98knn1TXrl1VvXp11a5d2+3unBGFwgAAOKvCJDV+v1833HCD7rjjDre7Ui48+wkAAGdFud2B8nrsscckSXPmzHG3I+UU2HyP5ScAAJxBxLWJn0JhAAAcVWFmas5FXl6e8vLyrPe5ubmOfK8xhuUnAAAc5mrEnThxojweT5mvNWvWnPP5J0+eLJ/PZ71SUlJC2PvSFRYZmROrTyQ1AAA4xNWZmjFjxmjw4MFltmnYsOE5n3/8+PEaO3as9T43N9eRxCZQTyNJ0VHc/QQAgBNcTWri4uIUFxdn2/m9Xq+8Xq9t5y+N/7971EgUCgMA4JQKU1Ozbds2HThwQNu2bVNhYaEyMzMlSb/4xS9Uo0YNdzt3mkCRsCRFRTBTAwCAEypMUvPoo4/q9ddft963a9dOkrR06VJ1797dpV6V7NQiYY+HpAYAACdUmLWROXPmyBhT7PVzS2gkdhMGAMANFSapqUismRr2qAEAwDFEXRv4C9hNGAAApxF1bXBy+YnhBQDAKURdG7D8BACA84i6NgjsU0OhMAAAziGpsYGf5ScAABxH1LVB4DEJJDUAADiHqGsDntANAIDziLo2oFAYAADnEXVtQKEwAADOO6dnPx09elTLli3Ttm3b5Pf7gz77zW9+E5KOVWTU1AAA4LyzTmoyMjLUt29fHTt2TEePHlVsbKz27dun6tWrKz4+nqRGkr+gUJIUzfITAACOOeuoe99996l///46cOCAqlWrphUrVujHH39Uhw4dNH36dDv6WOEEZmooFAYAwDlnHXUzMzP129/+VpGRkYqMjFReXp5SUlI0bdo0PfTQQ3b0scLx85RuAAAcd9ZJTXR0tDyeE8E6ISFB27ZtkyT5fD7r35Udz34CAMB5Z11T065dO61Zs0ZNmzZVjx499Oijj2rfvn2aN2+eWrdubUcfKxySGgAAnHfWUXfSpEmqV6+eJOnxxx9XnTp1dMcdd2jPnj2aOXNmyDtYEQVqarwUCgMA4Jhyz9QcOXJENWrUUMeOHa1jdevW1b/+9S9bOlaRndynhqQGAACnlDvqxsXFqU+fPnr55Ze1Y8cOO/tU4bH8BACA88oddbOystS3b18tWLBAF110kX75y1/q8ccf17p16+zsX4VkzdREcfcTAABOKXdS06BBA91999366KOPtGfPHo0dO1bffPONLr/8cjVq1Ej33HOPlixZosLCQjv7WyHwQEsAAJx3TlHX5/NpyJAhmj9/vvbt26cZM2aoqKhIN910k+rWras///nPoe5nhcJjEgAAcN45Pfsp6ARRUerZs6d69uyp559/XmvXrq30szV+amoAAHDcWSc1pdXQeDweVa1aVRdffLG8Xu95d6wis5afuKUbAADHnHVSc8kll1g7CpckOjpaN954o2bMmKGqVaueV+cqqnwekwAAgOPOeiph4cKFatKkiWbOnKnMzExlZGRo5syZatasmf7yl7/o1Vdf1ZIlS/TII4/Y0d8KIb+AB1oCAOC0s56pefLJJ/Xcc8+pV69e1rE2bdooOTlZ//d//6dVq1YpJiZGv/3tbyvtU7upqQEAwHlnHXXXr1+vBg0aFDveoEEDrV+/XtKJJapdu3adf+8qqJP71JDUAADglLOOus2bN9eUKVPk9/utY/n5+ZoyZYqaN28uSdqxY4cSEhJC18sKhpoaAACcd9bLTy+++KIGDBig5ORktWnTRh6PR+vWrVNhYaH+8Y9/SJI2b96sO++8M+SdrSjYfA8AAOeddVLTtWtXbd26VW+88Ya+//57GWN0/fXXa+jQoapZs6YkKS0tLeQdrUjYfA8AAOeVO6kZNWqUnnvuOdWsWVM1atTQ7bffbme/KjQ/+9QAAOC4ckfd119/XcePH7ezL2GDp3QDAOC8ckddY4yd/Qgr+QXU1AAA4LSzirpl7SSMk6yamijGCwAAp5xVoXDTpk3PmNgcOHDgvDpU0Rlj2HwPAAAXnFVS89hjj8nn89nVl7AQmKWRSGoAAHDSWSU1gwcPVnx8vF19CQuBImGJmhoAAJxU7qhLPU35nJrUsKMwAADO4e6nEAvU00R4pChmagAAcEy5l5+KiorO3AjsJgwAgEuIvCHGHjUAALiDyBti1u3cPCIBAABHEXlDzF8Q2KOGImEAAJxEUhNiPPcJAAB3EHlDLFAoTE0NAADOIvKGWGCmpgo1NQAAOIrIG2I89wkAAHcQeUMsn0JhAABcQVITYmy+BwCAO4i8IeYvLJRETQ0AAE4j8oZYfgEzNQAAuKFCRN6tW7fq5ptvVqNGjVStWjU1btxYEyZMkN/vd7trxZwsFKamBgAAJ5X7gZZu+u6771RUVKQZM2boF7/4hb7++muNHj1aR48e1fTp093uXhA23wMAwB0VIqnp3bu3evfubb2/6KKLlJWVpZdffvlnm9RQUwMAgLMqRFJTkpycHMXGxpbZJi8vT3l5edb73Nxcu7vFjsIAALikQkbeTZs26fnnn9ftt99eZrvJkyfL5/NZr5SUFNv7dvKBlhVyaAEAqLBcjbwTJ06Ux+Mp87VmzZqgn9m5c6d69+6tG264QbfcckuZ5x8/frxycnKs1/bt2+28HEnU1AAA4BZXl5/GjBmjwYMHl9mmYcOG1r937typHj16KDU1VTNnzjzj+b1er7xe7/l286xYMzVR3P0EAICTXE1q4uLiFBcXV662O3bsUI8ePdShQwfNnj1bERE/z5kQq1CYmRoAABxVIQqFd+7cqe7du6t+/fqaPn269u7da32WmJjoYs+K8/OYBAAAXFEhkppFixZp48aN2rhxo5KTk4M+M8a41KuSUVMDAIA7KkTkHTlypIwxJb5+btinBgAAdxB5Q+xkTQ2FwgAAOImkJsT8PNASAABXEHlDzE9NDQAAriDyhli+tU8NQwsAgJOIvCFGTQ0AAO4gqQkxbukGAMAdRN4QC2y+xy3dAAA4i8gbYszUAADgDiJviJHUAADgDiJviAXufuKBlgAAOIvIG2LWPjVR3P0EAICTSGpCzF/A8hMAAG4g8oZYfuDuJ5IaAAAcReQNMQqFAQBwB5E3hIqKjAqK2KcGAAA3EHlDKL+oyPp3NI9JAADAUSQ1IRSop5FYfgIAwGlE3hAK7FEjkdQAAOA0Im8IBfaoiYzwKDKC5ScAAJxEUhNCJ/eoIaEBAMBpJDUhxO3cAAC4h+gbQmy8BwCAe4i+IRSYqWGPGgAAnEf0DSE/y08AALiG6BtC+RQKAwDgGpKaEGKmBgAA9xB9Q4iaGgAA3EP0DSF/wYm7n5ipAQDAeUTfEDq5Tw01NQAAOI2kJoROLj9FutwTAAAqH5KaELKSGmZqAABwHElNCPkLqakBAMAtRN8QOrlPDcMKAIDTiL4hxD41AAC4h+gbQoGZmipR1NQAAOA0kpoQymemBgAA1xB9Q4hCYQAA3EP0DSEekwAAgHuIviHE8hMAAO4h+oYQm+8BAOAekpoQ4oGWAAC4h+gbQuxTAwCAe4i+IWTtKEyhMAAAjiP6hhA1NQAAuIekJoRYfgIAwD1E3xBinxoAANxD9A2hfHYUBgDANUTfEDpZU8OwAgDgNKJvCPkLqKkBAMAtRN8QOlkozN1PAAA4jaQmhKxnP1EoDACA44i+IZT/38ckUFMDAIDzKkz0HTBggOrXr6+qVauqXr16SktL086dO93uVhBu6QYAwD0VJvr26NFDb7/9trKysrRgwQJt2rRJ119/vdvdCsLmewAAuCfK7Q6U13333Wf9u0GDBnrwwQc1cOBA5efnKzo62sWenZRPoTAAAK6pMEnNqQ4cOKA///nP6tq1a5kJTV5envLy8qz3ubm5tvYrsPkeNTUAADivQkXfcePGKSYmRnXq1NG2bdv0t7/9rcz2kydPls/ns14pKSm29a2wyKiwiB2FAQBwi6vRd+LEifJ4PGW+1qxZY7X/3e9+p4yMDC1atEiRkZEaPny4jDGlnn/8+PHKycmxXtu3b7ftWgJLTxK3dAMA4AZXl5/GjBmjwYMHl9mmYcOG1r/j4uIUFxenpk2bqkWLFkpJSdGKFSuUmppa4s96vV55vd5QdrlU/lOTGmpqAABwnKtJTSBJOReBGZpTa2bclF9wSlITwUwNAABOqxCFwqtWrdKqVat06aWX6oILLtDmzZv16KOPqnHjxqXO0jjt5BO6PYqIYKYGAACnVYgphWrVqumvf/2rrrzySjVr1kyjRo1Sq1attGzZMseWl84knz1qAABwVYWYqWndurWWLFnidjfKxMZ7AAC4iwgcIszUAADgLiJwiPj/WyhchTufAABwBUlNiFgzNexRAwCAK4jAIeIvYDdhAADcRAQOEWpqAABwFxE4RAJJTRWWnwAAcAUROESspIZCYQAAXEFSEyL+QmpqAABwExE4RALPfiKpAQDAHUTgEGFHYQAA3EUEDpGThcLU1AAA4AaSmhDxs/wEAICriMAhkv/fQuEqJDUAALiCCBwiPCYBAAB3EYFD5OQ+NQwpAABuIAKHyMm7nygUBgDADSQ1IUKhMAAA7iIChwgPtAQAwF1E4BDJL/jv3U8UCgMA4AoicIjkU1MDAICrSGpCxM/dTwAAuIoIHCLsUwMAgLuIwCES2FGYQmEAANxBBA4RNt8DAMBdROAQyWOfGgAAXEUEDhHufgIAwF0kNSFCoTAAAO4iAoeItfkey08AALiCCBwiVqEwMzUAALiCCBwifp79BACAq4jAIUKhMAAA7iKpCZHA5nvU1AAA4A4icIj42acGAABXEYFDxM8t3QAAuIoIHALGGGpqAABwGUlNCBQWGZkTJTXyRka62xkAACopkpoQCBQJS1J0FDM1AAC4gaQmBAL1NBKFwgAAuIUIHAL5pyQ1URHM1AAA4AaSmhAI3M5dJTJCHg9JDQAAbiCpCQHufAIAwH0kNSGQzx41AAC4jigcAv6CE3c/USQMAIB7iMIhEJip4blPAAC4hygcAlZSw/ITAACuIQqHgJ9CYQAAXEdSEwKBHYWpqQEAwD1E4RAI7FNDUgMAgHuIwiFAoTAAAO4jCofAyX1qqKkBAMAtJDUhwPITAADuq3BROC8vT5dccok8Ho8yMzPd7o6kk4XCLD8BAOCeCheFH3jgASUlJbndjSA8JgEAAPdVqCj8wQcfaNGiRZo+fbrbXQlCoTAAAO6LcrsD5bV7926NHj1a7733nqpXr+52d4Kw+R4AAO6rEEmNMUYjR47U7bffro4dO2rr1q3l+rm8vDzl5eVZ73Nzc23pH4XCAAC4z9UoPHHiRHk8njJfa9as0fPPP6/c3FyNHz/+rM4/efJk+Xw+65WSkmLLdVg1NSQ1AAC4xmOMMW59+b59+7Rv374y2zRs2FCDBw/W3//+d3k8J5d3CgsLFRkZqWHDhun1118v8WdLmqlJSUlRTk6OatWqFZqLkDTpXxs085PNuvXyi/RQ3xYhOy8AADgRv30+3xnjt6vLT3FxcYqLiztjuz/+8Y964oknrPc7d+5Ur1699NZbb6lz586l/pzX65XX6w1JX8sSWH6iUBgAAPdUiJqa+vXrB72vUaOGJKlx48ZKTk52o0tBWH4CAMB9ROEQ4DEJAAC4r0LM1JyuYcOGcrEUqBh2FAYAwH1E4RDws/wEAIDriMIhwD41AAC4jygcAvnsKAwAgOtIakIgKsIjb1SEqvBASwAAXFMhC4V/bv404pdudwEAgEqPqQUAABAWSGoAAEBYIKkBAABhgaQGAACEBZIaAAAQFkhqAABAWCCpAQAAYYGkBgAAhAWSGgAAEBZIagAAQFggqQEAAGGBpAYAAIQFkhoAABAWSGoAAEBYiHK7A04yxkiScnNzXe4JAAAor0DcDsTx0lSqpObw4cOSpJSUFJd7AgAAztbhw4fl8/lK/dxjzpT2hJGioiLt3LlTNWvWlMfjcex7c3NzlZKSou3bt6tWrVqOfW84YQzPD+N3/hjD88P4nb/KPIbGGB0+fFhJSUmKiCi9cqZSzdREREQoOTnZte+vVatWpftDDDXG8PwwfuePMTw/jN/5q6xjWNYMTQCFwgAAICyQ1AAAgLBAUuMAr9erCRMmyOv1ut2VCosxPD+M3/ljDM8P43f+GMMzq1SFwgAAIHwxUwMAAMICSQ0AAAgLJDUAACAskNQAAICwQFJTTp988on69++vpKQkeTwevffee0Gf7969WyNHjlRSUpKqV6+u3r1764cffih2nuXLl+uKK65QTEyMateure7du+v48ePW5wcPHlRaWpp8Pp98Pp/S0tJ06NAhm6/OGec7hlu3bpXH4ynx9c4771jtwnUMQ/E3mJ2drbS0NCUmJiomJkbt27fXu+++G9QmXMdPCs0Ybtq0Sddee63q1q2rWrVqadCgQdq9e3dQm3Adw8mTJ+uXv/ylatasqfj4eA0cOFBZWVlBbYwxmjhxopKSklStWjV1795d33zzTVCbvLw83X333YqLi1NMTIwGDBig//znP0FtwnEMQzV+M2fOVPfu3VWrVi15PJ4SxyUcx688SGrK6ejRo2rbtq1eeOGFYp8ZYzRw4EBt3rxZf/vb35SRkaEGDRroqquu0tGjR612y5cvV+/evdWzZ0+tWrVKq1ev1pgxY4K2fB46dKgyMzOVnp6u9PR0ZWZmKi0tzZFrtNv5jmFKSop27doV9HrssccUExOjPn36WOcK1zEMxd9gWlqasrKy9P7772v9+vW67rrrdOONNyojI8NqE67jJ53/GB49elQ9e/aUx+PRkiVL9Pnnn8vv96t///4qKiqyzhWuY7hs2TLdddddWrFihRYvXqyCggL17Nkz6G9s2rRpeuaZZ/TCCy9o9erVSkxM1NVXX209e0+S7r33Xi1cuFDz58/XZ599piNHjqhfv34qLCy02oTjGIZq/I4dO6bevXvroYceKvW7wnH8ysXgrEkyCxcutN5nZWUZSebrr7+2jhUUFJjY2Fgza9Ys61jnzp3NI488Uup5v/32WyPJrFixwjq2fPlyI8l89913ob0Il53rGJ7ukksuMaNGjbLeV5YxPNfxi4mJMXPnzg06V2xsrPnTn/5kjKk842fMuY3hhx9+aCIiIkxOTo7V5sCBA0aSWbx4sTGmco3hnj17jCSzbNkyY4wxRUVFJjEx0UyZMsVq89NPPxmfz2deeeUVY4wxhw4dMtHR0Wb+/PlWmx07dpiIiAiTnp5ujKk8Y3gu43eqpUuXGknm4MGDQccry/iVhJmaEMjLy5MkVa1a1ToWGRmpKlWq6LPPPpMk7dmzRytXrlR8fLy6du2qhIQEdevWzfpcOjGT4/P51LlzZ+tYly5d5PP59MUXXzh0Ne4ozxie7ssvv1RmZqZuvvlm61hlHcPyjt+ll16qt956SwcOHFBRUZHmz5+vvLw8de/eXVLlHT+pfGOYl5cnj8cTtPlZ1apVFRERYbWpTGOYk5MjSYqNjZUkbdmyRdnZ2erZs6fVxuv1qlu3bta1f/nll8rPzw9qk5SUpFatWlltKssYnsv4lUdlGb+SkNSEQPPmzdWgQQONHz9eBw8elN/v15QpU5Sdna1du3ZJkjZv3ixJmjhxokaPHq309HS1b99eV155pbVmn52drfj4+GLnj4+PV3Z2tnMX5ILyjOHpXn31VbVo0UJdu3a1jlXWMSzv+L311lsqKChQnTp15PV6ddttt2nhwoVq3LixpMo7flL5xrBLly6KiYnRuHHjdOzYMR09elS/+93vVFRUZLWpLGNojNHYsWN16aWXqlWrVpJkXV9CQkJQ24SEBOuz7OxsValSRRdccEGZbcJ9DM91/MqjMoxfaUhqQiA6OloLFizQ999/r9jYWFWvXl0ff/yx+vTpo8jISEmy1ttvu+023XTTTWrXrp2effZZNWvWTK+99pp1Lo/HU+z8xpgSj4eT8ozhqY4fP66//OUvQbM0AZVxDMs7fo888ogOHjyojz76SGvWrNHYsWN1ww03aP369Vabyjh+UvnGsG7dunrnnXf097//XTVq1JDP51NOTo7at28fNM6VYQzHjBmjdevW6c033yz22enXWZ5rP71NuI9hqMfvTOc41/NUNFFudyBcdOjQQZmZmcrJyZHf71fdunXVuXNndezYUZJUr149SVLLli2Dfq5Fixbatm2bJCkxMbHYXRSStHfv3mKZezg60xie6t1339WxY8c0fPjwoOOVeQzPNH6bNm3SCy+8oK+//loXX3yxJKlt27b69NNP9eKLL+qVV16p1OMnle9vsGfPntq0aZP27dunqKgo1a5dW4mJiWrUqJGkyvE3ePfdd+v999/XJ598ouTkZOt4YmKipBMzBYH/z5NOLL8Hrj0xMVF+v18HDx4Mmq3Zs2ePNesa7mN4PuNXHuE+fmVhpibEfD6f6tatqx9++EFr1qzRNddcI0lq2LChkpKSit2+9/3336tBgwaSpNTUVOXk5GjVqlXW5ytXrlROTk7QEku4K20MT/Xqq69qwIABqlu3btBxxrD08Tt27JgkBd1tJ52oGwnMJDJ+J5TnbzAuLk61a9fWkiVLtGfPHg0YMEBSeI+hMUZjxozRX//6Vy1ZssRK5AIaNWqkxMRELV682Drm9/u1bNky69o7dOig6OjooDa7du3S119/bbUJ1zEMxfiVR7iOX7m4Up5cAR0+fNhkZGSYjIwMI8k888wzJiMjw/z444/GGGPefvtts3TpUrNp0ybz3nvvmQYNGpjrrrsu6BzPPvusqVWrlnnnnXfMDz/8YB555BFTtWpVs3HjRqtN7969TZs2bczy5cvN8uXLTevWrU2/fv0cvVa7hGIMjTHmhx9+MB6Px3zwwQclfk+4juH5jp/f7ze/+MUvzGWXXWZWrlxpNm7caKZPn248Ho/55z//abUL1/EzJjR/g6+99ppZvny52bhxo5k3b56JjY01Y8eODWoTrmN4xx13GJ/PZz7++GOza9cu63Xs2DGrzZQpU4zP5zN//etfzfr1682QIUNMvXr1TG5urtXm9ttvN8nJyeajjz4ya9euNVdccYVp27atKSgosNqE4xiGavx27dplMjIyzKxZs4wk88knn5iMjAyzf/9+q004jl95kNSUU+DWudNfI0aMMMYY89xzz5nk5GQTHR1t6tevbx555BGTl5dX7DyTJ082ycnJpnr16iY1NdV8+umnQZ/v37/fDBs2zNSsWdPUrFnTDBs2rNjtehVVqMZw/PjxJjk52RQWFpb4PeE6hqEYv++//95cd911Jj4+3lSvXt20adOm2C3e4Tp+xoRmDMeNG2cSEhJMdHS0adKkiXn66adNUVFRUJtwHcOSxk6SmT17ttWmqKjITJgwwSQmJhqv12suv/xys379+qDzHD9+3IwZM8bExsaaatWqmX79+plt27YFtQnHMQzV+E2YMOGM5wnH8SsPjzHG2DULBAAA4BRqagAAQFggqQEAAGGBpAYAAIQFkhoAABAWSGoAAEBYIKkBAABhgaQGAACEBZIaAAAQFkhqAPysGGN01VVXqVevXsU+e+mll+Tz+ayHwALAqUhqAPyseDwezZ49WytXrtSMGTOs41u2bNG4ceP03HPPqX79+iH9zvz8/JCeD4A7SGoA/OykpKToueee0/33368tW7bIGKObb75ZV155pTp16qS+ffuqRo0aSkhIUFpamvbt22f9bHp6ui699FLVrl1bderUUb9+/bRp0ybr861bt8rj8ejtt99W9+7dVbVqVb3xxhtuXCaAEOPZTwB+tgYOHKhDhw7pV7/6lR5//HGtXr1aHTt21OjRozV8+HAdP35c48aNU0FBgZYsWSJJWrBggTwej1q3bq2jR4/q0Ucf1datW5WZmamIiAht3bpVjRo1UsOGDfX000+rXbt28nq9SkpKcvlqAZwvkhoAP1t79uxRq1attH//fr377rvKyMjQypUr9eGHH1pt/vOf/yglJUVZWVlq2rRpsXPs3btX8fHxWr9+vVq1amUlNX/4wx90zz33OHk5AGzG8hOAn634+HjdeuutatGiha699lp9+eWXWrp0qWrUqGG9mjdvLknWEtOmTZs0dOhQXXTRRapVq5YaNWokScWKizt27OjsxQCwXZTbHQCAskRFRSkq6sT/VRUVFal///6aOnVqsXb16tWTJPXv318pKSmaNWuWkpKSVFRUpFatWsnv9we1j4mJsb/zABxFUgOgwmjfvr0WLFighg0bWonOqfbv368NGzZoxowZuuyyyyRJn332mdPdBOASlp8AVBh33XWXDhw4oCFDhmjVqlXavHmzFi1apFGjRqmwsFAXXHCB6tSpo5kzZ2rjxo1asmSJxo4d63a3ATiEpAZAhZGUlKTPP/9chYWF6tWrl1q1aqV77rlHPp9PERERioiI0Pz58/Xll1+qVatWuu+++/TUU0+53W0ADuHuJwAAEBaYqQEAAGGBpAYAAIQFkhoAABAWSGoAAEBYIKkBAABhgaQGAACEBZIaAAAQFkhqAABAWCCpAQAAYYGkBgAAhAWSGgAAEBZIagAAQFj4f+XeMqPM26B+AAAAAElFTkSuQmCC",
-      "text/plain": [
-       "<Figure size 640x480 with 1 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "N = 57\n",
-    "dates = pd.date_range(\"1/1/1958\", periods=57, freq='Y')\n",
-    "\n",
-    "plt.plot(dates, test)\n",
-    "plt.title('CO emissions')\n",
-    "plt.xlabel('Year')\n",
-    "plt.ylabel('Tg/a')\n",
-    "\n",
-    "fig.tight_layout()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 38,
-   "id": "14fc4542-5373-4a60-b37a-e44c286a0525",
-   "metadata": {
-    "tags": []
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
-       "<defs>\n",
-       "<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
-       "<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
-       "<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
-       "<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
-       "</symbol>\n",
-       "<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
-       "<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
-       "<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
-       "<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
-       "<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
-       "</symbol>\n",
-       "</defs>\n",
-       "</svg>\n",
-       "<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
-       " *\n",
-       " */\n",
-       "\n",
-       ":root {\n",
-       "  --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
-       "  --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
-       "  --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
-       "  --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
-       "  --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
-       "  --xr-background-color: var(--jp-layout-color0, white);\n",
-       "  --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
-       "  --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
-       "}\n",
-       "\n",
-       "html[theme=dark],\n",
-       "body[data-theme=dark],\n",
-       "body.vscode-dark {\n",
-       "  --xr-font-color0: rgba(255, 255, 255, 1);\n",
-       "  --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
-       "  --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
-       "  --xr-border-color: #1F1F1F;\n",
-       "  --xr-disabled-color: #515151;\n",
-       "  --xr-background-color: #111111;\n",
-       "  --xr-background-color-row-even: #111111;\n",
-       "  --xr-background-color-row-odd: #313131;\n",
-       "}\n",
-       "\n",
-       ".xr-wrap {\n",
-       "  display: block !important;\n",
-       "  min-width: 300px;\n",
-       "  max-width: 700px;\n",
-       "}\n",
-       "\n",
-       ".xr-text-repr-fallback {\n",
-       "  /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
-       "  display: none;\n",
-       "}\n",
-       "\n",
-       ".xr-header {\n",
-       "  padding-top: 6px;\n",
-       "  padding-bottom: 6px;\n",
-       "  margin-bottom: 4px;\n",
-       "  border-bottom: solid 1px var(--xr-border-color);\n",
-       "}\n",
-       "\n",
-       ".xr-header > div,\n",
-       ".xr-header > ul {\n",
-       "  display: inline;\n",
-       "  margin-top: 0;\n",
-       "  margin-bottom: 0;\n",
-       "}\n",
-       "\n",
-       ".xr-obj-type,\n",
-       ".xr-array-name {\n",
-       "  margin-left: 2px;\n",
-       "  margin-right: 10px;\n",
-       "}\n",
-       "\n",
-       ".xr-obj-type {\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-sections {\n",
-       "  padding-left: 0 !important;\n",
-       "  display: grid;\n",
-       "  grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
-       "}\n",
-       "\n",
-       ".xr-section-item {\n",
-       "  display: contents;\n",
-       "}\n",
-       "\n",
-       ".xr-section-item input {\n",
-       "  display: none;\n",
-       "}\n",
-       "\n",
-       ".xr-section-item input + label {\n",
-       "  color: var(--xr-disabled-color);\n",
-       "}\n",
-       "\n",
-       ".xr-section-item input:enabled + label {\n",
-       "  cursor: pointer;\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-section-item input:enabled + label:hover {\n",
-       "  color: var(--xr-font-color0);\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary {\n",
-       "  grid-column: 1;\n",
-       "  color: var(--xr-font-color2);\n",
-       "  font-weight: 500;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary > span {\n",
-       "  display: inline-block;\n",
-       "  padding-left: 0.5em;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:disabled + label {\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in + label:before {\n",
-       "  display: inline-block;\n",
-       "  content: 'â–º';\n",
-       "  font-size: 11px;\n",
-       "  width: 15px;\n",
-       "  text-align: center;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:disabled + label:before {\n",
-       "  color: var(--xr-disabled-color);\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:checked + label:before {\n",
-       "  content: 'â–¼';\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:checked + label > span {\n",
-       "  display: none;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary,\n",
-       ".xr-section-inline-details {\n",
-       "  padding-top: 4px;\n",
-       "  padding-bottom: 4px;\n",
-       "}\n",
-       "\n",
-       ".xr-section-inline-details {\n",
-       "  grid-column: 2 / -1;\n",
-       "}\n",
-       "\n",
-       ".xr-section-details {\n",
-       "  display: none;\n",
-       "  grid-column: 1 / -1;\n",
-       "  margin-bottom: 5px;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:checked ~ .xr-section-details {\n",
-       "  display: contents;\n",
-       "}\n",
-       "\n",
-       ".xr-array-wrap {\n",
-       "  grid-column: 1 / -1;\n",
-       "  display: grid;\n",
-       "  grid-template-columns: 20px auto;\n",
-       "}\n",
-       "\n",
-       ".xr-array-wrap > label {\n",
-       "  grid-column: 1;\n",
-       "  vertical-align: top;\n",
-       "}\n",
-       "\n",
-       ".xr-preview {\n",
-       "  color: var(--xr-font-color3);\n",
-       "}\n",
-       "\n",
-       ".xr-array-preview,\n",
-       ".xr-array-data {\n",
-       "  padding: 0 5px !important;\n",
-       "  grid-column: 2;\n",
-       "}\n",
-       "\n",
-       ".xr-array-data,\n",
-       ".xr-array-in:checked ~ .xr-array-preview {\n",
-       "  display: none;\n",
-       "}\n",
-       "\n",
-       ".xr-array-in:checked ~ .xr-array-data,\n",
-       ".xr-array-preview {\n",
-       "  display: inline-block;\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list {\n",
-       "  display: inline-block !important;\n",
-       "  list-style: none;\n",
-       "  padding: 0 !important;\n",
-       "  margin: 0;\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list li {\n",
-       "  display: inline-block;\n",
-       "  padding: 0;\n",
-       "  margin: 0;\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list:before {\n",
-       "  content: '(';\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list:after {\n",
-       "  content: ')';\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list li:not(:last-child):after {\n",
-       "  content: ',';\n",
-       "  padding-right: 5px;\n",
-       "}\n",
-       "\n",
-       ".xr-has-index {\n",
-       "  font-weight: bold;\n",
-       "}\n",
-       "\n",
-       ".xr-var-list,\n",
-       ".xr-var-item {\n",
-       "  display: contents;\n",
-       "}\n",
-       "\n",
-       ".xr-var-item > div,\n",
-       ".xr-var-item label,\n",
-       ".xr-var-item > .xr-var-name span {\n",
-       "  background-color: var(--xr-background-color-row-even);\n",
-       "  margin-bottom: 0;\n",
-       "}\n",
-       "\n",
-       ".xr-var-item > .xr-var-name:hover span {\n",
-       "  padding-right: 5px;\n",
-       "}\n",
-       "\n",
-       ".xr-var-list > li:nth-child(odd) > div,\n",
-       ".xr-var-list > li:nth-child(odd) > label,\n",
-       ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
-       "  background-color: var(--xr-background-color-row-odd);\n",
-       "}\n",
-       "\n",
-       ".xr-var-name {\n",
-       "  grid-column: 1;\n",
-       "}\n",
-       "\n",
-       ".xr-var-dims {\n",
-       "  grid-column: 2;\n",
-       "}\n",
-       "\n",
-       ".xr-var-dtype {\n",
-       "  grid-column: 3;\n",
-       "  text-align: right;\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-var-preview {\n",
-       "  grid-column: 4;\n",
-       "}\n",
-       "\n",
-       ".xr-index-preview {\n",
-       "  grid-column: 2 / 5;\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-var-name,\n",
-       ".xr-var-dims,\n",
-       ".xr-var-dtype,\n",
-       ".xr-preview,\n",
-       ".xr-attrs dt {\n",
-       "  white-space: nowrap;\n",
-       "  overflow: hidden;\n",
-       "  text-overflow: ellipsis;\n",
-       "  padding-right: 10px;\n",
-       "}\n",
-       "\n",
-       ".xr-var-name:hover,\n",
-       ".xr-var-dims:hover,\n",
-       ".xr-var-dtype:hover,\n",
-       ".xr-attrs dt:hover {\n",
-       "  overflow: visible;\n",
-       "  width: auto;\n",
-       "  z-index: 1;\n",
-       "}\n",
-       "\n",
-       ".xr-var-attrs,\n",
-       ".xr-var-data,\n",
-       ".xr-index-data {\n",
-       "  display: none;\n",
-       "  background-color: var(--xr-background-color) !important;\n",
-       "  padding-bottom: 5px !important;\n",
-       "}\n",
-       "\n",
-       ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
-       ".xr-var-data-in:checked ~ .xr-var-data,\n",
-       ".xr-index-data-in:checked ~ .xr-index-data {\n",
-       "  display: block;\n",
-       "}\n",
-       "\n",
-       ".xr-var-data > table {\n",
-       "  float: right;\n",
-       "}\n",
-       "\n",
-       ".xr-var-name span,\n",
-       ".xr-var-data,\n",
-       ".xr-index-name div,\n",
-       ".xr-index-data,\n",
-       ".xr-attrs {\n",
-       "  padding-left: 25px !important;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs,\n",
-       ".xr-var-attrs,\n",
-       ".xr-var-data,\n",
-       ".xr-index-data {\n",
-       "  grid-column: 1 / -1;\n",
-       "}\n",
-       "\n",
-       "dl.xr-attrs {\n",
-       "  padding: 0;\n",
-       "  margin: 0;\n",
-       "  display: grid;\n",
-       "  grid-template-columns: 125px auto;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs dt,\n",
-       ".xr-attrs dd {\n",
-       "  padding: 0;\n",
-       "  margin: 0;\n",
-       "  float: left;\n",
-       "  padding-right: 10px;\n",
-       "  width: auto;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs dt {\n",
-       "  font-weight: normal;\n",
-       "  grid-column: 1;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs dt:hover span {\n",
-       "  display: inline-block;\n",
-       "  background: var(--xr-background-color);\n",
-       "  padding-right: 10px;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs dd {\n",
-       "  grid-column: 2;\n",
-       "  white-space: pre-wrap;\n",
-       "  word-break: break-all;\n",
-       "}\n",
-       "\n",
-       ".xr-icon-database,\n",
-       ".xr-icon-file-text2,\n",
-       ".xr-no-icon {\n",
-       "  display: inline-block;\n",
-       "  vertical-align: middle;\n",
-       "  width: 1em;\n",
-       "  height: 1.5em !important;\n",
-       "  stroke-width: 0;\n",
-       "  stroke: currentColor;\n",
-       "  fill: currentColor;\n",
-       "}\n",
-       "</style><pre class='xr-text-repr-fallback'>&lt;xarray.Dataset&gt;\n",
-       "Dimensions:    (time: 12, lev: 1, lat: 360, lon: 720, bnds: 2)\n",
-       "Coordinates:\n",
-       "  * lat        (lat) float64 -89.75 -89.25 -88.75 -88.25 ... 88.75 89.25 89.75\n",
-       "  * lev        (lev) float64 45.0\n",
-       "  * lon        (lon) float64 -179.8 -179.2 -178.8 -178.2 ... 178.8 179.2 179.8\n",
-       "  * time       (time) object 2010-01-16 00:00:00 ... 2010-12-16 00:00:00\n",
-       "Dimensions without coordinates: bnds\n",
-       "Data variables:\n",
-       "    CO_flux    (time, lev, lat, lon) float32 ...\n",
-       "    NH3_flux   (time, lev, lat, lon) float32 ...\n",
-       "    NOx_flux   (time, lev, lat, lon) float32 ...\n",
-       "    SO2_flux   (time, lev, lat, lon) float32 ...\n",
-       "    lat_bnds   (lat, bnds) float64 ...\n",
-       "    lon_bnds   (lon, bnds) float64 ...\n",
-       "    time_bnds  (time, bnds) object ...\n",
-       "Attributes: (12/41)\n",
-       "    CDI:                         Climate Data Interface version 1.7.0 (http:/...\n",
-       "    Conventions:                 CF-1.6\n",
-       "    history:                     Sat Mar 13 02:42:40 2021: /work/bd0080/b3090...\n",
-       "    source:                      CEDS-2017-08-30: Community Emissions Data Sy...\n",
-       "    institution:                 Pacific Northwest National Laboratory - Join...\n",
-       "    reference1:                  Lamarque et al.(2010), doi:10.5194/acp-10-70...\n",
-       "    ...                          ...\n",
-       "    nominal_resolution:          50 km\n",
-       "    source_id:                   CEDS-2017-08-30\n",
-       "    tracking_id:                 hdl:21.14100/649247a5-afc6-4e25-b777-9d7a77a...\n",
-       "    CDO:                         Climate Data Operators version 1.7.0 (http:/...\n",
-       "    description:                 Original data from CMIP6v6.1_DLR1.0_DECK_roa...\n",
-       "    prepared:                    Created Wed Jan  2 11:59:14 2019 with prepar...</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-2eec14ac-70ed-4af9-b7aa-f57bc025c5fc' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-2eec14ac-70ed-4af9-b7aa-f57bc025c5fc' class='xr-section-summary'  title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>time</span>: 12</li><li><span class='xr-has-index'>lev</span>: 1</li><li><span class='xr-has-index'>lat</span>: 360</li><li><span class='xr-has-index'>lon</span>: 720</li><li><span>bnds</span>: 2</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-ae7aaf8f-8b59-49c2-b5c0-1bbcc9759556' class='xr-section-summary-in' type='checkbox'  checked><label for='section-ae7aaf8f-8b59-49c2-b5c0-1bbcc9759556' class='xr-section-summary' >Coordinates: <span>(4)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>lat</span></div><div class='xr-var-dims'>(lat)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>-89.75 -89.25 ... 89.25 89.75</div><input id='attrs-ad0dc304-99ec-47c4-8fda-4cf16fbe6c2b' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-ad0dc304-99ec-47c4-8fda-4cf16fbe6c2b' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-b31d37e6-d8e8-471c-ab83-057042514856' class='xr-var-data-in' type='checkbox'><label for='data-b31d37e6-d8e8-471c-ab83-057042514856' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>latitude</dd><dt><span>long_name :</span></dt><dd>latitude</dd><dt><span>units :</span></dt><dd>degrees_north</dd><dt><span>axis :</span></dt><dd>Y</dd><dt><span>bounds :</span></dt><dd>lat_bnds</dd></dl></div><div class='xr-var-data'><pre>array([-89.75, -89.25, -88.75, ...,  88.75,  89.25,  89.75])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>lev</span></div><div class='xr-var-dims'>(lev)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>45.0</div><input id='attrs-38174a1c-73fa-492f-96e8-731e1f4c0399' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-38174a1c-73fa-492f-96e8-731e1f4c0399' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-c8c896dc-023b-4d05-bfb6-ad7d9151cdc4' class='xr-var-data-in' type='checkbox'><label for='data-c8c896dc-023b-4d05-bfb6-ad7d9151cdc4' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>meters</dd><dt><span>axis :</span></dt><dd>Z</dd></dl></div><div class='xr-var-data'><pre>array([45.])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>lon</span></div><div class='xr-var-dims'>(lon)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>-179.8 -179.2 ... 179.2 179.8</div><input id='attrs-06dac35c-248d-42ef-be18-a451709d18f2' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-06dac35c-248d-42ef-be18-a451709d18f2' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-6b108ef3-db16-48c4-bc82-487eaeced9b9' class='xr-var-data-in' type='checkbox'><label for='data-6b108ef3-db16-48c4-bc82-487eaeced9b9' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>longitude</dd><dt><span>long_name :</span></dt><dd>longitude</dd><dt><span>units :</span></dt><dd>degrees_east</dd><dt><span>axis :</span></dt><dd>X</dd><dt><span>bounds :</span></dt><dd>lon_bnds</dd></dl></div><div class='xr-var-data'><pre>array([-179.75, -179.25, -178.75, ...,  178.75,  179.25,  179.75])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>time</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>2010-01-16 00:00:00 ... 2010-12-...</div><input id='attrs-a0360b81-e86b-4f09-b0b7-93509a5785cb' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-a0360b81-e86b-4f09-b0b7-93509a5785cb' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-cb740f1e-5f56-43d6-be50-e3475d374afc' class='xr-var-data-in' type='checkbox'><label for='data-cb740f1e-5f56-43d6-be50-e3475d374afc' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>time</dd><dt><span>long_name :</span></dt><dd>time</dd><dt><span>bounds :</span></dt><dd>time_bnds</dd><dt><span>axis :</span></dt><dd>T</dd></dl></div><div class='xr-var-data'><pre>array([cftime.DatetimeNoLeap(2010, 1, 16, 0, 0, 0, 0, has_year_zero=True),\n",
-       "       cftime.DatetimeNoLeap(2010, 2, 15, 0, 0, 0, 0, has_year_zero=True),\n",
-       "       cftime.DatetimeNoLeap(2010, 3, 16, 0, 0, 0, 0, has_year_zero=True),\n",
-       "       cftime.DatetimeNoLeap(2010, 4, 16, 0, 0, 0, 0, has_year_zero=True),\n",
-       "       cftime.DatetimeNoLeap(2010, 5, 16, 0, 0, 0, 0, has_year_zero=True),\n",
-       "       cftime.DatetimeNoLeap(2010, 6, 16, 0, 0, 0, 0, has_year_zero=True),\n",
-       "       cftime.DatetimeNoLeap(2010, 7, 16, 0, 0, 0, 0, has_year_zero=True),\n",
-       "       cftime.DatetimeNoLeap(2010, 8, 16, 0, 0, 0, 0, has_year_zero=True),\n",
-       "       cftime.DatetimeNoLeap(2010, 9, 16, 0, 0, 0, 0, has_year_zero=True),\n",
-       "       cftime.DatetimeNoLeap(2010, 10, 16, 0, 0, 0, 0, has_year_zero=True),\n",
-       "       cftime.DatetimeNoLeap(2010, 11, 16, 0, 0, 0, 0, has_year_zero=True),\n",
-       "       cftime.DatetimeNoLeap(2010, 12, 16, 0, 0, 0, 0, has_year_zero=True)],\n",
-       "      dtype=object)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-b5482d7a-3c86-4feb-b7c1-fbb1ab6c89be' class='xr-section-summary-in' type='checkbox'  checked><label for='section-b5482d7a-3c86-4feb-b7c1-fbb1ab6c89be' class='xr-section-summary' >Data variables: <span>(7)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>CO_flux</span></div><div class='xr-var-dims'>(time, lev, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-535c435f-0226-4260-99cd-a15013fd5662' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-535c435f-0226-4260-99cd-a15013fd5662' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-823fdda7-1b46-4807-b4f3-1a1ba7443b01' class='xr-var-data-in' type='checkbox'><label for='data-823fdda7-1b46-4807-b4f3-1a1ba7443b01' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>kg m-2 s-1</dd></dl></div><div class='xr-var-data'><pre>[3110400 values with dtype=float32]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>NH3_flux</span></div><div class='xr-var-dims'>(time, lev, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-7e60085e-55dd-47ad-9cc1-303debc13c8a' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-7e60085e-55dd-47ad-9cc1-303debc13c8a' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-60766f9e-dde7-4fcd-9bee-07d308c99ce3' class='xr-var-data-in' type='checkbox'><label for='data-60766f9e-dde7-4fcd-9bee-07d308c99ce3' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>kg m-2 s-1</dd></dl></div><div class='xr-var-data'><pre>[3110400 values with dtype=float32]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>NOx_flux</span></div><div class='xr-var-dims'>(time, lev, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-bf75373b-7ac7-4cf2-930e-91e4bc0c7405' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-bf75373b-7ac7-4cf2-930e-91e4bc0c7405' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-cb3b5900-6955-42a3-88f7-315c8d2bf700' class='xr-var-data-in' type='checkbox'><label for='data-cb3b5900-6955-42a3-88f7-315c8d2bf700' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>kg(NO2) m-2 s-1</dd></dl></div><div class='xr-var-data'><pre>[3110400 values with dtype=float32]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>SO2_flux</span></div><div class='xr-var-dims'>(time, lev, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-4518be0a-6f95-43d0-8aeb-ce0f14e30bb8' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-4518be0a-6f95-43d0-8aeb-ce0f14e30bb8' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-040d39f0-c4eb-4a3c-b45c-1c430775fc5a' class='xr-var-data-in' type='checkbox'><label for='data-040d39f0-c4eb-4a3c-b45c-1c430775fc5a' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>kg m-2 s-1</dd></dl></div><div class='xr-var-data'><pre>[3110400 values with dtype=float32]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>lat_bnds</span></div><div class='xr-var-dims'>(lat, bnds)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-7d6347df-ce54-4c32-b6d3-51b0ad83103a' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-7d6347df-ce54-4c32-b6d3-51b0ad83103a' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-fd35cf73-f45c-4dfc-a1be-2a95fe50ff21' class='xr-var-data-in' type='checkbox'><label for='data-fd35cf73-f45c-4dfc-a1be-2a95fe50ff21' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[720 values with dtype=float64]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>lon_bnds</span></div><div class='xr-var-dims'>(lon, bnds)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-890e5dd3-0e06-4d30-98f4-ac7c51d3a9cb' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-890e5dd3-0e06-4d30-98f4-ac7c51d3a9cb' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-64452c77-aa72-4521-891e-9b86d9214f38' class='xr-var-data-in' type='checkbox'><label for='data-64452c77-aa72-4521-891e-9b86d9214f38' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[1440 values with dtype=float64]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>time_bnds</span></div><div class='xr-var-dims'>(time, bnds)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-4cd0b373-dcb4-483a-a141-9bdc7eccc383' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-4cd0b373-dcb4-483a-a141-9bdc7eccc383' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-4914c696-b266-47d7-a905-5751bc82a777' class='xr-var-data-in' type='checkbox'><label for='data-4914c696-b266-47d7-a905-5751bc82a777' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[24 values with dtype=object]</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-185f0ec2-4603-4c99-9627-297d5301caf3' class='xr-section-summary-in' type='checkbox'  ><label for='section-185f0ec2-4603-4c99-9627-297d5301caf3' class='xr-section-summary' >Indexes: <span>(4)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>lat</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-dbdcdc1a-165f-4adf-94b7-d614c84a0cf6' class='xr-index-data-in' type='checkbox'/><label for='index-dbdcdc1a-165f-4adf-94b7-d614c84a0cf6' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([-89.75, -89.25, -88.75, -88.25, -87.75, -87.25, -86.75, -86.25, -85.75,\n",
-       "       -85.25,\n",
-       "       ...\n",
-       "        85.25,  85.75,  86.25,  86.75,  87.25,  87.75,  88.25,  88.75,  89.25,\n",
-       "        89.75],\n",
-       "      dtype=&#x27;float64&#x27;, name=&#x27;lat&#x27;, length=360))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>lev</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-0ff1ffd4-e6c8-4ede-b4b6-b33a73074aab' class='xr-index-data-in' type='checkbox'/><label for='index-0ff1ffd4-e6c8-4ede-b4b6-b33a73074aab' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([45.0], dtype=&#x27;float64&#x27;, name=&#x27;lev&#x27;))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>lon</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-0db53bd1-5d9e-4dc4-b047-b2495bd8b046' class='xr-index-data-in' type='checkbox'/><label for='index-0db53bd1-5d9e-4dc4-b047-b2495bd8b046' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([-179.75, -179.25, -178.75, -178.25, -177.75, -177.25, -176.75, -176.25,\n",
-       "       -175.75, -175.25,\n",
-       "       ...\n",
-       "        175.25,  175.75,  176.25,  176.75,  177.25,  177.75,  178.25,  178.75,\n",
-       "        179.25,  179.75],\n",
-       "      dtype=&#x27;float64&#x27;, name=&#x27;lon&#x27;, length=720))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>time</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-be427ec4-0c8b-4f20-a8b5-30e067f76141' class='xr-index-data-in' type='checkbox'/><label for='index-be427ec4-0c8b-4f20-a8b5-30e067f76141' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(CFTimeIndex([2010-01-16 00:00:00, 2010-02-15 00:00:00, 2010-03-16 00:00:00,\n",
-       "             2010-04-16 00:00:00, 2010-05-16 00:00:00, 2010-06-16 00:00:00,\n",
-       "             2010-07-16 00:00:00, 2010-08-16 00:00:00, 2010-09-16 00:00:00,\n",
-       "             2010-10-16 00:00:00, 2010-11-16 00:00:00, 2010-12-16 00:00:00],\n",
-       "            dtype=&#x27;object&#x27;, length=12, calendar=&#x27;noleap&#x27;, freq=&#x27;None&#x27;))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-475fa726-1fe1-4139-bb55-11be2924f556' class='xr-section-summary-in' type='checkbox'  ><label for='section-475fa726-1fe1-4139-bb55-11be2924f556' class='xr-section-summary' >Attributes: <span>(41)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'><dt><span>CDI :</span></dt><dd>Climate Data Interface version 1.7.0 (http://mpimet.mpg.de/cdi)</dd><dt><span>Conventions :</span></dt><dd>CF-1.6</dd><dt><span>history :</span></dt><dd>Sat Mar 13 02:42:40 2021: /work/bd0080/b309057/SOFTWARE/miniconda3/envs/python3/bin/ncks -d time,3120,3131 --output=/mnt/lustre02/work/bd0080/b309057/CMIP6XC/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_201001-201012.nc /mnt/lustre01/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_175001-201412.nc\n",
-       "Tue Aug 28 23:02:02 2018: cdo -O -Q copy /scratch/b/b324024/tmp/DECK_for_EMAC/tmp2/CMIP6v6.1_DLR1.0_DECK_road_MISC_175001-201412.nc /scratch/b/b324024/tmp/DECK_for_EMAC/CMIP6v6.1_DLR1.0_DECK_road_MISC_175001-201412.nc\n",
-       "Tue Aug 28 22:59:59 2018: ncks -A /scratch/b/b324024/tmp/DECK_for_EMAC/bnds/all_bounds_anthro_input4MIPs.nc /scratch/b/b324024/tmp/DECK_for_EMAC/tmp1/CMIP6v6.1_DLR1.0_DECK_road_MISC_175001-201412.nc\n",
-       "Tue Aug 28 14:05:41 2018: ncks -O -v lon_bnds,lat_bnds,time_bnds BC-em-AIR-anthro_input4MIPs_emissions_CMIP_CEDS-2017-08-30_gn_175001-179912.nc all_bounds_anthro_input4MIPs.nc\n",
-       "06-09-2017 18:34:58 PM UTC; College Park, MD, USA</dd><dt><span>source :</span></dt><dd>CEDS-2017-08-30: Community Emissions Data System (CEDS) for Historical Emissions</dd><dt><span>institution :</span></dt><dd>Pacific Northwest National Laboratory - Joint Global Change Research Institute, College Park, MD 20740, USA</dd><dt><span>reference1 :</span></dt><dd>Lamarque et al.(2010), doi:10.5194/acp-10-7017-2010</dd><dt><span>reference2 :</span></dt><dd>Pozzer et al. (2009),doi:10.5194/acp-9-9417-2009</dd><dt><span>creation_date :</span></dt><dd>2017-09-06T18:34:58Z</dd><dt><span>title :</span></dt><dd>Annual Aircraft Anthropogenic Emissions of BC prepared for input4MIPs</dd><dt><span>NCO :</span></dt><dd>netCDF Operators version 4.9.7 (Homepage = http://nco.sf.net, Code = http://github.com/nco/nco)</dd><dt><span>nco_openmp_thread_number :</span></dt><dd>1</dd><dt><span>history_of_appended_files :</span></dt><dd>Tue Aug 28 22:59:59 2018: Appended file /scratch/b/b324024/tmp/DECK_for_EMAC/bnds/all_bounds_anthro_input4MIPs.nc had following &quot;history&quot; attribute:\n",
-       "Tue Aug 28 14:05:41 2018: ncks -O -v lon_bnds,lat_bnds,time_bnds BC-em-AIR-anthro_input4MIPs_emissions_CMIP_CEDS-2017-08-30_gn_175001-179912.nc all_bounds_anthro_input4MIPs.nc\n",
-       "06-09-2017 18:34:58 PM UTC; College Park, MD, USA\n",
-       "Thu Jul  6 12:51:45 2017: Appended file preindustrial_road_NH3_all.nc had following &quot;history&quot; attribute:\n",
-       "Mon Jul  3 18:26:01 2017: ncrcat preindustrial_road_NH3_1750.nc preindustrial_road_NH3_1751.nc preindustrial_road_NH3_1752.nc preindustrial_road_NH3_1753.nc preindustrial_road_NH3_1754.nc preindustrial_road_NH3_1755.nc preindustrial_road_NH3_1756.nc preindustrial_road_NH3_1757.nc preindustrial_road_NH3_1758.nc preindustrial_road_NH3_1759.nc preindustrial_road_NH3_1760.nc preindustrial_road_NH3_1761.nc preindustrial_road_NH3_1762.nc preindustrial_road_NH3_1763.nc preindustrial_road_NH3_1764.nc preindustrial_road_NH3_1765.nc preindustrial_road_NH3_1766.nc preindustrial_road_NH3_1767.nc preindustrial_road_NH3_1768.nc preindustrial_road_NH3_1769.nc preindustrial_road_NH3_1770.nc preindustrial_road_NH3_1771.nc preindustrial_road_NH3_1772.nc preindustrial_road_NH3_1773.nc preindustrial_road_NH3_1774.nc preindustrial_road_NH3_1775.nc preindustrial_road_NH3_1776.nc preindustrial_road_NH3_1777.nc preindustrial_road_NH3_1778.nc preindustrial_road_NH3_1779.nc preindustrial_road_NH3_1780.nc preindustrial_road_NH3_1781.nc preindustrial_road_NH3_1782.nc preindustrial_road_NH3_1783.nc preindustrial_road_NH3_1784.nc preindustrial_road_NH3_1785.nc preindustrial_road_NH3_1786.nc preindustrial_road_NH3_1787.nc preindustrial_road_NH3_1788.nc preindustrial_road_NH3_1789.nc preindustrial_road_NH3_1790.nc preindustrial_road_NH3_1791.nc preindustrial_road_NH3_1792.nc preindustrial_road_NH3_1793.nc preindustrial_road_NH3_1794.nc preindustrial_road_NH3_1795.nc preindustrial_road_NH3_1796.nc preindustrial_road_NH3_1797.nc preindustrial_road_NH3_1798.nc preindustrial_road_NH3_1799.nc preindustrial_road_NH3_1800.nc preindustrial_road_NH3_1801.nc preindustrial_road_NH3_1802.nc preindustrial_road_NH3_1803.nc preindustrial_road_NH3_1804.nc preindustrial_road_NH3_1805.nc preindustrial_road_NH3_1806.nc preindustrial_road_NH3_1807.nc preindustrial_road_NH3_1808.nc preindustrial_road_NH3_1809.nc preindustrial_road_NH3_1810.nc preindustrial_road_NH3_1811.nc preindustrial_road_NH3_1812.nc preindustrial_road_NH3_1813.nc preindustrial_road_NH3_1814.nc preindustrial_road_NH3_1815.nc preindustrial_road_NH3_1816.nc preindustrial_road_NH3_1817.nc preindustrial_road_NH3_1818.nc preindustrial_road_NH3_1819.nc preindustrial_road_NH3_1820.nc preindustrial_road_NH3_1821.nc preindustrial_road_NH3_1822.nc preindustrial_road_NH3_1823.nc preindustrial_road_NH3_1824.nc preindustrial_road_NH3_1825.nc preindustrial_road_NH3_1826.nc preindustrial_road_NH3_1827.nc preindustrial_road_NH3_1828.nc preindustrial_road_NH3_1829.nc preindustrial_road_NH3_1830.nc preindustrial_road_NH3_1831.nc preindustrial_road_NH3_1832.nc preindustrial_road_NH3_1833.nc preindustrial_road_NH3_1834.nc preindustrial_road_NH3_1835.nc preindustrial_road_NH3_1836.nc preindustrial_road_NH3_1837.nc preindustrial_road_NH3_1838.nc preindustrial_road_NH3_1839.nc preindustrial_road_NH3_1840.nc preindustrial_road_NH3_1841.nc preindustrial_road_NH3_1842.nc preindustrial_road_NH3_1843.nc preindustrial_road_NH3_1844.nc preindustrial_road_NH3_1845.nc preindustrial_road_NH3_1846.nc preindustrial_road_NH3_1847.nc preindustrial_road_NH3_1848.nc preindustrial_road_NH3_1849.nc preindustrial_road_NH3_1850.nc preindustrial_road_NH3_1851.nc preindustrial_road_NH3_1852.nc preindustrial_road_NH3_1853.nc preindustrial_road_NH3_1854.nc preindustrial_road_NH3_1855.nc preindustrial_road_NH3_1856.nc preindustrial_road_NH3_1857.nc preindustrial_road_NH3_1858.nc preindustrial_road_NH3_1859.nc preindustrial_road_NH3_1860.nc preindustrial_road_NH3_1861.nc preindustrial_road_NH3_1862.nc preindustrial_road_NH3_1863.nc preindustrial_road_NH3_1864.nc preindustrial_road_NH3_1865.nc preindustrial_road_NH3_1866.nc preindustrial_road_NH3_1867.nc preindustrial_road_NH3_1868.nc preindustrial_road_NH3_1869.nc preindustrial_road_NH3_1870.nc preindustrial_road_NH3_1871.nc preindustrial_road_NH3_1872.nc preindustrial_road_NH3_1873.nc preindustrial_road_NH3_1874.nc preindustrial_road_NH3_1875.nc preindustrial_road_NH3_1876.nc preindustrial_road_NH3_1877.nc preindustrial_road_NH3_1878.nc preindustrial_road_NH3_1879.nc preindustrial_road_NH3_1880.nc preindustrial_road_NH3_1881.nc preindustrial_road_NH3_1882.nc preindustrial_road_NH3_1883.nc preindustrial_road_NH3_1884.nc preindustrial_road_NH3_1885.nc preindustrial_road_NH3_1886.nc preindustrial_road_NH3_1887.nc preindustrial_road_NH3_1888.nc preindustrial_road_NH3_1889.nc preindustrial_road_NH3_1890.nc preindustrial_road_NH3_1891.nc preindustrial_road_NH3_1892.nc preindustrial_road_NH3_1893.nc preindustrial_road_NH3_1894.nc preindustrial_road_NH3_1895.nc preindustrial_road_NH3_1896.nc preindustrial_road_NH3_1897.nc preindustrial_road_NH3_1898.nc preindustrial_road_NH3_1899.nc preindustrial_road_NH3_1900.nc preindustrial_road_NH3_1901.nc preindustrial_road_NH3_1902.nc preindustrial_road_NH3_1903.nc preindustrial_road_NH3_1904.nc preindustrial_road_NH3_1905.nc preindustrial_road_NH3_1906.nc preindustrial_road_NH3_1907.nc preindustrial_road_NH3_1908.nc preindustrial_road_NH3_1909.nc preindustrial_road_NH3_1910.nc preindustrial_road_NH3_1911.nc preindustrial_road_NH3_1912.nc preindustrial_road_NH3_1913.nc preindustrial_road_NH3_1914.nc preindustrial_road_NH3_1915.nc preindustrial_road_NH3_1916.nc preindustrial_road_NH3_1917.nc preindustrial_road_NH3_1918.nc preindustrial_road_NH3_1919.nc preindustrial_road_NH3_1920.nc preindustrial_road_NH3_1921.nc preindustrial_road_NH3_1922.nc preindustrial_road_NH3_1923.nc preindustrial_road_NH3_1924.nc preindustrial_road_NH3_1925.nc preindustrial_road_NH3_1926.nc preindustrial_road_NH3_1927.nc preindustrial_road_NH3_1928.nc preindustrial_road_NH3_1929.nc preindustrial_road_NH3_1930.nc preindustrial_road_NH3_1931.nc preindustrial_road_NH3_1932.nc preindustrial_road_NH3_1933.nc preindustrial_road_NH3_1934.nc preindustrial_road_NH3_1935.nc preindustrial_road_NH3_1936.nc preindustrial_road_NH3_1937.nc preindustrial_road_NH3_1938.nc preindustrial_road_NH3_1939.nc preindustrial_road_NH3_1940.nc preindustrial_road_NH3_1941.nc preindustrial_road_NH3_1942.nc preindustrial_road_NH3_1943.nc preindustrial_road_NH3_1944.nc preindustrial_road_NH3_1945.nc preindustrial_road_NH3_1946.nc preindustrial_road_NH3_1947.nc preindustrial_road_NH3_1948.nc preindustrial_road_NH3_1949.nc preindustrial_road_NH3_1950.nc preindustrial_road_NH3_1951.nc preindustrial_road_NH3_1952.nc preindustrial_road_NH3_1953.nc preindustrial_road_NH3_1954.nc preindustrial_road_NH3_1955.nc preindustrial_road_NH3_1956.nc preindustrial_road_NH3_1957.nc preindustrial_road_NH3_1958.nc preindustrial_road_NH3_1959.nc preindustrial_road_NH3_1960.nc preindustrial_road_NH3_1961.nc preindustrial_road_NH3_1962.nc preindustrial_road_NH3_1963.nc preindustrial_road_NH3_1964.nc preindustrial_road_NH3_1965.nc preindustrial_road_NH3_1966.nc preindustrial_road_NH3_1967.nc preindustrial_road_NH3_1968.nc preindustrial_road_NH3_1969.nc preindustrial_road_NH3_1970.nc preindustrial_road_NH3_1971.nc preindustrial_road_NH3_1972.nc preindustrial_road_NH3_1973.nc preindustrial_road_NH3_1974.nc preindustrial_road_NH3_1975.nc preindustrial_road_NH3_1976.nc preindustrial_road_NH3_1977.nc preindustrial_road_NH3_1978.nc preindustrial_road_NH3_1979.nc preindustrial_road_NH3_1980.nc preindustrial_road_NH3_1981.nc preindustrial_road_NH3_1982.nc preindustrial_road_NH3_1983.nc preindustrial_road_NH3_1984.nc preindustrial_road_NH3_1985.nc preindustrial_road_NH3_1986.nc preindustrial_road_NH3_1987.nc preindustrial_road_NH3_1988.nc preindustrial_road_NH3_1989.nc preindustrial_road_NH3_1990.nc preindustrial_road_NH3_1991.nc preindustrial_road_NH3_1992.nc preindustrial_road_NH3_1993.nc preindustrial_road_NH3_1994.nc preindustrial_road_NH3_1995.nc preindustrial_road_NH3_1996.nc preindustrial_road_NH3_1997.nc preindustrial_road_NH3_1998.nc preindustrial_road_NH3_1999.nc preindustrial_road_NH3_2000.nc preindustrial_road_NH3_2001.nc preindustrial_road_NH3_2002.nc preindustrial_road_NH3_2003.nc preindustrial_road_NH3_2004.nc preindustrial_road_NH3_2005.nc preindustrial_road_NH3_2006.nc preindustrial_road_NH3_2007.nc preindustrial_road_NH3_2008.nc preindustrial_road_NH3_2009.nc preindustrial_road_NH3_2010.nc preindustrial_road_NH3_2011.nc preindustrial_road_NH3_2012.nc preindustrial_road_NH3_2013.nc preindustrial_road_NH3_2014.nc preindustrial_road_NH3_all.nc\n",
-       "Thu Jul  6 11:13:10 2017: Appended file preindustrial_road_NOx_all.nc had following &quot;history&quot; attribute:\n",
-       "Mon Jul  3 22:25:01 2017: ncrcat preindustrial_road_NOx_1750.nc preindustrial_road_NOx_1751.nc preindustrial_road_NOx_1752.nc preindustrial_road_NOx_1753.nc preindustrial_road_NOx_1754.nc preindustrial_road_NOx_1755.nc preindustrial_road_NOx_1756.nc preindustrial_road_NOx_1757.nc preindustrial_road_NOx_1758.nc preindustrial_road_NOx_1759.nc preindustrial_road_NOx_1760.nc preindustrial_road_NOx_1761.nc preindustrial_road_NOx_1762.nc preindustrial_road_NOx_1763.nc preindustrial_road_NOx_1764.nc preindustrial_road_NOx_1765.nc preindustrial_road_NOx_1766.nc preindustrial_road_NOx_1767.nc preindustrial_road_NOx_1768.nc preindustrial_road_NOx_1769.nc preindustrial_road_NOx_1770.nc preindustrial_road_NOx_1771.nc preindustrial_road_NOx_1772.nc preindustrial_road_NOx_1773.nc preindustrial_road_NOx_1774.nc preindustrial_road_NOx_1775.nc preindustrial_road_NOx_1776.nc preindustrial_road_NOx_1777.nc preindustrial_road_NOx_1778.nc preindustrial_road_NOx_1779.nc preindustrial_road_NOx_1780.nc preindustrial_road_NOx_1781.nc preindustrial_road_NOx_1782.nc preindustrial_road_NOx_1783.nc preindustrial_road_NOx_1784.nc preindustrial_road_NOx_1785.nc preindustrial_road_NOx_1786.nc preindustrial_road_NOx_1787.nc preindustrial_road_NOx_1788.nc preindustrial_road_NOx_1789.nc preindustrial_road_NOx_1790.nc preindustrial_road_NOx_1791.nc preindustrial_road_NOx_1792.nc preindustrial_road_NOx_1793.nc preindustrial_road_NOx_1794.nc preindustrial_road_NOx_1795.nc preindustrial_road_NOx_1796.nc preindustrial_road_NOx_1797.nc preindustrial_road_NOx_1798.nc preindustrial_road_NOx_1799.nc preindustrial_road_NOx_1800.nc preindustrial_road_NOx_1801.nc preindustrial_road_NOx_1802.nc preindustrial_road_NOx_1803.nc preindustrial_road_NOx_1804.nc preindustrial_road_NOx_1805.nc preindustrial_road_NOx_1806.nc preindustrial_road_NOx_1807.nc preindustrial_road_NOx_1808.nc preindustrial_road_NOx_1809.nc preindustrial_road_NOx_1810.nc preindustrial_road_NOx_1811.nc preindustrial_road_NOx_1812.nc preindustrial_road_NOx_1813.nc preindustrial_road_NOx_1814.nc preindustrial_road_NOx_1815.nc preindustrial_road_NOx_1816.nc preindustrial_road_NOx_1817.nc preindustrial_road_NOx_1818.nc preindustrial_road_NOx_1819.nc preindustrial_road_NOx_1820.nc preindustrial_road_NOx_1821.nc preindustrial_road_NOx_1822.nc preindustrial_road_NOx_1823.nc preindustrial_road_NOx_1824.nc preindustrial_road_NOx_1825.nc preindustrial_road_NOx_1826.nc preindustrial_road_NOx_1827.nc preindustrial_road_NOx_1828.nc preindustrial_road_NOx_1829.nc preindustrial_road_NOx_1830.nc preindustrial_road_NOx_1831.nc preindustrial_road_NOx_1832.nc preindustrial_road_NOx_1833.nc preindustrial_road_NOx_1834.nc preindustrial_road_NOx_1835.nc preindustrial_road_NOx_1836.nc preindustrial_road_NOx_1837.nc preindustrial_road_NOx_1838.nc preindustrial_road_NOx_1839.nc preindustrial_road_NOx_1840.nc preindustrial_road_NOx_1841.nc preindustrial_road_NOx_1842.nc preindustrial_road_NOx_1843.nc preindustrial_road_NOx_1844.nc preindustrial_road_NOx_1845.nc preindustrial_road_NOx_1846.nc preindustrial_road_NOx_1847.nc preindustrial_road_NOx_1848.nc preindustrial_road_NOx_1849.nc preindustrial_road_NOx_1850.nc preindustrial_road_NOx_1851.nc preindustrial_road_NOx_1852.nc preindustrial_road_NOx_1853.nc preindustrial_road_NOx_1854.nc preindustrial_road_NOx_1855.nc preindustrial_road_NOx_1856.nc preindustrial_road_NOx_1857.nc preindustrial_road_NOx_1858.nc preindustrial_road_NOx_1859.nc preindustrial_road_NOx_1860.nc preindustrial_road_NOx_1861.nc preindustrial_road_NOx_1862.nc preindustrial_road_NOx_1863.nc preindustrial_road_NOx_1864.nc preindustrial_road_NOx_1865.nc preindustrial_road_NOx_1866.nc preindustrial_road_NOx_1867.nc preindustrial_road_NOx_1868.nc preindustrial_road_NOx_1869.nc preindustrial_road_NOx_1870.nc preindustrial_road_NOx_1871.nc preindustrial_road_NOx_1872.nc preindustrial_road_NOx_1873.nc preindustrial_road_NOx_1874.nc preindustrial_road_NOx_1875.nc preindustrial_road_NOx_1876.nc preindustrial_road_NOx_1877.nc preindustrial_road_NOx_1878.nc preindustrial_road_NOx_1879.nc preindustrial_road_NOx_1880.nc preindustrial_road_NOx_1881.nc preindustrial_road_NOx_1882.nc preindustrial_road_NOx_1883.nc preindustrial_road_NOx_1884.nc preindustrial_road_NOx_1885.nc preindustrial_road_NOx_1886.nc preindustrial_road_NOx_1887.nc preindustrial_road_NOx_1888.nc preindustrial_road_NOx_1889.nc preindustrial_road_NOx_1890.nc preindustrial_road_NOx_1891.nc preindustrial_road_NOx_1892.nc preindustrial_road_NOx_1893.nc preindustrial_road_NOx_1894.nc preindustrial_road_NOx_1895.nc preindustrial_road_NOx_1896.nc preindustrial_road_NOx_1897.nc preindustrial_road_NOx_1898.nc preindustrial_road_NOx_1899.nc preindustrial_road_NOx_1900.nc preindustrial_road_NOx_1901.nc preindustrial_road_NOx_1902.nc preindustrial_road_NOx_1903.nc preindustrial_road_NOx_1904.nc preindustrial_road_NOx_1905.nc preindustrial_road_NOx_1906.nc preindustrial_road_NOx_1907.nc preindustrial_road_NOx_1908.nc preindustrial_road_NOx_1909.nc preindustrial_road_NOx_1910.nc preindustrial_road_NOx_1911.nc preindustrial_road_NOx_1912.nc preindustrial_road_NOx_1913.nc preindustrial_road_NOx_1914.nc preindustrial_road_NOx_1915.nc preindustrial_road_NOx_1916.nc preindustrial_road_NOx_1917.nc preindustrial_road_NOx_1918.nc preindustrial_road_NOx_1919.nc preindustrial_road_NOx_1920.nc preindustrial_road_NOx_1921.nc preindustrial_road_NOx_1922.nc preindustrial_road_NOx_1923.nc preindustrial_road_NOx_1924.nc preindustrial_road_NOx_1925.nc preindustrial_road_NOx_1926.nc preindustrial_road_NOx_1927.nc preindustrial_road_NOx_1928.nc preindustrial_road_NOx_1929.nc preindustrial_road_NOx_1930.nc preindustrial_road_NOx_1931.nc preindustrial_road_NOx_1932.nc preindustrial_road_NOx_1933.nc preindustrial_road_NOx_1934.nc preindustrial_road_NOx_1935.nc preindustrial_road_NOx_1936.nc preindustrial_road_NOx_1937.nc preindustrial_road_NOx_1938.nc preindustrial_road_NOx_1939.nc preindustrial_road_NOx_1940.nc preindustrial_road_NOx_1941.nc preindustrial_road_NOx_1942.nc preindustrial_road_NOx_1943.nc preindustrial_road_NOx_1944.nc preindustrial_road_NOx_1945.nc preindustrial_road_NOx_1946.nc preindustrial_road_NOx_1947.nc preindustrial_road_NOx_1948.nc preindustrial_road_NOx_1949.nc preindustrial_road_NOx_1950.nc preindustrial_road_NOx_1951.nc preindustrial_road_NOx_1952.nc preindustrial_road_NOx_1953.nc preindustrial_road_NOx_1954.nc preindustrial_road_NOx_1955.nc preindustrial_road_NOx_1956.nc preindustrial_road_NOx_1957.nc preindustrial_road_NOx_1958.nc preindustrial_road_NOx_1959.nc preindustrial_road_NOx_1960.nc preindustrial_road_NOx_1961.nc preindustrial_road_NOx_1962.nc preindustrial_road_NOx_1963.nc preindustrial_road_NOx_1964.nc preindustrial_road_NOx_1965.nc preindustrial_road_NOx_1966.nc preindustrial_road_NOx_1967.nc preindustrial_road_NOx_1968.nc preindustrial_road_NOx_1969.nc preindustrial_road_NOx_1970.nc preindustrial_road_NOx_1971.nc preindustrial_road_NOx_1972.nc preindustrial_road_NOx_1973.nc preindustrial_road_NOx_1974.nc preindustrial_road_NOx_1975.nc preindustrial_road_NOx_1976.nc preindustrial_road_NOx_1977.nc preindustrial_road_NOx_1978.nc preindustrial_road_NOx_1979.nc preindustrial_road_NOx_1980.nc preindustrial_road_NOx_1981.nc preindustrial_road_NOx_1982.nc preindustrial_road_NOx_1983.nc preindustrial_road_NOx_1984.nc preindustrial_road_NOx_1985.nc preindustrial_road_NOx_1986.nc preindustrial_road_NOx_1987.nc preindustrial_road_NOx_1988.nc preindustrial_road_NOx_1989.nc preindustrial_road_NOx_1990.nc preindustrial_road_NOx_1991.nc preindustrial_road_NOx_1992.nc preindustrial_road_NOx_1993.nc preindustrial_road_NOx_1994.nc preindustrial_road_NOx_1995.nc preindustrial_road_NOx_1996.nc preindustrial_road_NOx_1997.nc preindustrial_road_NOx_1998.nc preindustrial_road_NOx_1999.nc preindustrial_road_NOx_2000.nc preindustrial_road_NOx_2001.nc preindustrial_road_NOx_2002.nc preindustrial_road_NOx_2003.nc preindustrial_road_NOx_2004.nc preindustrial_road_NOx_2005.nc preindustrial_road_NOx_2006.nc preindustrial_road_NOx_2007.nc preindustrial_road_NOx_2008.nc preindustrial_road_NOx_2009.nc preindustrial_road_NOx_2010.nc preindustrial_road_NOx_2011.nc preindustrial_road_NOx_2012.nc preindustrial_road_NOx_2013.nc preindustrial_road_NOx_2014.nc preindustrial_road_NOx_all.nc\n",
-       "Thu Jul  6 11:12:05 2017: Appended file preindustrial_road_CO_all.nc had following &quot;history&quot; attribute:\n",
-       "Mon Jul  3 16:28:19 2017: ncrcat preindustrial_road_CO_1750.nc preindustrial_road_CO_1751.nc preindustrial_road_CO_1752.nc preindustrial_road_CO_1753.nc preindustrial_road_CO_1754.nc preindustrial_road_CO_1755.nc preindustrial_road_CO_1756.nc preindustrial_road_CO_1757.nc preindustrial_road_CO_1758.nc preindustrial_road_CO_1759.nc preindustrial_road_CO_1760.nc preindustrial_road_CO_1761.nc preindustrial_road_CO_1762.nc preindustrial_road_CO_1763.nc preindustrial_road_CO_1764.nc preindustrial_road_CO_1765.nc preindustrial_road_CO_1766.nc preindustrial_road_CO_1767.nc preindustrial_road_CO_1768.nc preindustrial_road_CO_1769.nc preindustrial_road_CO_1770.nc preindustrial_road_CO_1771.nc preindustrial_road_CO_1772.nc preindustrial_road_CO_1773.nc preindustrial_road_CO_1774.nc preindustrial_road_CO_1775.nc preindustrial_road_CO_1776.nc preindustrial_road_CO_1777.nc preindustrial_road_CO_1778.nc preindustrial_road_CO_1779.nc preindustrial_road_CO_1780.nc preindustrial_road_CO_1781.nc preindustrial_road_CO_1782.nc preindustrial_road_CO_1783.nc preindustrial_road_CO_1784.nc preindustrial_road_CO_1785.nc preindustrial_road_CO_1786.nc preindustrial_road_CO_1787.nc preindustrial_road_CO_1788.nc preindustrial_road_CO_1789.nc preindustrial_road_CO_1790.nc preindustrial_road_CO_1791.nc preindustrial_road_CO_1792.nc preindustrial_road_CO_1793.nc preindustrial_road_CO_1794.nc preindustrial_road_CO_1795.nc preindustrial_road_CO_1796.nc preindustrial_road_CO_1797.nc preindustrial_road_CO_1798.nc preindustrial_road_CO_1799.nc preindustrial_road_CO_1800.nc preindustrial_road_CO_1801.nc preindustrial_road_CO_1802.nc preindustrial_road_CO_1803.nc preindustrial_road_CO_1804.nc preindustrial_road_CO_1805.nc preindustrial_road_CO_1806.nc preindustrial_road_CO_1807.nc preindustrial_road_CO_1808.nc preindustrial_road_CO_1809.nc preindustrial_road_CO_1810.nc preindustrial_road_CO_1811.nc preindustrial_road_CO_1812.nc preindustrial_road_CO_1813.nc preindustrial_road_CO_1814.nc preindustrial_road_CO_1815.nc preindustrial_road_CO_1816.nc preindustrial_road_CO_1817.nc preindustrial_road_CO_1818.nc preindustrial_road_CO_1819.nc preindustrial_road_CO_1820.nc preindustrial_road_CO_1821.nc preindustrial_road_CO_1822.nc preindustrial_road_CO_1823.nc preindustrial_road_CO_1824.nc preindustrial_road_CO_1825.nc preindustrial_road_CO_1826.nc preindustrial_road_CO_1827.nc preindustrial_road_CO_1828.nc preindustrial_road_CO_1829.nc preindustrial_road_CO_1830.nc preindustrial_road_CO_1831.nc preindustrial_road_CO_1832.nc preindustrial_road_CO_1833.nc preindustrial_road_CO_1834.nc preindustrial_road_CO_1835.nc preindustrial_road_CO_1836.nc preindustrial_road_CO_1837.nc preindustrial_road_CO_1838.nc preindustrial_road_CO_1839.nc preindustrial_road_CO_1840.nc preindustrial_road_CO_1841.nc preindustrial_road_CO_1842.nc preindustrial_road_CO_1843.nc preindustrial_road_CO_1844.nc preindustrial_road_CO_1845.nc preindustrial_road_CO_1846.nc preindustrial_road_CO_1847.nc preindustrial_road_CO_1848.nc preindustrial_road_CO_1849.nc preindustrial_road_CO_1850.nc preindustrial_road_CO_1851.nc preindustrial_road_CO_1852.nc preindustrial_road_CO_1853.nc preindustrial_road_CO_1854.nc preindustrial_road_CO_1855.nc preindustrial_road_CO_1856.nc preindustrial_road_CO_1857.nc preindustrial_road_CO_1858.nc preindustrial_road_CO_1859.nc preindustrial_road_CO_1860.nc preindustrial_road_CO_1861.nc preindustrial_road_CO_1862.nc preindustrial_road_CO_1863.nc preindustrial_road_CO_1864.nc preindustrial_road_CO_1865.nc preindustrial_road_CO_1866.nc preindustrial_road_CO_1867.nc preindustrial_road_CO_1868.nc preindustrial_road_CO_1869.nc preindustrial_road_CO_1870.nc preindustrial_road_CO_1871.nc preindustrial_road_CO_1872.nc preindustrial_road_CO_1873.nc preindustrial_road_CO_1874.nc preindustrial_road_CO_1875.nc preindustrial_road_CO_1876.nc preindustrial_road_CO_1877.nc preindustrial_road_CO_1878.nc preindustrial_road_CO_1879.nc preindustrial_road_CO_1880.nc preindustrial_road_CO_1881.nc preindustrial_road_CO_1882.nc preindustrial_road_CO_1883.nc preindustrial_road_CO_1884.nc preindustrial_road_CO_1885.nc preindustrial_road_CO_1886.nc preindustrial_road_CO_1887.nc preindustrial_road_CO_1888.nc preindustrial_road_CO_1889.nc preindustrial_road_CO_1890.nc preindustrial_road_CO_1891.nc preindustrial_road_CO_1892.nc preindustrial_road_CO_1893.nc preindustrial_road_CO_1894.nc preindustrial_road_CO_1895.nc preindustrial_road_CO_1896.nc preindustrial_road_CO_1897.nc preindustrial_road_CO_1898.nc preindustrial_road_CO_1899.nc preindustrial_road_CO_1900.nc preindustrial_road_CO_1901.nc preindustrial_road_CO_1902.nc preindustrial_road_CO_1903.nc preindustrial_road_CO_1904.nc preindustrial_road_CO_1905.nc preindustrial_road_CO_1906.nc preindustrial_road_CO_1907.nc preindustrial_road_CO_1908.nc preindustrial_road_CO_1909.nc preindustrial_road_CO_1910.nc preindustrial_road_CO_1911.nc preindustrial_road_CO_1912.nc preindustrial_road_CO_1913.nc preindustrial_road_CO_1914.nc preindustrial_road_CO_1915.nc preindustrial_road_CO_1916.nc preindustrial_road_CO_1917.nc preindustrial_road_CO_1918.nc preindustrial_road_CO_1919.nc preindustrial_road_CO_1920.nc preindustrial_road_CO_1921.nc preindustrial_road_CO_1922.nc preindustrial_road_CO_1923.nc preindustrial_road_CO_1924.nc preindustrial_road_CO_1925.nc preindustrial_road_CO_1926.nc preindustrial_road_CO_1927.nc preindustrial_road_CO_1928.nc preindustrial_road_CO_1929.nc preindustrial_road_CO_1930.nc preindustrial_road_CO_1931.nc preindustrial_road_CO_1932.nc preindustrial_road_CO_1933.nc preindustrial_road_CO_1934.nc preindustrial_road_CO_1935.nc preindustrial_road_CO_1936.nc preindustrial_road_CO_1937.nc preindustrial_road_CO_1938.nc preindustrial_road_CO_1939.nc preindustrial_road_CO_1940.nc preindustrial_road_CO_1941.nc preindustrial_road_CO_1942.nc preindustrial_road_CO_1943.nc preindustrial_road_CO_1944.nc preindustrial_road_CO_1945.nc preindustrial_road_CO_1946.nc preindustrial_road_CO_1947.nc preindustrial_road_CO_1948.nc preindustrial_road_CO_1949.nc preindustrial_road_CO_1950.nc preindustrial_road_CO_1951.nc preindustrial_road_CO_1952.nc preindustrial_road_CO_1953.nc preindustrial_road_CO_1954.nc preindustrial_road_CO_1955.nc preindustrial_road_CO_1956.nc preindustrial_road_CO_1957.nc preindustrial_road_CO_1958.nc preindustrial_road_CO_1959.nc preindustrial_road_CO_1960.nc preindustrial_road_CO_1961.nc preindustrial_road_CO_1962.nc preindustrial_road_CO_1963.nc preindustrial_road_CO_1964.nc preindustrial_road_CO_1965.nc preindustrial_road_CO_1966.nc preindustrial_road_CO_1967.nc preindustrial_road_CO_1968.nc preindustrial_road_CO_1969.nc preindustrial_road_CO_1970.nc preindustrial_road_CO_1971.nc preindustrial_road_CO_1972.nc preindustrial_road_CO_1973.nc preindustrial_road_CO_1974.nc preindustrial_road_CO_1975.nc preindustrial_road_CO_1976.nc preindustrial_road_CO_1977.nc preindustrial_road_CO_1978.nc preindustrial_road_CO_1979.nc preindustrial_road_CO_1980.nc preindustrial_road_CO_1981.nc preindustrial_road_CO_1982.nc preindustrial_road_CO_1983.nc preindustrial_road_CO_1984.nc preindustrial_road_CO_1985.nc preindustrial_road_CO_1986.nc preindustrial_road_CO_1987.nc preindustrial_road_CO_1988.nc preindustrial_road_CO_1989.nc preindustrial_road_CO_1990.nc preindustrial_road_CO_1991.nc preindustrial_road_CO_1992.nc preindustrial_road_CO_1993.nc preindustrial_road_CO_1994.nc preindustrial_road_CO_1995.nc preindustrial_road_CO_1996.nc preindustrial_road_CO_1997.nc preindustrial_road_CO_1998.nc preindustrial_road_CO_1999.nc preindustrial_road_CO_2000.nc preindustrial_road_CO_2001.nc preindustrial_road_CO_2002.nc preindustrial_road_CO_2003.nc preindustrial_road_CO_2004.nc preindustrial_road_CO_2005.nc preindustrial_road_CO_2006.nc preindustrial_road_CO_2007.nc preindustrial_road_CO_2008.nc preindustrial_road_CO_2009.nc preindustrial_road_CO_2010.nc preindustrial_road_CO_2011.nc preindustrial_road_CO_2012.nc preindustrial_road_CO_2013.nc preindustrial_road_CO_2014.nc preindustrial_road_CO_all.nc\n",
-       "</dd><dt><span>activity_id :</span></dt><dd>input4MIPs</dd><dt><span>comment :</span></dt><dd>This data supersedes 2016-06-18, 2016-06-18-sectorDimV2, 2016-07-26, 2016-07-26-sectorDim, and 2017-05-18 data versions. See README file at the project web site.</dd><dt><span>contact :</span></dt><dd>Steven J. Smith (ssmith@pnnl.gov)</dd><dt><span>data_structure :</span></dt><dd>grid</dd><dt><span>dataset_category :</span></dt><dd>emissions</dd><dt><span>dataset_version_number :</span></dt><dd>2017-08-30</dd><dt><span>external_variables :</span></dt><dd>gridcell_area</dd><dt><span>frequency :</span></dt><dd>mon</dd><dt><span>further_info_url :</span></dt><dd>http://www.globalchange.umd.edu/ceds/</dd><dt><span>grid :</span></dt><dd>0.5x0.5 degree latitude x longitude</dd><dt><span>grid_label :</span></dt><dd>gn</dd><dt><span>institution_id :</span></dt><dd>PNNL-JGCRI</dd><dt><span>mip_era :</span></dt><dd>CMIP6</dd><dt><span>product :</span></dt><dd>primary-emissions-data</dd><dt><span>realm :</span></dt><dd>atmos</dd><dt><span>references :</span></dt><dd>Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J.-I., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O&#x27;Rourke, P. R., and Zhang, Q.: Historical (1750-2014) anthropogenic emissions of reactive gases and aerosols from the Community Emission Data System (CEDS), Geosci. Model Dev. Discuss., doi:10.5194/gmd-2017-43, in review, 2017.</dd><dt><span>table_id :</span></dt><dd>input4MIPs</dd><dt><span>target_mip :</span></dt><dd>CMIP</dd><dt><span>variable_id :</span></dt><dd>BC_em_AIR_anthro</dd><dt><span>global_total_emission_1750 :</span></dt><dd>0 Tg/year</dd><dt><span>global_total_emission_1799 :</span></dt><dd>0 Tg/year</dd><dt><span>data_usage_tips :</span></dt><dd>Note that these are monthly average fluxes.</dd><dt><span>reporting_unit :</span></dt><dd>Mass flux of BC, reported as carbon mass</dd><dt><span>nominal_resolution :</span></dt><dd>50 km</dd><dt><span>source_id :</span></dt><dd>CEDS-2017-08-30</dd><dt><span>tracking_id :</span></dt><dd>hdl:21.14100/649247a5-afc6-4e25-b777-9d7a77a3b1ed</dd><dt><span>CDO :</span></dt><dd>Climate Data Operators version 1.7.0 (http://mpimet.mpg.de/cdo)</dd><dt><span>description :</span></dt><dd>Original data from CMIP6v6.1_DLR1.0_DECK_road_MISC_175001-201412.nc modified for hist-piNTCF.</dd><dt><span>prepared :</span></dt><dd>Created Wed Jan  2 11:59:14 2019 with prepare_hist-piNTCF.py.</dd></dl></div></li></ul></div></div>"
-      ],
-      "text/plain": [
-       "<xarray.Dataset>\n",
-       "Dimensions:    (time: 12, lev: 1, lat: 360, lon: 720, bnds: 2)\n",
-       "Coordinates:\n",
-       "  * lat        (lat) float64 -89.75 -89.25 -88.75 -88.25 ... 88.75 89.25 89.75\n",
-       "  * lev        (lev) float64 45.0\n",
-       "  * lon        (lon) float64 -179.8 -179.2 -178.8 -178.2 ... 178.8 179.2 179.8\n",
-       "  * time       (time) object 2010-01-16 00:00:00 ... 2010-12-16 00:00:00\n",
-       "Dimensions without coordinates: bnds\n",
-       "Data variables:\n",
-       "    CO_flux    (time, lev, lat, lon) float32 ...\n",
-       "    NH3_flux   (time, lev, lat, lon) float32 ...\n",
-       "    NOx_flux   (time, lev, lat, lon) float32 ...\n",
-       "    SO2_flux   (time, lev, lat, lon) float32 ...\n",
-       "    lat_bnds   (lat, bnds) float64 ...\n",
-       "    lon_bnds   (lon, bnds) float64 ...\n",
-       "    time_bnds  (time, bnds) object ...\n",
-       "Attributes: (12/41)\n",
-       "    CDI:                         Climate Data Interface version 1.7.0 (http:/...\n",
-       "    Conventions:                 CF-1.6\n",
-       "    history:                     Sat Mar 13 02:42:40 2021: /work/bd0080/b3090...\n",
-       "    source:                      CEDS-2017-08-30: Community Emissions Data Sy...\n",
-       "    institution:                 Pacific Northwest National Laboratory - Join...\n",
-       "    reference1:                  Lamarque et al.(2010), doi:10.5194/acp-10-70...\n",
-       "    ...                          ...\n",
-       "    nominal_resolution:          50 km\n",
-       "    source_id:                   CEDS-2017-08-30\n",
-       "    tracking_id:                 hdl:21.14100/649247a5-afc6-4e25-b777-9d7a77a...\n",
-       "    CDO:                         Climate Data Operators version 1.7.0 (http:/...\n",
-       "    description:                 Original data from CMIP6v6.1_DLR1.0_DECK_roa...\n",
-       "    prepared:                    Created Wed Jan  2 11:59:14 2019 with prepar..."
-      ]
-     },
-     "execution_count": 38,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "data_2010 = xr.open_dataset('/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_201001-201012.nc')\n",
-    "data_2010"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 39,
-   "id": "75ea258e-60f5-427c-8b57-4769e9eda64d",
-   "metadata": {
-    "tags": []
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
-       "<defs>\n",
-       "<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
-       "<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
-       "<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
-       "<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
-       "</symbol>\n",
-       "<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
-       "<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
-       "<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
-       "<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
-       "<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
-       "</symbol>\n",
-       "</defs>\n",
-       "</svg>\n",
-       "<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
-       " *\n",
-       " */\n",
-       "\n",
-       ":root {\n",
-       "  --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
-       "  --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
-       "  --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
-       "  --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
-       "  --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
-       "  --xr-background-color: var(--jp-layout-color0, white);\n",
-       "  --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
-       "  --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
-       "}\n",
-       "\n",
-       "html[theme=dark],\n",
-       "body[data-theme=dark],\n",
-       "body.vscode-dark {\n",
-       "  --xr-font-color0: rgba(255, 255, 255, 1);\n",
-       "  --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
-       "  --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
-       "  --xr-border-color: #1F1F1F;\n",
-       "  --xr-disabled-color: #515151;\n",
-       "  --xr-background-color: #111111;\n",
-       "  --xr-background-color-row-even: #111111;\n",
-       "  --xr-background-color-row-odd: #313131;\n",
-       "}\n",
-       "\n",
-       ".xr-wrap {\n",
-       "  display: block !important;\n",
-       "  min-width: 300px;\n",
-       "  max-width: 700px;\n",
-       "}\n",
-       "\n",
-       ".xr-text-repr-fallback {\n",
-       "  /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
-       "  display: none;\n",
-       "}\n",
-       "\n",
-       ".xr-header {\n",
-       "  padding-top: 6px;\n",
-       "  padding-bottom: 6px;\n",
-       "  margin-bottom: 4px;\n",
-       "  border-bottom: solid 1px var(--xr-border-color);\n",
-       "}\n",
-       "\n",
-       ".xr-header > div,\n",
-       ".xr-header > ul {\n",
-       "  display: inline;\n",
-       "  margin-top: 0;\n",
-       "  margin-bottom: 0;\n",
-       "}\n",
-       "\n",
-       ".xr-obj-type,\n",
-       ".xr-array-name {\n",
-       "  margin-left: 2px;\n",
-       "  margin-right: 10px;\n",
-       "}\n",
-       "\n",
-       ".xr-obj-type {\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-sections {\n",
-       "  padding-left: 0 !important;\n",
-       "  display: grid;\n",
-       "  grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
-       "}\n",
-       "\n",
-       ".xr-section-item {\n",
-       "  display: contents;\n",
-       "}\n",
-       "\n",
-       ".xr-section-item input {\n",
-       "  display: none;\n",
-       "}\n",
-       "\n",
-       ".xr-section-item input + label {\n",
-       "  color: var(--xr-disabled-color);\n",
-       "}\n",
-       "\n",
-       ".xr-section-item input:enabled + label {\n",
-       "  cursor: pointer;\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-section-item input:enabled + label:hover {\n",
-       "  color: var(--xr-font-color0);\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary {\n",
-       "  grid-column: 1;\n",
-       "  color: var(--xr-font-color2);\n",
-       "  font-weight: 500;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary > span {\n",
-       "  display: inline-block;\n",
-       "  padding-left: 0.5em;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:disabled + label {\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in + label:before {\n",
-       "  display: inline-block;\n",
-       "  content: 'â–º';\n",
-       "  font-size: 11px;\n",
-       "  width: 15px;\n",
-       "  text-align: center;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:disabled + label:before {\n",
-       "  color: var(--xr-disabled-color);\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:checked + label:before {\n",
-       "  content: 'â–¼';\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:checked + label > span {\n",
-       "  display: none;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary,\n",
-       ".xr-section-inline-details {\n",
-       "  padding-top: 4px;\n",
-       "  padding-bottom: 4px;\n",
-       "}\n",
-       "\n",
-       ".xr-section-inline-details {\n",
-       "  grid-column: 2 / -1;\n",
-       "}\n",
-       "\n",
-       ".xr-section-details {\n",
-       "  display: none;\n",
-       "  grid-column: 1 / -1;\n",
-       "  margin-bottom: 5px;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:checked ~ .xr-section-details {\n",
-       "  display: contents;\n",
-       "}\n",
-       "\n",
-       ".xr-array-wrap {\n",
-       "  grid-column: 1 / -1;\n",
-       "  display: grid;\n",
-       "  grid-template-columns: 20px auto;\n",
-       "}\n",
-       "\n",
-       ".xr-array-wrap > label {\n",
-       "  grid-column: 1;\n",
-       "  vertical-align: top;\n",
-       "}\n",
-       "\n",
-       ".xr-preview {\n",
-       "  color: var(--xr-font-color3);\n",
-       "}\n",
-       "\n",
-       ".xr-array-preview,\n",
-       ".xr-array-data {\n",
-       "  padding: 0 5px !important;\n",
-       "  grid-column: 2;\n",
-       "}\n",
-       "\n",
-       ".xr-array-data,\n",
-       ".xr-array-in:checked ~ .xr-array-preview {\n",
-       "  display: none;\n",
-       "}\n",
-       "\n",
-       ".xr-array-in:checked ~ .xr-array-data,\n",
-       ".xr-array-preview {\n",
-       "  display: inline-block;\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list {\n",
-       "  display: inline-block !important;\n",
-       "  list-style: none;\n",
-       "  padding: 0 !important;\n",
-       "  margin: 0;\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list li {\n",
-       "  display: inline-block;\n",
-       "  padding: 0;\n",
-       "  margin: 0;\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list:before {\n",
-       "  content: '(';\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list:after {\n",
-       "  content: ')';\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list li:not(:last-child):after {\n",
-       "  content: ',';\n",
-       "  padding-right: 5px;\n",
-       "}\n",
-       "\n",
-       ".xr-has-index {\n",
-       "  font-weight: bold;\n",
-       "}\n",
-       "\n",
-       ".xr-var-list,\n",
-       ".xr-var-item {\n",
-       "  display: contents;\n",
-       "}\n",
-       "\n",
-       ".xr-var-item > div,\n",
-       ".xr-var-item label,\n",
-       ".xr-var-item > .xr-var-name span {\n",
-       "  background-color: var(--xr-background-color-row-even);\n",
-       "  margin-bottom: 0;\n",
-       "}\n",
-       "\n",
-       ".xr-var-item > .xr-var-name:hover span {\n",
-       "  padding-right: 5px;\n",
-       "}\n",
-       "\n",
-       ".xr-var-list > li:nth-child(odd) > div,\n",
-       ".xr-var-list > li:nth-child(odd) > label,\n",
-       ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
-       "  background-color: var(--xr-background-color-row-odd);\n",
-       "}\n",
-       "\n",
-       ".xr-var-name {\n",
-       "  grid-column: 1;\n",
-       "}\n",
-       "\n",
-       ".xr-var-dims {\n",
-       "  grid-column: 2;\n",
-       "}\n",
-       "\n",
-       ".xr-var-dtype {\n",
-       "  grid-column: 3;\n",
-       "  text-align: right;\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-var-preview {\n",
-       "  grid-column: 4;\n",
-       "}\n",
-       "\n",
-       ".xr-index-preview {\n",
-       "  grid-column: 2 / 5;\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-var-name,\n",
-       ".xr-var-dims,\n",
-       ".xr-var-dtype,\n",
-       ".xr-preview,\n",
-       ".xr-attrs dt {\n",
-       "  white-space: nowrap;\n",
-       "  overflow: hidden;\n",
-       "  text-overflow: ellipsis;\n",
-       "  padding-right: 10px;\n",
-       "}\n",
-       "\n",
-       ".xr-var-name:hover,\n",
-       ".xr-var-dims:hover,\n",
-       ".xr-var-dtype:hover,\n",
-       ".xr-attrs dt:hover {\n",
-       "  overflow: visible;\n",
-       "  width: auto;\n",
-       "  z-index: 1;\n",
-       "}\n",
-       "\n",
-       ".xr-var-attrs,\n",
-       ".xr-var-data,\n",
-       ".xr-index-data {\n",
-       "  display: none;\n",
-       "  background-color: var(--xr-background-color) !important;\n",
-       "  padding-bottom: 5px !important;\n",
-       "}\n",
-       "\n",
-       ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
-       ".xr-var-data-in:checked ~ .xr-var-data,\n",
-       ".xr-index-data-in:checked ~ .xr-index-data {\n",
-       "  display: block;\n",
-       "}\n",
-       "\n",
-       ".xr-var-data > table {\n",
-       "  float: right;\n",
-       "}\n",
-       "\n",
-       ".xr-var-name span,\n",
-       ".xr-var-data,\n",
-       ".xr-index-name div,\n",
-       ".xr-index-data,\n",
-       ".xr-attrs {\n",
-       "  padding-left: 25px !important;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs,\n",
-       ".xr-var-attrs,\n",
-       ".xr-var-data,\n",
-       ".xr-index-data {\n",
-       "  grid-column: 1 / -1;\n",
-       "}\n",
-       "\n",
-       "dl.xr-attrs {\n",
-       "  padding: 0;\n",
-       "  margin: 0;\n",
-       "  display: grid;\n",
-       "  grid-template-columns: 125px auto;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs dt,\n",
-       ".xr-attrs dd {\n",
-       "  padding: 0;\n",
-       "  margin: 0;\n",
-       "  float: left;\n",
-       "  padding-right: 10px;\n",
-       "  width: auto;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs dt {\n",
-       "  font-weight: normal;\n",
-       "  grid-column: 1;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs dt:hover span {\n",
-       "  display: inline-block;\n",
-       "  background: var(--xr-background-color);\n",
-       "  padding-right: 10px;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs dd {\n",
-       "  grid-column: 2;\n",
-       "  white-space: pre-wrap;\n",
-       "  word-break: break-all;\n",
-       "}\n",
-       "\n",
-       ".xr-icon-database,\n",
-       ".xr-icon-file-text2,\n",
-       ".xr-no-icon {\n",
-       "  display: inline-block;\n",
-       "  vertical-align: middle;\n",
-       "  width: 1em;\n",
-       "  height: 1.5em !important;\n",
-       "  stroke-width: 0;\n",
-       "  stroke: currentColor;\n",
-       "  fill: currentColor;\n",
-       "}\n",
-       "</style><pre class='xr-text-repr-fallback'>&lt;xarray.Dataset&gt;\n",
-       "Dimensions:   ()\n",
-       "Data variables:\n",
-       "    CO_flux   float32 8.227e-15\n",
-       "    NH3_flux  float32 5.903e-19\n",
-       "    NOx_flux  float32 2.713e-16\n",
-       "    SO2_flux  float32 1.069e-15\n",
-       "    lat_bnds  float64 0.0\n",
-       "    lon_bnds  float64 0.0</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-a073e30f-69af-4fc6-b960-5cec18c2f834' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-a073e30f-69af-4fc6-b960-5cec18c2f834' class='xr-section-summary'  title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-bc19cf97-b1a6-42c3-a677-30100d7f8408' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-bc19cf97-b1a6-42c3-a677-30100d7f8408' class='xr-section-summary'  title='Expand/collapse section'>Coordinates: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'></ul></div></li><li class='xr-section-item'><input id='section-5ca42757-7cfb-4591-b66a-8f9ff8616dea' class='xr-section-summary-in' type='checkbox'  checked><label for='section-5ca42757-7cfb-4591-b66a-8f9ff8616dea' class='xr-section-summary' >Data variables: <span>(6)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>CO_flux</span></div><div class='xr-var-dims'>()</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>8.227e-15</div><input id='attrs-440c1896-8979-4f28-93cb-cb44be45caad' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-440c1896-8979-4f28-93cb-cb44be45caad' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-099b4a11-e119-488c-a427-937a989bca9f' class='xr-var-data-in' type='checkbox'><label for='data-099b4a11-e119-488c-a427-937a989bca9f' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(8.227142e-15, dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>NH3_flux</span></div><div class='xr-var-dims'>()</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>5.903e-19</div><input id='attrs-fade7172-609c-457b-9aa3-c4efedd9e724' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-fade7172-609c-457b-9aa3-c4efedd9e724' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-d9e2a393-fbac-4de5-b75a-8e6985819c08' class='xr-var-data-in' type='checkbox'><label for='data-d9e2a393-fbac-4de5-b75a-8e6985819c08' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(5.902582e-19, dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>NOx_flux</span></div><div class='xr-var-dims'>()</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>2.713e-16</div><input id='attrs-64da8994-f540-4be6-8e17-69ebbfbae435' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-64da8994-f540-4be6-8e17-69ebbfbae435' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-f4259e98-2188-4edc-a992-c2ccfae8d4ad' class='xr-var-data-in' type='checkbox'><label for='data-f4259e98-2188-4edc-a992-c2ccfae8d4ad' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(2.7134285e-16, dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>SO2_flux</span></div><div class='xr-var-dims'>()</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>1.069e-15</div><input id='attrs-be6150ca-96e6-4a30-9fb2-f547f7b6d4f5' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-be6150ca-96e6-4a30-9fb2-f547f7b6d4f5' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-5bc38d23-6449-4464-866a-cf26ed712b31' class='xr-var-data-in' type='checkbox'><label for='data-5bc38d23-6449-4464-866a-cf26ed712b31' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(1.0694364e-15, dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>lat_bnds</span></div><div class='xr-var-dims'>()</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.0</div><input id='attrs-0df534f0-ebd6-460a-8cc9-499c6978edf7' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-0df534f0-ebd6-460a-8cc9-499c6978edf7' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-bed4775f-7fd0-48ee-8e1b-a6f21a29e2fa' class='xr-var-data-in' type='checkbox'><label for='data-bed4775f-7fd0-48ee-8e1b-a6f21a29e2fa' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(0.)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>lon_bnds</span></div><div class='xr-var-dims'>()</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.0</div><input id='attrs-cbd85b71-cd23-4f67-9432-7b7ba1796059' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-cbd85b71-cd23-4f67-9432-7b7ba1796059' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-6268ec9b-cc68-40a2-b1c8-d9edd7d9c48f' class='xr-var-data-in' type='checkbox'><label for='data-6268ec9b-cc68-40a2-b1c8-d9edd7d9c48f' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(0.)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-e018d31a-a206-4808-8d0c-0e25fe60153c' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-e018d31a-a206-4808-8d0c-0e25fe60153c' class='xr-section-summary'  title='Expand/collapse section'>Indexes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'></ul></div></li><li class='xr-section-item'><input id='section-9431d8c3-0730-45fa-b3ed-85ceee991192' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-9431d8c3-0730-45fa-b3ed-85ceee991192' class='xr-section-summary'  title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>"
-      ],
-      "text/plain": [
-       "<xarray.Dataset>\n",
-       "Dimensions:   ()\n",
-       "Data variables:\n",
-       "    CO_flux   float32 8.227e-15\n",
-       "    NH3_flux  float32 5.903e-19\n",
-       "    NOx_flux  float32 2.713e-16\n",
-       "    SO2_flux  float32 1.069e-15\n",
-       "    lat_bnds  float64 0.0\n",
-       "    lon_bnds  float64 0.0"
-      ]
-     },
-     "execution_count": 39,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "data_2010.mean().item()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 40,
-   "id": "3c3e776f-af70-430a-8da0-4a14dd6cf74c",
-   "metadata": {
-    "tags": []
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
-       "<defs>\n",
-       "<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
-       "<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
-       "<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
-       "<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
-       "</symbol>\n",
-       "<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
-       "<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
-       "<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
-       "<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
-       "<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
-       "</symbol>\n",
-       "</defs>\n",
-       "</svg>\n",
-       "<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
-       " *\n",
-       " */\n",
-       "\n",
-       ":root {\n",
-       "  --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
-       "  --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
-       "  --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
-       "  --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
-       "  --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
-       "  --xr-background-color: var(--jp-layout-color0, white);\n",
-       "  --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
-       "  --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
-       "}\n",
-       "\n",
-       "html[theme=dark],\n",
-       "body[data-theme=dark],\n",
-       "body.vscode-dark {\n",
-       "  --xr-font-color0: rgba(255, 255, 255, 1);\n",
-       "  --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
-       "  --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
-       "  --xr-border-color: #1F1F1F;\n",
-       "  --xr-disabled-color: #515151;\n",
-       "  --xr-background-color: #111111;\n",
-       "  --xr-background-color-row-even: #111111;\n",
-       "  --xr-background-color-row-odd: #313131;\n",
-       "}\n",
-       "\n",
-       ".xr-wrap {\n",
-       "  display: block !important;\n",
-       "  min-width: 300px;\n",
-       "  max-width: 700px;\n",
-       "}\n",
-       "\n",
-       ".xr-text-repr-fallback {\n",
-       "  /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
-       "  display: none;\n",
-       "}\n",
-       "\n",
-       ".xr-header {\n",
-       "  padding-top: 6px;\n",
-       "  padding-bottom: 6px;\n",
-       "  margin-bottom: 4px;\n",
-       "  border-bottom: solid 1px var(--xr-border-color);\n",
-       "}\n",
-       "\n",
-       ".xr-header > div,\n",
-       ".xr-header > ul {\n",
-       "  display: inline;\n",
-       "  margin-top: 0;\n",
-       "  margin-bottom: 0;\n",
-       "}\n",
-       "\n",
-       ".xr-obj-type,\n",
-       ".xr-array-name {\n",
-       "  margin-left: 2px;\n",
-       "  margin-right: 10px;\n",
-       "}\n",
-       "\n",
-       ".xr-obj-type {\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-sections {\n",
-       "  padding-left: 0 !important;\n",
-       "  display: grid;\n",
-       "  grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
-       "}\n",
-       "\n",
-       ".xr-section-item {\n",
-       "  display: contents;\n",
-       "}\n",
-       "\n",
-       ".xr-section-item input {\n",
-       "  display: none;\n",
-       "}\n",
-       "\n",
-       ".xr-section-item input + label {\n",
-       "  color: var(--xr-disabled-color);\n",
-       "}\n",
-       "\n",
-       ".xr-section-item input:enabled + label {\n",
-       "  cursor: pointer;\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-section-item input:enabled + label:hover {\n",
-       "  color: var(--xr-font-color0);\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary {\n",
-       "  grid-column: 1;\n",
-       "  color: var(--xr-font-color2);\n",
-       "  font-weight: 500;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary > span {\n",
-       "  display: inline-block;\n",
-       "  padding-left: 0.5em;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:disabled + label {\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in + label:before {\n",
-       "  display: inline-block;\n",
-       "  content: 'â–º';\n",
-       "  font-size: 11px;\n",
-       "  width: 15px;\n",
-       "  text-align: center;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:disabled + label:before {\n",
-       "  color: var(--xr-disabled-color);\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:checked + label:before {\n",
-       "  content: 'â–¼';\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:checked + label > span {\n",
-       "  display: none;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary,\n",
-       ".xr-section-inline-details {\n",
-       "  padding-top: 4px;\n",
-       "  padding-bottom: 4px;\n",
-       "}\n",
-       "\n",
-       ".xr-section-inline-details {\n",
-       "  grid-column: 2 / -1;\n",
-       "}\n",
-       "\n",
-       ".xr-section-details {\n",
-       "  display: none;\n",
-       "  grid-column: 1 / -1;\n",
-       "  margin-bottom: 5px;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:checked ~ .xr-section-details {\n",
-       "  display: contents;\n",
-       "}\n",
-       "\n",
-       ".xr-array-wrap {\n",
-       "  grid-column: 1 / -1;\n",
-       "  display: grid;\n",
-       "  grid-template-columns: 20px auto;\n",
-       "}\n",
-       "\n",
-       ".xr-array-wrap > label {\n",
-       "  grid-column: 1;\n",
-       "  vertical-align: top;\n",
-       "}\n",
-       "\n",
-       ".xr-preview {\n",
-       "  color: var(--xr-font-color3);\n",
-       "}\n",
-       "\n",
-       ".xr-array-preview,\n",
-       ".xr-array-data {\n",
-       "  padding: 0 5px !important;\n",
-       "  grid-column: 2;\n",
-       "}\n",
-       "\n",
-       ".xr-array-data,\n",
-       ".xr-array-in:checked ~ .xr-array-preview {\n",
-       "  display: none;\n",
-       "}\n",
-       "\n",
-       ".xr-array-in:checked ~ .xr-array-data,\n",
-       ".xr-array-preview {\n",
-       "  display: inline-block;\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list {\n",
-       "  display: inline-block !important;\n",
-       "  list-style: none;\n",
-       "  padding: 0 !important;\n",
-       "  margin: 0;\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list li {\n",
-       "  display: inline-block;\n",
-       "  padding: 0;\n",
-       "  margin: 0;\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list:before {\n",
-       "  content: '(';\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list:after {\n",
-       "  content: ')';\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list li:not(:last-child):after {\n",
-       "  content: ',';\n",
-       "  padding-right: 5px;\n",
-       "}\n",
-       "\n",
-       ".xr-has-index {\n",
-       "  font-weight: bold;\n",
-       "}\n",
-       "\n",
-       ".xr-var-list,\n",
-       ".xr-var-item {\n",
-       "  display: contents;\n",
-       "}\n",
-       "\n",
-       ".xr-var-item > div,\n",
-       ".xr-var-item label,\n",
-       ".xr-var-item > .xr-var-name span {\n",
-       "  background-color: var(--xr-background-color-row-even);\n",
-       "  margin-bottom: 0;\n",
-       "}\n",
-       "\n",
-       ".xr-var-item > .xr-var-name:hover span {\n",
-       "  padding-right: 5px;\n",
-       "}\n",
-       "\n",
-       ".xr-var-list > li:nth-child(odd) > div,\n",
-       ".xr-var-list > li:nth-child(odd) > label,\n",
-       ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
-       "  background-color: var(--xr-background-color-row-odd);\n",
-       "}\n",
-       "\n",
-       ".xr-var-name {\n",
-       "  grid-column: 1;\n",
-       "}\n",
-       "\n",
-       ".xr-var-dims {\n",
-       "  grid-column: 2;\n",
-       "}\n",
-       "\n",
-       ".xr-var-dtype {\n",
-       "  grid-column: 3;\n",
-       "  text-align: right;\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-var-preview {\n",
-       "  grid-column: 4;\n",
-       "}\n",
-       "\n",
-       ".xr-index-preview {\n",
-       "  grid-column: 2 / 5;\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-var-name,\n",
-       ".xr-var-dims,\n",
-       ".xr-var-dtype,\n",
-       ".xr-preview,\n",
-       ".xr-attrs dt {\n",
-       "  white-space: nowrap;\n",
-       "  overflow: hidden;\n",
-       "  text-overflow: ellipsis;\n",
-       "  padding-right: 10px;\n",
-       "}\n",
-       "\n",
-       ".xr-var-name:hover,\n",
-       ".xr-var-dims:hover,\n",
-       ".xr-var-dtype:hover,\n",
-       ".xr-attrs dt:hover {\n",
-       "  overflow: visible;\n",
-       "  width: auto;\n",
-       "  z-index: 1;\n",
-       "}\n",
-       "\n",
-       ".xr-var-attrs,\n",
-       ".xr-var-data,\n",
-       ".xr-index-data {\n",
-       "  display: none;\n",
-       "  background-color: var(--xr-background-color) !important;\n",
-       "  padding-bottom: 5px !important;\n",
-       "}\n",
-       "\n",
-       ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
-       ".xr-var-data-in:checked ~ .xr-var-data,\n",
-       ".xr-index-data-in:checked ~ .xr-index-data {\n",
-       "  display: block;\n",
-       "}\n",
-       "\n",
-       ".xr-var-data > table {\n",
-       "  float: right;\n",
-       "}\n",
-       "\n",
-       ".xr-var-name span,\n",
-       ".xr-var-data,\n",
-       ".xr-index-name div,\n",
-       ".xr-index-data,\n",
-       ".xr-attrs {\n",
-       "  padding-left: 25px !important;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs,\n",
-       ".xr-var-attrs,\n",
-       ".xr-var-data,\n",
-       ".xr-index-data {\n",
-       "  grid-column: 1 / -1;\n",
-       "}\n",
-       "\n",
-       "dl.xr-attrs {\n",
-       "  padding: 0;\n",
-       "  margin: 0;\n",
-       "  display: grid;\n",
-       "  grid-template-columns: 125px auto;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs dt,\n",
-       ".xr-attrs dd {\n",
-       "  padding: 0;\n",
-       "  margin: 0;\n",
-       "  float: left;\n",
-       "  padding-right: 10px;\n",
-       "  width: auto;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs dt {\n",
-       "  font-weight: normal;\n",
-       "  grid-column: 1;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs dt:hover span {\n",
-       "  display: inline-block;\n",
-       "  background: var(--xr-background-color);\n",
-       "  padding-right: 10px;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs dd {\n",
-       "  grid-column: 2;\n",
-       "  white-space: pre-wrap;\n",
-       "  word-break: break-all;\n",
-       "}\n",
-       "\n",
-       ".xr-icon-database,\n",
-       ".xr-icon-file-text2,\n",
-       ".xr-no-icon {\n",
-       "  display: inline-block;\n",
-       "  vertical-align: middle;\n",
-       "  width: 1em;\n",
-       "  height: 1.5em !important;\n",
-       "  stroke-width: 0;\n",
-       "  stroke: currentColor;\n",
-       "  fill: currentColor;\n",
-       "}\n",
-       "</style><pre class='xr-text-repr-fallback'>&lt;xarray.Dataset&gt;\n",
-       "Dimensions:   ()\n",
-       "Data variables:\n",
-       "    CO_flux   float32 8.227e-15\n",
-       "    NH3_flux  float32 5.903e-19\n",
-       "    NOx_flux  float32 2.713e-16\n",
-       "    SO2_flux  float32 1.069e-15\n",
-       "    lat_bnds  float64 0.0\n",
-       "    lon_bnds  float64 0.0</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-7a340934-e19a-4e63-a97c-2378ea469e19' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-7a340934-e19a-4e63-a97c-2378ea469e19' class='xr-section-summary'  title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-c5d52451-3803-4988-8cd7-8144646b4d65' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-c5d52451-3803-4988-8cd7-8144646b4d65' class='xr-section-summary'  title='Expand/collapse section'>Coordinates: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'></ul></div></li><li class='xr-section-item'><input id='section-17217a89-f561-402f-b971-f44194caacd4' class='xr-section-summary-in' type='checkbox'  checked><label for='section-17217a89-f561-402f-b971-f44194caacd4' class='xr-section-summary' >Data variables: <span>(6)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>CO_flux</span></div><div class='xr-var-dims'>()</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>8.227e-15</div><input id='attrs-ff4742d4-9790-46fb-bced-8dfb2c402e7c' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-ff4742d4-9790-46fb-bced-8dfb2c402e7c' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-380d0ad1-2108-4793-87c0-0471244fc29e' class='xr-var-data-in' type='checkbox'><label for='data-380d0ad1-2108-4793-87c0-0471244fc29e' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(8.227142e-15, dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>NH3_flux</span></div><div class='xr-var-dims'>()</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>5.903e-19</div><input id='attrs-ecc8bf75-f91d-4a29-adf8-acd0bf371e1b' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-ecc8bf75-f91d-4a29-adf8-acd0bf371e1b' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-ce1423d1-445b-4830-b629-6dce0c5f26ea' class='xr-var-data-in' type='checkbox'><label for='data-ce1423d1-445b-4830-b629-6dce0c5f26ea' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(5.902582e-19, dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>NOx_flux</span></div><div class='xr-var-dims'>()</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>2.713e-16</div><input id='attrs-9d48d94c-f77a-49bd-a80e-09c277b88862' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-9d48d94c-f77a-49bd-a80e-09c277b88862' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-6531fe10-9a37-4240-ac43-084832b4b684' class='xr-var-data-in' type='checkbox'><label for='data-6531fe10-9a37-4240-ac43-084832b4b684' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(2.7134285e-16, dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>SO2_flux</span></div><div class='xr-var-dims'>()</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>1.069e-15</div><input id='attrs-771b86f2-5919-406a-a73f-c26ceed1a7ff' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-771b86f2-5919-406a-a73f-c26ceed1a7ff' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-8ba3278b-ee5a-474c-bda3-6a2fd205e65b' class='xr-var-data-in' type='checkbox'><label for='data-8ba3278b-ee5a-474c-bda3-6a2fd205e65b' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(1.0694364e-15, dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>lat_bnds</span></div><div class='xr-var-dims'>()</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.0</div><input id='attrs-00e10545-31cd-46ec-9ef5-868bba8661e4' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-00e10545-31cd-46ec-9ef5-868bba8661e4' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-0f706a80-8d7d-418a-b255-92a53d739a08' class='xr-var-data-in' type='checkbox'><label for='data-0f706a80-8d7d-418a-b255-92a53d739a08' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(0.)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>lon_bnds</span></div><div class='xr-var-dims'>()</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.0</div><input id='attrs-9e537118-c8c0-46fd-a5e3-223e5b0101ce' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-9e537118-c8c0-46fd-a5e3-223e5b0101ce' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-7b2ce964-58eb-437c-9645-c780225bbbd4' class='xr-var-data-in' type='checkbox'><label for='data-7b2ce964-58eb-437c-9645-c780225bbbd4' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(0.)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-6b01e368-47ee-4500-9446-cba35a994bd3' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-6b01e368-47ee-4500-9446-cba35a994bd3' class='xr-section-summary'  title='Expand/collapse section'>Indexes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'></ul></div></li><li class='xr-section-item'><input id='section-41c174af-bec0-48f0-8e83-896f4bc47f24' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-41c174af-bec0-48f0-8e83-896f4bc47f24' class='xr-section-summary'  title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>"
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>NOx</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>2000-12-31</th>\n",
+       "      <td>20.254938</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2001-12-31</th>\n",
+       "      <td>19.907722</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2002-12-31</th>\n",
+       "      <td>19.806725</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2003-12-31</th>\n",
+       "      <td>19.770260</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2004-12-31</th>\n",
+       "      <td>20.054379</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2005-12-31</th>\n",
+       "      <td>19.864965</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2006-12-31</th>\n",
+       "      <td>19.770472</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2007-12-31</th>\n",
+       "      <td>19.935260</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2008-12-31</th>\n",
+       "      <td>19.816465</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2009-12-31</th>\n",
+       "      <td>19.135000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2010-12-31</th>\n",
+       "      <td>19.298807</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2011-12-31</th>\n",
+       "      <td>19.746030</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2012-12-31</th>\n",
+       "      <td>20.573029</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2013-12-31</th>\n",
+       "      <td>20.924507</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2014-12-31</th>\n",
+       "      <td>21.310490</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2015-12-31</th>\n",
+       "      <td>21.698856</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2016-12-31</th>\n",
+       "      <td>21.444330</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2017-12-31</th>\n",
+       "      <td>21.099398</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2018-12-31</th>\n",
+       "      <td>20.825493</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2019-12-31</th>\n",
+       "      <td>20.567923</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2020-12-31</th>\n",
+       "      <td>20.377531</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2021-12-31</th>\n",
+       "      <td>20.099348</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2022-12-31</th>\n",
+       "      <td>19.887207</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2023-12-31</th>\n",
+       "      <td>19.652971</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
       ],
       "text/plain": [
-       "<xarray.Dataset>\n",
-       "Dimensions:   ()\n",
-       "Data variables:\n",
-       "    CO_flux   float32 8.227e-15\n",
-       "    NH3_flux  float32 5.903e-19\n",
-       "    NOx_flux  float32 2.713e-16\n",
-       "    SO2_flux  float32 1.069e-15\n",
-       "    lat_bnds  float64 0.0\n",
-       "    lon_bnds  float64 0.0"
-      ]
-     },
-     "execution_count": 40,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "data_2013 = xr.open_dataset('/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.0_hist-piNTCF_road_MISC_201301-201312.nc')\n",
-    "data_2013.mean()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 51,
-   "id": "7863ee66-883a-4e34-9561-a65130f41fc3",
-   "metadata": {
-    "tags": []
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "<matplotlib.collections.QuadMesh at 0x7fff7b9ac700>"
+       "                  NOx\n",
+       "2000-12-31  20.254938\n",
+       "2001-12-31  19.907722\n",
+       "2002-12-31  19.806725\n",
+       "2003-12-31  19.770260\n",
+       "2004-12-31  20.054379\n",
+       "2005-12-31  19.864965\n",
+       "2006-12-31  19.770472\n",
+       "2007-12-31  19.935260\n",
+       "2008-12-31  19.816465\n",
+       "2009-12-31  19.135000\n",
+       "2010-12-31  19.298807\n",
+       "2011-12-31  19.746030\n",
+       "2012-12-31  20.573029\n",
+       "2013-12-31  20.924507\n",
+       "2014-12-31  21.310490\n",
+       "2015-12-31  21.698856\n",
+       "2016-12-31  21.444330\n",
+       "2017-12-31  21.099398\n",
+       "2018-12-31  20.825493\n",
+       "2019-12-31  20.567923\n",
+       "2020-12-31  20.377531\n",
+       "2021-12-31  20.099348\n",
+       "2022-12-31  19.887207\n",
+       "2023-12-31  19.652971"
       ]
      },
-     "execution_count": 51,
+     "execution_count": 22,
      "metadata": {},
      "output_type": "execute_result"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAGxCAYAAACUdTmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZV0lEQVR4nO3deVxUVf8H8M+AMoDCiKIMKAKauYSlQRGaiZWgudviFkkaaWaIezxa4oK4IFKaouZj+pRLT2qZK5hbJm6IaUqYiUAKbiGQyjrn9wc/7+PINsNc5CKf9+t1Xy/m3HPPfM+gztdzzj1XJYQQICIiIqIKmVV3AEREREQ1BRMnIiIiIgMxcSIiIiIyEBMnIiIiIgMxcSIiIiIyEBMnIiIiIgMxcSIiIiIyEBMnIiIiIgPVqe4AlEan0+Hq1auwsbGBSqWq7nCIiEjBhBDIycmBk5MTzMyqZiwiNzcX+fn5srRlYWEBS0tLWdqqrZg4PeTq1atwdnau7jCIiKgGSUtLQ7NmzWRvNzc3F24u9ZFxvUiW9rRaLZKTk5k8mYCJ00NsbGwAAM4zp8OMf7CIiKgcutxcpM2YI313yC0/Px8Z14uQHO8CWxvTRrSyc3Rw80hBfn4+EycTMHF6yP3pOTNLSyZORERkkKpe2mFrY2Zy4kTyYOJERESkcEVChyJhehtkOiZORERECqeDgA6mZU6mXk/FOO5HREREZCCOOBERESmcDjqYOtFmegsEMHEiIiJSvCIhUCRMm2oz9Xoqxqk6IiIiIgNxxImIiEjhuDhcOZg4ERERKZwOAkVMnBSBU3VEREREBuKIExERkcJxqk45mDgREREpHO+qUw4mTkRERAqn+//D1DbIdFzjRERERGSgGpM4FRYWYvr06XBzc4OVlRVatGiBWbNmQaf7Xw4thEBoaCicnJxgZWUFHx8fnDt3rhqjJiIiMl3R/99VZ+pBpqsxidP8+fMRHR2NpUuXIjExEQsWLMDChQuxZMkSqc6CBQsQGRmJpUuX4sSJE9BqtejevTtycnKqMXIiIiLTFAl5DjJdjUmc4uLi0K9fP/Tq1Quurq5444034Ovri5MnTwIoHm2KiorCtGnTMHDgQLi7u2Pt2rW4e/cu1q9fX83RExER0eOgxiROL774In766SdcuHABAPDrr7/i8OHDeO211wAAycnJyMjIgK+vr3SNWq1G165dceTIkWqJmYiISA46mQ4yXY25q27q1KnIyspCmzZtYG5ujqKiIoSFhWHIkCEAgIyMDACAg4OD3nUODg5ISUkps928vDzk5eVJr7Ozs6sgeiIiosrTQYUiqExug0xXY0acNm3ahK+//hrr16/HqVOnsHbtWkRERGDt2rV69VQq/T8YQogSZQ8KDw+HRqORDmdn5yqJn4iIiGq+GpM4TZ48GR9//DEGDx6M9u3bw9/fH+PHj0d4eDgAQKvVAvjfyNN9169fLzEK9aCQkBBkZWVJR1paWtV1goiIqBJ0Qp6DTFdjEqe7d+/CzEw/XHNzc2k7Ajc3N2i1WsTGxkrn8/PzcfDgQXTq1KnMdtVqNWxtbfUOIiIiJSn6/6k6Uw8yXY1Z49SnTx+EhYWhefPmeOqpp5CQkIDIyEiMGDECQPEUXXBwMObOnYtWrVqhVatWmDt3LqytrTF06NBqjp6IiIgeBzUmcVqyZAk++eQTjBkzBtevX4eTkxNGjRqFTz/9VKozZcoU3Lt3D2PGjEFmZia8vLwQExMDGxubaoyciIjINHKMGHHESR4qIfjUvwdlZ2dDo9HAZf4cmFlaVnc4RESkYLrcXKRMnY6srKwqWepx/zvp8G9OqG9j2uqaf3J0eNH9apXFWlvUmBEnIiKi2oojTspRYxaHExEREVU3jjgREREpXBHMUGTiWEeRTLHUdkyciIiIFE4IFXTCtKk2YeL1VIxTdUREREQGYuJERESkcNW1AeayZcvg5uYGS0tLeHh44Oeffy63/sGDB+Hh4QFLS0u0aNEC0dHRZdbduHEjVCoV+vfvb3Rc1YmJExERkcIVCTNZDmNs2rQJwcHBmDZtGhISEtClSxf07NkTqamppdZPTk7Ga6+9hi5duiAhIQH/+te/EBQUhM2bN5eom5KSgkmTJqFLly6V+jyqExMnIiIiKiEyMhIjR47Ee++9h7Zt2yIqKgrOzs5Yvnx5qfWjo6PRvHlzREVFoW3btnjvvfcwYsQIRERE6NUrKirCsGHDMHPmTLRo0eJRdEVWTJyIiIgUTgcVdDAz8TB8qi4/Px/x8fHw9fXVK/f19cWRI0dKvSYuLq5EfT8/P5w8eRIFBQVS2axZs9C4cWOMHDnSiE9AOXhXHRERkcLJuQFmdna2XrlarYZardYru3nzJoqKiuDg4KBX7uDggIyMjFLbz8jIKLV+YWEhbt68CUdHR/zyyy9YvXo1Tp8+bVJfqhNHnIiIiGoRZ2dnaDQa6QgPDy+zrkqln6wJIUqUVVT/fnlOTg7efvttrFq1Cvb29ib0oHpxxImIiEjhKrO4u2QbxUlMWlqa3rPqHh5tAgB7e3uYm5uXGF26fv16iVGl+7Raban169Spg0aNGuHcuXO4fPky+vTpI53X6XQAgDp16iApKQktW7asXOceISZORERECle8xsm0qbr719va2lb4kF8LCwt4eHggNjYWAwYMkMpjY2PRr1+/Uq/x9vbGjz/+qFcWExMDT09P1K1bF23atMHZs2f1zk+fPh05OTn47LPP4OzsXJluPXJMnIiIiBROJ8MjV3QQRtWfMGEC/P394enpCW9vb6xcuRKpqakYPXo0ACAkJARXrlzBunXrAACjR4/G0qVLMWHCBAQGBiIuLg6rV6/Ghg0bAACWlpZwd3fXe48GDRoAQIlyJWPiRERERCUMGjQIt27dwqxZs5Ceng53d3fs3LkTLi4uAID09HS9PZ3c3Nywc+dOjB8/Hl988QWcnJzw+eef4/XXX6+uLlQJlbi/cosAFN9toNFo4DJ/DswsLas7HCIiUjBdbi5Spk5HVlZWhdNflXH/O2nj6XawtjE3qa27OUUY3OF8lcVaW3DEiYiISOHu78VkWhscJ5EDtyMgIiIiMhBHnIiIiBSuSKhQJEzcANPE66kYEyciIiKFK5LhrroiTtXJglN1RERERAbiiBMREZHC6YQZdCbuHK7jTfSyYOJERESkcJyqUw5O1REREREZiCNORERECqeD6XfF6eQJpdZj4kRERKRw8myAyUkmOTBxIiIiUrgiYYYiExeHm3o9FeOnSERERGQgjjgREREpnA4q6GDqGifuHC4HJk5EREQKx6k65ahRn+KVK1fw9ttvo1GjRrC2tkaHDh0QHx8vnRdCIDQ0FE5OTrCysoKPjw/OnTtXjRETERHR46TGJE6ZmZno3Lkz6tati127duH8+fNYtGgRGjRoINVZsGABIiMjsXTpUpw4cQJarRbdu3dHTk5O9QVORERkovsbYJp6kOlqzFTd/Pnz4ezsjDVr1khlrq6u0s9CCERFRWHatGkYOHAgAGDt2rVwcHDA+vXrMWrUqEcdMhERkSx0QgWdqfs4mXg9Fasx6ee2bdvg6emJN998E02aNEHHjh2xatUq6XxycjIyMjLg6+srlanVanTt2hVHjhypjpCJiIjoMVNjEqdLly5h+fLlaNWqFfbs2YPRo0cjKCgI69atAwBkZGQAABwcHPSuc3BwkM6VJi8vD9nZ2XoHERGRkuhkmKbjBpjyqDFTdTqdDp6enpg7dy4AoGPHjjh37hyWL1+Od955R6qnUukPRQohSpQ9KDw8HDNnzqyaoImIiGSgE2bQmXhXnKnXU7Ea8yk6OjqiXbt2emVt27ZFamoqAECr1QJAidGl69evlxiFelBISAiysrKkIy0tTebIiYiI6HFRYxKnzp07IykpSa/swoULcHFxAQC4ublBq9UiNjZWOp+fn4+DBw+iU6dOZbarVqtha2urdxARESlJEVSyHGS6GjNVN378eHTq1Alz587FW2+9hePHj2PlypVYuXIlgOIpuuDgYMydOxetWrVCq1atMHfuXFhbW2Po0KHVHD0REVHlcapOOWpM4vTcc89h69atCAkJwaxZs+Dm5oaoqCgMGzZMqjNlyhTcu3cPY8aMQWZmJry8vBATEwMbG5tqjJyIiMg0RYDJI0ZF8oRS69WYxAkAevfujd69e5d5XqVSITQ0FKGhoY8uKCIiIqo1alTiREREVBtxqk45mDgREREpHB/yqxz8FImIiIgMxBEnIiIihRNQQWfi4nDB7QhkwcSJiIhI4ThVpxz8FImIiIgMxBEnIiIihdMJFXTCtKk2U6+nYkyciIiIFK4IZigycZLI1OupGD9FIiIiIgNxxImIiEjhOFWnHEyciIiIFE4HM+hMnCQy9XoqxsSJiIhI4YqECkUmjhiZej0VY/pJREREZCCOOBERESkc1zgpBxMnIiIihRPCDDoTd/4W3DlcFvwUiYiIiAzEESciIiKFK4IKRSY+pNfU66kYEyciIiKF0wnT1yjphEzB1HKcqiMiIiIyEEeciIiIFE4nw+JwU6+nYkyciIiIFE4HFXQmrlEy9XoqxsSJiIhI4bhzuHJw3I6IiIjIQBxxIiIiUjiucVIOJk5EREQKp4MMj1zhGidZMP0kIiIiMhBHnIiIiBROyHBXneCIkyyYOBERESmcTsgwVce76mTBqToiIiIiA3HEiYiISOF4V51y1NhPMTw8HCqVCsHBwVKZEAKhoaFwcnKClZUVfHx8cO7cueoLkoiISAb3p+pMPch0NTJxOnHiBFauXImnn35ar3zBggWIjIzE0qVLceLECWi1WnTv3h05OTnVFCkRERE9Tmpc4vTPP/9g2LBhWLVqFezs7KRyIQSioqIwbdo0DBw4EO7u7li7di3u3r2L9evXV2PEREREprn/rDpTDzJdjUucPvzwQ/Tq1QuvvvqqXnlycjIyMjLg6+srlanVanTt2hVHjhx51GESERHJhlN1ymHQ4vBnn33WqEZVKhW2bduGpk2bViqosmzcuBGnTp3CiRMnSpzLyMgAADg4OOiVOzg4ICUlpcw28/LykJeXJ73Ozs6WKVoiIiJ5cDsC5TAocTp9+jQmTpyI+vXrV1hXCIF58+bpJSNySEtLw7hx4xATEwNLS8sy66lU+n8whBAlyh4UHh6OmTNnyhYnERERPb4M3o5g8uTJaNKkiUF1Fy1aVOmAyhIfH4/r16/Dw8NDKisqKsKhQ4ewdOlSJCUlASgeeXJ0dJTqXL9+vcQo1INCQkIwYcIE6XV2djacnZ1lj5+IiKiyOOKkHAYlTsnJyWjcuLHBjZ4/fx5OTk6VDqo0r7zyCs6ePatX9u6776JNmzaYOnUqWrRoAa1Wi9jYWHTs2BEAkJ+fj4MHD2L+/PlltqtWq6FWq2WNlYiISE5MnJTDoMXhLi4u5U53PczZ2Rnm5uaVDqo0NjY2cHd31zvq1auHRo0awd3dXdrTae7cudi6dSt+++03BAQEwNraGkOHDpU1FiIiotpg2bJlcHNzg6WlJTw8PPDzzz+XW//gwYPw8PCApaUlWrRogejoaL3zq1atQpcuXWBnZwc7Ozu8+uqrOH78eFV2QXaV2jn89u3bOH78OK5fvw6dTqd37p133pElsMqYMmUK7t27hzFjxiAzMxNeXl6IiYmBjY1NtcVERERkKgHI8JBf42zatAnBwcFYtmwZOnfujBUrVqBnz544f/48mjdvXqJ+cnIyXnvtNQQGBuLrr7/GL7/8gjFjxqBx48Z4/fXXAQAHDhzAkCFD0KlTJ1haWmLBggXw9fXFuXPnZL+hrKqohBBGfZY//vgjhg0bhjt37sDGxkZvJEqlUuHvv/+WPchHKTs7GxqNBi7z58CsnEXoREREutxcpEydjqysLNja2sre/v3vpJd3jEadeqYtKym8k4d9vaINjtXLywvPPvssli9fLpW1bdsW/fv3R3h4eIn6U6dOxbZt25CYmCiVjR49Gr/++ivi4uJKfY+ioiLY2dlh6dKl1TrwYgyj93GaOHEiRowYgZycHNy+fRuZmZnSUdOTJiIiIipeIxwfH6+3NyIA+Pr6lrk3YlxcXIn6fn5+OHnyJAoKCkq95u7duygoKEDDhg3lCfwRMHqq7sqVKwgKCoK1tXVVxENEREQPkXNx+MP7FZZ2k9TNmzdRVFRU6t6I9/dNfFhGRkap9QsLC3Hz5k29O97v+/jjj9G0adMSm1ormdEjTvezRyIiIno05Nw53NnZGRqNRjpKm3a7z9i9EUurX1o5UPx82Q0bNmDLli3l7s+oNAaNOG3btk36uVevXpg8eTLOnz+P9u3bo27dunp1+/btK2+EREREJJu0tDS9NU6lbcljb28Pc3PzEqNL5e2NqNVqS61fp04dNGrUSK88IiICc+fOxd69e/H0009XtivVwqDEqX///iXKZs2aVaJMpVKhqKjI5KCIiIjof+ScqrO1ta1wcbiFhQU8PDwQGxuLAQMGSOWxsbHo169fqdd4e3vjxx9/1CuLiYmBp6en3iDLwoULMWfOHOzZsweenp6V7U61MShxenjLASIiInp0hFBBmJg4GXv9hAkT4O/vD09PT3h7e2PlypVITU3F6NGjARQ/eePKlStYt24dgOI76JYuXYoJEyYgMDAQcXFxWL16NTZs2CC1uWDBAnzyySdYv349XF1dpRGq+vXrG/RYNyUweo3TunXrSn0OXX5+vvThERERkXx0UMlyGGPQoEGIiorCrFmz0KFDBxw6dAg7d+6Ei4sLACA9PR2pqalSfTc3N+zcuRMHDhxAhw4dMHv2bHz++efSHk5A8Yaa+fn5eOONN+Do6CgdERER8nxQj4DR+ziZm5sjPT29xHPrbt26hSZNmtT4qTru40RERIZ6VPs4ef/wkSz7OMX1W1JlsdYWRm9HUNaK+r/++gsajUaWoIiIiOh/+Kw65TA4cerYsSNUKhVUKhVeeeUV1Knzv0uLioqQnJyMHj16VEmQREREtVl1rHGi0hmcON2/s+706dPw8/PTW8RlYWEBV1dXvXlMIiIioseNwYnTjBkzUFRUBBcXF/j5+ZW6AygRERHJj1N1ymHUXXXm5uYYPXo0cnNzqyoeIiIiesj9qTpTDzKd0dsRtG/fHpcuXaqKWIiIiIgUzejEKSwsDJMmTcL27duRnp6O7OxsvYOIiIjkJWR4Th1HnORh9HYE9++c69u3r962BPe3Kajp+zgREREpjQBg3K6LpbdBpjM6cdq/f39VxEFERESkeEYnTl27dq2KOIiIiKgMOqigMvKRKaW1QaYzOnECgNu3b2P16tVITEyESqVCu3btMGLECO4cTkREVAW4AaZyGL04/OTJk2jZsiUWL16Mv//+Gzdv3kRkZCRatmyJU6dOVUWMREREtZqpC8Pl2AeKihk94jR+/Hj07dsXq1atkh67UlhYiPfeew/BwcE4dOiQ7EESERERKYHRidPJkyf1kiYAqFOnDqZMmQJPT09ZgyMiIqLiO+pMvquOt9XJwuipOltbW6SmppYoT0tLg42NjSxBERER0f9w53DlMDpxGjRoEEaOHIlNmzYhLS0Nf/31FzZu3Ij33nsPQ4YMqYoYiYiIiBTB6Km6iIgIqFQqvPPOOygsLAQA1K1bFx988AHmzZsne4BERES1He+qUw6jEycLCwt89tlnCA8Px59//gkhBJ544glYW1tXRXxERES1nk6ooDIx8eFddfKo1D5OAGBtbY327dvLGQsRERGRohmdON25cwfz5s3DTz/9hOvXr0On0+mdv3TpkmzBEREREe+qUxKjE6f33nsPBw8ehL+/PxwdHfUe9EtERETyK06cTF3jJFMwtZzRidOuXbuwY8cOdO7cuSriISIiIlIso7cjsLOzQ8OGDasilnKFh4fjueeeg42NDZo0aYL+/fsjKSlJr44QAqGhoXBycoKVlRV8fHxw7ty5Rx4rERGRnLiPk3IYnTjNnj0bn376Ke7evVsV8ZTp4MGD+PDDD3H06FHExsaisLAQvr6+uHPnjlRnwYIFiIyMxNKlS3HixAlotVp0794dOTk5jzRWIiIiOQmZDjKd0VN1ixYtwp9//gkHBwe4urqibt26euer6kG/u3fv1nu9Zs0aNGnSBPHx8XjppZcghEBUVBSmTZuGgQMHAgDWrl0LBwcHrF+/HqNGjaqSuIiIiKoa93FSDqMTp/79+1dBGMbLysoCAGnaMDk5GRkZGfD19ZXqqNVqdO3aFUeOHGHiRERERCYzOnGaMWOGQfU2bNiAvn37ol69ekYHVREhBCZMmIAXX3wR7u7uAICMjAwAgIODg15dBwcHpKSklNlWXl4e8vLypNfZ2dmyx0tERGQSOebaOFcnC6PXOBlq1KhRuHbtWpW0PXbsWJw5cwYbNmwoce7h7RGEEOVumRAeHg6NRiMdzs7OssdLRERkEjkWhnOqThZVljiJKtow4qOPPsK2bduwf/9+NGvWTCrXarUA/jfydN/169dLjEI9KCQkBFlZWdKRlpZWJXETERFRzVdliZPchBAYO3YstmzZgn379sHNzU3vvJubG7RaLWJjY6Wy/Px8HDx4EJ06dSqzXbVaDVtbW72DiIhISe7vHG7qQaar9LPqHrUPP/wQ69evxw8//AAbGxtpZEmj0cDKygoqlQrBwcGYO3cuWrVqhVatWmHu3LmwtrbG0KFDqzl6IiKiyuNddcpRYxKn5cuXAwB8fHz0ytesWYOAgAAAwJQpU3Dv3j2MGTMGmZmZ8PLyQkxMDGxsbB5xtERERPQ4qjGJkyFrplQqFUJDQxEaGlr1ARERET0qcizu5oiTLKoscXJxcSmxOSYREREZT441SlzjJA+jE6e0tDSoVCrpjrbjx49j/fr1aNeuHd5//32p3m+//SZflEREREQKYPRddUOHDsX+/fsBFN/63717dxw/fhz/+te/MGvWLNkDJCIiqvX4sDrFMDpx+u233/D8888DAL799lu4u7vjyJEjWL9+Pb766iu54yMiIqr1TN38Uo678qiY0VN1BQUFUKvVAIC9e/eib9++AIA2bdogPT1d3uiIiIioGEeMFMHoEaennnoK0dHR+PnnnxEbG4sePXoAAK5evYpGjRrJHiARERGRUhidOM2fPx8rVqyAj48PhgwZgmeeeQYAsG3bNmkKj4iIiOTDqTrlMHqqzsfHBzdv3kR2djbs7Oyk8vfffx/W1tayBkdERESQZ3E3p/pkUaln1QkhEB8fjxUrViAnJwcAYGFhwcSJiIiIHmtGjzilpKSgR48eSE1NRV5eHrp37w4bGxssWLAAubm5iI6Oroo4iYiIajHV/x+mtkGmMnrEady4cfD09ERmZiasrKyk8gEDBuCnn36SNTgiIiIC93FSEKMTp8OHD2P69OmwsLDQK3dxccGVK1dkC4yIiIjIVJ988gmKiopKlGdlZWHIkCFGt2d04qTT6UoN4K+//oKNjY3RARAREVEFOOJUaevWrUPnzp3x559/SmUHDhxA+/btcfnyZaPbMzpx6t69O6KioqTXKpUK//zzD2bMmIHXXnvN6ACIiIioAkIlz1ELnTlzBq6urujQoQNWrVqFyZMnw9fXFwEBATh8+LDR7Rm9OHzx4sXo1q0b2rVrh9zcXAwdOhR//PEH7O3tsWHDBqMDICIiIqoqGo0GGzduxLRp0zBq1CjUqVMHu3btwiuvvFKp9oxOnJycnHD69Gls2LABp06dgk6nw8iRIzFs2DC9xeJEREQkDyGKD1PbqK2WLFmCxYsXY8iQIYiPj0dQUBDWr18vbeJtDKMTJwCwsrLCiBEjMGLEiMpcTkRERMbgBpiV1rNnT5w4cQLr1q3DG2+8gXv37mHChAl44YUXMHPmTEyZMsWo9iq1AeZ//vMfvPjii3ByckJKSgqA4im8H374oTLNERERUXm4xqnSCgsLcebMGbzxxhsAigd/li9fju+++w6LFy82uj2jE6fly5djwoQJ6NmzJzIzM6U77Ozs7PQWjRMRERFVt9jYWDg5OZUo79WrF86ePWt0e0YnTkuWLMGqVaswbdo01Knzv5k+T0/PSgVARERE5VMJeQ7SZ29vb/Q1Rq9xSk5ORseOHUuUq9Vq3Llzx+gAiIiIqAJc41RpZmZmUKnKnqYsbW/K8hidOLm5ueH06dNwcXHRK9+1axfatWtnbHNEREREVWbr1q16rwsKCpCQkIC1a9di5syZRrdndOI0efJkfPjhh8jNzYUQAsePH8eGDRsQHh6OL7/80ugAiIiIqAJyLO6upYvD+/XrV6LsjTfewFNPPYVNmzZh5MiRRrVndOL07rvvorCwEFOmTMHdu3cxdOhQNG3aFJ999hkGDx5sbHNERERUEU7Vyc7LywuBgYFGX2dU4lRYWIhvvvkGffr0QWBgIG7evAmdTocmTZoY/cZERERE1eHevXtYsmQJmjVrZvS1RiVOderUwQcffIDExEQAlVuNTkREREbiiFOl2dnZ6S0OF0IgJycH1tbW+Prrr41uz+ipOi8vLyQkJJRYHE5ERERVhIlTpS1evFgvcTIzM0Pjxo3h5eUFOzs7o9szOnEaM2YMJk6ciL/++gseHh6oV6+e3vmnn37a6CCIiIiIqkJAQICs7RmdOA0aNAgAEBQUJJWpVCoIIaBSqYzeD4GIiIgqwLvqjHLmzBmD6xo74FOpDTCJiIjo0ZFj5+/atHN4hw4dpEGd8lRmwMfoR664uLiUeyjBsmXL4ObmBktLS3h4eODnn3+u7pCIiIgqT8h0GMnY79ODBw/Cw8MDlpaWaNGiBaKjo0vU2bx5M9q1awe1Wo127dqV2KBSDsnJybh06RKSk5PLPS5dumR020aPOG3btq3UcpVKBUtLSzzxxBNwc3MzOhC5bNq0CcHBwVi2bBk6d+6MFStWoGfPnjh//jyaN29ebXERERHVJMZ+nyYnJ+O1115DYGAgvv76a/zyyy8YM2YMGjdujNdffx0AEBcXh0GDBmH27NkYMGAAtm7dirfeeguHDx+Gl5eXbLEPGDAAP/30E+zs7DBr1ixMmjQJ1tbWsrStEhWNYz3k/jNfHr7swXVOL774Ir7//vtKrVY3lZeXF5599lksX75cKmvbti369++P8PDwCq/Pzs6GRqOBy/w5MLO0rMpQiYiohtPl5iJl6nRkZWXB1tZW9vbvfyc1nz8HZlamfSfp7uUi1YhYjf0+nTp1KrZt2yZtWQQAo0ePxq+//oq4uDgAxeuks7OzsWvXLqlOjx49YGdnhw0bNpjSPT1WVlb4448/0KxZM5ibmyM9PV22PSeNHnGKjY3FtGnTEBYWhueffx4AcPz4cUyfPh2ffPIJNBoNRo0ahUmTJmH16tWyBGmo/Px8xMfH4+OPP9Yr9/X1xZEjRx5pLERERHJRQYY1TkbUrcz3aVxcHHx9ffXK/Pz8sHr1ahQUFKBu3bqIi4vD+PHjS9SJiooyIrqKdejQAe+++y5efPFFCCEQERGB+vXrl1r3008/NaptoxOncePGYeXKlejUqZNU9sorr8DS0hLvv/8+zp07h6ioKIwYMcLYpk128+ZNFBUVwcHBQa/cwcEBGRkZpV6Tl5eHvLw86XV2dnaVxkhERFSdHv6eU6vVUKvVemWV+T7NyMgotX5hYSFu3rwJR0fHMuuU1WZlffXVV5gxYwa2b98OlUqFXbt2oU6dkimPSqWq+sTpzz//LHWIz9bWVlpk1apVK9y8edPYpmXz4EZXAKQpxNKEh4dX6unIREREj4yM2xE4OzvrFc+YMQOhoaGlXmLM92lZ9R8uN7bNymjdujU2btwIoHiJ0U8//STbVJ3Rd9V5eHhg8uTJuHHjhlR248YNTJkyBc899xwASPOKj5q9vT3Mzc1LZK7Xr18vkeHeFxISgqysLOlIS0t7FKESEREZTsa76tLS0vS+90JCQkq8XWW+T7Vaban169Spg0aNGpVbp6w25WDoM3V79eqF9PT0CusZnTitXr0aycnJaNasGZ544gm0atUKzZo1w+XLl/Hll18CAP755x988sknxjZtMgsLC3h4eCA2NlavPDY2Vm9q8UFqtRq2trZ6BxER0ePq4e+8h6fpgMp9n3p7e5eoHxMTA09PT9StW7fcOmW1+SgdOnQI9+7dq7Ce0VN1rVu3RmJiIvbs2YMLFy5ACIE2bdqge/fuMDMrzsP69+9vdMBymTBhAvz9/eHp6Qlvb2+sXLkSqampGD16dLXFREREZJJqeFZdRd+nISEhuHLlCtatWweg+A66pUuXYsKECQgMDERcXBxWr16td7fcuHHj8NJLL2H+/Pno168ffvjhB+zduxeHDx82sXOPjtGJE1A8P9mjRw/4+PhArVbLPjdpikGDBuHWrVuYNWsW0tPT4e7ujp07dypmc04iIiJjVcfO4RV9n6anpyM1NVWq7+bmhp07d2L8+PH44osv4OTkhM8//1zawwkAOnXqhI0bN0p34rds2RKbNm2SdQ+nqmb0Pk46nQ5hYWGIjo7GtWvXcOHCBbRo0QKffPIJXF1dMXLkyKqK9ZHgPk5ERGSoR7WPk2tYmMnfSbrcXFyeNq3KYq3pbGxs8Ouvv6JFixbl1jN6jdOcOXPw1VdfYcGCBbCwsJDK27dvL61xIiIiIhlV0yNXqCSjE6d169Zh5cqVGDZsGMzNzaXyp59+Gr///ruswRERERGYOCmI0Wucrly5gieeeKJEuU6nQ0FBgSxBERER0f9Uxxqn2uZf//oXGjZsWGE9o0ecnnrqqVKfjvzf//4XHTt2NLY5IiIioirz3//+FwMHDoS7uzvat2+PgQMH4rvvvitRLyQkBA0aNKiwPaNHnGbMmAF/f39cuXIFOp0OW7ZsQVJSEtatW4ft27cb2xwRERFVRMadw2sLnU6HIUOG4L///S+efPJJtGnTBkIInDt3DoMGDcKbb76JDRs2GL0zgNEjTn369MGmTZuwc+dO6RkviYmJ+PHHH9G9e3djmyMiIqKKcI2T0aKiorB3715s27YNv//+O77//nv88MMPSEpKwtatWxEbG4vPPvvM6HYrtY+Tn58f/Pz8KnMpERERUZX76quvsHDhQvTu3bvEub59+2LBggWIiopCcHCwUe0aPeJEREREj9b9xeGmHrXJH3/8gVdffbXM86+++iouXrxodLsGjTjZ2dkZPAf4999/Gx0EERERlaMaHrlS01lZWeH27dto3rx5qeezs7NhZWVldLsGJU5RUVHSz7du3cKcOXPg5+cHb29vAEBcXBz27NlTLQ/2JSIiInqYt7c3li9fjuXLl5d6/osvvpDyGGMYlDgNHz5c+vn111/HrFmzMHbsWKksKCgIS5cuxd69ezF+/HijgyAiIqJyyDHVVstGnKZNmwYfHx/cunULkyZNku6qS0xMxKJFi/DDDz9g//79Rrdr9BqnPXv2oEePHiXK/fz8sHfvXqMDICIiogrwrjqjderUCZs2bcL+/fvh7e0NOzs7NGzYEJ07d8b+/fuxYcMGdO7c2eh2jb6rrlGjRti6dSsmT56sV/7999+jUaNGRgdAREREVBUGDBgAPz8/7NmzB3/88QcA4Mknn4Svry+sra0r1abRidPMmTMxcuRIHDhwQJobPHr0KHbv3s2H/BIREVUFLg432r59+zB27FgcPXoUAwYM0DuXlZWFp556CtHR0ejSpYtR7Ro9VRcQEIAjR46gQYMG2LJlCzZv3gyNRoNffvkFAQEBxjZHREREFeB2BMaLiopCYGAgbG1tS5zTaDQYNWoUIiMjjW63Uhtgenl54ZtvvqnMpURERERV7tdff8X8+fPLPO/r64uIiAij2zVoxCk7O9uoRnNycowOhIiIiEgu165dQ926dcs8X6dOHdy4ccPodg1KnOzs7HD9+nWDG23atCkuXbpkdDBERERUCt5VZ7SmTZvi7NmzZZ4/c+YMHB0djW7XoKk6IQS+/PJL1K9f36BGCwoKjA6EiIiISifHGqXatsbptddew6effoqePXvC0tJS79y9e/cwY8aMUp9jVxGDEqfmzZtj1apVBjeq1WrLHR4jIiIiqkrTp0/Hli1b8OSTT2Ls2LFo3bo1VCoVEhMT8cUXX6CoqAjTpk0zul2DEqfLly8b3TARERHJqJaNGJnKwcEBR44cwQcffICQkBAIUfwBqlQq+Pn5YdmyZXBwcDC63UrdVUdERESPEPdxqhQXFxfs3LkTmZmZuHjxIoQQaNWqFezs7CrdJhMnIiIieqzZ2dnhueeek6UtJk5EREQKx8XhysHEiYiISOk4VacYRj9yhYiIiKi2qlTi9PPPP+Ptt9+Gt7c3rly5AgD4z3/+g8OHD8saHBEREfFZdUpidOK0efNm+Pn5wcrKCgkJCcjLywNQ/JiVuXPnyh4gERFRrcedwxXD6MRpzpw5iI6OxqpVq/Q2uezUqRNOnTola3BEREQEJk4KYnTilJSUhJdeeqlEua2tLW7fvi1HTERERESKZHTi5OjoiIsXL5YoP3z4MFq0aCFLUA+7fPkyRo4cCTc3N1hZWaFly5aYMWMG8vPz9eqlpqaiT58+qFevHuzt7REUFFSiDhERUU3DNU7KYfR2BKNGjcK4cePw73//GyqVClevXkVcXBwmTZqETz/9tCpixO+//w6dTocVK1bgiSeewG+//YbAwEDcuXMHERERAICioiL06tULjRs3xuHDh3Hr1i0MHz4cQggsWbKkSuIiIiJ6JLgdgWIYnThNmTIFWVlZ6NatG3Jzc/HSSy9BrVZj0qRJGDt2bFXEiB49eqBHjx7S6xYtWiApKQnLly+XEqeYmBicP38eaWlpcHJyAgAsWrQIAQEBCAsLg62tbZXERkRERLVHpbYjCAsLw82bN3H8+HEcPXoUN27cwOzZs+WOrVxZWVlo2LCh9DouLg7u7u5S0gQAfn5+yMvLQ3x8/CONjYiISFZcHK4Yld453NraGp6ennLGYrA///wTS5YswaJFi6SyjIyMEk85trOzg4WFBTIyMspsKy8vT9pSAQCys7PlD5iIiMgEfOSKchiUOA0cONDgBrds2WJw3dDQUMycObPcOidOnNBL0K5evYoePXrgzTffxHvvvadXV6VSlbheCFFq+X3h4eEVxkBEREQEGJg4aTQa6WchBLZu3QqNRiMlNPHx8bh9+7ZRCRYAjB07FoMHDy63jqurq/Tz1atX0a1bN3h7e2PlypV69bRaLY4dO6ZXlpmZiYKCghIjUQ8KCQnBhAkTpNfZ2dlwdnY2ohdERERVjIvDFcOgxGnNmjXSz1OnTsVbb72F6OhomJubAyi+o23MmDFGL8C2t7eHvb29QXWvXLmCbt26wcPDA2vWrIGZmf7yLG9vb4SFhSE9PR2Ojo4AiheMq9VqeHh4lNmuWq2GWq02Km4iIqJHiVN1ymH04vB///vfmDRpkpQ0AYC5uTkmTJiAf//737IGd9/Vq1fh4+MDZ2dnRERE4MaNG8jIyNBbu+Tr64t27drB398fCQkJ+OmnnzBp0iQEBgbyjjoiIiKShdGLwwsLC5GYmIjWrVvrlScmJkKn08kW2INiYmJw8eJFXLx4Ec2aNdM7J0RxCm1ubo4dO3ZgzJgx6Ny5M6ysrDB06FBpuwIiIqIai1N1imF04vTuu+9ixIgRuHjxIl544QUAwNGjRzFv3jy8++67sgcIAAEBAQgICKiwXvPmzbF9+/YqiYGIiKjaMHFSDKMTp4iICGi1WixevBjp6ekAih/DMmXKFEycOFH2AImIiGo71f8fprZBpjM6cTIzM8OUKVMwZcoUac8jriEiIiKi2qDSG2ACTJiIiIgeCU7VKYbRiZObm1u5G0peunTJpICIiIhIH7cjUA6jE6fg4GC91wUFBUhISMDu3bsxefJkueIiIiIiUhyjE6dx48aVWv7FF1/g5MmTJgdERERED+FUnWIYvQFmWXr27InNmzfL1RwRERE9SJh4kCxkS5y+++47NGzYUK7miIiIiBTH6Km6jh076i0OF0IgIyMDN27cwLJly2QNjoiIiLg4XEmMTpz69eunlziZmZmhcePG8PHxQZs2bWQNjoiIiMA1TgpidOIUGhpaBWEQERERKZ/Ra5zMzc1x/fr1EuW3bt2Cubm5LEERERHR/9yfqjP1INMZPeIkROmffF5eHiwsLEwOiIiIiB7CqTrFMDhx+vzzzwEAKpUKX375JerXry+dKyoqwqFDh7jGiYiIqApwcbhyGJw4LV68GEDxiFN0dLTetJyFhQVcXV0RHR0tf4RERERECmFw4pScnAwA6NatG7Zs2QI7O7sqC4qIiIgewKk6xTB6jdP+/furIg4iIiIqCxMnxTAocZowYQJmz56NevXqYcKECeXWjYyMlCUwIiIiIqUxKHFKSEhAQUEBAODUqVN6G2ASERFR1eLicOUwKHF6cHruwIEDVRULERERlYZTdYph9AaYI0aMQE5OTonyO3fuYMSIEbIERURERKRERidOa9euxb1790qU37t3D+vWrZMlKCIiIvoflRCyHGQ6gxOn7OxsZGVlQQiBnJwcZGdnS0dmZiZ27tyJJk2aVGWsREREtZOQ6agimZmZ8Pf3h0ajgUajgb+/P27fvl3uNUIIhIaGwsnJCVZWVvDx8cG5c+ek83///Tc++ugjtG7dGtbW1mjevDmCgoKQlZVVdR0xgMHbETRo0AAqlQoqlQpPPvlkifMqlQozZ86UNTgiIiJSvqFDh+Kvv/7C7t27AQDvv/8+/P398eOPP5Z5zYIFCxAZGYmvvvoKTz75JObMmYPu3bsjKSkJNjY2uHr1Kq5evYqIiAi0a9cOKSkpGD16NK5evYrvvvvuUXWtBIMTp/3790MIgZdffhmbN29Gw4YNpXMWFhZwcXGBk5NTlQRJRERUmyn5rrrExETs3r0bR48ehZeXFwBg1apV8Pb2RlJSElq3bl3iGiEEoqKiMG3aNAwcOBBA8VIgBwcHrF+/HqNGjYK7uzs2b94sXdOyZUuEhYXh7bffRmFhIerUMXorSlkY/K5du3YFULyDuLOzM8zMjF4eRURERJWh4Lvq4uLioNFopKQJAF544QVoNBocOXKk1MQpOTkZGRkZ8PX1lcrUajW6du2KI0eOYNSoUaW+V1ZWFmxtbastaQIqsXO4i4sLAODu3btITU1Ffn6+3vmnn35ansiIiIgIgLwjTtnZ2XrlarUaarW60u1mZGSUusa5SZMmyMjIKPMaAHBwcNArd3BwQEpKSqnX3Lp1C7Nnzy4zqXpUjB42unHjBnr37g0bGxs89dRT6Nixo95BREREyuXs7Cwt4tZoNAgPDy+1XmhoqLS2uazj5MmTAFDqxthCiAo3zH74fFnXZGdno1evXmjXrh1mzJhhaFerhNEjTsHBwcjMzMTRo0fRrVs3bN26FdeuXcOcOXOwaNGiqoiRiIiodpNxqi4tLQ22trZScVmjTWPHjsXgwYPLbdLV1RVnzpzBtWvXSpy7ceNGiRGl+7RaLYDikSdHR0ep/Pr16yWuycnJQY8ePVC/fn1s3boVdevWLTemqmZ04rRv3z788MMPeO6552BmZgYXFxd0794dtra2CA8PR69evaoiTiIiolpLzqk6W1tbvcSpLPb29rC3t6+wnre3N7KysnD8+HE8//zzAIBjx44hKysLnTp1KvUaNzc3aLVaxMbGSrNV+fn5OHjwIObPny/Vy87Ohp+fH9RqNbZt2wZLS8sK46lqRk/V3blzR5rLbNiwIW7cuAEAaN++PU6dOiVvdKXIy8tDhw4doFKpcPr0ab1zqamp6NOnD+rVqwd7e3sEBQWVWINFRERE8mnbti169OiBwMBAHD16FEePHkVgYCB69+6ttzC8TZs22Lp1K4DiKbrg4GDMnTsXW7duxW+//YaAgABYW1tj6NChAIpHmnx9fXHnzh2sXr0a2dnZyMjIQEZGBoqKiqqlr0AlRpxat26NpKQkuLq6okOHDlixYgVcXV0RHR2tN9xWVaZMmQInJyf8+uuveuVFRUXo1asXGjdujMOHD+PWrVsYPnw4hBBYsmRJlcdFRERUZRR8Vx0AfPPNNwgKCpLukuvbty+WLl2qVycpKUlv88opU6bg3r17GDNmDDIzM+Hl5YWYmBjY2NgAAOLj43Hs2DEAwBNPPKHXVnJyMlxdXauuQ+Wo1Bqn9PR0AMCMGTPg5+eHb775BhYWFvjqq6/kjk/Prl27EBMTg82bN2PXrl1652JiYnD+/HmkpaVJ+0ktWrQIAQEBCAsLM2hYkoiISKmqah8mOTRs2BBff/11uXXEQ498UalUCA0NRWhoaKn1fXx8SlyjBEYnTsOGDZN+7tixIy5fvozff/8dzZs3N2gutLKuXbuGwMBAfP/997C2ti5xPi4uDu7u7nqbcPr5+SEvLw/x8fHo1q1blcVGREREtYPJO0hZW1vj2WeflSOWMgkhEBAQgNGjR8PT0xOXL18uUScjI6PESnw7OztYWFiUuY8EULxmKi8vT3r98P4WRERE1U6I4sPUNshkBiVOEyZMMLjByMhIg+uGhoZW+Hy7EydO4MiRI8jOzkZISEi5dSuzj0R4eDifsUdERIqm5Eeu1DYGJU4JCQkGNVbRRlcPM3SPiDlz5uDo0aMl9prw9PTEsGHDsHbtWmi1WmkR2X2ZmZkoKCgocx8JAAgJCdFLDLOzs+Hs7GxUP4iIiKh2MChx2r9/f5W8uaF7RHz++eeYM2eO9Prq1avw8/PDpk2bpGfjeHt7IywsDOnp6dLdfTExMVCr1fDw8CizbVO3miciIqpyCr+rrjapvqfkGaF58+Z6r+vXrw+g+EnJzZo1AwD4+vqiXbt28Pf3x8KFC/H3339j0qRJCAwM5B11RERUo6l0xYepbZDpjN4AU6nMzc2xY8cOWFpaonPnznjrrbfQv39/REREVHdoREREphEyHWSyGjHi9DBXV9dS93Zo3rw5tm/fXg0RERERUW1QIxMnIiKi2oR31SkHEyciIiKl4z5OivHYrHEiIiIiqmoccSIiIlI4TtUpBxMnIiIipeM+TorBqToiIiIiA3HEiYiISOE4VaccTJyIiIiUjnfVKQan6oiIiIgMxBEnIiIiheNUnXIwcSIiIlI63lWnGEyciIiIFI4jTsrBNU5EREREBuKIExERkdLpRPFhahtkMiZORERESsc1TorBqToiIiIiA3HEiYiISOFUkGFxuCyREBMnIiIipePO4YrBqToiIiIiA3HEiYiISOG4j5NyMHEiIiJSOt5VpxicqiMiIiIyEEeciIiIFE4lBFQmLu429XoqxsSJiIhI6XT/f5jaBpmMiRMREZHCccRJObjGiYiIiMhAHHEiIiJSOt5VpxhMnIiIiJSOO4crBqfqiIiIiAzEESciIiKF487hysHEiYiISOk4VacYNWqqbseOHfDy8oKVlRXs7e0xcOBAvfOpqano06cP6tWrB3t7ewQFBSE/P7+aoiUiIqLHTY0Zcdq8eTMCAwMxd+5cvPzyyxBC4OzZs9L5oqIi9OrVC40bN8bhw4dx69YtDB8+HEIILFmypBojJyIiMo1KV3yY2gaZrkYkToWFhRg3bhwWLlyIkSNHSuWtW7eWfo6JicH58+eRlpYGJycnAMCiRYsQEBCAsLAw2NraPvK4iYiIZMGpOsWoEVN1p06dwpUrV2BmZoaOHTvC0dERPXv2xLlz56Q6cXFxcHd3l5ImAPDz80NeXh7i4+PLbDsvLw/Z2dl6BxEREVFpakTidOnSJQBAaGgopk+fju3bt8POzg5du3bF33//DQDIyMiAg4OD3nV2dnawsLBARkZGmW2Hh4dDo9FIh7Ozc9V1hIiIqDKETAeZrFoTp9DQUKhUqnKPkydPQqcrnpidNm0aXn/9dXh4eGDNmjVQqVT473//K7WnUqlKvIcQotTy+0JCQpCVlSUdaWlp8neUiIjIBPefVWfqQaar1jVOY8eOxeDBg8ut4+rqipycHABAu3btpHK1Wo0WLVogNTUVAKDVanHs2DG9azMzM1FQUFBiJOpBarUaarW6sl0gIiKqelzjpBjVmjjZ29vD3t6+wnoeHh5Qq9VISkrCiy++CAAoKCjA5cuX4eLiAgDw9vZGWFgY0tPT4ejoCKB4wbharYaHh0fVdYKIiIhqjRpxV52trS1Gjx6NGTNmwNnZGS4uLli4cCEA4M033wQA+Pr6ol27dvD398fChQvx999/Y9KkSQgMDOQddUREVLMJAKZuJ8ABJ1nUiMQJABYuXIg6derA398f9+7dg5eXF/bt2wc7OzsAgLm5OXbs2IExY8agc+fOsLKywtChQxEREVHNkRMREZlGjjVKXOMkjxqTONWtWxcRERHlJkLNmzfH9u3bH2FUREREVJvUmMSJiIio1hKQYXG4LJHUekyciIiIlI531SlGjdgAk4iIiEgJOOJERESkdDoAZe/lbHgbZDImTkRERArHu+qUg4kTERGR0nGNk2JwjRMRERGRgTjiREREpHQccVIMJk5ERERKx8RJMThVR0RERGQgjjgREREpHbcjUAwmTkRERArH7QiUg1N1RERERAZi4kRERKR09xeHm3pUkczMTPj7+0Oj0UCj0cDf3x+3b9+uoEsCoaGhcHJygpWVFXx8fHDu3Lky6/bs2RMqlQrff/+9/B0wAhMnIiIipdMJeY4qMnToUJw+fRq7d+/G7t27cfr0afj7+5d7zYIFCxAZGYmlS5fixIkT0Gq16N69O3JyckrUjYqKgkpl6iIveXCNExEREVVaYmIidu/ejaNHj8LLywsAsGrVKnh7eyMpKQmtW7cucY0QAlFRUZg2bRoGDhwIAFi7di0cHBywfv16jBo1Sqr766+/IjIyEidOnICjo+Oj6VQ5OOJERESkdAqeqouLi4NGo5GSJgB44YUXoNFocOTIkVKvSU5ORkZGBnx9faUytVqNrl276l1z9+5dDBkyBEuXLoVWq62S+I3FESciIiLFkyPxKb4+Oztbr1StVkOtVle61YyMDDRp0qREeZMmTZCRkVHmNQDg4OCgV+7g4ICUlBTp9fjx49GpUyf069ev0vHJjSNORERESifjiJOzs7O0iFuj0SA8PLzUtwwNDYVKpSr3OHnyJACUuv5ICFHhuqSHzz94zbZt27Bv3z5ERUUZ+2lVKY44ERER1SJpaWmwtbWVXpc12jR27FgMHjy43LZcXV1x5swZXLt2rcS5GzdulBhRuu/+tFtGRobeuqXr169L1+zbtw9//vknGjRooHft66+/ji5duuDAgQPlxlZVmDgREREpnU7g/lSbaW0Atra2eolTWezt7WFvb19hPW9vb2RlZeH48eN4/vnnAQDHjh1DVlYWOnXqVOo1bm5u0Gq1iI2NRceOHQEA+fn5OHjwIObPnw8A+Pjjj/Hee+/pXde+fXssXrwYffr0qTCuqsLEiYiISOmErvgwtY0q0LZtW/To0QOBgYFYsWIFAOD9999H79699e6oa9OmDcLDwzFgwACoVCoEBwdj7ty5aNWqFVq1aoW5c+fC2toaQ4cOBVA8KlXagvDmzZvDzc2tSvpiCCZOREREZJJvvvkGQUFB0l1yffv2xdKlS/XqJCUlISsrS3o9ZcoU3Lt3D2PGjEFmZia8vLwQExMDGxubRxq7sZg4ERERKZ0c2wlU4c7hDRs2xNdff13B2+u/v0qlQmhoKEJDQw1+n4fbqA5MnIiIiJROxjVOZBpuR0BERERkII44ERERKZ3Cp+pqEyZORERESicgQ+IkSyS1HqfqiIiIiAzEESciIiKl41SdYtSYEacLFy6gX79+sLe3h62tLTp37oz9+/fr1UlNTUWfPn1Qr1492NvbIygoCPn5+dUUMRERkUx0OnkOMlmNSZx69eqFwsJC7Nu3D/Hx8ejQoQN69+4tPWG5qKgIvXr1wp07d3D48GFs3LgRmzdvxsSJE6s5ciIiIhPJ+JBfMk2NSJxu3ryJixcv4uOPP8bTTz+NVq1aYd68ebh79y7OnTsHAIiJicH58+fx9ddfo2PHjnj11VexaNEirFq1CtnZ2dXcAyIiInoc1IjEqVGjRmjbti3WrVuHO3fuoLCwECtWrICDgwM8PDwAAHFxcXB3d4eTk5N0nZ+fH/Ly8hAfH19m23l5ecjOztY7iIiIFIUjTopRIxaHq1QqxMbGol+/frCxsYGZmRkcHBywe/duNGjQAACQkZEBBwcHvevs7OxgYWEhTeeVJjw8HDNnzqzK8ImIiEzDncMVo1pHnEJDQ6FSqco9Tp48CSEExowZgyZNmuDnn3/G8ePH0a9fP/Tu3Rvp6elSeyqVqsR7CCFKLb8vJCQEWVlZ0pGWllYlfSUiIqKar1pHnMaOHYvBgweXW8fV1RX79u3D9u3bkZmZCVtbWwDAsmXLEBsbi7Vr1+Ljjz+GVqvFsWPH9K7NzMxEQUFBiZGoB6nVaqjVatM7Q0REVEWE0EEI0+6KM/V6KlatiZO9vT3s7e0rrHf37l0AgJmZ/gCZmZkZdP9/e6W3tzfCwsKQnp4OR0dHAMULxtVqtbQOioiIqEYSwvSpNq5xkkWNWBzu7e0NOzs7DB8+HL/++isuXLiAyZMnIzk5Gb169QIA+Pr6ol27dvD390dCQgJ++uknTJo0CYGBgdIoFREREZEpakTiZG9vj927d+Off/7Byy+/DE9PTxw+fBg//PADnnnmGQCAubk5duzYAUtLS3Tu3BlvvfUW+vfvj4iIiGqOnoiIyES8q04xasRddQDg6emJPXv2lFunefPm2L59+yOKiIiI6BHR6QCViWuUuMZJFjVixImIiIhICWrMiBMREVGtJWTYx4lTdbJg4kRERKRwQqeDMHGqjtsRyIOJExERkdJxxEkxuMaJiIiIyEAccSIiIlI6nQBUHHFSAiZORERESicEAFO3I2DiJAdO1REREREZiCNORERECid0AsLEqTrBESdZMHEiIiJSOqGD6VN13I5ADpyqIyIiIjIQR5yIiIgUjlN1ysHEiYiISOk4VacYTJwecj8j1+XmVnMkRESkdPe/K6p6NKcQBSZvHF6IAnmCqeVUgmN3ev766y84OztXdxhERFSDpKWloVmzZrK3m5ubCzc3N2RkZMjSnlarRXJyMiwtLWVprzZi4vQQnU6Hq1evwsbGBiqVqlpiyM7OhrOzM9LS0mBra1stMVQV9q1mYt9qpse5b4Ay+ieEQE5ODpycnGBmVjX3W+Xm5iI/P1+WtiwsLJg0mYhTdQ8xMzOrkv81VIatre1j+Y8dwL7VVOxbzfQ49w2o/v5pNJoqbd/S0pLJjoJwOwIiIiIiAzFxIiIiIjIQEycFUqvVmDFjBtRqdXWHIjv2rWZi32qmx7lvwOPfP1ImLg4nIiIiMhBHnIiIiIgMxMSJiIiIyEBMnIiIiIgMxMSpGoWFhaFTp06wtrZGgwYNSq2jUqlKHNHR0Xp1zp49i65du8LKygpNmzbFrFmzqv1hjob0LTU1FX369EG9evVgb2+PoKCgEpu8KbFvpXF1dS3xe/r444/16hjSX6VatmwZ3NzcYGlpCQ8PD/z888/VHZJRQkNDS/x+tFqtdF4IgdDQUDg5OcHKygo+Pj44d+5cNUZcvkOHDqFPnz5wcnKCSqXC999/r3fekP7k5eXho48+gr29PerVq4e+ffvir7/+eoS9KF1FfQsICCjxu3zhhRf06ii1b/R4YOJUjfLz8/Hmm2/igw8+KLfemjVrkJ6eLh3Dhw+XzmVnZ6N79+5wcnLCiRMnsGTJEkRERCAyMrKqwy9XRX0rKipCr169cOfOHRw+fBgbN27E5s2bMXHiRKmOUvtWllmzZun9nqZPny6dM6S/SrVp0yYEBwdj2rRpSEhIQJcuXdCzZ0+kpqZWd2hGeeqpp/R+P2fPnpXOLViwAJGRkVi6dClOnDgBrVaL7t27IycnpxojLtudO3fwzDPPYOnSpaWeN6Q/wcHB2Lp1KzZu3IjDhw/jn3/+Qe/evVFUVPSoulGqivoGAD169ND7Xe7cuVPvvFL7Ro8JQdVuzZo1QqPRlHoOgNi6dWuZ1y5btkxoNBqRm5srlYWHhwsnJyeh0+lkjtR4ZfVt586dwszMTFy5ckUq27Bhg1Cr1SIrK0sIofy+PcjFxUUsXry4zPOG9Fepnn/+eTF69Gi9sjZt2oiPP/64miIy3owZM8QzzzxT6jmdTie0Wq2YN2+eVJabmys0Go2Ijo5+RBFW3sP/RhjSn9u3b4u6deuKjRs3SnWuXLkizMzMxO7dux9Z7BUp7d+/4cOHi379+pV5TU3pG9VcHHGqAcaOHQt7e3s899xziI6Ohk6nk87FxcWha9euevuY+Pn54erVq7h8+XI1RGuYuLg4uLu7w8nJSSrz8/NDXl4e4uPjpTo1qW/z589Ho0aN0KFDB4SFhelNwxnSXyXKz89HfHw8fH199cp9fX1x5MiRaoqqcv744w84OTnBzc0NgwcPxqVLlwAAycnJyMjI0OujWq1G165da1wfAcP6Ex8fj4KCAr06Tk5OcHd3rxF9PnDgAJo0aYInn3wSgYGBuH79unSupveNlI/PqlO42bNn45VXXoGVlRV++uknTJw4ETdv3pSmgTIyMuDq6qp3jYODg3TOzc3tUYdskIyMDCnO++zs7GBhYSE9Bbwm9W3cuHF49tlnYWdnh+PHjyMkJATJycn48ssvARjWXyW6efMmioqKSsTu4OCg6Lgf5uXlhXXr1uHJJ5/EtWvXMGfOHHTq1Annzp2T+lFaH1NSUqojXJMY0p+MjAxYWFjAzs6uRB2l/1579uyJN998Ey4uLkhOTsYnn3yCl19+GfHx8VCr1TW6b1QzcMRJZqUtQn34OHnypMHtTZ8+Hd7e3ujQoQMmTpyIWbNmYeHChXp1VCqV3mvx/4unHy43ldx9Ky0+IYRe+aPqW2mM6e/48ePRtWtXPP3003jvvfcQHR2N1atX49atW2X25X5/HkVfTFXa76EmxH1fz5498frrr6N9+/Z49dVXsWPHDgDA2rVrpTo1vY8Pq0x/akKfBw0ahF69esHd3R19+vTBrl27cOHCBel3Wpaa0DeqGTjiJLOxY8di8ODB5dZ5eBTFGC+88AKys7Nx7do1ODg4QKvVlvhf1P1h64f/x2kqOfum1Wpx7NgxvbLMzEwUFBRIcT/KvpXGlP7ev8vn4sWLaNSokUH9VSJ7e3uYm5uX+ntQctwVqVevHtq3b48//vgD/fv3B1A8CuPo6CjVqal9vH+3YHn90Wq1yM/PR2Zmpt7IzPXr19GpU6dHG7CJHB0d4eLigj/++APA49U3UiaOOMnM3t4ebdq0KfewtLSsdPsJCQmwtLSUbvH39vbGoUOH9NbTxMTEwMnJyaQErTRy9s3b2xu//fYb0tPT9eJWq9Xw8PB45H0rjSn9TUhIAADpi8uQ/iqRhYUFPDw8EBsbq1ceGxtbo7+E8vLykJiYCEdHR7i5uUGr1er1MT8/HwcPHqyRfTSkPx4eHqhbt65enfT0dPz22281rs+3bt1CWlqa9HftceobKVS1LUsnkZKSIhISEsTMmTNF/fr1RUJCgkhISBA5OTlCCCG2bdsmVq5cKc6ePSsuXrwoVq1aJWxtbUVQUJDUxu3bt4WDg4MYMmSIOHv2rNiyZYuwtbUVERER1dUtIUTFfSssLBTu7u7ilVdeEadOnRJ79+4VzZo1E2PHjpXaUGrfHnbkyBERGRkpEhISxKVLl8SmTZuEk5OT6Nu3r1THkP4q1caNG0XdunXF6tWrxfnz50VwcLCoV6+euHz5cnWHZrCJEyeKAwcOiEuXLomjR4+K3r17CxsbG6kP8+bNExqNRmzZskWcPXtWDBkyRDg6Oors7Oxqjrx0OTk50t8pANKfv5SUFCGEYf0ZPXq0aNasmdi7d684deqUePnll8UzzzwjCgsLq6tbQojy+5aTkyMmTpwojhw5IpKTk8X+/fuFt7e3aNq0aY3oGz0emDhVo+HDhwsAJY79+/cLIYTYtWuX6NChg6hfv76wtrYW7u7uIioqShQUFOi1c+bMGdGlSxehVquFVqsVoaGh1X67fkV9E6I4uerVq5ewsrISDRs2FGPHjtXbekAIZfbtYfHx8cLLy0toNBphaWkpWrduLWbMmCHu3LmjV8+Q/irVF198IVxcXISFhYV49tlnxcGDB6s7JKMMGjRIODo6irp16wonJycxcOBAce7cOem8TqcTM2bMEFqtVqjVavHSSy+Js2fPVmPE5du/f3+pf7+GDx8uhDCsP/fu3RNjx44VDRs2FFZWVqJ3794iNTW1Gnqjr7y+3b17V/j6+orGjRuLunXriubNm4vhw4eXiFupfaPHg0oIBW7DTERERKRAXONEREREZCAmTkREREQGYuJEREREZCAmTkREREQGYuJEREREZCAmTkREREQGYuJEREREZCAmTkREREQGYuJEjx0fHx8EBwc/Vu8bEBAgPYy2slxdXaFSqaBSqXD79u0y63311VfSsxBJfgEBAdLv4fvvv6/ucIjISEyciGSyZcsWzJ49W3rt6uqKqKio6guoFLNmzUJ6ejo0Gk11h/LYO3DgQKlJ6meffab3sGciqlnqVHcARI+Lhg0bVncIFbKxsYFWq63uMAAABQUFqFu3bnWH8chpNBomrkQ1GEec6LGXmZmJd955B3Z2drC2tkbPnj3xxx9/SOfvT03t2bMHbdu2Rf369dGjRw+9UYHCwkIEBQWhQYMGaNSoEaZOnYrhw4frTZ89OFXn4+ODlJQUjB8/XpqWAYDQ0FB06NBBL76oqCi4urpKr4uKijBhwgTpvaZMmYKHHykphMCCBQvQokULWFlZ4ZlnnsF3331Xqc/nq6++QvPmzWFtbY0BAwbg1q1bJer8+OOP8PDwgKWlJVq0aIGZM2eisLBQOv/777/jxRdfhKWlJdq1a4e9e/fqTUVdvnwZKpUK3377LXx8fGBpaYmvv/4aALBmzRq0bdsWlpaWaNOmDZYtW6b33leuXMGgQYNgZ2eHRo0aoV+/frh8+bJ0/sCBA3j++edRr149NGjQAJ07d0ZKSopBfa+oX5GRkWjfvj3q1asHZ2dnjBkzBv/88490PiUlBX369IGdnR3q1auHp556Cjt37sTly5fRrVs3AICdnR1UKhUCAgIMiomIlI2JEz32AgICcPLkSWzbtg1xcXEQQuC1115DQUGBVOfu3buIiIjAf/7zHxw6dAipqamYNGmSdH7+/Pn45ptvsGbNGvzyyy/Izs4ud33Kli1b0KxZM2lqzJipmUWLFuHf//43Vq9ejcOHD+Pvv//G1q1b9epMnz4da9aswfLly3Hu3DmMHz8eb7/9Ng4ePGj4BwPg2LFjGDFiBMaMGYPTp0+jW7dumDNnjl6dPXv24O2330ZQUBDOnz+PFStW4KuvvkJYWBgAQKfToX///rC2tsaxY8ewcuVKTJs2rdT3mzp1KoKCgpCYmAg/Pz+sWrUK06ZNQ1hYGBITEzF37lx88sknWLt2LYDi30u3bt1Qv359HDp0CIcPH5YS2/z8fBQWFqJ///7o2rUrzpw5g7i4OLz//vtSolqeivoFAGZmZvj888/x22+/Ye3atdi3bx+mTJkinf/www+Rl5eHQ4cO4ezZs5g/fz7q168PZ2dnbN68GQCQlJSE9PR0fPbZZ0b9bohIoQTRY6Zr165i3LhxQgghLly4IACIX375RTp/8+ZNYWVlJb799lshhBBr1qwRAMTFixelOl988YVwcHCQXjs4OIiFCxdKrwsLC0Xz5s1Fv379Sn1fIYRwcXERixcv1ottxowZ4plnntErW7x4sXBxcZFeOzo6innz5kmvCwoKRLNmzaT3+ueff4SlpaU4cuSIXjsjR44UQ4YMKfNzKS2eIUOGiB49euiVDRo0SGg0Gul1ly5dxNy5c/Xq/Oc//xGOjo5CCCF27dol6tSpI9LT06XzsbGxAoDYunWrEEKI5ORkAUBERUXptePs7CzWr1+vVzZ79mzh7e0thBBi9erVonXr1kKn00nn8/LyhJWVldizZ4+4deuWACAOHDhQZr/LUlG/SvPtt9+KRo0aSa/bt28vQkNDS627f/9+AUBkZmaWev7Bz4eIag6ucaLHWmJiIurUqQMvLy+prFGjRmjdujUSExOlMmtra7Rs2VJ67ejoiOvXrwMAsrKycO3aNTz//PPSeXNzc3h4eECn08kab1ZWFtLT0+Ht7S2V1alTB56entJ03fnz55Gbm4vu3bvrXZufn4+OHTsa9X6JiYkYMGCAXpm3tzd2794tvY6Pj8eJEyf0RmKKioqQm5uLu3fvIikpCc7Oznprpx78rB7k6ekp/Xzjxg2kpaVh5MiRCAwMlMoLCwulNUDx8fG4ePEibGxs9NrJzc3Fn3/+CV9fXwQEBMDPzw/du3fHq6++irfeeguOjo4V9r2ifllbW2P//v2YO3cuzp8/j+zsbBQWFiI3Nxd37txBvXr1EBQUhA8++AAxMTF49dVX8frrr+Ppp5+u8L2JqOZi4kSPNfHQ2qAHyx+cznl4kbJKpSpx7cPTP2W1XR4zM7MS1z04ZWiI+8najh070LRpU71zarXaqLYM6YNOp8PMmTMxcODAEucsLS1LfJblqVevnl67ALBq1Sq9xBYoTkzv1/Hw8MA333xToq3GjRsDKF4jFRQUhN27d2PTpk2YPn06YmNj8cILL5jUr5SUFLz22msYPXo0Zs+ejYYNG+Lw4cMYOXKk9Dt777334Ofnhx07diAmJgbh4eFYtGgRPvroI4M+DyKqeZg40WOtXbt2KCwsxLFjx9CpUycAwK1bt3DhwgW0bdvWoDY0Gg0cHBxw/PhxdOnSBUDxyERCQkKJhd4PsrCwQFFRkV5Z48aNkZGRoZdsnD59Wu+9HB0dcfToUbz00ksAikdg4uPj8eyzz0p9UqvVSE1NRdeuXQ3qQ1natWuHo0eP6pU9/PrZZ59FUlISnnjiiVLbaNOmDVJTU3Ht2jU4ODgAAE6cOFHhezs4OKBp06a4dOkShg0bVmqdZ599Fps2bUKTJk1ga2tbZlsdO3ZEx44dERISAm9vb6xfv77CxKmifp08eRKFhYVYtGgRzMyKl4N+++23Jeo5Oztj9OjRGD16NEJCQrBq1Sp89NFHsLCwAIASfwaIqGZj4kSPtVatWqFfv34IDAzEihUrYGNjg48//hhNmzZFv379DG7no48+Qnh4OJ544gm0adMGS5YsQWZmZrkjLa6urjh06BAGDx4MtVoNe3t7+Pj44MaNG1iwYAHeeOMN7N69G7t27dJLCsaNG4d58+ahVatWaNu2LSIjI/X2ArKxscGkSZMwfvx46HQ6vPjii8jOzsaRI0dQv359DB8+3OB+BQUFoVOnTliwYAH69++PmJgYvWk6APj000/Ru3dvODs7480334SZmRnOnDmDs2fPYs6cOejevTtatmyJ4cOHY8GCBcjJyZEWh1c0EhUaGoqgoCDY2tqiZ8+eyMvLw8mTJ5GZmYkJEyZg2LBhWLhwIfr164dZs2ahWbNmSE1NxZYtWzB58mQUFBRg5cqV6Nu3L5ycnJCUlIQLFy7gnXfeqbDvFfWrZcuWKCwsxJIlS9CnTx/88ssviI6O1msjODgYPXv2xJNPPonMzEzs27dPSshdXFygUqmwfft2vPbaa7CyskL9+vUN/t0QkUJV2+oqoiry8CLtv//+W/j7+wuNRiOsrKyEn5+fuHDhgnR+zZo1eouhhRBi69at4sG/HgUFBWLs2LHC1tZW2NnZialTp4o333xTDB48uMz3jYuLE08//bRQq9V6bS1fvlw4OzuLevXqiXfeeUeEhYXpLQ4vKCgQ48aNE7a2tqJBgwZiwoQJ4p133tFbiK7T6cRnn30mWrduLerWrSsaN24s/Pz8xMGDB8v8XEpbHC5E8QLsZs2aCSsrK9GnTx8RERFR4vPYvXu36NSpk7CyshK2trbi+eefFytXrpTOJyYmis6dOwsLCwvRpk0b8eOPPwoAYvfu3UKI/y0OT0hIKPH+33zzjejQoYOwsLAQdnZ24qWXXhJbtmyRzqenp4t33nlH2NvbC7VaLVq0aCECAwNFVlaWyMjIEP379xeOjo7CwsJCuLi4iE8//VQUFRWV+TkY06/IyEjh6Ogo/blZt26d3oLvsWPHipYtWwq1Wi0aN24s/P39xc2bN6XrZ82aJbRarVCpVGL48OF67w0uDieqkVRCVGKhBlEtp9Pp0LZtW7z11lt6u4UrmaurK4KDgx/J42h++eUXvPjii7h48aLeonv6H5VKha1bt5r8KB0ierS4jxORAVJSUrBq1SpcuHABZ8+exQcffIDk5GQMHTq0ukMzytSpU1G/fn1kZWXJ2u7WrVsRGxuLy5cvY+/evXj//ffRuXNnJk2lGD16NKfsiGowjjgRGSAtLQ2DBw/Gb7/9BiEE3N3dMW/ePGkBd02QkpIi3Q3WokULacGzHNatW4fZs2cjLS0N9vb2ePXVV7Fo0SI0atRItvcw1lNPPVXmDuIrVqwoc0F6Vbt+/Tqys7MBFG978eCdhkSkfEyciOix9GCi+DAHB4cSe0MRERmCiRMRERGRgbjGiYiIiMhATJyIiIiIDMTEiYiIiMhATJyIiIiIDMTEiYiIiMhATJyIiIiIDMTEiYiIiMhATJyIiIiIDPR/3U7NAJ5ww2gAAAAASUVORK5CYII=",
-      "text/plain": [
-       "<Figure size 640x480 with 2 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
     }
    ],
    "source": [
-    " data_2013['CO_flux'].mean('time').mean('lev').plot(robust = True)"
+    "road_nox_cams"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 52,
-   "id": "1539bcee-a882-4d99-b818-1d8f6f843cf2",
-   "metadata": {
-    "tags": []
-   },
+   "execution_count": null,
+   "id": "a7fd1000-38f5-44e5-8f3b-36a8aa865caf",
+   "metadata": {},
    "outputs": [],
    "source": [
-    "teat_2013 = data_2013['CO_flux'].mean('lev').mean('lon').mean('lat')"
+    "def add_index(df,  periods = 150, start_date = \"1/1/1950\"):\n",
+    "    df.index = pd.date_range(\"1/1/1950\", periods = periods, freq='Y')\n",
+    "    df.columns = ['Date', 'Perturbation A', 'Perturbation B', 'Perturbation C']\n",
+    "    df = df.drop(columns = 'Date')\n",
+    "    return df"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 53,
-   "id": "27a4b036-54bc-4728-9629-e3aa11ef793d",
+   "execution_count": 32,
+   "id": "1de1d16d-84b3-45d0-8d95-5db458e19b69",
    "metadata": {
     "tags": []
    },
    "outputs": [
     {
      "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>Off Road</th>\n",
+       "      <th>Road</th>\n",
+       "      <th>Sum</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>Date</th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>01/01/2000 00:00</th>\n",
+       "      <td>1.279055</td>\n",
+       "      <td>20.254938</td>\n",
+       "      <td>21.533993</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>01/01/2001 00:00</th>\n",
+       "      <td>1.274246</td>\n",
+       "      <td>19.907722</td>\n",
+       "      <td>21.181968</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>01/01/2002 00:00</th>\n",
+       "      <td>1.276509</td>\n",
+       "      <td>19.806725</td>\n",
+       "      <td>21.083234</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>01/01/2003 00:00</th>\n",
+       "      <td>1.323127</td>\n",
+       "      <td>19.770260</td>\n",
+       "      <td>21.093387</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>01/01/2004 00:00</th>\n",
+       "      <td>1.399741</td>\n",
+       "      <td>20.054379</td>\n",
+       "      <td>21.454120</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>01/01/2005 00:00</th>\n",
+       "      <td>1.487213</td>\n",
+       "      <td>19.864965</td>\n",
+       "      <td>21.352179</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>01/01/2006 00:00</th>\n",
+       "      <td>1.517617</td>\n",
+       "      <td>19.770472</td>\n",
+       "      <td>21.288089</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>01/01/2007 00:00</th>\n",
+       "      <td>1.508236</td>\n",
+       "      <td>19.935260</td>\n",
+       "      <td>21.443496</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>01/01/2008 00:00</th>\n",
+       "      <td>1.403617</td>\n",
+       "      <td>19.816465</td>\n",
+       "      <td>21.220082</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>01/01/2009 00:00</th>\n",
+       "      <td>1.290227</td>\n",
+       "      <td>19.135000</td>\n",
+       "      <td>20.425227</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>01/01/2010 00:00</th>\n",
+       "      <td>1.272519</td>\n",
+       "      <td>19.298807</td>\n",
+       "      <td>20.571326</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>01/01/2011 00:00</th>\n",
+       "      <td>1.413059</td>\n",
+       "      <td>19.746030</td>\n",
+       "      <td>21.159089</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>01/01/2012 00:00</th>\n",
+       "      <td>1.423738</td>\n",
+       "      <td>20.573029</td>\n",
+       "      <td>21.996767</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>01/01/2013 00:00</th>\n",
+       "      <td>1.385857</td>\n",
+       "      <td>20.924507</td>\n",
+       "      <td>22.310364</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>01/01/2014 00:00</th>\n",
+       "      <td>1.398960</td>\n",
+       "      <td>21.310490</td>\n",
+       "      <td>22.709450</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>01/01/2015 00:00</th>\n",
+       "      <td>1.403518</td>\n",
+       "      <td>21.698856</td>\n",
+       "      <td>23.102374</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>01/01/2016 00:00</th>\n",
+       "      <td>1.327374</td>\n",
+       "      <td>21.444330</td>\n",
+       "      <td>22.771704</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>01/01/2017 00:00</th>\n",
+       "      <td>1.287235</td>\n",
+       "      <td>21.099398</td>\n",
+       "      <td>22.386633</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>01/01/2018 00:00</th>\n",
+       "      <td>1.265572</td>\n",
+       "      <td>20.825493</td>\n",
+       "      <td>22.091065</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>01/01/2019 00:00</th>\n",
+       "      <td>1.249651</td>\n",
+       "      <td>20.567923</td>\n",
+       "      <td>21.817574</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>01/01/2020 00:00</th>\n",
+       "      <td>1.239334</td>\n",
+       "      <td>20.377531</td>\n",
+       "      <td>21.616865</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>01/01/2021 00:00</th>\n",
+       "      <td>1.224181</td>\n",
+       "      <td>20.099348</td>\n",
+       "      <td>21.323529</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>01/01/2022 00:00</th>\n",
+       "      <td>1.213093</td>\n",
+       "      <td>19.887207</td>\n",
+       "      <td>21.100300</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>01/01/2023 00:00</th>\n",
+       "      <td>1.207082</td>\n",
+       "      <td>19.652971</td>\n",
+       "      <td>20.860053</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
       "text/plain": [
-       "[<matplotlib.lines.Line2D at 0x7fff7b83aec0>]"
+       "                  Off Road       Road        Sum\n",
+       "Date                                            \n",
+       "01/01/2000 00:00  1.279055  20.254938  21.533993\n",
+       "01/01/2001 00:00  1.274246  19.907722  21.181968\n",
+       "01/01/2002 00:00  1.276509  19.806725  21.083234\n",
+       "01/01/2003 00:00  1.323127  19.770260  21.093387\n",
+       "01/01/2004 00:00  1.399741  20.054379  21.454120\n",
+       "01/01/2005 00:00  1.487213  19.864965  21.352179\n",
+       "01/01/2006 00:00  1.517617  19.770472  21.288089\n",
+       "01/01/2007 00:00  1.508236  19.935260  21.443496\n",
+       "01/01/2008 00:00  1.403617  19.816465  21.220082\n",
+       "01/01/2009 00:00  1.290227  19.135000  20.425227\n",
+       "01/01/2010 00:00  1.272519  19.298807  20.571326\n",
+       "01/01/2011 00:00  1.413059  19.746030  21.159089\n",
+       "01/01/2012 00:00  1.423738  20.573029  21.996767\n",
+       "01/01/2013 00:00  1.385857  20.924507  22.310364\n",
+       "01/01/2014 00:00  1.398960  21.310490  22.709450\n",
+       "01/01/2015 00:00  1.403518  21.698856  23.102374\n",
+       "01/01/2016 00:00  1.327374  21.444330  22.771704\n",
+       "01/01/2017 00:00  1.287235  21.099398  22.386633\n",
+       "01/01/2018 00:00  1.265572  20.825493  22.091065\n",
+       "01/01/2019 00:00  1.249651  20.567923  21.817574\n",
+       "01/01/2020 00:00  1.239334  20.377531  21.616865\n",
+       "01/01/2021 00:00  1.224181  20.099348  21.323529\n",
+       "01/01/2022 00:00  1.213093  19.887207  21.100300\n",
+       "01/01/2023 00:00  1.207082  19.652971  20.860053"
       ]
      },
-     "execution_count": 53,
+     "execution_count": 32,
      "metadata": {},
      "output_type": "execute_result"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAHACAYAAACGW+2YAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAoT0lEQVR4nO3df1xUdaL/8fcwKMIaI5ryQ1GwRDd0s5tllq5apobrqmmx2A3BrWurZrWrKeWP9MqarplFJXf3mlIqemsl2xu7a2ni1bSHKP54qGWppK0o11p+JIoC5/tHX+dGgAKfgRmY1/PxmMdj58z58Zk5befVmcMZm2VZlgAAAFAvPu4eAAAAQFNGTAEAABggpgAAAAwQUwAAAAaIKQAAAAPEFAAAgAFiCgAAwAAxBQAAYICYAgAAMEBMAQAAGPDqmNq+fbtGjhypsLAw2Ww2vffee27fXkJCgmw2W6XHXXfd1aDjAgAA9efVMXXhwgXdeuuteu211zxqe8OHD1deXp7zkZmZ2SjjAwAAdefr7gG40wMPPKAHHnigxtcvX76s2bNna+3atSooKFDPnj21ePFiDRo0qEG2d5Wfn59CQkLqtQ0AANC4vPrM1PUkJiZq586dWr9+vQ4ePKiHHnpIw4cP1xdffNGg2922bZs6dOigqKgoPf7448rPz2/Q7QEAgPqzWZZluXsQnsBmsykjI0OjR4+WJB0/flzdunXT119/rbCwMOd8Q4YM0Z133qnf//73Lt3eVRs2bFDr1q3VpUsXnTx5UnPmzFFZWZn27t0rPz8/o20CAADX8+qv+a5l3759sixLUVFRlaaXlpaqXbt2kqTc3FxFRkZecz1Tpkyp0zVZsbGxzv/ds2dP9enTR126dNEHH3ygBx98sA7vAAAANAZiqgYVFRWy2+3au3ev7HZ7pddat24tSerYsaOOHj16zfUEBQUZjSM0NFRdunRp8K8WAQBA/RBTNbjttttUXl6u/Px8DRgwoNp5WrRooR49ejToOL755hudPn1aoaGhDbodAABQP14dU999952+/PJL5/OTJ09q//79atu2raKiovTII48oPj5eL730km677TadP39eW7duVa9evRQTE+PS7XXu3FnfffedXnjhBY0dO1ahoaHKzc3Vc889pxtvvFFjxoxxyXsGAACu5dUXoG/btk2DBw+uMn3ChAlavXq1rly5ooULF+qtt97SP/7xD7Vr1079+vXT/Pnz1atXL5dv7+LFixo9erRycnJUUFCg0NBQDR48WP/+7/+u8PDwer1HAADQsLw6pgAAAExxnykAAAADxBQAAIABr7wAvaKiQmfOnNENN9wgm83m7uEAAIBasCxLxcXFCgsLk4+P55wP8sqYOnPmDBd0AwDQRJ0+fVqdOnVy9zCcvDKmbrjhBknf74zAwEA3jwYAANRGUVGRwsPDncdxT+GVMXX1q73AwEBiCgCAJsbTLtHxnC8cAQAAmiBiCgAAwAAxBQAAYICYAgAAMEBMAQAAGCCmAAAADBBTAAAABogpAAAAA8QUAACAAWIKAADAADEFAABggJgCAAAwQEwBAAAYIKYAAAAMEFMAAAAGiCkAAAADxBQAAIABYgoAAMAAMQUAAGCAmAIAADBATAEAABggpgAAAAwQUwAAAAaIKQAAAAPEFAAAgAG3xlRZWZlmz56tyMhI+fv7q2vXrlqwYIEqKiquuVxpaamef/55denSRX5+frrpppv05ptvNtKoAQAA/o+vOze+ePFipaamKi0tTdHR0crOzlZiYqIcDoeeeuqpGpd7+OGHde7cOa1cuVI333yz8vPzVVZW1ogjBwAA+J5bY2rXrl0aNWqURowYIUmKiIhQenq6srOza1zmb3/7m7KysnTixAm1bdvWuRwAAIA7uPVrvv79+2vLli06duyYJOnAgQPasWOHYmJialzm/fffV58+fbRkyRJ17NhRUVFRmj59ui5evNhYwwYAAHBy65mpmTNnqrCwUD169JDdbld5ebmSk5MVFxdX4zInTpzQjh071KpVK2VkZOj8+fOaPHmyvv322xqvmyotLVVpaanzeVFRkcvfCwAA8E5uPTO1YcMGrVmzRuvWrdO+ffuUlpampUuXKi0trcZlKioqZLPZtHbtWt15552KiYnRsmXLtHr16hrPTi1atEgOh8P5CA8Pb6i3BAAAvIzNsizLXRsPDw/XrFmzNGXKFOe0hQsXas2aNfrss8+qXWbChAnauXOnvvzyS+e0o0eP6pZbbtGxY8fUrVu3KstUd2YqPDxchYWFCgwMdOE7AgAADaWoqEgOh8Pjjt9uPTNVUlIiH5/KQ7Db7de8NcI999yjM2fO6LvvvnNOO3bsmHx8fNSpU6dql/Hz81NgYGClBwAAgCu4NaZGjhyp5ORkffDBB8rNzVVGRoaWLVumMWPGOOdJSkpSfHy88/n48ePVrl07JSYm6siRI9q+fbtmzJihiRMnyt/f3x1vAwAAeDG3XoCekpKiOXPmaPLkycrPz1dYWJgmTZqkuXPnOufJy8vTqVOnnM9bt26tDz/8UE8++aT69Omjdu3a6eGHH9bChQvd8RYAAICXc+s1U+7iqd+5AgCAmnnq8Zvf5gMAADBATAEAABggpgAAAAwQUwAAAAaIKQAAAAPEFAAAgAFiCgAAwAAxBQAAYICYAgAAMEBMAQAAGCCmAAAADBBTAAAABogpAAAAA8QUAACAAWIKAADAADEFAABggJgCAAAwQEwBAAAYIKYAAAAMEFMAAAAGiCkAAAADxBQAAIABYgoAAMAAMQUAAGCAmAIAADBATAEAABggpgAAAAwQUwAAAAaIKQAAAAPEFAAAgAFiCgAAwAAxBQAAYICYAgAAMEBMAQAAGCCmAAAADBBTAAAABogpAAAAA8QUAACAAWIKAADAADEFAABggJgCAAAwQEwBAAAYIKYAAAAMEFMAAAAGiCkAAAADxBQAAIABYgoAAMAAMQUAAGCAmAIAADBATAEAABggpgAAAAwQUwAAAAaIKQAAAAPEFAAAgAFiCgAAwAAxBQAAYICYAgAAMEBMAQAAGCCmAAAADBBTAAAABogpAAAAA8QUAACAAWIKAADAADEFAABggJgCAAAwQEwBAAAYIKYAAAAMEFMAAAAGiCkAAAADxBQAAIABYgoAAMCAW2OqrKxMs2fPVmRkpPz9/dW1a1ctWLBAFRUVtVp+586d8vX1Ve/evRt2oAAAADXwdefGFy9erNTUVKWlpSk6OlrZ2dlKTEyUw+HQU089dc1lCwsLFR8fr/vuu0/nzp1rpBEDAABU5taY2rVrl0aNGqURI0ZIkiIiIpSenq7s7OzrLjtp0iSNHz9edrtd7733XgOPFAAAoHpu/Zqvf//+2rJli44dOyZJOnDggHbs2KGYmJhrLrdq1SodP35c8+bNq9V2SktLVVRUVOkBAADgCm49MzVz5kwVFhaqR48estvtKi8vV3JysuLi4mpc5osvvtCsWbP0P//zP/L1rd3wFy1apPnz57tq2AAAAE5uPTO1YcMGrVmzRuvWrdO+ffuUlpampUuXKi0trdr5y8vLNX78eM2fP19RUVG13k5SUpIKCwudj9OnT7vqLQAAAC9nsyzLctfGw8PDNWvWLE2ZMsU5beHChVqzZo0+++yzKvMXFBQoKChIdrvdOa2iokKWZclut2vz5s269957r7vdoqIiORwOFRYWKjAw0DVvBgAANChPPX679Wu+kpIS+fhUPjlmt9trvDVCYGCgDh06VGnaG2+8oa1bt+rdd99VZGRkg40VAACgOm6NqZEjRyo5OVmdO3dWdHS0cnJytGzZMk2cONE5T1JSkv7xj3/orbfeko+Pj3r27FlpHR06dFCrVq2qTAcAAGgMbo2plJQUzZkzR5MnT1Z+fr7CwsI0adIkzZ071zlPXl6eTp065cZRAgAA1Myt10y5i6d+5woAAGrmqcdvfpsPAADAADEFAABggJgCAAAwQEwBAAAYIKYAAAAMEFMAAAAGiCkAAAADxBQAAIABYgoAAMAAMQUAAGCAmAIAADBATAEAABggpgAAAAwQUwAAAAaIKQAAAAPEFAAAgAFiCgAAwAAxBQAAYICYAgAAMEBMAQAAGCCmAAAADBBTAAAABogpAAAAA8QUAACAAWIKAADAADEFAABggJgCAAAwQEwBAAAYIKYAAAAMEFMAAAAGiCkAAAADxBQAAIABYgoAAMAAMQUAAGCAmAIAADBATAEAABggpgAAAAwQUwAAAAaIKQAAAAPEFAAAgIF6xdScOXNUXl5eZXphYaHi4uKMBwUAANBU1Cum3nrrLd1zzz06fvy4c9q2bdvUq1cv5ebmumpsAAAAHq9eMXXw4EFFRESod+/e+tOf/qQZM2Zo6NChSkhI0I4dO1w9RgAAAI/lW5+FHA6H1q9fr+eff16TJk2Sr6+v/vrXv+q+++5z9fgAAAA8Wr0vQE9JSdHLL7+suLg4de3aVdOmTdOBAwdcOTYAAACPV6+YeuCBBzR//ny99dZbWrt2rXJycvTzn/9cd911l5YsWeLqMQIAAHisesVUWVmZDh48qHHjxkmS/P39tWLFCr377rt6+eWXXTpAAAAAT2azLMty5QrPnz+vG2+80ZWrdLmioiI5HA4VFhYqMDDQ3cMBAAC14KnHb5fftNPTQwoAAMCV6vXXfD4+PrLZbDW+Xt0NPQEAAJqjesVURkZGpedXrlxRTk6O0tLSNH/+fJcMDAAAoClw6TVT69at04YNG7Rp0yZXrbJBeOp3rgAAoGaeevx26TVTffv21UcffeTKVQIAAHg0l8XUxYsXlZKSok6dOrlqlQAAAB6vXtdMBQUFVboA3bIsFRcXKyAgQGvWrHHZ4AAAADxdvWLq5ZdfrhRTPj4+at++vfr27augoCCXDQ4AAMDT1SumEhISXDwMAACApqnWMXXw4MFar/RnP/tZvQYDAADQ1NQ6pnr37i2bzabr3UnBZrNx004AAOA1ah1TJ0+ebMhxAAAANEm1jqkxY8Zoy5YtCgoK0oIFCzR9+nQFBAQ05NgAAAA8Xq3vM3X06FFduHBBkjR//nx99913DTYoAACApqJO10wlJiaqf//+sixLS5cuVevWraudd+7cuS4bYFNhWZYuXuFaMQAAJMm/hb3SbZSas1r/Nt/nn3+uefPm6fjx49q3b59uueUW+fpWbTGbzaZ9+/a5fKCu1BC/7VNyuUy3zP27S9YFAEBTd2TBMAW0rNcdmGrkqb/NV+t32b17d61fv17S9zfp3LJlizp06NBgAwMAAGgK6pWMFRUVtZpvxIgR+s///E+FhobWZzNNin8Lu44sGObuYQAA4BH8W9jdPYRG49rzbz+yfft2Xbx4sSE34TFsNpvLT2cCAADPV+u/5gMAAEBVxBQAAIABYgoAAMAAMQUAAGDArTFVVlam2bNnKzIyUv7+/uratasWLFhwzb8W3Lhxo+6//361b99egYGB6tevn/7+d+7vBAAA3KNBY+q5555T27Zta3x98eLFSk1N1WuvvaajR49qyZIl+sMf/qCUlJQal9m+fbvuv/9+ZWZmau/evRo8eLBGjhypnJychngLAAAA11TrO6D/0DvvvKP09HQdO3ZMNptN3bp10/jx4zVu3Lg6recXv/iFgoODtXLlSue0sWPHKiAgQG+//Xat1xMdHa3Y2Nha/4yNp95BFQAA1MxTj991OjNVUVGh2NhYxcbG6siRI7r55pvVtWtXHT58WLGxsfrVr36lurRZ//79tWXLFh07dkySdODAAe3YsUMxMTF1GlNxcfE1z4CVlpaqqKio0gMAAMAV6nSXyeXLl+ujjz7S+++/r1/84heVXnv//feVmJioV155RU8//XSt1jdz5kwVFhaqR48estvtKi8vV3JysuLi4mo9ppdeekkXLlzQww8/XOM8ixYt0vz582u9TgAAgNqq09d8P/vZz/T0009r4sSJ1b6+cuVKLV++XIcOHarV+tavX68ZM2boD3/4g6Kjo7V//349/fTTWrZsmSZMmHDd5dPT0/XYY49p06ZNGjJkSI3zlZaWqrS01Pm8qKhI4eHhHneaEAAA1MxTv+arU0z5+/vr888/V+fOnat9/auvvlKPHj1q/RMy4eHhmjVrlqZMmeKctnDhQq1Zs0afffbZNZfdsGGDEhMT9c4772jEiBG1fQuSPHdnAACAmnnq8btO10z5+/uroKCgxteLiork7+9f6/WVlJTIx6fyEOx2+3V/SDk9PV0JCQlat25dnUMKAADAleoUU/369dOKFStqfP31119Xv379ar2+kSNHKjk5WR988IFyc3OVkZGhZcuWacyYMc55kpKSFB8f73yenp6u+Ph4vfTSS7rrrrt09uxZnT17VoWFhXV5KwAAAC5Rp6/5PvnkEw0aNEijR4/W9OnT1aNHD1mWpaNHj+qll17Spk2b9PHHH+uee+6p1fqKi4s1Z84cZWRkKD8/X2FhYYqLi9PcuXPVsmVLSVJCQoJyc3O1bds2SdKgQYOUlZVVZV0TJkzQ6tWra7VdTz1NCAAAauapx+8632cqIyND//Zv/6Zvv/220vSgoCD9x3/8h8aOHevSATYET90ZAACgZp56/K7XTTtLSkr097//XV988YUkKSoqSkOHDlVAQIDLB9gQPHVnAACAmnnq8btO95naunWrpk6dqt27d1e6rkmSCgsLFR0drdTUVA0YMMClgwQAAPBUdboAffny5Xr88cerrUGHw6FJkyZp2bJlLhscAACAp6tTTB04cEDDhw+v8fWhQ4dq7969xoMCAABoKuoUU+fOnVOLFi1qfN3X11f/+7//azwoAACApqJOMdWxY8dr/lTMwYMHFRoaajwoAACApqJOMRUTE6O5c+fq0qVLVV67ePGi5s2bV+UHkAEAAJqzOt0a4dy5c/qXf/kX2e12TZ06Vd27d5fNZtPRo0f1+uuvq7y8XPv27VNwcHBDjtmYp/5pJQAAqJmnHr/rdGuE4OBgffLJJ/rNb36jpKQkXe0wm82mYcOG6Y033vD4kAIAAHClOsWUJHXp0kWZmZn65z//qS+//FKWZalbt24KCgpqiPEBAAB4tDrH1FVBQUG64447XDkWAACAJqdOF6ADAACgMmIKAADAADEFAABggJgCAAAwQEwBAAAYIKYAAAAMEFMAAAAGiCkAAAADxBQAAIABYgoAAMAAMQUAAGCAmAIAADBATAEAABggpgAAAAwQUwAAAAaIKQAAAAPEFAAAgAFiCgAAwAAxBQAAYICYAgAAMEBMAQAAGCCmAAAADBBTAAAABogpAAAAA8QUAACAAWIKAADAADEFAABggJgCAAAwQEwBAAAYIKYAAAAMEFMAAAAGiCkAAAADxBQAAIABYgoAAMAAMQUAAGCAmAIAADBATAEAABggpgAAAAwQUwAAAAaIKQAAAAPEFAAAgAFiCgAAwAAxBQAAYICYAgAAMEBMAQAAGCCmAAAADBBTAAAABogpAAAAA8QUAACAAWIKAADAADEFAABggJgCAAAwQEwBAAAYIKYAAAAMEFMAAAAGiCkAAAADxBQAAIABYgoAAMAAMQUAAGDArTFVVlam2bNnKzIyUv7+/uratasWLFigioqKay6XlZWl22+/Xa1atVLXrl2VmpraSCMGAACozNedG1+8eLFSU1OVlpam6OhoZWdnKzExUQ6HQ0899VS1y5w8eVIxMTF6/PHHtWbNGu3cuVOTJ09W+/btNXbs2EZ+BwAAwNu5NaZ27dqlUaNGacSIEZKkiIgIpaenKzs7u8ZlUlNT1blzZy1fvlyS9NOf/lTZ2dlaunQpMQUAABqdW7/m69+/v7Zs2aJjx45Jkg4cOKAdO3YoJiamxmV27dqloUOHVpo2bNgwZWdn68qVKw06XgAAgB9z65mpmTNnqrCwUD169JDdbld5ebmSk5MVFxdX4zJnz55VcHBwpWnBwcEqKyvT+fPnFRoaWmWZ0tJSlZaWOp8XFRW57k0AAACv5tYzUxs2bNCaNWu0bt067du3T2lpaVq6dKnS0tKuuZzNZqv03LKsaqdftWjRIjkcDucjPDzcNW8AAAB4PbfG1IwZMzRr1iz96le/Uq9evfToo4/qmWee0aJFi2pcJiQkRGfPnq00LT8/X76+vmrXrl21yyQlJamwsND5OH36tEvfBwAA8F5u/ZqvpKREPj6Ve85ut1/z1gj9+vXTX/7yl0rTNm/erD59+qhFixbVLuPn5yc/Pz/zAQMAAPyIW89MjRw5UsnJyfrggw+Um5urjIwMLVu2TGPGjHHOk5SUpPj4eOfzJ554Ql999ZV++9vf6ujRo3rzzTe1cuVKTZ8+3R1vAQAAeDm3nplKSUnRnDlzNHnyZOXn5yssLEyTJk3S3LlznfPk5eXp1KlTzueRkZHKzMzUM888o9dff11hYWF69dVXuS0CAABwC5t19eptL1JUVCSHw6HCwkIFBga6ezgAAKAWPPX4zW/zAQAAGCCmAAAADBBTAAAABogpAAAAA8QUAACAAWIKAADAADEFAABggJgCAAAwQEwBAAAYIKYAAAAMEFMAAAAGiCkAAAADxBQAAIABYgoAAMAAMQUAAGCAmAIAADBATAEAABggpgAAAAwQUwAAAAaIKQAAAAPEFAAAgAFiCgAAwAAxBQAAYICYAgAAMEBMAQAAGCCmAAAADBBTAAAABogpAAAAA8QUAACAAWIKAADAADEFAABggJgCAAAwQEwBAAAYIKYAAAAMEFMAAAAGiCkAAAADxBQAAIABYgoAAMAAMQUAAGCAmAIAADBATAEAABggpgAAAAwQUwAAAAaIKQAAAAPEFAAAgAFiCgAAwAAxBQAAYICYAgAAMEBMAQAAGCCmAAAADBBTAAAABogpAAAAA8QUAACAAWIKAADAADEFAABggJgCAAAwQEwBAAAYIKYAAAAMEFMAAAAGiCkAAAADxBQAAIABYgoAAMAAMQUAAGCAmAIAADBATAEAABggpgAAAAwQUwAAAAaIKQAAAAPEFAAAgAFiCgAAwAAxBQAAYMCtMRURESGbzVblMWXKlBqXWbt2rW699VYFBAQoNDRUiYmJ+uabbxpx1AAAAP/HrTG1Z88e5eXlOR8ffvihJOmhhx6qdv4dO3YoPj5ev/71r3X48GG988472rNnjx577LHGHDYAAICTrzs33r59+0rPX3zxRd10000aOHBgtfPv3r1bERERmjZtmiQpMjJSkyZN0pIlSxp8rAAAANXxmGumLl++rDVr1mjixImy2WzVznP33Xfr66+/VmZmpizL0rlz5/Tuu+9qxIgR11x3aWmpioqKKj0AAABcwWNi6r333lNBQYESEhJqnOfuu+/W2rVrFRsbq5YtWyokJERt2rRRSkrKNde9aNEiORwO5yM8PNzFowcAAN7KZlmW5e5BSNKwYcPUsmVL/eUvf6lxniNHjmjIkCF65plnNGzYMOXl5WnGjBm64447tHLlyhqXKy0tVWlpqfN5UVGRwsPDVVhYqMDAQJe+DwAA0DCKiorkcDg87vjtETH11VdfqWvXrtq4caNGjRpV43yPPvqoLl26pHfeecc5bceOHRowYIDOnDmj0NDQWm3PU3cGAAComacevz3ia75Vq1apQ4cO1732qaSkRD4+lYdst9slSR7QhAAAwAu5PaYqKiq0atUqTZgwQb6+lf+4MCkpSfHx8c7nI0eO1MaNG7VixQqdOHFCO3fu1LRp03TnnXcqLCyssYcOAADg3lsjSNJHH32kU6dOaeLEiVVey8vL06lTp5zPExISVFxcrNdee02/+93v1KZNG917771avHhxYw4ZAADAySOumWpsnvqdKwAAqJmnHr/d/jUfAABAU0ZMAQAAGCCmAAAADLj9AnR3uHqZGD8rAwBA03H1uO1pl3t7ZUwVFxdLEj8rAwBAE1RcXCyHw+HuYTh55V/zVVRU6MyZM7IsS507d9bp06c96q8C4DpXfzqIfdz8sa+9C/vb+1zd50eOHFH37t2r3MTbnbzyzJSPj486derkPF0YGBjI/xmbOfax92Bfexf2t/fp2LGjR4WUxAXoAAAARogpAAAAA14dU35+fpo3b578/PzcPRQ0EPax92Bfexf2t/fx5H3ulRegAwAAuIpXn5kCAAAwRUwBAAAYIKYAAAAMeFxMLVq0SHfccYduuOEGdejQQaNHj9bnn39eaR7LsvTCCy8oLCxM/v7+GjRokA4fPlxpnj/+8Y8aNGiQAgMDZbPZVFBQUGVbv/zlL9W5c2e1atVKoaGhevTRR3XmzJnrjvHQoUMaOHCg/P391bFjRy1YsKDSre3z8vI0fvx4503Fnn766Xp9Fs1Vc9jHP7Rz5075+vqqd+/etf4MvEVz2NcJCQmy2WxVHtHR0fX7UJoxT9/fly5dUkJCgnr16iVfX1+NHj262vmysrJ0++23q1WrVuratatSU1Pr9Dl4k8bc51eVlpaqd+/estls2r9//3XH2BjHbI+LqaysLE2ZMkW7d+/Whx9+qLKyMg0dOlQXLlxwzrNkyRItW7ZMr732mvbs2aOQkBDdf//9zp+JkaSSkhINHz5czz33XI3bGjx4sP7rv/5Ln3/+uf785z/r+PHjGjdu3DXHV1RUpPvvv19hYWHas2ePUlJStHTpUi1btsw5T2lpqdq3b6/nn39et956q8Gn0Tw1h318VWFhoeLj43XffffV45No/prDvn7llVeUl5fnfJw+fVpt27bVQw89ZPDJNE+evr/Ly8vl7++vadOmaciQIdXOc/LkScXExGjAgAHKycnRc889p2nTpunPf/5zHT8N79CY+/yqZ599VmFhYbUaX6Mdsy0Pl5+fb0mysrKyLMuyrIqKCiskJMR68cUXnfNcunTJcjgcVmpqapXlP/74Y0uS9c9//vO629q0aZNls9msy5cv1zjPG2+8YTkcDuvSpUvOaYsWLbLCwsKsioqKKvMPHDjQeuqpp667bW/WlPdxbGysNXv2bGvevHnWrbfeet3te7umvK+vysjIsGw2m5Wbm3vdMXg7T9vfPzRhwgRr1KhRVaY/++yzVo8ePSpNmzRpknXXXXfVar3erqH3eWZmptWjRw/r8OHDliQrJyfnmuNprGO2x52Z+rHCwkJJUtu2bSV9/18NZ8+e1dChQ53z+Pn5aeDAgfrkk0/qvZ1vv/1Wa9eu1d13360WLVrUON+uXbs0cODASve5GDZsmM6cOaPc3Nx6b9+bNdV9vGrVKh0/flzz5s2r95i8TVPd1z+0cuVKDRkyRF26dKn3+LyFp+3v2ti1a1el8Unf/zORnZ2tK1euGK3bGzTkPj937pwef/xxvf322woICKjVMo11zPbomLIsS7/97W/Vv39/9ezZU5J09uxZSVJwcHCleYODg52v1cXMmTP1k5/8RO3atdOpU6e0adOma85/9uzZarf9w7Gh9prqPv7iiy80a9YsrV27Vr6+XvkTl3XWVPf1D+Xl5emvf/2rHnvssTqPzdt44v6ujZr+mSgrK9P58+eN19+cNeQ+tyxLCQkJeuKJJ9SnT59aL9dYx2yPjqmpU6fq4MGDSk9Pr/KazWar9NyyrCrTamPGjBnKycnR5s2bZbfbFR8f77wwLTo6Wq1bt1br1q31wAMPXHPb1U3H9TXFfVxeXq7x48dr/vz5ioqKqvN4vFVT3Nc/tnr1arVp06bGC5fxfzx1f9cG/46vn4bc5ykpKSoqKlJSUlKN87jzmO2x/0n95JNP6v3339f27dvVqVMn5/SQkBBJ3xdlaGioc3p+fn6V+qyNG2+8UTfeeKOioqL005/+VOHh4dq9e7f69eunzMxM52ldf39/5/Z/XLP5+fmSqpY3rq2p7uPi4mJlZ2crJydHU6dOlSRVVFTIsiz5+vpq8+bNuvfee+s8zuasqe7rH7IsS2+++aYeffRRtWzZss5j8yaeur9ro6Z/Jnx9fdWuXbs6j9FbNPQ+37p1q3bv3l3lp2T69OmjRx55RGlpaW49ZnvcmSnLsjR16lRt3LhRW7duVWRkZKXXIyMjFRISog8//NA57fLly8rKytLdd99tvG3p+yv7JalLly66+eabdfPNN6tjx46SpH79+mn79u26fPmyc7nNmzcrLCxMERERRtv3Fk19HwcGBurQoUPav3+/8/HEE0+oe/fu2r9/v/r27Ws0xuakqe/rH8rKytKXX36pX//610bjas48fX/XRr9+/SqNT/r+n4k+ffoYX4/VHDXWPn/11Vd14MAB579zMzMzJUkbNmxQcnKyJDcfs+t8yXoD+81vfmM5HA5r27ZtVl5envNRUlLinOfFF1+0HA6HtXHjRuvQoUNWXFycFRoaahUVFTnnycvLs3Jycqw//elPliRr+/btVk5OjvXNN99YlmVZn376qZWSkmLl5ORYubm51tatW63+/ftbN910U6Wr/n+soKDACg4OtuLi4qxDhw5ZGzdutAIDA62lS5dWmi8nJ8fKycmxbr/9dmv8+PFWTk6OdfjwYRd/Wk1Tc9nHP8Rf81WvOe3rf/3Xf7X69u3rwk+n+fH0/W1ZlnX48GErJyfHGjlypDVo0CDnv6uvOnHihBUQEGA988wz1pEjR6yVK1daLVq0sN59913XfljNRGPt8x87efJkrf6ar7GO2R4XU5Kqfaxatco5T0VFhTVv3jwrJCTE8vPzs37+859bhw4dqrSeefPmXXM9Bw8etAYPHmy1bdvW8vPzsyIiIqwnnnjC+vrrr687xoMHD1oDBgyw/Pz8rJCQEOuFF16o8ieW1W27S5cuph9Ps9Bc9vGPx0JMVdVc9nVBQYHl7+9v/fGPfzT+TJqzprC/u3TpUu26f2jbtm3WbbfdZrVs2dKKiIiwVqxYYfzZNFeNtc9/rLYxZVmNc8y2/f+VAAAAoB487popAACApoSYAgAAMEBMAQAAGCCmAAAADBBTAAAABogpAAAAA8QUAACAAWIKAADAADEFoEnYtm2bbDabCgoK3D0UAKiEO6AD8EiDBg1S7969tXz5cknf/zjqt99+q+DgYNlsNvcODgB+wNfdAwCA2mjZsqVCQkLcPQwAqIKv+QB4nISEBGVlZemVV16RzWaTzWbT6tWrK33Nt3r1arVp00b//d//re7duysgIEDjxo3ThQsXlJaWpoiICAUFBenJJ59UeXm5c92XL1/Ws88+q44dO+onP/mJ+vbtq23btrnnjQJoFjgzBcDjvPLKKzp27Jh69uypBQsWSJIOHz5cZb6SkhK9+uqrWr9+vYqLi/Xggw/qwQcfVJs2bZSZmakTJ05o7Nix6t+/v2JjYyVJiYmJys3N1fr16xUWFqaMjAwNHz5chw4dUrdu3Rr1fQJoHogpAB7H4XCoZcuWCggIcH6199lnn1WZ78qVK1qxYoVuuukmSdK4ceP09ttv69y5c2rdurVuueUWDR48WB9//LFiY2N1/Phxpaen6+uvv1ZYWJgkafr06frb3/6mVatW6fe//33jvUkAzQYxBaDJCggIcIaUJAUHBysiIkKtW7euNC0/P1+StG/fPlmWpaioqErrKS0tVbt27Rpn0ACaHWIKQJPVokWLSs9tNlu10yoqKiRJFRUVstvt2rt3r+x2e6X5fhhgAFAXxBQAj9SyZctKF467wm233aby8nLl5+drwIABLl03AO/FX/MB8EgRERH69NNPlZubq/PnzzvPLpmIiorSI488ovj4eG3cuFEnT57Unj17tHjxYmVmZrpg1AC8ETEFwCNNnz5ddrtdt9xyi9q3b69Tp065ZL2rVq1SfHy8fve736l79+765S9/qU8//VTh4eEuWT8A78Md0AEAAAxwZgoAAMAAMQUAAGCAmAIAADBATAEAABggpgAAAAwQUwAAAAaIKQAAAAPEFAAAgAFiCgAAwAAxBQAAYICYAgAAMEBMAQAAGPh/i/k8Xg1q+LkAAAAASUVORK5CYII=",
-      "text/plain": [
-       "<Figure size 640x480 with 1 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
     }
    ],
    "source": [
-    "teat_2013.plot()"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "id": "0aa5d164-b766-4806-944e-c70dd7cca0ac",
-   "metadata": {},
-   "source": [
-    "# Let's look at different datasets"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 7,
-   "id": "dfacc763-0205-4960-a56f-bb4a85dd0e42",
-   "metadata": {
-    "tags": []
-   },
-   "outputs": [],
-   "source": [
-    "path_explore = '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_*.nc'\n",
-    "files_explore = glob.glob(path_explore)"
+    "cams_file = 'cams-glob-ant-anthro-nox.csv'\n",
+    "cams_data = pd.read_csv(cams_file, sep='\\t')\n",
+    "cams_data.columns = ['Date', 'Off Road', 'Road', 'Sum']\n",
+    "cams_data.set_index('Date')"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 8,
-   "id": "002055ea-63e9-4d70-b34a-859424fa13f0",
+   "execution_count": 34,
+   "id": "3020114a-db80-4f3f-a4c8-f256a7c293dd",
    "metadata": {
-    "collapsed": true,
-    "jupyter": {
-     "outputs_hidden": true
-    },
     "tags": []
    },
    "outputs": [
     {
      "data": {
       "text/plain": [
-       "['/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_188001-188912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_178001-178912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_177001-177912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_179001-179912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_181001-181912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_201201-201212.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_194001-194912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_176001-176912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_196001-196912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_184001-184912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_199001-199912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_183001-183912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_193001-193912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_187001-187912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_190001-190912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_189001-189912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_195001-195912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_200001-200912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_201501-201512.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_182001-182912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_201301-201312.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_185001-185912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_175001-175912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_192001-192912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_175001-201512.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_201001-201012.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_191001-191912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_201401-201412.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_186001-186912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_180001-180912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_197001-197912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_198001-198912.nc',\n",
-       " '/pool/data/MESSY/DATA/MESSy2/raw/offemis/CMIP6/CMIP6v6.1_DLR1.1_hist-piNTCF_bb_MISC_201101-201112.nc']"
+       "0     1.279055\n",
+       "1     1.274246\n",
+       "2     1.276509\n",
+       "3     1.323127\n",
+       "4     1.399741\n",
+       "5     1.487213\n",
+       "6     1.517617\n",
+       "7     1.508236\n",
+       "8     1.403617\n",
+       "9     1.290227\n",
+       "10    1.272519\n",
+       "11    1.413059\n",
+       "12    1.423738\n",
+       "13    1.385857\n",
+       "14    1.398960\n",
+       "15    1.403518\n",
+       "16    1.327374\n",
+       "17    1.287235\n",
+       "18    1.265572\n",
+       "19    1.249651\n",
+       "20    1.239334\n",
+       "21    1.224181\n",
+       "22    1.213093\n",
+       "23    1.207082\n",
+       "Name: Off Road, dtype: float64"
       ]
      },
-     "execution_count": 8,
+     "execution_count": 34,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
-    "files_explore"
+    "cams_data['Off Road']"
    ]
   },
   {
    "cell_type": "code",
    "execution_count": null,
-   "id": "d695b8f6-f060-469e-aa91-22d6cb705524",
+   "id": "feb1d952-e323-4ea5-9e3a-697e2c63e3ec",
    "metadata": {},
    "outputs": [],
    "source": []
diff --git a/scenario comparison/scenarios_vs_historical.ipynb b/scenario comparison/scenarios_vs_historical.ipynb
index 29fb556d995e80a80017f3f93cf43714b05df78d..92eb8b6f9f2b89e6838db788650b9b8b595f51cd 100644
--- a/scenario comparison/scenarios_vs_historical.ipynb	
+++ b/scenario comparison/scenarios_vs_historical.ipynb	
@@ -10,7 +10,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 1,
+   "execution_count": 33,
    "id": "d632c09d-0b9e-4cb7-8623-b0d2b323bae3",
    "metadata": {
     "tags": []
@@ -22,7 +22,8 @@
     "import matplotlib.pyplot as plt\n",
     "import pandas as pd\n",
     "import glob\n",
-    "from IPython.display import Image"
+    "from IPython.display import Image\n",
+    "from IPython.display import IFrame"
    ]
   },
   {
@@ -744,7 +745,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 13,
    "id": "36965efb-9bd9-4581-912d-d60ba898a08a",
    "metadata": {
     "tags": []
@@ -759,39 +760,58 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
-   "id": "e8581927-df28-4448-b638-f9a7fe293385",
+   "execution_count": 136,
+   "id": "fd7836aa-84ce-4ecd-a5de-e03b27c997fa",
    "metadata": {
     "tags": []
    },
    "outputs": [],
+   "source": [
+    "CO_hist_emissions = pd.DataFrame({'CO hist': CO_hist_road_yearly_global_weighted_averages}, index = pd.date_range(\"1/1/1750\", periods=265, freq='Y')) \n",
+    "NH3_hist_emissions = pd.DataFrame({'NH3 hist': NH3_hist_road_yearly_global_weighted_averages}, index = pd.date_range(\"1/1/1750\", periods=265, freq='Y')) \n",
+    "NOx_hist_emissions = pd.DataFrame({'NOx hist': NOx_hist_road_yearly_global_weighted_averages}, index = pd.date_range(\"1/1/1750\", periods=265, freq='Y')) \n",
+    "SO2_hist_emissions = pd.DataFrame({'SO2 hist': SO2_hist_road_yearly_global_weighted_averages}, index = pd.date_range(\"1/1/1750\", periods=265, freq='Y')) "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 139,
+   "id": "5061f3cf-e235-408e-aa7b-463e0f153e92",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAHWCAYAAACmMzqDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAADZvklEQVR4nOzdd3wU1frH8c+m94T0hCQQeg0tgqBSpEkVK4pSbKiIiogU9Qqi0hQFr4KgCJZLERHEhiAgFnoTpAuEmgABUkhPdn5/RPZnTEICbLIp3/fr7gv3zNkzz+yQm4dnzpwxGYZhICIiIiIiIiIiUorsbB2AiIiIiIiIiIhUPipKiYiIiIiIiIhIqVNRSkRERERERERESp2KUiIiIiIiIiIiUupUlBIRERERERERkVKnopSIiIiIiIiIiJQ6FaVERERERERERKTUqSglIiIiIiIiIiKlTkUpEREREREREREpdSpKiVRg8+bNw2Qy4eLiwrFjx/Jtb9++PY0aNcrXnpKSwqRJk2jWrBkeHh64u7vTtGlTJkyYQEpKynXFdPjwYZydndmwYYOlbdCgQZhMJho2bEhOTk6+z5hMJoYOHZqv/cSJEwwdOpSaNWvi4uJClSpVaN++Pf/73/8wDCNP34MHD+Lk5MT27duvK/6SUL16dQYNGmT1cQcNGkT16tWtPq6IiIhc2bXkYNWrV6dnz54Fjrd161ZMJhPz5s2ztO3cuZMePXoQERGBq6srvr6+tG7dms8//9yqx2INJpOJcePGWX3c9u3b0759e6uPKyKlR0UpkUogIyODl19+uVh9z5w5w4033sj48ePp2rUrS5cuZdmyZXTr1o3XX3+dG2+8kTNnzlxzLCNGjKBz5860bt0637a9e/fmSbau5PfffycqKoqvv/6aZ599lhUrVjBv3jyqVq3Kgw8+yP3334/ZbLb0r1OnDg888ADPPffcNcdeUpYuXcp//vMfq4/7n//8h6VLl1p9XBERESmeq8nBrlZCQgLh4eFMmDCB77//nk8//ZTq1avTv39/Xn/99RLZ57XasGEDjz76qNXHnTFjBjNmzLD6uCJSehxsHYCIlLzbbruN+fPnM2LECJo0aXLFvgMGDGD//v2sXbuWm2++2dLeuXNnevToQYcOHRg4cCArVqy46jj27dvHsmXLCvysu7s7zZs3Z+zYsfTr1w9XV9dCx0lISODOO+/E29ubTZs2ERQUZNl2++23ExUVxejRo2natCmjR4+2bBs6dCjR0dGsX7+eNm3aXHX8JaVZs2YlMm7NmjVLZFwREREpnqvJwa5WQbOEevbsydGjR5k9e3aJFcOuxY033lgi4zZo0KBExhWR0qOZUiKVwMiRI/Hz82PUqFFX7Ld161ZWrlzJI488kqcgddnNN9/Mww8/zI8//si2bdsAWLhwISaTiffeey9P37Fjx2Jvb8+qVassbTNnziQ4OJjOnTsXuP/Jkydz6tQppk+ffsU4P/roI86ePcukSZPyFKT+ebz16tXjzTffJCsry9LeokUL6tevzwcffHDF8S87dOgQ/fr1IzAwEGdnZ+rXr8/777+fp8/PP/+MyWRi/vz5jBo1ipCQEDw8POjVqxdnzpwhOTmZwYMH4+/vj7+/Pw899BCXLl3KM8a/b98zm828/vrr1K1bF1dXV3x8fIiKisrzvZw7d47BgwcTHh6Os7MzAQEB3HTTTfz000+WPgXdvpeens6YMWOIjIzEycmJqlWr8tRTT5GQkJAvpp49e7JixQqaN2+Oq6sr9erV4+OPP87TLzU1lREjRhAZGYmLiwu+vr5ER0ezYMGCYn3HIiIiFVlxczBr8vf3x8GheHMPtm7dSu/evfH19cXFxYVmzZrxxRdf5Olz+VbENWvW8Nhjj+Hn54eXlxcDBgwgJSWFuLg47r33Xnx8fAgJCWHEiBF58i/If/tecfKHI0eOcN999xEaGoqzszNBQUF07NiRnTt3WvoUVJi7cOECQ4YMoWrVqjg5OVGjRg1eeuklMjIy8sU0dOhQPvvsM+rXr4+bmxtNmjTh22+/zdOvODmXiFw7zZQSqQQ8PT15+eWXefbZZ1mzZg233nprgf0uF5D69OlT6Fh9+vRh9uzZrFq1ihYtWnDfffexbt06nn/+eW688Uaio6NZs2YNr7/+Oi+++GKeAtR3331H27ZtsbMruB7eunVr7rjjDiZPnszgwYPx9fUtNE57e3t69epV4HaTyUTv3r2ZMmUK27Zty3N1rn379ixevBjDMDCZTIUe5969e2nTpg0RERFMnTqV4OBgfvzxR5555hni4+MZO3Zsnv4vvvgiHTp0YN68ecTExDBixAjuv/9+HBwcaNKkCQsWLGDHjh28+OKLeHp68u677xa67ylTpjBu3Dhefvll2rZtS1ZWFvv3789TOOrfvz/bt2/njTfeoE6dOiQkJLB9+3bOnz9f6LiGYdCnTx9Wr17NmDFjuOWWW9i1axdjx45lw4YNbNiwAWdnZ0v/P/74g+eff57Ro0cTFBTERx99xCOPPEKtWrVo27YtAMOHD+ezzz7j9ddfp1mzZqSkpPDnn39eMQ4REZHKorg52GWGYZCdnZ2vvaA1Ny8zm82YzWYuXrzI4sWL+fHHH/NdLCzI2rVrue2222jVqhUffPAB3t7eLFy4kL59+5KamppvvctHH32UO++8k4ULF1pymuzsbA4cOMCdd97J4MGD+emnn5g8eTKhoaEMHz680H0XJ3/o3r07OTk5TJkyhYiICOLj41m/fn2+C2n/lJ6eTocOHTh8+DCvvvoqUVFR/Prrr0ycOJGdO3fy3Xff5en/3XffsWXLFsaPH4+HhwdTpkzhjjvu4MCBA9SoUQO4tpxLRK6CISIV1ty5cw3A2LJli5GRkWHUqFHDiI6ONsxms2EYhtGuXTujYcOGlv5PPPGEARj79+8vdMx9+/YZgPHkk09a2tLT041mzZoZkZGRxt69e42goCCjXbt2RnZ2tqXPmTNnDMCYNGlSvjEHDhxouLu7G4ZhGPv37zfs7e2N559/3rIdMJ566inL+3r16hnBwcFXPPaZM2cagLFo0aI87R9++KEBGPv27bvi57t27WqEhYUZiYmJedqHDh1quLi4GBcuXDAMwzDWrl1rAEavXr3y9Bs2bJgBGM8880ye9j59+hi+vr552qpVq2YMHDjQ8r5nz55G06ZNrxifh4eHMWzYsCv2GThwoFGtWjXL+xUrVhiAMWXKlDz9Fi1aZADG7Nmz88Tk4uJiHDt2zNKWlpZm+Pr6Go8//rilrVGjRkafPn2uGIeIiEhlc7U5mGHk/u4FrviaO3duvn09/vjjlu1OTk7GjBkzihVjvXr1jGbNmhlZWVl52nv27GmEhIQYOTk5eY7l6aefztOvT58+BmC8/fbbedqbNm1qNG/ePE8bYIwdO9byvqj8IT4+3gCMadOmXfEY2rVrZ7Rr187y/oMPPjAA44svvsjTb/LkyQZgrFy5Mk9MQUFBRlJSkqUtLi7OsLOzMyZOnGhpK07OJSLXTrfviVQSTk5OvP7662zdujXftOyrYfz9VLt/zjJydnbmiy++4Pz58zRv3hzDMFiwYAH29vaWPqdPnwYgMDDwiuPXrVuXRx55hPfee4/jx49bNc5/7v/UqVOFfjY9PZ3Vq1dzxx134ObmRnZ2tuXVvXt30tPT2bhxY57P/PtpOfXr1wegR48e+dovXLiQ7xa+f2rZsiV//PEHQ4YM4ccffyQpKanAPvPmzeP1119n48aN+abJF2TNmjUA+a583nPPPbi7u7N69eo87U2bNiUiIsLy3sXFhTp16uR5ilDLli354YcfGD16ND///DNpaWlFxiEiIlKZXE0OdvPNN7Nly5Z8r08//bTQz7z44ots2bKF7777jocffpihQ4fy1ltvXXE/f/31F/v37+eBBx4AyJfrxMbGcuDAgTyfuZpcp6AnDv5TUfmDr68vNWvW5M033+Ttt99mx44deR5gU5g1a9bg7u7O3Xffnaf9cu7z71ynQ4cOeHp6Wt4HBQURGBiYL9e52pxLRIpPRSmRSuS+++6jefPmvPTSSwX+Qr1cgDh69GihY8TExAAQHh6ep71WrVrccsstpKen88ADDxASEpJn++Vkw8XFpcg4x40bh729faFPpIuIiODcuXOkpKRcdZyX93+l4sn58+fJzs7mv//9L46Ojnle3bt3ByA+Pj7PZ/59q6GTk9MV29PT0wvd/5gxY3jrrbfYuHEj3bp1w8/Pj44dO7J161ZLn0WLFjFw4EA++ugjWrduja+vLwMGDCAuLu6Kx+Xg4EBAQECedpPJRHBwcL5p6H5+fvnGcHZ2zvPdvfvuu4waNYply5bRoUMHfH196dOnD4cOHSo0DhERkcqmqBzsMm9vb6Kjo/O9LheAChIREUF0dDTdu3dn5syZDB48mDFjxnDu3LlCP3P5ScojRozIl+sMGTIEuL5c50p5DhSdP5hMJlavXk3Xrl2ZMmUKzZs3JyAggGeeeYbk5ORCxz1//jzBwcEFXpR0cHC4plznWnIuESk+FaVEKhGTycTkyZM5fPgws2fPzrf98vpPy5YtK3SMy9v+vVj5Rx99xHfffUfLli1577332LRpU57t/v7+QO7ik0UJCQlh2LBhfP755+zatavAOHNycvjmm28K/LxhGCxfvhxfX19atGiRZ9vl/V+OpyBVqlTB3t6eQYMGFXi1csuWLZbiVElwcHBg+PDhbN++nQsXLrBgwQJOnDhB165dSU1NtcQ/bdo0YmJiOHbsGBMnTuSrr77KNwvqn/z8/MjOzs6XpBqGQVxc3BW/k8K4u7vz6quvsn//fuLi4pg5cyYbN24sdL0vERGRyqioHMyaWrZsSXZ2NkeOHCm0z+Xf+WPGjCk012natGmJxVic/KFatWrMmTOHuLg4Dhw4wHPPPceMGTN44YUXCh3Xz8+PM2fOWGbMX3b27Fmys7OvKde5lpxLRIpPRSmRSqZTp0507tyZ8ePH57uFLDo6mi5dujBnzhx+//33fJ/97bff+Pjjj7ntttvyFHt2797NM888w4ABA/j111+Jioqib9++XLx40dKnWrVquLq6cvjw4WLFOWrUKHx9fRk9enS+bY8++iiBgYGMGTOGs2fP5ts+ZcoU9u/fz8iRI3F0dMyz7ciRI9jZ2VG3bt1C9+3m5kaHDh3YsWMHUVFRBV6xLOjKWknw8fHh7rvv5qmnnuLChQuWGWD/FBERwdChQ+ncuTPbt28vdKyOHTsC8Pnnn+dpX7JkCSkpKZbt1yooKIhBgwZx//33c+DAAUsBTURERK6cg1nT2rVrsbOzsyzUXZC6detSu3Zt/vjjjwLznOjo6Dy3tZWk4uQPderU4eWXX6Zx48ZF5jqXLl3Kd4H18u2P15vrFDfnEpHi09P3RCqhyZMn06JFC86ePUvDhg3zbPv000/p1KkTXbp04ZlnnrH88l6zZg3Tp0+nXr16zJs3z9I/JSWFe++9l8jISGbMmIGTkxNffPEFzZs356GHHrIkBU5OTrRu3TrfWkyF8fLy4qWXXuK5557Lt83Hx4evvvqKnj170qJFC1544QWaNGlCUlISixYt4n//+x99+/Yt8Eraxo0badq0KVWqVLni/qdPn87NN9/MLbfcwpNPPkn16tVJTk7mr7/+4ptvvrGsz1QSevXqRaNGjYiOjiYgIIBjx44xbdo0qlWrRu3atUlMTKRDhw7069ePevXq4enpyZYtW1ixYgV33nlnoeN27tyZrl27MmrUKJKSkrjpppssT99r1qwZ/fv3v+pYW7VqRc+ePYmKiqJKlSrs27ePzz77jNatW+Pm5nY9X4OIiEiFc6Uc7GoNHjwYLy8vWrZsSVBQEPHx8SxevJhFixbxwgsv5Ltd/99mzZpFt27d6Nq1K4MGDaJq1apcuHCBffv2sX37dhYvXnxd8V1JUfnDrl27GDp0KPfccw+1a9fGycmJNWvWsGvXrgIvWF42YMAA3n//fQYOHEhMTAyNGzfmt99+Y8KECXTv3p1OnTpdVZzXmnOJSPGpKCVSCTVr1oz777+f+fPn59sWFBTExo0beffdd/niiy949913gdw1o1588UWGDRuGu7u7pf8TTzzB8ePH2bJli6W9Ro0afPTRR9xzzz1MmzaNYcOGAfDAAw8wePBgYmNj8605VZAhQ4bw7rvvFrjG1eWCyuTJk5k+fTonT57E1dWVJk2a8Pnnn9OvX7986wlcunSJ1atX89prrxW57wYNGrB9+3Zee+01Xn75Zc6ePYuPjw+1a9cu0Vv3IHfRzSVLlvDRRx+RlJREcHAwnTt35j//+Q+Ojo64uLjQqlUrPvvsM2JiYsjKyiIiIoJRo0YxcuTIQsc1mUwsW7aMcePGMXfuXN544w38/f3p378/EyZMwNnZ+apjvfXWW1m+fDnvvPMOqampVK1alQEDBvDSSy9dz1cgIiJSIV0pB7tarVu3Zu7cuXzyySckJCTg4eFBkyZN+Oyzz3jwwQeL/HyHDh3YvHkzb7zxBsOGDePixYv4+fnRoEED7r333uuO70qKyh+Cg4OpWbMmM2bM4MSJE5hMJmrUqMHUqVN5+umnCx3XxcWFtWvX8tJLL/Hmm29y7tw5qlatyogRIxg7duxVx3mtOZeIFJ/J+PcNtyIiJSQ9PZ2IiAief/55Ro0aVer7nzNnDs8++ywnTpwocqaUiIiIiIiIlCytKSUipcbFxYVXX32Vt99++4pPzisJ2dnZTJ48mTFjxqggJSIiIiIiUgbo9j0RKVWDBw8mISGBI0eO0Lhx41Lb74kTJ3jwwQd5/vnnS22fIiIiIiIiUjjdviciIiIiIiIiIqVOt++JiIiIiIiIiEipU1FKRERERERERERKnYpSIiIiIiIiIiJS6sr0QuczZ85k5syZxMTEANCwYUNeeeUVunXrBoBhGLz66qvMnj2bixcv0qpVK95//30aNmx4Vfsxm82cPn0aT09PTCaTtQ9DREREKgDDMEhOTiY0NBQ7u8p7XU95k4iIiBSluHlTmV7o/JtvvsHe3p5atWoB8Mknn/Dmm2+yY8cOGjZsyOTJk3njjTeYN28ederU4fXXX+eXX37hwIEDeHp6Fns/J0+eJDw8vKQOQ0RERCqQEydOEBYWZuswbEZ5k4iIiBRXUXlTmS5KFcTX15c333yThx9+mNDQUIYNG8aoUaMAyMjIICgoiMmTJ/P4448Xe8zExER8fHw4ceIEXl5eJRW6iIiIlGNJSUmEh4eTkJCAt7e3rcOxGeVNIiIiUpTi5k1l+va9f8rJyWHx4sWkpKTQunVrjh49SlxcHF26dLH0cXZ2pl27dqxfv/6KRamMjAwyMjIs75OTkwHw8vJSciUiIiJXVNlvWbt8/MqbREREpChF5U1lfkGE3bt34+HhgbOzM0888QRLly6lQYMGxMXFARAUFJSnf1BQkGVbYSZOnIi3t7flpSnoIiIiIiIiIiKlq8wXperWrcvOnTvZuHEjTz75JAMHDmTv3r2W7f+uuhmGUWQlbsyYMSQmJlpeJ06cKJHYRURERERERESkYGX+9j0nJyfLQufR0dFs2bKF6dOnW9aRiouLIyQkxNL/7Nmz+WZP/ZuzszPOzs4lF7SIiIiIiIiIiFxRmS9K/ZthGGRkZBAZGUlwcDCrVq2iWbNmAGRmZrJu3TomT55cIvvOyckhKyurRMYW63B0dMTe3t7WYYiISDl3KSObyT/sp1UNX3pGhdo6nHJJeVP54OTkdMVHdYuISMWy4s9YtsRc5MXu9bG3s/06mWW6KPXiiy/SrVs3wsPDSU5OZuHChfz888+sWLECk8nEsGHDmDBhArVr16Z27dpMmDABNzc3+vXrZ9U4DMMgLi6OhIQEq44rJcPHx4fg4OBKvxCtiIgULDk9C1dHexzsC/6HuGEYjPlqN9/8cZpFW0/QuKo31fzcSznK8kt5U/liZ2dHZGQkTk5Otg5FRERK2IkLqTyzcCeZ2Wa6NAiiVQ0/W4dUtotSZ86coX///sTGxuLt7U1UVBQrVqygc+fOAIwcOZK0tDSGDBnCxYsXadWqFStXrsTT09OqcVxOrAIDA3Fzc1Oxo4wyDIPU1FTOnj0LkOe2ThEREYANh8/zyCdbiPB148sn2+DhnD8VWrD5BN/8cRqAzGwz45bv4eNBN5R2qOWW8qbyw2w2c/r0aWJjY4mIiNC5EhGp4Kb8eIDMbDMAF1IybRxNrjJdlJozZ84Vt5tMJsaNG8e4ceNKLIacnBxLYuXnZ/sqolyZq6srkLu2WGBgoG7lExERi32xSQz+dCupmTnsj0tm1Je7eK9fszz/ED8an8Kr3+wB4MEbI1i05QRrD5xj5d4ztA53s1Xo5YbypvInICCA06dPk52djaOjo63DERGRErLt2EXLRTeAxLSycYu9biAvwuW1ENzclIiWF5fPldaxEBGRy2LiUxj48WaSM7JpEOKFo72J73bHMvf3mDz9pq48QEa2mZtq+TG+dyMGt60BwIgv/mDzkQs2iLx8Ud5U/ly+bS8nJ8fGkYiISEma9tPBPO9VlCpnNJ25/NC5EhGRfzp2PoX7P9zI2eQM6gZ5suCxG3mpe30AJq3Yz9H4FAD+PJXIt7tiMZng5R4NsLMz8fSttbmxhi/JGdk8/r9ttjyMckW/i8sPnSsRkYrPMAz+OJEAQMtIXwCS0lWUEhERESkxJy6k8uaP+7lzxnpiE9OpFejB54+2wtvNkYFtqtO2TgCZ2WZeXrYbs9lg8or9ANzeJJT6IV4AuDjaM++hlnRpEETW32swiIiIiJQnF1OzSErPBqBZuA+gmVJSSVSvXp1p06YVuj0mJgaTycTOnTtLLSYREan4th+/SOd31vH+2sOcT8mkdqAH8x9rRYCnM5A7O+T12xvh7GDH73+d5+bJa/j1UDwOdiaGd66bZywXR3tmPNCc+1uG2+JQpJJp3749w4YNu2Ifk8nEsmXLSiUeEREp/47GXwKgqo8rgV4uACSmZdsyJAsVpSqoQYMGYTKZmDRpUp72ZcuW5ZumnZOTwzvvvENUVBQuLi74+PjQrVs3fv/99xKPMzw8nNjYWBo1alRkXxWwRETkny6mZBZ4le/EhVQGf7qV9CwzTcN9eL9fc7595mYCPV3y9Ivwc+PZTrUBOJ2YjoezA+N6NyTCL/96SA72drzUo0HJHIiUCcXNnX7++WdMJhMJCQn5xvj3xbjHH3+cmjVr4urqSkBAALfffjv79++/7lhjY2Pp1q1bsfqqgCUiIkfO5S5VEOnvjrdr7kMtNFNKSpyLiwuTJ0/m4sWLhfYxDIP77ruP8ePH88wzz7Bv3z7WrVtHeHg47du3L/Ekxt7enuDgYBwcyvSDIEVEpIxJTM2iy7RfaPnGT7yz6iBpmbmLNB+NT+GheVuIv5RJgxAv/vdoK3pEheDsUPDTWB+7pQbPdarDf3o2YP2YW3nwxmqleRhSxhQnd7oaLVq0YO7cuezbt48ff/wRwzDo0qXLdS8qHhwcjLOzs1ViFBGRiu/I3+tn1ghQUUpKUadOnQgODmbixImF9vniiy/48ssv+fTTT3n00UeJjIykSZMmzJ49m969e/Poo4+SkpKCYRh06tSJ2267DcMwAEhISCAiIoKXXnrpinGkpqby8MMP4+npSUREBLNnz7Zs+/fsp4sXL/LAAw8QEBCAq6srtWvXZu7cuQBERkYC0KxZ7uO727dvfx3fjoiIlGdf/3GKc8kZZGSbmb76EK0m/MQTn22jx7u/8tfZSwR6OjNnUDTuzle+6OFob8eznWrzyM2ReLk4llL0UlYVJ3e6GoMHD6Zt27ZUr16d5s2b8/rrr3PixAliYmKu+Dmz2czIkSPx9fUlODiYcePG5dn+z9lPmZmZDB06lJCQEFxcXKhevbol/urVqwNwxx13YDKZLO9FRKRyOfqPmVJeLrm5UZKKUuWTYRikZmbb5HW5GFRc9vb2TJgwgf/+97+cPHmywD7z58+nTp069OrVK9+2559/nvPnz7Nq1SpMJhOffPIJmzdv5t133wXgiSeeICgoKF+i9G9Tp04lOjqaHTt2MGTIEJ588slCp67/5z//Ye/evfzwww/s27ePmTNn4u/vD8DmzZsB+Omnn4iNjeWrr74q7lchIiI2ZjYb7ItN4rtdsSzcfJwvt51ka8yFa75Kt3DzCQB6NwklrIorSenZrNgTR2pmDq1r+PH10JsI8Xa15iHINbJV7nS1eRMUL3e6VikpKcydO5fIyEjCw6+8Ptknn3yCu7s7mzZtYsqUKYwfP55Vq1YV2Pfdd99l+fLlfPHFFxw4cIDPP//cUnzasmULAHPnziU2NtbyXkREKpfLTxqO9HfH261szZTSPVNXKS0rhwav/GiTfe8d3xU3p6s7ZXfccQdNmzZl7NixzJkzJ9/2gwcPUr9+/QI/e7n94MGDAFStWpVZs2bRv39/zpw5wzfffMOOHTtwdLzyleXu3bszZMgQAEaNGsU777zDzz//TL169fL1PX78OM2aNSM6OhogzxW9gIAAAPz8/AgODi7iyEVEpCw4l5zBtJ8O8t3uWBJS8yc/jvYmOtQNZEDr6txc279YY/55KpG9sUk4Odgx/vaGeLo4suP4RX45eI6wKm7c1SIMezs95r6ssFXudC15ExSdO10WFhaWry01NTVf24wZMxg5ciQpKSnUq1ePVatW4eTkdMUYoqKiGDt2LAC1a9fmvffeY/Xq1XTu3Dlf3+PHj1O7dm1uvvlmTCYT1ar9/y2ol3MnHx8f5U4iIpWU2Wxw9Pzft+/5e+DokJsjJaVlYRhGvjWnS5uKUpXA5MmTufXWW3n++eev6fP//Et6zz33sHTpUiZOnMjMmTOpU6dOkZ+PiorKM1ZwcDBnz54tsO+TTz7JXXfdxfbt2+nSpQt9+vShTZs21xS3iIjY1hdbTzD+m71cysh9uoubkz0NQrzwdnUkI9vM0fgUTiWksXLvGVbuPcOUu6K494ZwNh05z7bjFzl/KZNagR70jQ7H7h9FpoVbjgPQtWEwPm65/7iPru5LdHXf0j9IqZCKkzv9+uuveHp65mkraGmBBx54gM6dOxMbG8tbb73Fvffey++//46Li0u+vpf9M3cCCAkJKTR3GjRoEJ07d6Zu3brcdttt9OzZky5dulzh6EREpDI5nZhGZrYZR3sTVau4kpGdu65httkgNTOnyKUOSpqKUlfJ1dGeveO72mzf16Jt27Z07dqVF198kUGDBuXZVqdOHfbu3Vvg5/bt2wfkXqG7LDU1lW3btmFvb8+hQ4eKtf9/z6QymUyYzeYC+3br1o1jx47x3Xff8dNPP9GxY0eeeuop3nrrrWLtS0REyoZ9sUmM+Wo3OWaDqDBvRnatR6savjja51054EBcMrN+OcxX208x+qtdLN52gi0xeReZ/vnAWd6+tymO9nZ8uiGGL7fl3lZ13w1XvgVKygZb5U7XmjfBlXOnyyIjI/Hx8cnTVtCDW7y9vfH29qZ27drceOONVKlShaVLl3L//fcXuv+ryZ2aN2/O0aNH+eGHH/jpp5+499576dSpE19++eWVD1JERCqFy7fuVfNzx97OhKujPY72JrJyDBLTslSUKm9MJtM1TQW3tUmTJtG0adN8M5vuu+8++vXrxzfffJNvXampU6fi5+eXZ6r4888/j52dHT/88APdu3enR48e3HrrrVaNNSAggEGDBjFo0CBuueUWXnjhBd566y3LVPfrfWKNiIiUrByzwei/C1JdGwYx84EWeWY6/VPdYE+m3tMEZwd7Fmw+zpaYizjYmbitUTBV3JxYtOUEP+45Q7PxqzAbBtnm3HWCbq7lT+safqV5WHKNKlrudL0MwyAjI8OqY3p5edG3b1/69u3L3XffzW233caFCxfw9fXF0dFRuZOISCX2z/WkIPf3srerI/GXMklMyyLUx7ZrcJa/DEGuSePGjXnggQf473//m6f9vvvuY/HixQwcOJA333yTjh07kpSUxPvvv8/y5ctZvHgx7u65f3m/++47Pv74YzZs2EDz5s0ZPXo0AwcOZNeuXVSpUsUqcb7yyiu0aNGChg0bkpGRwbfffmtZ2yowMBBXV1dWrFhBWFgYLi4ueHt7W2W/IiLy/7JyzFxMzSTQs/Dbi67k843H+ONEAp7ODoy/vVGhBanLTCYTr/dphLerI2eT0xnaoRY1AjwA6NOsKk9+vo2zybn/iPf3cGJEl7rc869b+kSsrbDcqbiOHDnCokWL6NKlCwEBAZw6dYrJkyfj6upK9+7drRbnO++8Q0hICE2bNsXOzo7FixcTHBxsmcVVvXp1Vq9ezU033YSzs7PVcjYRESkfjvz95L0aAe6WNi+X/y9K2ZqevleJvPbaa/meRGMymfjiiy946aWXeOedd6hXrx633HILx44dY+3atfTp0weAc+fO8cgjjzBu3DiaN28OwNixYwkNDeWJJ56wWoxOTk6MGTOGqKgo2rZti729PQsXLgRyp8S/++67zJo1i9DQUG6//Xar7VdERHIZhsGQ/23nxgmr+eaP01f9+Qspmby18gAAI2+rS5BX8Qpb9nYmRnerx9v3NrUUpABaVKvCb6Nu5ZcXOrBhzK1sGNOR+1pGaCFzKRUF5U7F5eLiwq+//kr37t2pVasW9957L+7u7qxfv57AwECrxejh4cHkyZOJjo7mhhtuICYmhu+//x47u9w0f+rUqaxatYrw8HCaNWtmtf2KiEj5cCT+8iLn/yhKuZadJ/CZjGv9TVuBJCUl4e3tTWJiIl5eXnm2paenc/ToUSIjI6+4IKWUHTpnIiLXbvHWE7zw5S4gd02eZU/dRN1gzwL7ms0GqVk5ePxjLYJxy/cwb30M9UO8+PbpmytU8ehK+UJlorypYtE5ExGpuMxmg+g3fuJCSiZLnmxDi2q5s2UHfryZdQfPMeXuKO6NLpk1OoubN+n2PREREQHgTFI6r32b+/ALfw8n4i9l0n/OJvw8nLEzwcwHWhDh5wZAZraZRz7Zwq+H4vFzd6JhVW861w/k843HAHi5R/0KVZASERERKW8OnEnmQkombk72RIX9/9I33n/PlEoqAzOldPueiIiIADDph/0kpWfTJMyb75+9hVBvF84mZ7AvNok9p5N47oud5JgNDMNgzFe7+fVQPADnUzL55eA5/vP1HrLNBh3qBnBTLX8bH03lMWPGDMsslxYtWvDrr78W63O///47Dg4ONG3atGQDFBEREZtYf/g8ADdUz/sE5LJUlNJMKRERESEhNZPvdsUCMP72RgR6urDo8db8eigeL1cHRi/ZzbZjF5nw/T4S07JYsv0k9nYmZjzQnFBvV1btjWP+5hNkZOfwUo/6Nj6aymPRokUMGzaMGTNmcNNNNzFr1iy6devG3r17iYiIKPRziYmJDBgwgI4dO3LmzJlSjFhERERKy4bDuRcQ29TM+8Ri76tYU+r8pQyS0rMtT++zNhWlREREhOV/nCYzx0z9EC+ahPsAEO7rRr9WuYWN1MwcRn65izm/HbV8ZlyvBnRtGAxA4zBvnulYm2yzgYujfanHX1m9/fbbPPLIIzz66KMATJs2jR9//JGZM2cyceLEQj/3+OOP069fP+zt7Vm2bFkpRSsiIiKlJTvHzKYjFwBoUzPvDHYv19xSUFFFqQNxydw7awPJ6Vm816853RuHWD1O3b4nIiIiLN56EoB7WoQVuP2eFmHc3jQUR3sTPRqH8L9HW9G/dfU8fRzs7VSQKkWZmZls27aNLl265Gnv0qUL69evL/Rzc+fO5fDhw4wdO7akQxQREREb+fN0EskZ2Xi5ONAgNO9C48WZKXXiQir952wiMS0LswHDFu7kt7+XbrAmzZQqJrPZbOsQpJh0rkRErs7+uCR2n0rE0d5En2ZVC+xjMpmY1rcpb9/bVAuYlxHx8fHk5OQQFBSUpz0oKIi4uLgCP3Po0CFGjx7Nr7/+ioND8dLAjIwMMjIyLO+TkpKK/Ix+F5cfehC3iEjFtP7vW/durOGXL3crqii17dhFhs7fztnkDOoGeVLd340f95yh/8ebaB5RhT5NQ7m/ZQQO9tc/z0lFqSI4OTlhZ2fH6dOnCQgIwMnJCZNJyXhZZBgGmZmZnDt3Djs7O5ycnGwdkohIubBoywkAOtUPwte98P/vNJlM2OtXYJnz77zEMIwCc5WcnBz69evHq6++Sp06dYo9/sSJE3n11VeL1Vd5U/liGAbnzp3DZDLh6Oho63BERMRKzGaDH//MvUD17/WkALyuUJT6dEMM47/ZS7bZoEaAO58+0hIfN0eeW7ST73fHse3YRbYdu8iX20/x1t1R1A7yvK5YVZQqgp2dHZGRkcTGxnL69GlbhyPF4ObmRkREBHZ2ujtVRKQo8ZcyWLg5tyjV94ZwG0cjV8Pf3x97e/t8s6LOnj2bb/YUQHJyMlu3bmXHjh0MHToUyJ3RZBgGDg4OrFy5kltvvTXf58aMGcPw4cMt75OSkggPL/jvivKm8sdkMhEWFoa9vW69FRGpKOauj+GPk4m4OdnT5e/1P//p/2dKZedp/+/qQ0xddRCAHlEhTLqzMZ4uuX1nPNCCuMR0vt11mumrD/HHiQR6vPsbj7WN5KkOtXBzurbykopSxeDk5ERERATZ2dnk5OTYOhy5Ant7exwcHHRVVkSkmGb/coS0rByahHnTrk6ArcORq+Dk5ESLFi1YtWoVd9xxh6V91apV3H777fn6e3l5sXv37jxtM2bMYM2aNXz55ZdERkYWuB9nZ2ecnZ2vKi7lTeWHo6OjClIiIhXIX2cvMWXFfgBe6lGfUB/XfH0uF6WS0nNnShmGwVsrD/D+2sMADO9ch6dvrZXv39XB3i48eksNekaFMuarXaw9cI731x5m4eYTdG0UTM/GIbSM9L2q2/pUlCqmy9OaNbVZREQqirPJ6Xy6IQaAYZ3rqKBfDg0fPpz+/fsTHR1N69atmT17NsePH+eJJ54Acmc5nTp1ik8//RQ7OzsaNWqU5/OBgYG4uLjka79eyptERERsY9IP+8nINtOuTgD9WkYU2Ofy7XuZ2WbSMnN4a+UByxOWX+pen8fa1rjiPoK9Xfh40A2s3HuG8d/s5VRCGvM3HWf+puP4uTtxR7OqDLwh/6ztgqgoJSIiUkl9+MsR0rPMNA33ob1mSZVLffv25fz584wfP57Y2FgaNWrE999/T7Vq1QCIjY3l+PHjNo5SRERESsufpxIBeKZj7UIvOHo4OWBnArMBTy/YwU/7zgAw/vaGDPjX05ULYzKZ6NowmFvrBbLh8Hm+3x3Lj3viOJ+SyUe/HeWrTYeKN46hR26QlJSEt7c3iYmJeHl5Ff0BERGRci49K4dWE1aTmJbFx4OiubVe8a5mVWbKF3LpexARESmbUjOzafDKjwDsfKUzPm6FP8Cm6fiVJKTm3r5nMsGkOxvT94aCZ1YVV1aOmV8OnuON7/fx18lznJh2b5H5glaCFhERqYR+3BNHYloWVX1caVcn0NbhiIiIiMh1iolPBaCKm+MVC1IAQZ4uAFT3c2PBYzded0EKwNHejo71g/jh2VsY2qFWsT6j2/dEREQqoctP3LsnOgx7O60lJSIiIlLexZxPAaC6v3uRfSfd1ZjdpxK5NzocF0frPvDC2cGeJ9rXZFQx+qooJSIiUsnExKew4ch5TCa4Jzrc1uGIiIiIiBUcjc8tSkX6FV2UahZRhWYRVUo6pCLp9j0REZFKJDvHzPTVuQtPtq0dQNUCHhMsIiIiIuWPpShVjJlSZYVmSomIiFRw+2KT+HRDDEFeLmyNuchvf8UD8NBN1W0bmIiIiIhYTUx88W/fKytUlBIREangXvn6T7bEXLS8d3Oy5617mtC+rhY4FxEREakoLq8ppZlSIiIiUiYcjU9hS8xF7ExwZ/MwsnPMPNG+JvWCC380r4iIiIiUL0npWcRfygQ0U0pERETKiCXbTgLQtk4Ab93TxMbRiIiIiEhJuHzrXoCnMx7O5afUo4XORUREKqgcs8GS7blFqXta6Cl7IiIiIhXV1Tx5ryxRUUpERKSC+v2veGIT0/F2daRjfa0fJSIiIlJRHbUscu5m40iuTpkuSk2cOJEbbrgBT09PAgMD6dOnDwcOHMjTxzAMxo0bR2hoKK6urrRv3549e/bYKGIREZGyY9GWEwD0bhKKi6O9jaMRERERkZJSHp+8B2W8KLVu3TqeeuopNm7cyKpVq8jOzqZLly6kpKRY+kyZMoW3336b9957jy1bthAcHEznzp1JTk62YeQiIiK2FZeYzo974gC4v2WEjaMRERERkZJ08MwlAGr4e9g4kqtTple/WrFiRZ73c+fOJTAwkG3bttG2bVsMw2DatGm89NJL3HnnnQB88sknBAUFMX/+fB5//HFbhC0iImJz8zcfJ9ts0LK6Lw1C9aQ9ERERkYoqNTObA2dyJ+Y0Cfe2cTRXp0zPlPq3xMREAHx9fQE4evQocXFxdOnSxdLH2dmZdu3asX79+kLHycjIICkpKc9LRESkosjMNjN/03EABrSpZuNoRERERKQk7T6ZSI7ZINjLhRBvV1uHc1XKTVHKMAyGDx/OzTffTKNGjQCIi8u9LSEoKChP36CgIMu2gkycOBFvb2/LKzxcTyQSEZGK44c/Y4m/lEGQlzNdGwbbOhwRERERKUHbjycA0Lyaj03juBblpig1dOhQdu3axYIFC/JtM5lMed4bhpGv7Z/GjBlDYmKi5XXixAmrxysiImIrX20/BeSuJeVoX25+1YuIiIjINdhx/CIAzcKr2DiSq1em15S67Omnn2b58uX88ssvhIWFWdqDg3Ov/sbFxRESEmJpP3v2bL7ZU//k7OyMs7NzyQUsIiJiI5cystlw+DwAPaNCiugtIiIiIuWZYRjsOJEAQLMIH5vGci1KpCiVkZHB5s2biYmJITU1lYCAAJo1a0ZkZORVjWMYBk8//TRLly7l559/zvf5yMhIgoODWbVqFc2aNQMgMzOTdevWMXnyZKsdj4iISHnxy8FzZOaYifR3p2ZA+Xr6ioiIiIhcnVMJaZxLzsDBzkSjquVrkXOwclFq/fr1/Pe//2XZsmVkZmbi4+ODq6srFy5cICMjgxo1ajB48GCeeOIJPD09ixzvqaeeYv78+Xz99dd4enpa1ony9vbG1dUVk8nEsGHDmDBhArVr16Z27dpMmDABNzc3+vXrZ81DExERKRdW7T0DQKf6gVe8lV1EREREyr8df68n1TDUCxdHe9sGcw2sttDE7bffzt13303VqlX58ccfSU5O5vz585w8eZLU1FQOHTrEyy+/zOrVq6lTpw6rVq0qcsyZM2eSmJhI+/btCQkJsbwWLVpk6TNy5EiGDRvGkCFDiI6O5tSpU6xcubJYRS8REZGKJDvHzJr9ZwHo3EALnIuIiIhUdJeLUs0iyt96UmDFmVJdunRh8eLFODk5Fbi9Ro0a1KhRg4EDB7Jnzx5Onz5d5JiGYRTZx2QyMW7cOMaNG3e1IYuIiFQoW2IukpiWRRU3R5qXwzUFREREROTqbLu8yHk5zf2sVpR66qmnit23YcOGNGzY0Fq7FhEREeCbXbkXfG6tF4SDnronIiIiUqGlZmaz51QiANHVfW0czbUpkYXO09LSWLVqFQcPHsRkMlG7dm06d+6Mq6trSexORESk0jt5MZXFW08AcFfzqjaORkRERERK2o7jCWSbDUK9XajqUz7rLVYvSi1fvpxHH32U+Pj4PO3+/v7MmTOHXr16WXuXIiIild67qw+RlWPQpqYfbWr52zocERERESlhW2IuAHBDZPmcJQVWXOgccp++d/fdd9O2bVt+//13Lly4wIULF/jtt9+45ZZbuPvuu9mwYYM1dykiIlLpHT53iS+3nQRgRNe6No5GREREREqDpShVTm/dAyvPlHr99dd56KGHmDVrVp72Nm3a0KZNGx5//HFee+01vv/+e2vuVkREpFL74OfDmA3oVD+Q5uX0ySsiIiIiUnxZOWa2H0sAoKVmSuXasGEDQ4cOLXT7U089pZlSIiIiVpSYlmVZ4PyJdjVtHI2IiIiIlIY9p5NIy8rB29WRWgEetg7nmll1plR6ejpeXl6Fbvf29iYjI8OauxQREanUlm4/SXqWmbpBnrSopllS5UVKSgrr1q3j+PHjZGZm5tn2zDPP2CgqERERKS+2HL18614V7OxMNo7m2lm1KFWnTh3WrFnDQw89VOD21atXU6tWLWvuUkREpNIyDIP5m48D0K9VBCZT+U1IKpMdO3bQvXt3UlNTSUlJwdfXl/j4eNzc3AgMDFRRSkRERIq0uQKsJwVWvn1v0KBBjBgxosA1o7777jtGjhxZaMFKRERErs62Yxc5eOYSLo529GlW1dbhSDE999xz9OrViwsXLuDq6srGjRs5duwYLVq04K233rJ1eCIiIlLGZeeY2XjkPACtavjZOJrrY9WZUs8++yzr16+nZ8+e1K1bl/r16wOwd+9eDh06RJ8+fXj22WetuUsREZFK66sdpwDoFRWKt6ujjaOR4tq5cyezZs3C3t4ee3t7MjIyqFGjBlOmTGHgwIHceeedtg5RREREyrA/TyeRnJ6Nl4sDjat62zqc62LVmVJ2dnYsXryYBQsWULduXfbv38/+/fupV68e//vf/1iyZAl2dlbdpYiISKVkGAY/7z8LQPeoEBtHI1fD0dHRcqtlUFAQx4/n3oLp7e1t+W8RERGRwvz+VzwArWv6YV+O15MCK8+Uuqxv37707du3JIYWERER4NDZS5xOTMfZwY7W5XzadmXTrFkztm7dSp06dejQoQOvvPIK8fHxfPbZZzRu3NjW4YmIiEgZ99uh3KLUzbX8bRzJ9dO0JRERkXLo5wO5s6Ra1fDDxdHextHI1ZgwYQIhIbmz21577TX8/Px48sknOXv2LLNnz7ZxdCIiIlKWpWXmsO3YRQBuqgBFKavOlLKzsyvyyT8mk4ns7Gxr7lZERKTS+fnAOQDa1wmwcSRSXJcuXcLDw4Po6GhLW0BAQIEPiBEREREpyNZjF8jMMRPq7UKkv7utw7luVi1KLV26tNBt69ev57///S+GYVhzlyIiIpXOpYxstvz9GOD2dVWUKi/8/f3p0KEDvXv3pnfv3lStqicmioiIyNX5/a/cp+61qeVf5KSg8sCqRanbb789X9v+/fsZM2YM33zzDQ888ACvvfaaNXcpIiJS6Ww4fJ6sHIMIX7cKcYWssjhw4ADLly9nyZIlDBs2jKioKHr37s3tt99OVFSUrcMTERGRcmDdwdzZ8hVhPSkowTWlTp8+zWOPPUZUVBTZ2dns3LmTTz75hIiIiJLapYiISIVnGAafbogBcmdJVYQrZJVFtWrVePrpp/npp584e/Ysw4cPZ8+ePbRt25bIyEieffZZ1qxZQ05Ojq1DFRERkTIoNjGNfbFJmEzQtoIs4WD1olRiYiKjRo2iVq1a7Nmzh9WrV/PNN9/QqFEja+9KRESk0vnhzzh+PRSPk4MdD98Uaetw5Bp5e3tz//33s3DhQuLj45k1axZms5mHHnqIgIAA/ve//9k6RBERESlj1u7PnSXVLNwHX3cnG0djHVa9fW/KlClMnjyZ4OBgFixYUODtfCIiInJtLmVkM/6bvQA80a4m1XXrXoXg4OBAly5d6NKlC//973/Zvn27ZkuJiIhIPmv25z59+dZ6gTaOxHqsWpQaPXo0rq6u1KpVi08++YRPPvmkwH5fffWVNXcrIiJSKcxed5i4pHQifN0Y0r6mrcORa7Rr164C200mEy4uLjRs2BBnZ+dSjkpERETKsvSsHH7/Kx6ADipKFWzAgAFa20JERKQEpGRk88mGYwCM7lYPF0d7G0ck16pp06ZXzJccHR3p27cvs2bNwsXFpRQjExERkbJq09ELpGXlEOzlQoMQL1uHYzVWLUrNmzfPmsOJiIjI3xZuOUFiWhaR/u50bRhs63DkOixdupRRo0bxwgsv0LJlSwzDYMuWLUydOpWxY8eSnZ3N6NGjefnll3nrrbdsHa6IiIiUAWv2nQGgQ72K9aAbqxalRERExPqycszM+fUIAIPb1sDeruIkIpXRG2+8wfTp0+nataulLSoqirCwMP7zn/+wefNm3N3def7551WUEhEREXLMBj/8GQdAx3pBNo7Guqz29L0nnniCEydOFKvvokWL9FQZERGRYlq6/RSnE9Px93DmjmZVbR2OXKfdu3dTrVq1fO3VqlVj9+7dQO4tfrGxsaUdmoiIiJRBm46e52xyBt6ujrStE2DrcKzKajOlAgICaNSoEW3atKF3795ER0cTGhqKi4sLFy9eZO/evfz2228sXLiQqlWrMnv2bGvtWkREpMI6cSGV177NfeLeY7dEai2pCqBevXpMmjSJ2bNn4+SU+zjnrKwsJk2aRL169QA4deoUQUEV60qoiIiIXJvlO08D0K1RME4OVptbVCZYrSj12muv8fTTTzNnzhw++OAD/vzzzzzbPT096dSpEx999BFdunSx1m5FREQqrOwcM88t2klyRjbNI3x45OZIW4ckVvD+++/Tu3dvwsLCiIqKwmQysWvXLnJycvj2228BOHLkCEOGDLFxpCIiImJrmdlmy617vZuE2jga6zMZhmGUxMAJCQkcO3aMtLQ0/P39qVmzZpldjCspKQlvb28SExPx8qo4q9iLiEj5NmvdYSb+sB8PZwd+ePYWwn3dbB1SpWbNfOHSpUt8/vnnHDx4EMMwqFevHv369cPT0/Oqx5oxYwZvvvkmsbGxNGzYkGnTpnHLLbcU2Perr75i5syZ7Ny5k4yMDBo2bMi4cePyrG9VFOVNIiIipeenvWd49NOtBHo6s2FMx3Kztmhx84USW+jcx8cHHx+fkhpeRESkQjubnM67qw8B8EqvBipIVQAPP/ww06dPx9PTEw8PD5544onrHnPRokUMGzaMGTNmcNNNNzFr1iy6devG3r17iYiIyNf/l19+oXPnzkyYMAEfHx/mzp1Lr1692LRpE82aNbvueERERMS6lu08BUCPqJByU5C6GiUyU2rXrl0F78xkwsXFhYiICJydna2922umK34iIlLWjPpyF4u2nqBJuA9Ln2yDXQVMQsqb680X7O3tiY2NJTAw0GoxtWrViubNmzNz5kxLW/369enTpw8TJ04s1hgNGzakb9++vPLKK8Xqr7xJRESkdCSkZtJywmoys818M/RmGod52zqkYrPpTKmmTZte8VY9R0dH+vbty6xZs3BxcSmJEERERMqtP08l8sW23CfavtKzgQpSFYS1rwNmZmaybds2Ro8enae9S5curF+/vlhjmM1mkpOT8fX1tWpsIiIicv2+3nmazGwz9UO8aFS1Yl4IKpFl25cuXUrt2rWZPXs2O3fuZMeOHcyePZu6desyf/585syZw5o1a3j55ZdLYvciIiLllmEYjP9mL4aRu5hli2pVbB2SWJE119eMj48nJycn31P6goKCiIuLK9YYU6dOJSUlhXvvvbfQPhkZGSQlJeV5iYiISMn7YmvuRcp7o8PK7Brd16tEZkq98cYbTJ8+Pc+imVFRUYSFhfGf//yHzZs34+7uzvPPP89bb71VEiGIiIiUS9/vjmNzzAVcHO0Y3a2ercMRK6tTp06RSeWFCxeuasx/j2cYRrES1wULFjBu3Di+/vrrK95SOHHiRF599dWriklERESujWEYnEvO4K+zl9hzOgknezv6NK1q67BKTIkUpXbv3k21atXytVerVo3du3cDubf4xcbGlsTuRUREyqX0rBwmfL8PgMfb1iTUx9XGEYm1vfrqq3h7W2c9CH9/f+zt7fPNijp79my+2VP/tmjRIh555BEWL15Mp06drth3zJgxDB8+3PI+KSmJ8PDwaw9cRERE8knNzGb+puMs2Hycw+dSLO2dGwZRxd3JhpGVrBIpStWrV49JkyYxe/ZsnJxyv7ysrCwmTZpEvXq5V31PnTpVZMIkIiJSmcz+5QinEtII8XbhiXY1bR2OlID77rvPagudOzk50aJFC1atWsUdd9xhaV+1ahW33357oZ9bsGABDz/8MAsWLKBHjx5F7sfZ2blMPaBGRESkoklMy2LAnE38cTIRADsTONjZ4eniwONta9g4upJVIkWp999/n969exMWFkZUVBQmk4ldu3aRk5PDt99+C8CRI0cYMmRISexeRESk3Dl2PoX31v4FwOhu9XB1srdxRGJtJbEWxPDhw+nfvz/R0dG0bt2a2bNnc/z4cZ544gkgd5bTqVOn+PTTT4HcgtSAAQOYPn06N954o2WWlaurq9VmcImIiFQG++OSmL3uCHc2D+Pm2v7XPE5SehYDPt7MHycTqeLmyPNd6nJ701A8XRytGG3ZVSJFqTZt2hATE8Pnn3/OwYMHMQyDu+++m379+uHp6QlA//79S2LXIiIi5Y5hGLzy9R4ys83cVMuP3k1CbR2SlABrP30PoG/fvpw/f57x48cTGxtLo0aN+P777y3LKMTGxnL8+HFL/1mzZpGdnc1TTz3FU089ZWkfOHAg8+bNs3p8IiIiFdG2Yxd4aO4WktKzWbbzFKO71eOxW2pc9QWopPQsBszZzB8nEvBxc+R/j95Ig9CK+ZS9wpgMK2ZIDz/8MNOnT7cUnsqLpKQkvL29SUxMxMurcv0FEBER21uw+ThjvtqNk70dK4bdQo0AD1uHJAVQvpBL34OIiFRma/efZcj/tpOWlUOgpzNnkzMAeOyWSF7q0aDY4ySlZzHw483sOH65INWKhqEVZ9ZycfMFO2vu9JNPPiEtLc2aQ/LLL7/Qq1cvQkNDMZlMLFu2LM92wzAYN24coaGhuLq60r59e/bs2WPVGERERErK0h0neXFp7kNAnr61lgpSIiIiImXUJ+tjeOSTLaRl5dCuTgA/v9Cesb1yC1Ef/nqUT9bH5PuMYRgkpmZxNimd0wlpHD+fyrIdp+j89jp2HE/A29WRzx+pWAWpq2HV2/dKYlp6SkoKTZo04aGHHuKuu+7Kt33KlCm8/fbbzJs3jzp16vD666/TuXNnDhw4UO5mbImISOWy6ch5nv/iDwwDHrwxgqG31rJ1SCIiIiJSgLm/H+XVb/YC0Dc6nNfvaISjvR0P3RRJamYOb/54gFe/2cOS7SdxdrDD2cEes2Fw8Ewy8ZcyCxyzmp8b7/drTqOqlbMgBSWwppS1F/Hs1q0b3bp1K3CbYRhMmzaNl156iTvvvBPIna0VFBTE/Pnzefzxx60ai4iIiDUt2HwcswE9GocwvnejElkIW0RERESuz7ZjF3nju30ADOtUm2c71s6Ttw1pX5NTCWnM33ScXX8/Qe/f7EzgYG+Hg50Jd2cHBtxYjcfa1sDFsXI/3MbqRak6deoUmVRfuHDBKvs6evQocXFxdOnSxdLm7OxMu3btWL9+faFFqYyMDDIyMizvk5KSrBKPiIhIcWVmm1m9/ywAg26qjp2dClIiIiIiZc2ZpHSGzt9OttmgR+OQfAUpyJ2c80afRvSNDud8SgYZWWYyss3kmA1qBLhTL9hLT1YuhNWLUq+++mqpPVL48mOMg4KC8rQHBQVx7NixQj83ceJEXn311RKNTURE5Eo2HT1Pcno2/h5ONI+oYutwRERERAQ4cu4SE77fR40AD+qHePLGd/uJv5RBDX93Jt3VuNBJOCaTiSbhPqUbbAVg9aLUfffdR2BgoLWHvaJ//6UwDOOKs7XGjBnD8OHDLe+TkpIIDw8vsfhERET+7cc9uRdWOjcIwl6zpERERERs7mxyOgM+3szJi2mw76ylvW6QJ7P6t8DTxdGG0VVMVi1KlfZaGMHBwUDujKmQkBBL+9mzZ/PNnvonZ2dnnJ2dSzw+ERGRgpjNBiv3nAGgS8NgG0cjIiIiIikZ2Tw0dwsnL6ZRzc+NhqFe/HIwnl5NQnmlZwPdfldCyvzT964kMjKS4OBgVq1aRbNmzQDIzMxk3bp1TJ48uVRjERERKa7txy9yNjkDD2cH2tT0s3U4IiIiIpXef77+kz2nk/Bzd+LTh1tSzc/d1iFVClYtSpnNZmsOB8ClS5f466+/LO+PHj3Kzp078fX1JSIigmHDhjFhwgRq165N7dq1mTBhAm5ubvTr18/qsYiIiFyvc8kZPL/4DyD31j1nB111ExEREbGl5X+c5qvtp7AzwcwHW6ggVYqsvqaUtW3dupUOHTpY3l9eC2rgwIHMmzePkSNHkpaWxpAhQ7h48SKtWrVi5cqVeHp62ipkERGRAiWkZvLwvC0cO59KuK8rY7rXs3VIIiIiIpVaTHwKLy3dDcDQDrVoGelr44gqF5NR2vfclUFJSUl4e3uTmJiIl5eXrcMREZEKxjAMftwTx8vL9hB/KQNfdyeWPNmGSH9dhStPlC/k0vcgIiIVxYkLqdw3eyOnEtJoGu7D4ida42hvZ+uwKoTi5gtlfqaUiIhIeZVbjDrDzHWH+eNEAgC1Aj14975mKkiJiIiI2NCphDTu/zC3IFUjwJ3ZA1qoIGUDKkqJiIiUkGk/HWL66kMAODvY8egtkTzTsbbWkRIRERGxobjEdPp9uJGTF9Oo7ufGgsduJNDTxdZhVUoqSomIiJSAL7edtBSkBretweC2NfD3cLZxVCIiIiKV29mk3ILU5TU+5z92I0FeKkjZiopSIiIiVrbj+EVGL9kFwFMdavJCVy1oLiIiImJr55Iz6PfRJo7Ep1DVx5UFj91IqI+rrcOq1HTDpIiIiBXlmA1eWvon2WaD7o2Deb5zXVuHJCIiIlLpJaRm8uBHm/jr7CVCvF1Y8NiNhFVxs3VYlZ6KUiIiIlb0v03H2BubhJeLA6/d3gg7O5OtQxIRERGp1HLMBs8s3MmBM8kEejoz/7EbifBTQaosUFFKRETESv46m8xbPx4A4IXb6uGnNaREREREbG7aTwf55eA5XBztmPvQDXoKchmiNaVERESuU47Z4IN1h5n+0yEyc8w0rupNv5YRtg5LREREpFLLyM7h7ZUHmfXLEQAm3tmYhqHeNo5K/klFKRERkeuQmJbFMwt2sO7gOQA61A1g0l1R2Ou2PRERERGbOZWQxuBPt7LndBIAQ9rX5I5mYTaOSv5NRSkREZFrtPd0EkPnb+dIfAoujna83qcxdzWvismkgpSIiIiIreyLTWLQ3M2cScqgipsjk+6KomvDYFuHJQVQUUpEROQqGYbBnN+OMmXFATJzzFT1cWX2gBaaDi4iIiJiQ1k5Zj7dcIx3Vh3kUkY2dYI8mPdQS0J9XG0dmhRCRSkREZGr9O7qv3jnp4MAdKofxJS7o/B1d7JxVCIiIiKV19oDZ3nt270cOZcCQKtIX2b3j8bbzdHGkcmVqCglIiJyFZbuOGkpSL3UvT6P3hKp2/VEREREbOSvs5d4/bu9/Hwgd31PP3cnRnSty73R4VrjsxxQUUpERKSY9sUmMerL3QA83q4Gj7WtYeOIRERERCqnxNQspq0+yGcbjpFtNnC0N/HQTZEMvbUWXi6aHVVeqCglIiJSTBO+30dmjpmO9QIZ1bWercMRERERqXTOJqfz7R+x/HfNIS6mZgHQqX4gL/VoQKS/u42jk6ulopSIiEghzGaDH/6Mo2oVVy6lZ/ProXgc7U2M7dUQO00HFxERESkV++OSWLnnDKv3neGPk4mW9tqBHrzSqwG31A6wYXRyPVSUEhERKcS0nw7y7pq/APBwzv2V+UCrakT4udkyLBEREZEK7+TFVNYeOMeXW0/kKUQBRIV5c0+LMO5vGYGDvZ2NIhRrUFFKRESkAF/vPGUpSNmZ4FJGNh7ODjx9ay0bRyYiIiJS8azZf4bJPxzg5MVUHOztSEzLsmxztDfRrk4AneoHcWu9QAK9XGwYqViTilIiIiL/snrfGV74chcAj7etwb03hLNg03FuqROAn4ezjaMTERERqTiS0rMYuXgXK/bE/aM1B3s7E83CfejSMIg7m4fhrxysQlJRSkRE5G9ZOWYWbTnB2OV7yDEb3NYwmJG31cPezsTLPRvYOjwRERGRCuXEhVQe+WQLB89cwsHOxMM3R9L3hnByzAZBXi54u+opehWdilIiIlJpJaRmMm75Ho5dSMXD2YHdpxJJ+PspLne3CGPinY2x14LmIiIiIlZzND6Fj349wqajFzhy7hJmAwI9nfloYDRRYT62Dk9KmYpSIiJSKaVl5vDIJ1vZduxinnY/dycevjmSIe1rYjKpICUiIiJyvcxmg98Px7Ng83FW/BmH2fj/bU3DfZj5YHNCvF1tF6DYjIpSIiJS4RmGweFzKXg4OxDs7cKFlExGLP6Dbccu4uXiwLjeDck2G1TzdSO6uq9mR4mIiIhYyaYj53lx6W4On0uxtHWsF0i/VhE0qupNoKezLgRWYipKiYhIhZWcnsWc346ybMcpYs6nYjLBDdV82RebRHJGNk4Odnw08AZaRvraOlQRERGRci87xwyAg70dGdk5vPbtXj7feBwATxcH7mhWlX6tIqgX7GXLMKUMUVFKRETKPcMw+HZXLBnZZro0DCInx+Drnad4b+1fxF/KBMDJwY7MbDObYy4A0CDEi1dvb8gN1VWQEhEREbleu08mMmT+NpLSsnn4pkjWHTzL9uMJAPRrFcGo2+pp4XLJR0UpEREp1zKyc3h56Z8s3nYSAKeldpjNBtl/L1YQ6e/Osx1r07lBEBdTM1m55wxBXi50axSMnW7TExEREbkuOWaDRVtOMO6bPWRm586UeuengwB4uTjw337NaVcnwJYhShmmopSIiJRb++OSGL1kNztPJGBngmp+7hyNz12voEGIF/e1DOe+GyJwcrADwN3ZgYdvjrRlyCIiIiLl3tnkdP46e4lj51P5ZH0M++OSAbi1XiDdG4fw0a9HsLcz8d/7m1EjwMPG0UpZpqKUiIjYXFxiOpNX7Cf+UgYDWlenY73AK85iOnEhlY9+PcLnm46TYzbwdHHgvX7NaVvbn7/OXsLB3o5If/dSPAIRERGRii09K4e3fjzAd7tjiU1Mz7PN08WBp2+txaM318DOzsTdLcJsFKWUNypKiYiITfxxIoHf/orndEIay3acIiUzB4BfD8UT4etGt8bB9GwcSuMwbwzD4OeD59hw+Dx/nkpk45HzlkcJ39YwmP/0akBVn9zHCNcO8rTVIYmIiIhUSEfOXeLpBTvYczoJAJMJqvu5E+7rRpMwbx6+KZIq7k42jlLKIxWlRESk1GRk53D+UiYfrDvMpxuO5dnWPMKHFtWqsHDzCY5fSGXWuiPMWneEqDBvMrPNlmnhl7WtE8DjbWtwUy3/0jwEERERkQorLjGdH/fEse7gOS6mZtIw1ItzyRms2nsGswG+7k680acRbesE4O6scoJcP/0tEhGREvH7X/GsPxyPp4sjZ5MyWLP/DDHnU/P06dIgiFqBHjQM9bYsPD6sUx3WHjjLD7vjWLX3DLtOJgLg7mRP76ZVaRLmzQ2RvtTU+gQiIiIi12TXyQT2xybTvJoPwd6ubD92ka+2n+TbXbGWh8UA7Pj76XkA7eoEMOmuxoR4u9ogYqmoVJQSERGrysoxM2XFfj789WiB2+1MUCvQg7G9GhY4y8nd2YGeUaH0jArl/KUMlu44BcDdLcLwcdO0cBEREZFrdeJCKm/+eIDlf5wutE+LalXoVD+IUB8X/jyViJ0pd40oLZEgJUFFKRERuW6GYZCamcNP+87w/tq/OHjmEgA9okJwdrDD2cGednX8aRXph7er4xUXMf8nPw9nHr2lRkmGLiIiIlKuxF/KYMm2kxw4k0z7uoF0aRCEi6N9of0TU7P45dA5lu44xdoDZzGM3DWhosJ82BebRGa2mbAqrrSp6ceA1tVpVNXb8tnbm1YtjUOSSkxFKRERuWZnktJ57du9/LTvDOlZZku7l4sDU+5uwm2Ngm0YnYiIiEj5l56Vw5LtJ1m55wynE9KIOZ9CVk7uLXZfbT+Fh7MDTcK9iQrzoUmYN25ODqzYE8f2YxdJTMviTFI6/7gjj1tq+zPqtno0qupNelYOKRnZ+Hk42+jopLJTUUpERIrlXHIGB+KSOZ2Qxqm/Xyv+jONSRralj7+HE4PaVKd/6+p4uzraMFoRERGR8iP+UgbrD5/HzgRmA46eS+HY+RTOp2Ty56lEzqdk5unfJNyH6GpV+GF3LKcT0/n9r/P8/tf5QsevE+TBrfWC6HtDOJH+7pZ2F0f7K86yEilpKkqJiAgAZrNBXFI66Vk5XMrI5mxSBjHnU9hxIoGdxxM4lZBW4OeahvswtlcD6gR54uZkj8lUvFvzRERERCozs9lgx4mLfLntJEu2nyIz21xo36o+rgxoXY0GoV5U83Unws8NgBe712dfbBK7Tiay62QCf5xM5GJKJu3rBnBrvUCCvV0I8sp9iZRFKkqJiFQiWTlmziSlcyYpndjEdM4kZXAxJZOY8ymsP3yeC/+6CvdPJhNE+rsTXsWNUB9Xqvq4UCvQk84NgrAv5hpRIiIiIpWV2Wzw21/x/LgnjmPnU9kfl0z8pQzL9nrBnvi4OWI2oJqvG5EB7gR4OBPs7cKNNfxwtLfLN6a9nYlGVb1pVNWbfq0iSvNwRKyiwhSlZsyYwZtvvklsbCwNGzZk2rRp3HLLLbYOS0Sk1GRmm7mYmsmFlExOXkxj89Hz7D6VSEJqFsnp2SSlZZH8j1vtCuJgZ8LNyR43JwcCvZwJ8XYhKsyHZuE+NA7zxtNFt+SJlDVXmwOtW7eO4cOHs2fPHkJDQxk5ciRPPPFEKUYsIlJxXb4AGJuYzumENGIT04lNSON0Yjp7Tyflm3nu6ezArfUDefDGakRXq6IZ51LpVIii1KJFixg2bBgzZszgpptuYtasWXTr1o29e/cSEaFqsYiUXTlmg/SsHNKyckj/+5WWaba8z9ueQ0pmDgmpmVxIybIUoC6kZHIxJbPIgtNlTvZ2BHk7E+LlSqCXM77uTgR4ONOqhh/NInwKvAonImXT1eZAR48epXv37jz22GN8/vnn/P777wwZMoSAgADuuusuGxyBiEjZYRgGmTlm0jPNpGZlk5qZm3+lZubmZGmZuW2XMrI5cSGV4xdSSU7PJiUjm0sZ2SSnZxN/KSPPouL/5uniQJ+mVYkK86a6vztNwnxwclDuJZWXyTCMK/zIlA+tWrWiefPmzJw509JWv359+vTpw8SJE4v8fFJSEt7e3iQmJuLl5VWSoYpIKTAMA7MBZsPAbBgYlv/O/dMw//82s5FbGMrKMZORbSYr5/9fOebcsQzAMMDAAAMycsykZ+aQnp23gHS5cJT2dzEpI8v8dwLzr+LS323p2eYrrh1wLexMUMXNiQBPZ5pF+BBdzZdAL2e8XBzxcnXE29WRKm6Ougoncg3KYr5wtTnQqFGjWL58Ofv27bO0PfHEE/zxxx9s2LChWPssi9+DiJQPRgF5WY7ZINtskJ1jzs3JzAY5OQY5/8jjCsrtDCNvPpedYyb775wuO8cg22wmM8cgLTObSxm5T5i7XDzK/TOH1MxszH//c/hsUgYnE9Kskps52psI9nYhxNuVUG8XQnxy/6xaxZXWNfxxddLC4lLxFTdfKPczpTIzM9m2bRujR4/O096lSxfWr19f4GcyMjLIyPj/e3eTkpIAuHPG7zi4uBf4meIoTnkv95+31ztGcWIpYj/FGKM4nYrqUpyaZ/GOp6gxirGf4hyPFUq01jhma/xdKs441vjuizOSNf9eWwpL/0hk/p2UlFfODna4Otnj4mCf+6ejPa6Odn//aY+LU+6fVdwcqeLuhK+bE77uua8q7k74uTvh5eKIndZ3EqkUriUH2rBhA126dMnT1rVrV+bMmUNWVhaOjvlv0S2pvOmfivv7tzi/+65mvNwxi9mvmIMWe9flIMar+x6te25K4rK5rb6f4n43Vzemdce7mr+QuRfq/nXh7u//5h/b8uVsf/93eeFob8LF0d6yrIHr3//t6pT7Z1UfN6r5ueHj5oi7kwPuzg54uuQuf+Dv7qx8TKSYyn1RKj4+npycHIKCgvK0BwUFERcXV+BnJk6cyKuvvpqv/eCZS9g5W3fWgoiUfY72Jhzt7SwvJ3sTDvZ2ONiZIPd/mEymv/8EJwe73CKRo72lYJT73s5SOHL9x7bLbS6O//rcP/o6O9gpeRGRq3ItOVBcXFyB/bOzs4mPjyckJCTfZ5Q3iUhpsTOBg50d9nYmSx5mZzJh9/efpn/8t50pNz+zswMTJhzsTTja2eHwdx7naJfb5vZ3wcjD2R53Jwc8XBzwcM5tc3Oyx97OhNkAfw8nwnzc8HZzxM3JXssZiJSScl+Uuuzft6IYhlHo7Sljxoxh+PDhlvdJSUmEh4fz4YBo3D08r7CPYsRRrGCL2lz0KNaIpTi371hnP0WPUZxvrqhxirObYh3zdcaRO4Z1vltrjFFULMUao7T2U3QX7OxM/0pOcv+0t/v//86TqPyj7f+3//9ndRubiJR3V5MDFda/oPbLrjVv+v/9Fdnl//sWv2uxOxfnd7KlbwnEejW/Z0pm/8Uf82rOQHHHvZrdX9V3Vewxr2L/JfR3pSTGLG6sVzXmVfS1+8fFOvg7pyLvRTw7k+nvvO1fOdvlvMwu972DXW4eZ/93fxGpXMp9Ucrf3x97e/t8VwTPnj2b70rgZc7Ozjg7O+drb13TT2sjiIiISLlwLTlQcHBwgf0dHBzw8/Mr8DPKm0RERKSklPs5iU5OTrRo0YJVq1blaV+1ahVt2rSxUVQiIiIiJetacqDWrVvn679y5Uqio6MLXE9KREREpCSV+6IUwPDhw/noo4/4+OOP2bdvH8899xzHjx/niSeesHVoIiIiIiWmqBxozJgxDBgwwNL/iSee4NixYwwfPpx9+/bx8ccfM2fOHEaMGGGrQxAREZFKrNzfvgfQt29fzp8/z/jx44mNjaVRo0Z8//33VKtWzdahiYiIiJSYonKg2NhYjh8/bukfGRnJ999/z3PPPcf7779PaGgo7777LnfddZetDkFEREQqMZNR3GejVmCJiYn4+Phw4sQJrY0gIiIiBbq8wHdCQgLe3t62DsdmlDeJiIhIUYqbN1WImVLXKzk5GYDw8HAbRyIiIiJlXXJycqUuSilvEhERkeIqKm/STCnAbDZTp04dtm3bZrXHw99www1s2bLFKmNdrjBa64qkNWOrbONZ+1yAdeMry9+dtccr6+eirI+nc1Exx9O5KNnxDMMgOTmZ0NBQ7OwqxLKc16Sy5U1Qtv/eluXYKtu5sPZ4OhcVczydi7I1Xlk/H2X5uytqvOLmTZopBdjZ2eHk5GTVq5729vZWn9Lu5eVllTGtHVtlGw+sdy7AuvGV9e+uMp2Lsj6ezkXFHk/nouTGq8wzpC6rbHkTlO2/t2U5tssqy7mw9ng6FxV7PJ2LsjMelN3zUda/O2vkTZX3Mt+/PPXUU2V6PGsq68da1sezNmvGV9a/u8p0Lsr6eDoXFXs8ayrrx1rWx6uoKtv3XpaPtyzHVhLK+vGW5XNrbWX5uysP41lTWT/Wsj6etZXl/x8oi+Pp9r1yICkpCW9vbxITE7WgqI3pXJQdOhdlh85F2aFzIaKfg7JE56Ls0LkoO3QuyhadD9vTTKlywNnZmbFjx+Ls7GzrUCo9nYuyQ+ei7NC5KDt0LkT0c1CW6FyUHToXZYfORdmi82F7miklIiIiIiIiIiKlTjOlRERERERERESk1KkoJSIiIiIiIiIipU5FKRERERERERERKXUqSomIiIiIiIiISKlTUaoU/PLLL/Tq1YvQ0FBMJhPLli3Ls91kMhX4evPNNwGIiYkptM/ixYst41y8eJH+/fvj7e2Nt7c3/fv3JyEhoRSPtHwo6nxcunSJoUOHEhYWhqurK/Xr12fmzJmW7RcuXODpp5+mbt26uLm5ERERwTPPPENiYmKecXQ+ina950I/G9ZT1Lk4c+YMgwYNIjQ0FDc3N2677TYOHTpk2a6fC+u53nOhnwupCJQ7lR3Km8oO5U1lh/KmskW5U/mmolQpSElJoUmTJrz33nsFbo+Njc3z+vjjjzGZTNx1110AhIeH5+vz6quv4u7uTrdu3Szj9OvXj507d7JixQpWrFjBzp076d+/f6kcY3lS1Pl47rnnWLFiBZ9//jn79u3jueee4+mnn+brr78G4PTp05w+fZq33nqL3bt3M2/ePFasWMEjjzySZxydj6Jd77nQz4b1XOlcGIZBnz59OHLkCF9//TU7duygWrVqdOrUiZSUFEA/F9Z0vedCPxdSESh3KjuUN5UdypvKDuVNZYtyp3LOkFIFGEuXLr1in9tvv9249dZbr9inadOmxsMPP2x5v3fvXgMwNm7caGnbsGGDARj79++/rpgrsoLOR8OGDY3x48fnaWvevLnx8ssvFzrOF198YTg5ORlZWVmGYeh8XAtrnQv9bFy/f5+LAwcOGIDx559/Wtqys7MNX19f48MPPyx0HP1cXD9rnQv9XEh5ptyp7FDeVHYobyo7lDeVLcqdyh/NlCpjzpw5w3fffZevSv5P27ZtY+fOnXn6bNiwAW9vb1q1amVpu/HGG/H29mb9+vUlGnNFc/PNN7N8+XJOnTqFYRisXbuWgwcP0rVr10I/k5iYiJeXFw4ODoDOh7Vc7bnQz0bJyMjIAMDFxcXSZm9vj5OTE7/99luhn9PPhfVdy7nQz4VUdMqdbEt5U9mhvKlsUN5Utih3KvtUlCpjPvnkEzw9PbnzzjsL7TNnzhzq169PmzZtLG1xcXEEBgbm6xsYGEhcXFyJxFpRvfvuuzRo0ICwsDCcnJy47bbbmDFjBjfffHOB/c+fP89rr73G448/bmnT+bCOqz0X+tkoGfXq1aNatWqMGTOGixcvkpmZyaRJk4iLiyM2NrbAz+jnomRcy7nQz4VUdMqdbEt5U9mhvKlsUN5Utih3KvtUlCpjPv74Yx544IE8ldx/SktLY/78+QVeDTSZTPnaDMMosF0K9+6777Jx40aWL1/Otm3bmDp1KkOGDOGnn37K1zcpKYkePXrQoEEDxo4dm2ebzsf1u5pzoZ+NkuPo6MiSJUs4ePAgvr6+uLm58fPPP9OtWzfs7e3z9dfPRcm52nOhnwupDJQ72ZbyprJDeVPZoLypbFHuVPY52DoA+X+//vorBw4cYNGiRYX2+fLLL0lNTWXAgAF52oODgzlz5ky+/ufOnSMoKMjqsVZUaWlpvPjiiyxdupQePXoAEBUVxc6dO3nrrbfo1KmTpW9ycjK33XYbHh4eLF26FEdHR8s2nY/rdzXnAvSzUdJatGjBzp07SUxMJDMzk4CAAFq1akV0dHSefvq5KHnFPRegnwup+JQ72ZbyprJDeVPZorypbFHuVLZpplQZMmfOHFq0aEGTJk2u2Kd3794EBATkaW/dujWJiYls3rzZ0rZp0yYSExPzTDuUK8vKyiIrKws7u7w/Gvb29pjNZsv7pKQkunTpgpOTE8uXL893dVbn4/oV91xcpp+N0uHt7U1AQACHDh1i69at3H777ZZt+rkoXVc6F5fp50IqOuVOtqW8qexQ3lQ2KW8qW5Q7lVG2WF29sklOTjZ27Nhh7NixwwCMt99+29ixY4dx7NgxS5/ExETDzc3NmDlzZqHjHDp0yDCZTMYPP/xQ4PbbbrvNiIqKMjZs2GBs2LDBaNy4sdGzZ0+rH095V9T5aNeundGwYUNj7dq1xpEjR4y5c+caLi4uxowZMwzDMIykpCSjVatWRuPGjY2//vrLiI2Ntbyys7Mt+9H5KNr1novL9LNx/Yo6F1988YWxdu1a4/Dhw8ayZcuMatWqGXfeeafl8/q5sJ7rPReX6edCyjPlTmWH8qayQ3lT2aG8qWxR7lS+qShVCtauXWsA+V4DBw609Jk1a5bh6upqJCQkFDrOmDFjjLCwMCMnJ6fA7efPnzceeOABw9PT0/D09DQeeOAB4+LFi1Y+mvKvqPMRGxtrDBo0yAgNDTVcXFyMunXrGlOnTjXMZvMVPw8YR48etexH56No13suLtPPxvUr6lxMnz7dCAsLMxwdHY2IiAjj5ZdfNjIyMor8vH4urt71novL9HMh5Zlyp7JDeVPZobyp7FDeVLYodyrfTIZhGFc3t0pEREREREREROT6aE0pEREREREREREpdSpKiYiIiIiIiIhIqVNRSkRERERERERESp2KUiIiIiIiIiIiUupUlBIRERERERERkVKnopSIiIiIiIiIiJQ6FaVERERERERERKTUqSglIiIiIiIiIiKlTkUpEanQDMOgU6dOdO3aNd+2GTNm4O3tzfHjx20QmYiIiEjZorxJREqbilIiUqGZTCbmzp3Lpk2bmDVrlqX96NGjjBo1iunTpxMREWHVfWZlZVl1PBEREZHSoLxJREqbilIiUuGFh4czffp0RowYwdGjRzEMg0ceeYSOHTvSsmVLunfvjoeHB0FBQfTv35/4+HjLZ1esWMHNN9+Mj48Pfn5+9OzZk8OHD1u2x8TEYDKZ+OKLL2jfvj0uLi58/vnntjhMERERkeumvElESpPJMAzD1kGIiJSGPn36kJCQwF133cVrr73Gli1biI6O5rHHHmPAgAGkpaUxatQosrOzWbNmDQBLlizBZDLRuHFjUlJSeOWVV4iJiWHnzp3Y2dkRExNDZGQk1atXZ+rUqTRr1gxnZ2dCQ0NtfLQiIiIi1055k4iUBhWlRKTSOHv2LI0aNeL8+fN8+eWX7Nixg02bNvHjjz9a+pw8eZLw8HAOHDhAnTp18o1x7tw5AgMD2b17N40aNbIkV9OmTePZZ58tzcMRERERKTHKm0SkNOj2PRGpNAIDAxk8eDD169fnjjvuYNu2baxduxYPDw/Lq169egCWqeaHDx+mX79+1KhRAy8vLyIjIwHyLfIZHR1dugcjIiIiUoKUN4lIaXCwdQAiIqXJwcEBB4fc/+szm8306tWLyZMn5+sXEhICQK9evQgPD+fDDz8kNDQUs9lMo0aNyMzMzNPf3d295IMXERERKUXKm0SkpKkoJSKVVvPmzVmyZAnVq1e3JFz/dP78efbt28esWbO45ZZbAPjtt99KO0wRERERm1PeJCIlQbfviUil9dRTT3HhwgXuv/9+Nm/ezJEjR1i5ciUPP/wwOTk5VKlSBT8/P2bPns1ff/3FmjVrGD58uK3DFhERESl1yptEpCSoKCUilVZoaCi///47OTk5dO3alUaNGvHss8/i7e2NnZ0ddnZ2LFy4kG3bttGoUSOee+453nzzTVuHLSIiIlLqlDeJSEnQ0/dERERERERERKTUaaaUiIiIiIiIiIiUOhWlRERERERERESk1KkoJSIiIiIiIiIipU5FKRERERERERERKXUqSomIiIiIiIiISKlTUUpEREREREREREqdilIiIiIiIiIiIlLqVJQSEREREREREZFSp6KUiIiIiIiIiIiUOhWlRERERERERESk1KkoJSIiIiIiIiIipU5FKRERERERERERKXUqSomIiIiIiIiISKlTUUpEREREREREREqdilIiIiIiIiIiIlLqVJQSEREREREREZFSp6KUiIiIiIiIiIiUOhWlROS67dq1i4ceeojIyEhcXFzw8PCgefPmTJkyhQsXLuTpm5WVxcyZM2ndujXe3t64urpSv359Ro8ezfnz5210BIUzmUyMGzfO6uO2b9+e9u3bW31cERERKTs2bdrEHXfcQUREBM7OzgQFBdG6dWuef/75fH2vJkfKycnh7bff5rbbbiMsLAw3NzdL34SEhFI6uuKZN28eJpOJmJgYq44bExODyWRi3rx5Vh1XREqXyTAMw9ZBiEj59eGHHzJkyBDq1q3LkCFDaNCgAVlZWWzdupUPP/yQJk2asHTpUgBSU1Pp3r07v/32G4MHD6Znz564urqyYcMG3nrrLTw8PFi1ahV169a18VH9v40bNxIWFkZYWJhVx927dy8ADRo0sOq4IiIiUjZ899139O7dm/bt2/PYY48REhJCbGwsW7duZeHChZw8edLS92pzpEuXLhEaGsr9999P586d8ff3Z/v27bz++uuEhISwdetWXF1dbXXoeZw7d47Dhw/TrFkznJ2drTZuRkYGO3bsoGbNmgQEBFhtXBEpXSpKicg127BhA7fccgudO3dm2bJl+RKNzMxMVqxYQe/evQF4/PHHmT17NgsXLqRv3755+h48eJCWLVsSFhbGH3/8gb29fakdh4iIiIi1tWvXjlOnTrF//34cHBzybDObzdjZ/f9NK1ebI+Xk5JCQkICfn1+evl9++SX33HMPn332GQ8++GDJHZyIiJXo9j0RuWYTJkzAZDIxe/bsAq98OTk5WQpScXFxfPzxx3Tt2jVfsgVQp04dRo0axZ49e1i2bFmR+966dSu9e/fG19cXFxcXmjVrxhdffJGnz+Xp4mvWrOGxxx7Dz88PLy8vBgwYQEpKCnFxcdx77734+PgQEhLCiBEjyMrKyjPGv2/fS01NZcSIEZZbFX19fYmOjmbBggWWPkeOHOG+++4jNDTUMlW/Y8eO7Ny509KnoNv3Lly4wJAhQ6hatSpOTk7UqFGDl156iYyMjHwxDR06lM8++4z69evj5uZGkyZN+Pbbb/P0O3fuHIMHDyY8PBxnZ2cCAgK46aab+Omnn4r8fkVEROT6nD9/Hn9//3wFKSBPQepaciR7e/t8BSmAli1bAnDixIki4zMMgxkzZtC0aVNcXV2pUqUKd999N0eOHMnTr3379jRq1IgNGzbQpk0bXF1dqV69OnPnzgVyZ4Q1b94cNzc3GjduzIoVK/J8vqDb93bs2EHPnj0JDAzE2dmZ0NBQevTokWf22OLFi2nVqhXe3t64ublRo0YNHn74Ycv2wm7f++233+jYsSOenp64ubnRpk0bvvvuuwJjWrt2LU8++ST+/v74+flx5513cvr06Tx916xZQ/v27fHz88PV1ZWIiAjuuusuUlNTi/yORaRoKkqJyDXJyclhzZo1tGjRgvDw8CL7r127luzsbPr06VNon8vbVq1aVeRYN910EwkJCXzwwQd8/fXXNG3alL59+xa4rsCjjz6Kt7c3Cxcu5OWXX2b+/Pk89thj9OjRgyZNmvDll18ycOBApk6dyn//+98r7nv48OHMnDmTZ555hhUrVvDZZ59xzz335FnroXv37mzbto0pU6awatUqZs6cSbNmza64xkN6ejodOnTg008/Zfjw4Xz33Xc8+OCDTJkyhTvvvDNf/++++4733nuP8ePHs2TJEnx9fbnjjjvyJJL9+/dn2bJlvPLKK6xcuZKPPvqITp06lcm1u0RERCqa1q1bs2nTJp555hk2bdqU78LXZdbMkdasWQNAw4YNi4zv8ccfZ9iwYXTq1Illy5YxY8YM9uzZQ5s2bThz5kyevnFxcTz00EM8+uijfP311zRu3JiHH36Y8ePHM2bMGEaOHMmSJUvw8PCgT58++Qo7/5SSkkLnzp05c+YM77//PqtWrWLatGlERESQnJwM5M7G79u3LzVq1GDhwoV89913vPLKK2RnZ1/xmNatW8ett95KYmIic+bMYcGCBXh6etKrVy8WLVqUr/+jjz6Ko6Mj8+fPZ8qUKfz88895ZpjFxMTQo0cPnJyc+Pjjj1mxYgWTJk3C3d2dzMzMIr9jESkGQ0TkGsTFxRmAcd999xWr/6RJkwzAWLFiRaF90tLSDMDo1q3bFceqV6+e0axZMyMrKytPe8+ePY2QkBAjJyfHMAzDmDt3rgEYTz/9dJ5+ffr0MQDj7bffztPetGlTo3nz5nnaAGPs2LGW940aNTL69OlTaGzx8fEGYEybNu2Kx9CuXTujXbt2lvcffPCBARhffPFFnn6TJ082AGPlypV5YgoKCjKSkpIsbXFxcYadnZ0xceJES5uHh4cxbNiwK8YhIiIiJSM+Pt64+eabDcAADEdHR6NNmzbGxIkTjeTkZEs/a+VIJ0+eNIKCgozo6GhLLlSYDRs2GIAxderUPO0nTpwwXF1djZEjR1ra2rVrZwDG1q1bLW3nz5837O3tDVdXV+PUqVOW9p07dxqA8e6771raLudjR48eNQzDMLZu3WoAxrJlywqN76233jIAIyEhodA+R48eNQBj7ty5lrYbb7zRCAwMzPP9ZmdnG40aNTLCwsIMs9mcJ6YhQ4bkGXPKlCkGYMTGxhqGYRhffvmlARg7d+4sNA4RuT6aKSUiZY7JZCp0219//cX+/ft54IEHAMjOzra8unfvTmxsLAcOHMjzmZ49e+Z5X79+fQB69OiRr/3YsWNXjK1ly5b88MMPjB49mp9//pm0tLQ82319falZsyZvvvkmb7/9Njt27MBsNl/5gMm9sunu7s7dd9+dp33QoEEArF69Ok97hw4d8PT0tLwPCgoiMDAwT/wtW7Zk3rx5vP7662zcuLHQK7QiIiJifX5+fvz6669s2bKFSZMmcfvtt3Pw4EHGjBlD48aNiY+Pv+oxC8uRLly4QPfu3TEMg0WLFuW5PbAg3377LSaTiQcffDBPLhUcHEyTJk34+eef8/QPCQmhRYsWlve+vr4EBgbStGlTQkNDLe2Xc6wr5VO1atWiSpUqjBo1ig8++MDy8Jd/uuGGGwC49957+eKLLzh16tQVjwdyZ2Bt2rSJu+++Gw8PD0u7vb09/fv35+TJk/lyxMvLTFwWFRWVJ/6mTZvi5OTE4MGD+eSTT/Ld2igi109FKRG5Jv7+/ri5uXH06NFi9Y+IiAC4Yv/L2650O+Dl6eQjRozA0dExz2vIkCEA+ZI8X1/fPO+dnJwKbU9PT7/icbz77ruMGjWKZcuW0aFDB3x9fenTpw+HDh0CcpPF1atX07VrV6ZMmULz5s0JCAjgmWeesUxJL8j58+cJDg7Ol2wGBgbi4OCQ75a7gtaRcHZ2zlMkW7RoEQMHDuSjjz6idevW+Pr6MmDAAOLi4q54jCIiImI90dHRjBo1isWLF3P69Gmee+45YmJimDJlCnD9OdLFixfp3Lkzp06dYtWqVdSoUaPImM6cOYNhGAQFBeXLpzZu3FhkLgW5eVNhOdaV8ilvb2/WrVtH06ZNefHFF2nYsCGhoaGMHTvWcgGtbdu2LFu2jOzsbAYMGEBYWBiNGjXKs4ZnQd+DYRiEhITk23a5cFZUPnV5jdTL+VTNmjX56aefCAwM5KmnnqJmzZrUrFmT6dOnFxqHiFwdFaVE5JrY29vTsWNHtm3blmdRysJ06NABBweHKy5ifnlb586dC+3j7+8PwJgxY9iyZUuBr6ZNm17NoVwVd3d3Xn31Vfbv309cXBwzZ85k48aN9OrVy9KnWrVqzJkzh7i4OA4cOMBzzz3HjBkzeOGFFwod18/Pz5Ig/tPZs2fJzs62HPfV8Pf3Z9q0acTExHDs2DEmTpzIV199ZZl9JSIiIqXL0dGRsWPHAvDnn38C15cjXbx4kU6dOnH06FFWrVplmelTFH9/f0wmE7/99luBuVRxHjpzPRo3bszChQs5f/48O3fupG/fvowfP56pU6da+tx+++2sXr2axMREfv75Z8LCwujXrx8bNmwocMwqVapgZ2dHbGxsvm2X17i6lnzqlltu4ZtvviExMZGNGzfSunVrhg0bxsKFC696LBHJT0UpEblmY8aMwTAMHnvssQIXe8zKyuKbb74BIDg4mIcffpgff/yxwIUmDx48yOTJk2nYsOEVF/qsW7cutWvX5o8//iA6OrrA1z9vaytJQUFBDBo0iPvvv58DBw4U+BSWOnXq8PLLL9O4cWO2b99e6FgdO3bk0qVL+ZLATz/91LL9ekRERDB06FA6d+58xThERETEOgoqjgDs27cP+P/ZO9eaI10uSB05coSVK1fSrFmzYsfWs2dPDMPg1KlTBeZSjRs3voojvXYmk4kmTZrwzjvv4OPjU2CO4uzsTLt27Zg8eTKQ++S+gri7u9OqVSu++uqrPDPHzWYzn3/+OWFhYdSpU+eaY7W3t6dVq1a8//77AMqnRKwk//NJRUSKqXXr1sycOZMhQ4bQokULnnzySRo2bEhWVhY7duxg9uzZNGrUyDKL6O233+bAgQM8+OCD/PLLL/Tq1QtnZ2c2btzIW2+9haenJ0uWLMHe3v6K+501axbdunWja9euDBo0iKpVq3LhwgX27dvH9u3bWbx4cYkdc6tWrejZsydRUVFUqVKFffv28dlnn9G6dWvc3NzYtWsXQ4cO5Z577qF27do4OTmxZs0adu3axejRowsdd8CAAbz//vsMHDiQmJgYGjduzG+//caECRPo3r07nTp1uqo4ExMT6dChA/369aNevXp4enqyZcsWVqxYUeDT/ERERMS6unbtSlhYGL169aJevXqYzWZ27tzJ1KlT8fDw4Nlnn7X0vdocKS0tja5du7Jjxw6mTZtGdnY2GzdutIwXEBBAzZo1C43tpptuYvDgwTz00ENs3bqVtm3b4u7uTmxsLL/99huNGzfmySefLJHv5dtvv2XGjBn06dOHGjVqYBgGX331FQkJCZaZYK+88gonT56kY8eOhIWFkZCQwPTp03F0dKRdu3aFjj1x4kQ6d+5Mhw4dGDFiBE5OTsyYMYM///yTBQsWXHHd0oJ88MEHrFmzhh49ehAREUF6ejoff/wxwFXnZiJSMBWlROS6PPbYY7Rs2ZJ33nmHyZMnExcXh6OjI3Xq1KFfv34MHTrU0tfd3Z1Vq1bx4Ycf8umnn/Lpp5+SlZVF9erVefTRRxk5cmSBayX9W4cOHdi8eTNvvPEGw4YN4+LFi/j5+dGgQQPuvffekjxcbr31VpYvX84777xDamoqVatWZcCAAbz00ktA7tXOmjVrMmPGDE6cOIHJZKJGjRpMnTqVp59+utBxXVxcWLt2LS+99BJvvvkm586do2rVqowYMcIyzf9quLi40KpVKz777DNiYmLIysoiIiKCUaNGMXLkyGs+fhERESmel19+ma+//pp33nmH2NhYMjIyCAkJoVOnTowZM8ayKDhcfY505swZtmzZApCnuHXZwIEDmTdv3hXjmzVrFjfeeCOzZs1ixowZmM1mQkNDuemmm2jZsqV1voQC1K5dGx8fH6ZMmcLp06dxcnKibt26zJs3j4EDBwK5FwG3bt3KqFGjOHfuHD4+PkRHR7NmzRoaNmxY6Njt2rVjzZo1jB07lkGDBmE2m2nSpAnLly/P9+Cb4mjatCkrV65k7NixxMXF4eHhQaNGjVi+fDldunS55u9ARP6fyfj3AiYiIiIiIiIiIiIlTGtKiYiIiIiIiIhIqVNRSkRERERERERESp2KUiIiIiIiIiIiUupUlBIRERERERERkVKnopSIiIhIJXPq1CkefPBB/Pz8cHNzo2nTpmzbts3WYYmIiEglY9Oi1MyZM4mKisLLywsvLy9at27NDz/8YNluGAbjxo0jNDQUV1dX2rdvz549e/KMkZGRwdNPP42/vz/u7u707t2bkydPlvahiIiIiJQLFy9e5KabbsLR0ZEffviBvXv3MnXqVHx8fGwdmoiIiFQyJsMwDFvt/JtvvsHe3p5atWoB8Mknn/Dmm2+yY8cOGjZsyOTJk3njjTeYN28ederU4fXXX+eXX37hwIEDeHp6AvDkk0/yzTffMG/ePPz8/Hj++ee5cOEC27Ztw97e3laHJiIiIlImjR49mt9//51ff/3V1qGIiIhIJWfTolRBfH19efPNN3n44YcJDQ1l2LBhjBo1CsidFRUUFMTkyZN5/PHHSUxMJCAggM8++4y+ffsCcPr0acLDw/n+++/p2rVrsfZpNps5ffo0np6emEymEjs2ERERKb8MwyA5OZnQ0FDs7MrvCggNGjSga9eunDx5knXr1lG1alWGDBnCY489VmD/jIwMMjIyLO/NZjMXLlzAz89PeZOIiIgUqNh5k1FGZGdnGwsWLDCcnJyMPXv2GIcPHzYAY/v27Xn69e7d2xgwYIBhGIaxevVqAzAuXLiQp09UVJTxyiuvFHvfJ06cMAC99NJLL7300kuvIl8nTpy4/sTHhpydnQ1nZ2djzJgxxvbt240PPvjAcHFxMT755JMC+48dO9bm37leeumll1566VU+X0XlTQ7Y2O7du2ndujXp6el4eHiwdOlSGjRowPr16wEICgrK0z8oKIhjx44BEBcXh5OTE1WqVMnXJy4urtB9/vuKn/H3ZLETJ07g5eVlleMSERGRiiUpKYnw8HDLEgLlldlsJjo6mgkTJgDQrFkz9uzZw8yZMxkwYEC+/mPGjGH48OGW94mJiURERChvEhERkUIVN2+yeVGqbt267Ny5k4SEBJYsWcLAgQNZt26dZfu/p4UbhlHkVPGi+kycOJFXX301X/vlBddFREREClPeb1kLCQmhQYMGedrq16/PkiVLCuzv7OyMs7NzvnblTSIiIlKUovImmy+I4OTkRK1atYiOjmbixIk0adKE6dOnExwcDJBvxtPZs2cts6eCg4PJzMzk4sWLhfYpyJgxY0hMTLS8Tpw4YeWjEhERESmbbrrpJg4cOJCn7eDBg1SrVs1GEYmIiEhlZfOi1L8ZhkFGRgaRkZEEBwezatUqy7bMzEzWrVtHmzZtAGjRogWOjo55+sTGxvLnn39a+hTE2dnZcnVPV/lERESkMnnuuefYuHEjEyZM4K+//mL+/PnMnj2bp556ytahiYiISCVj09v3XnzxRbp160Z4eDjJycksXLiQn3/+mRUrVmAymRg2bBgTJkygdu3a1K5dmwkTJuDm5ka/fv0A8Pb25pFHHuH555/Hz88PX19fRowYQePGjenUqZMtD01ERKTcycoxk5CaRYBn/lu1pOK44YYbWLp0KWPGjGH8+PFERkYybdo0HnjgAVuHJiIiUu4YhsHJi2mEVXEt97f424JNi1Jnzpyhf//+xMbG4u3tTVRUFCtWrKBz584AjBw5krS0NIYMGcLFixdp1aoVK1euzLNQ1jvvvIODgwP33nsvaWlpdOzYkXnz5mFvb2/1eHNycsjKyrL6uFI8jo6OJXJeRUQk17jle/jfpuPc3jSUcb0aUsXdydYhSQnp2bMnPXv2LNF9KG8q25RXiYhYx+KtJxm5ZBdDO9RiRNe6tg6n3DEZlx89V4klJSXh7e1NYmJigbfyGYZBXFwcCQkJpR+c5OHj40NwcLAq0CIiVpaWmUPz11aRlpUDgL+HM4sev5GaAR42jqzsKCpfqCyUN1UcyqtERK5f9+m/sjc2CScHO34e0Z5QH1dbh1QmFDdvsvnT98qDy4lVYGAgbm5u+sVtA4ZhkJqaytmzZ4HcJweJiIj1/HLoHGlZOQR6OuPl6shfZy/x4le7WTj4xmv6vWcYBku2n2L9X/E42JuoEeDB4FtqYGen36EVnfKmsk95lYiIdeyPS2JvbBIAmdlm3l19iEl3Rdk4qvJFRaki5OTkWBIrPz8/W4dTqbm65lacz549S2BgoKaci4hY0Y9/5j7ttleTUAa1qU7nd9ax6egFvtx2knuiw69qrPOXMhi1ZDc/7TuTpz3Aw5m7WoRZLWYpe5Q3lR/Kq0RErt/S7acAqBngzuFzKSzedpIbqvvSqKo3dYM9i/i0QBl8+l5Zc3ktBDc3NxtHIvD/50FrVIiIWE9mttlSQLqtUTDhvm4M61QHgAnf72PpjpMkpxfv/3cPnkmm93u/89O+MzjZ2/F4uxr0aRoKwJs/HiA1M7tkDkLKBOVN5YvyKhGRa5djNli2M7co9ULXenSqH0iO2eD5xX/QddovTFmx38YRlg+aKVVMmnpeNug8iIhY38Yj50lKz8bfw5nmEVUAeOTmSJbtOMX+uGSeW/QHLo523N6kKt2jQkhMy+JSejYeLg64O9ljMkFappmTF1N5b81fJGdkE+nvzvv9mtMg1Iv0rBy2HrvIyYtpfPjLUZ7tVNvGRywlTb+vywedJxGRa7f+cDxnkjLwdnWkQ70AGod54+N2kMPnLrHjeAIzfj5MdPUq3FovyNahlmkqSsk1a9++PU2bNmXatGmF9jGZTCxdupQ+ffqUWlwiInJ1vt8dC0DnBkHY/73mk6O9Hf97tBWfbDjGt7tOc+RcCou2nmDR1hNFjndD9SrM7h9teXqfi6M9o7vVY+j8Hcz4+S8AHr65Op4ujiV0RCLlU/Xq1Rk2bBjDhg0rcHtMTAyRkZHs2LGDpk2blmpsIiKS18ItuTlRryYhODvYU9XHlbfuaQLkPtF43voYnv/iD75/9hZCvLX4eWF0+14FFhcXx9NPP02NGjVwdnYmPDycXr16sXr16jz91q9fT/fu3alSpQouLi40btyYqVOnkpOTc90xxMbG0q1bt2L1NZlMLFu27Lr3KSIixReXmM5XO3KnnvduEppnm5+HM8M712H18HYsfqI1PaJCiPR3p2WkL50bBNG6hh9NwrxpEubNDdWr0CMqhBe61uWzR1pZClKX9Wgcwq31AsnINvPOTwe5deo6jpz7v/buOzyqauvj+Hdm0jvphIQQOhJCB0EEVJqFomLDhl1B7K9evF77tWIvCF4FrlzEgig2kK4ISJfeCTUhpPdkMnPePwKjgUASSDKT5Pd5nnmSnLPPPmtmM2RlzT775Nba8xSpSEpKCvfccw9NmzbF09OTyMhIBg8ezIoVK8q0q0zelJiYyB133EFcXBze3t60aNGCZ555huLi4nOKMSYmhqSkJOLj4ytsm5iYiMlkYsOGDed0ThEROdWxnCLHepyjesSesn/8ZW2JbxJARr6Vez9bS6H13P+2rq80U6qeSkxM5IILLiAoKIjXXnuNhIQErFYr8+bNY+zYsWzfXnp96+zZs7n22mu57bbbWLx4MUFBQSxYsIDHH3+clStX8uWXX57T1O7IyMjqekoiIlIDPlq6h+ISO92bNeL85sHltjGZTHRvFkz3ZuXvrwyTycR/bunGT5uTeH3eDvan5XPLp6v45r7ehAd4nXW/ItXl6quvxmq1Mm3aNJo3b87Ro0dZuHAh6enpjjaVzZu2b9+O3W5n0qRJtGzZks2bN3PXXXeRl5fHhAkTzjpGi8Wi3EpExAV8ueYgJXaDzk2DOC8q4JT9nm4WPhzVlWEfLOPPQ1k8/vVG3rm+U5X+tv5jbxozVx/k8SFt6vVMK82UqqfGjBmDyWRi1apVjBw5ktatW9O+fXseeeQRVq5cCUBeXh533XUXw4YNY/LkyXTq1IlmzZpx5513Mm3aNL7++mu+/PLLM57Hbrfz+OOPExwcTGRkJM8++2yZ/X+f/VRcXMz9999P48aN8fLyolmzZrz88stA6XR1gCuvvBKTyeT4WUREak5yViEzVh0A4KEBrWt8fRmz2cQVCVHMuq83zUJ8OJRRwC2friIpq6BGzytSkczMTJYtW8arr77KRRddRGxsLD169GD8+PFcfvnlQNXypiFDhjBlyhQGDRpE8+bNGTZsGI899hjffPNNhbHk5+dz++234+/vT9OmTZk8ebJj38mznzIyMrjxxhsJCwvD29ubVq1aMWXKFADi4uIA6Ny5MyaTif79+1fjKyYi0nDZ7AafH8+fbux56iypE5qG+DDxxq64mU3M+fMI//vjQKXPkV1o5f7P1zN7/WH+MWsThmGcc9yuSkWpKjIMg/ziEqc8KvsPMT09nblz5zJ27Fh8fX1P2R8UFATAL7/8QlpaGo899tgpbYYOHUrr1q35/PPPz3iuadOm4evryx9//MFrr73G888/z/z588tt++677zJnzhy+/PJLduzYwfTp0x3Fp9WrVwMwZcoUkpKSHD+LiEjNmfRr6SypHs2C6d0ipNbOG+rnyX9v70monyfbk3MY+t4yVuxJq7XzS+1yVu5UlQTez88PPz8/vv32W4qKisptc655U1ZWFsHBFc82fOONN+jWrRvr169nzJgx3HfffY4Z7if717/+xdatW/n555/Ztm0bEydOJDQ0FIBVq1YBsGDBApKSkipVEBMRkYot3ZnCoYwCArzcuCKh8Rnb9moRwj8ubQvAxCV7KLHZK3WON3/ZybGcouPnO8bPxy8VrI90+V4VFVhtnPf0PKece+vzg/HxqHjIdu/ejWEYtG3b9oztdu7cCUC7du3K3d+2bVtHm9NJSEjgmWeeAaBVq1a8//77LFy4kIEDB57S9sCBA7Rq1Yo+ffpgMpmIjf2rqhwWFgaUFsw0LV1EpOYVWm18s650LakxF7Wo9btwNQ3xYfaY3tzz2Vq2JmVz29RV/Pp/F+lSvnrIWblTZfMmADc3N6ZOncpdd93FRx99RJcuXejXrx/XX389CQkJwLnlTXv27OG9997jjTfeqDCWyy67jDFjxgDwxBNP8NZbb7FkyZJy87oDBw7QuXNnunXrBlBmpvmJ3CokJES5lYhINbHZDV6buwOA67rH4OVuqfCYm86PZeKSPRzOLODHTUkM79TkjO03HsrkvysSAejXOoylO4/x/Pdb6ds6DD/P+lfC0UypeujEJ4OV/QPjdJ8kGoZRYR8nErUTGjduTEpKSrltR48ezYYNG2jTpg0PPPAAv/zyS6XiExGRc2MYBnlFJWW2LdyWQlaBlcaBXlzYKswpccUE+zDrvt60jwqg0Grnh41JTolDBErXlDpy5Ahz5sxh8ODBLFmyhC5dujB16tQy7aqaNx05coQhQ4ZwzTXXcOedd1YYx99zK5PJRGRk5Glzq/vuu4+ZM2fSqVMnHn/8cZYvX15h/yIicvZmrj7A9uQcAr3dGdO/ZaWO8XK3cGvvZgBMWrr3jL9Hpq/cz/WTV2I3YGjHKCbd3JWmwT4kZxfy4eLd1fU0XEr9K7PVMG93C1ufH+y0c1dGq1atMJlMbNu2jREjRpy2XevWrQHYtm0bvXv3PmX/9u3bOe+88854Lnf3srfzNplM2O3lT0ns0qUL+/bt4+eff2bBggVce+21DBgwgK+//rqCZyQiIufizfk7+WDxbt4f1YXLOpROM/96beltjK/q0gSLuXZnSf2dt4eFa7pGs+XIVr7feITb+8Q5LRapGc7KnSqbN/2dl5cXAwcOZODAgTz99NPceeedPPPMM4wePfqs8qYjR45w0UUX0atXrzJrQ51JVXKrSy+9lP379/Pjjz+yYMECLrnkEsaOHXtOi6mLiMipElPz2JWSy5u/lM6IfWhAq1PuNHwmNx+fLbU1KZvfdqXSt3XZDwSTswp5YtZGlu48BkDPuGCeG9YeL3cLT13ejrs/W8unv+/jll7NiAysX7PKNVOqikwmEz4ebk55VHbmU3BwMIMHD+aDDz4gLy/vlP2ZmZkADBo0iODg4HKnks+ZM4ddu3Zxww03nNPrdbKAgACuu+46Pv74Y7744gtmzZrluKuNu7t7mdspi4jIuTuUkc+kpXuxG/DsnC3kFpWQkl3oSHqu7hLt5AjhsoTGmE2w/kAmB9PznR2OVDNn5U7VcUnqeeed58ilqpo3HT58mP79+9OlSxemTJmC2VwzaXdYWBijR49m+vTpvP32247il4dH6R9Lyq1ERM7N3M1J9J+whLv+u4a0vGKah/ly0/mnX+C8PI18PbiuewwAz36/hULrX/83L9+TyuC3f2XpzmN4upn51xXn8fld5xN8vOg18LwIusU2otBq5635Z15epy5SUaqe+vDDD7HZbPTo0YNZs2axa9cutm3bxrvvvkuvXr0A8PX1ZdKkSXz33XfcfffdbNy4kcTERD755BNGjx7NyJEjufbaa6stprfeeouZM2eyfft2du7cyVdffUVkZKRj4fVmzZqxcOFCkpOTycjIqLbziog0ZO8u3EXx8UU1U3KKmDBvB28t2IXdgK6xjWge5ufkCCHc34uecaULresSPnGGtLQ0Lr74YqZPn87GjRvZt28fX331Fa+99hrDhw8HqpY3HTlyhP79+xMTE8OECRM4duwYycnJJCdX70K1Tz/9NN999x27d+9my5Yt/PDDD441r8LDw/H29mbu3LkcPXqUrKysaj23iEhD8enviQDEhfoytGMUH9/SDXdL1UspDw9oTbi/J3uP5TmKS1n5Vh6auYGsAisJ0YH8+EAf7ugTh/lvs9hNJhPjLytdV/CrtQd5+adtbD5cf/5PV1GqnoqLi2PdunVcdNFFPProo8THxzNw4EAWLlzIxIkTHe1GjhzJ4sWLOXjwIH379qVNmza8+eab/POf/2TmzJnVuvCtn58fr776Kt26daN79+4kJiby008/OT45fOONN5g/fz4xMTF07ty52s4rItJQ7U7J5eu1hwB44JJWAExdnvi32xg3dVpsJxvaMQqA7zYcxlrJO9OIVBc/Pz969uzJW2+9Rd++fYmPj+df//oXd911F++//76jXWXzpl9++YXdu3ezaNEioqOjady4seNRnTw8PBg/fjwJCQn07dsXi8XCzJkzgdLF2999910mTZpEVFSUo7gmIiKVt/dYLqv2pWM2wYy7evLeDZ1pcZYf6AX6uPPSlR0A+Pi3vXyx+gDP/bCFlJwimof58uU9vWgZ7l/usV1jgxneKQq7AZN+3cvQ95fx86b68UGeyajK/XLrqezsbAIDA8nKyiIgIKDMvsLCQvbt20dcXBxeXvXr2s26SOMhIlJ5j3y5gW/WHWZAuwj+c2s37v7vGn7ZepTYEB8euLgVV3VpUut33TudjLxiery0AKvNoFmID/+4tB1D4l3rjmFnyhcaEuVN9YfGS0TkzF75eTsfLd3DxW3D+XR092rp80R+doLJBF/d04tuzYLPeJzVZmfu5mS+XHOQ33al0jjQi0WP9sfbo+prKNaGyuZNmiklIiJSD2XmFzsuhRt7UQsA3hvVmVn39WbhI/24umu0yxSkoHSthbeu60SonweJafncO30t//fVn+QXl1R8sIiIiEg1s9rsjhnnJ9aDqg6vXJXA+EvbEuBVet+50b2bVViQAnC3mB2XD0Y38iYpq5CJS/dUW1zOoqKUiIhIPfTNusMUl9hp1ziATjFBAHi6Wega2wi3s1gHoTZckRDFkv+7iLEXtcBsgq/WHmLEB79zLKfI2aGJiIhIA7NoewqpuUWE+nlycdvwauvXw83MPf1a8NvjF/O/O3vy1OVnvuP9ybzcLfzzstL1Ayct3eO4ScyRzAJ+3JhEXbsYzjWzUhERETlrhmEw4/i6UaN6NnWpGVEV8fN04/8Gt+V/d55PmL8nO4/mctN//iA9r9jZoYmIiEgD8sXqgwBc3bXJWS1sXpFAH3cuaBmKxVz1PG1IfCS9modQVGLnoS82cDizgCs//J2xM9axYFtKtcdak1SUEhERqWfW7M9gd0ou3u4WhneKcnY4Z6VXixC+uqcX4f6e7Diaw82f/EFWvtXZYYmIiEgDkJxVyJIdpcWd67pV36V71cVkMvHayAT8Pd1Yuz+DIW//ytHs0pnlv+485uToqkZFKRERkXpmyu/7ABjWMYoAL3cnR3P2moX6MuOu8wn182DLkWxumbKKnEIVpkRERKRmfb32IHYDesQF0/ws77ZX02KCfXjpqtK7+eUUlnBiwtWKvWlOjKrqVJSqpLp2XWZ9pXEQETmz7cnZ/LQpGYDb+jRzbjDVoGW4H9Pv7EmQjzt/HszkjmlrsNv1u8DV6fd13aBxEhE5ld1u8MWa0kv3rq/GBc5rwtCOUdzTrzmNA7348MaumEywOyW3Tq3HqaJUBdzdSz9hzs/Pd3IkAn+Nw4lxERGRst5duAuAyzs0pm3k6W+/W5e0jQxg+h098fWwsGpfOj9vTnZ2SHIaypvqFuVVIiKnWrk3jYPpBfh7uXFpfGNnh1Oh8Ze2Y/k/LmZIfKQj91tZh2ZLuTk7AFdnsVgICgoiJaX0elIfH586tWBsfWEYBvn5+aSkpBAUFITFYnF2SCIiLmdbUuksKZMJHhzQytnhVKv4JoHceWFz3lm4i3cW7uTS+EjMZ7EwqNQs5U11g/IqEZHT+2FTEgBXJDTG26Nu/P944ndtr+YhbEvKZsXeNIZ2rBvriqooVQmRkZEAjgRLnCcoKMgxHiIiUta05YkAXNahMa0j/J0bTA24vU8cn/6+j51Hc5m7JZnLOrj+p5cNkfKmukN5lYhIWTa7wS9bjgIwpA7MkjrZ+c2D+fT3fZopVd+YTCYaN25MeHg4VqsWWHUWd3d3fZInInIahmE47rbiineJqQ6B3u7cfkEc7yzcxSNfbuD577dyQctQJlyToNk4LkR5U92gvEpE5FTrD2SQmluEv5cbvZqHODucKusZF4LJBHuP5XE0u5CIAC9nh1QhFaWqwGKx6Je3iIi4pD3H8jiSVYiHm5keccHODqfG3N4njv/9cYDU3CKSrYXMWneIm3vF0ikmyNmhyUmUN4mISF0zb0vpupWXtA3Hw63uLcEd6ONO+6gANh/OZuXeNIZ3akJOoZXU3GLiQn2dHV656t6rLCIiIqf4bVfpLKkezYLxcq+/hYBAb3cWPtqPHx/ow+D2EUDpbZtFREREzoVhGMw9XpQa3L7uXtp8flzpDK8Tl/DdP2M9l7yxhK1Hsp0Z1mmpKCUiIlIP/LYrFYALW4U6OZKaF+jtTvuoQG4+vxkAczYcodBqc25QIiIiUqet2Z/BwfQCPN3M9GsT5uxwzlqvFieKUukcyyni113HsBvw++5UJ0dWPhWlRERE6riiEhsr9pR+GnZhq7qbRFVVrxYhRAV6kV1YwoJtR50djoiIiNRR36w7xM2f/AHAgPMi8PGouysddY8LxmyCfal5fL7qAIZRun3T4azTHlNis/PQzPUMeftXDqbn11KkpVSUEhERqePW7c+kwGoj1M+TtpH17657p2Mxm7iqSzQAX6895ORoREREpC5auz+dR778k0KrnQtbhfLC8Hhnh3ROArzciW8SCMBHS/c4tm8+Q1HqxR+38e2GI2xPzuGBmeux2uw1HucJKkqJiIjUcb8eX0/qwlahmM0N6y50V3ctLUr9uvMY2YW605uIiIhUzfoDmQD0aRnK1Nt6EOzr4dyAqsGJOwfmF/+1vMHe1LxTciXDMJj6+z6mLk8EwMfDwvoDmbzxy85ai1VFKRERkTrul+OLcvavw+sfnK24UF9iQ3ywG7A2McPZ4YiIiEgdczS7EIC2kf5Y6smHe+cfL0oBRAZ4ERXoBcCWw38tdn4sp4h7p6/l2e+3AvDowNZMuKYjUDrD6tNl+2olVhWlRERE6rDdKTnsOZaHu8XERW3DnR2OU5x8lxkRERGRykrOLgIg8njhpj7oHhfsKLBd0i6chOggADYdzgSguMTOqI9XMm/LUdzMJh4d2Jr7L27JZR0ac1//FgA8/8NW3py/E+PEolQ1REUpERGROmzeltIFvnu3CCXAy93J0TjH+S2CARWlREREpOpOzJQKD6g/RSk/TzfOb16aH12e0JgO0aVrTG06PlPqP8v2sisllxBfD+bc34dxl7TCZCotYj0+uA2PDWoNwLsLd/Hc91ux22uuMFV3l5QXERER5m4uvXRvSHykkyNxnp7HZ0ptPpJNTqEV/wZanBMREZGqO1GUiqxHRSmAd67vzP60fLrGNsJqKy0qbT6cxeHMAt5buBuAJy9rx3lRAWWOM5lM3H9xKwK83Xn6uy1MXZ5IblGJ49K+6qaZUiIiInXU4cwCNh3OwmSCgedFODscp4kK8qZpsA82u8Ga/VpXqipefvllTCYTDz30kLNDERERqXWGYTiKUhEBnk6OpnqF+nnSNbYRAB2O341vX2oeoz5eSYHVRvdmjbiqS5PTHn9Lr2a8fV0nLGYTX689xO6UnBqJ06lFqZdffpnu3bvj7+9PeHg4I0aMYMeOHWXaGIbBs88+S1RUFN7e3vTv358tW7aUaVNUVMS4ceMIDQ3F19eXYcOGceiQbg0tIiL127zjs6S6xwYT6le/EqmqOjFFXZfwVd7q1auZPHkyCQkJzg5FRETEKbILSii02gGIqGczpf4u2NeDmGBvAPan5RPg5caLIzo4Ltk7nRGdm9D++EyqPcfyaiQ2pxalli5dytixY1m5ciXz58+npKSEQYMGkZf315N97bXXePPNN3n//fdZvXo1kZGRDBw4kJycv6p0Dz30ELNnz2bmzJksW7aM3NxcrrjiCmw2W3mnFRERqRd+3XUMgAHnNcwFzv/uxF1mVu5Nd3IkdUNubi433ngjH3/8MY0aNXJ2OCIiIk5xNKd0llSgtzte7hYnR1OzXhgez6ieTXn7uk78+vhFtIn0r9RxsSG+AOxPq5milFPXlJo7d26Zn6dMmUJ4eDhr166lb9++GIbB22+/zT//+U+uuuoqAKZNm0ZERAQzZszgnnvuISsri08++YTPPvuMAQMGADB9+nRiYmJYsGABgwcPrvXnJSIiUtOsNjur9pUWYC5oGerkaJyvV4vSotSfBzNZtS+dHnHBTo7ItY0dO5bLL7+cAQMG8OKLLzo7HBEREadIzqqf60mVp3+bcPq3qfoHmc1CfABITMuv7pAAF1tTKisrC4Dg4NJEct++fSQnJzNo0CBHG09PT/r168fy5csBWLt2LVartUybqKgo4uPjHW1ERETqm42HMskvttHIx512kQEVH1DPNQ705rpuMQCM/2YjRSWaLX06M2fOZN26dbz88suVal9UVER2dnaZh4iISH3w1533GvYyCGdS0zOlXKYoZRgGjzzyCH369CE+Ph6A5OTStTIiIsou3hoREeHYl5ycjIeHxylTz//e5mRKrkREpK77fXfp2km9WoRgNp95PYCG4snL2hHq58meY3mOu8pIWQcPHuTBBx9k+vTpeHlV7lPhl19+mcDAQMcjJiamhqMUERGpHfX1znvVyTFTKrWez5S6//772bhxI59//vkp+05efMswjAoX5DpTGyVXIiJS1y3fkwpA7xa6dO+EQB93nh12HgDvL97Nc99vwWqzOzkq17J27VpSUlLo2rUrbm5uuLm5sXTpUt59913c3NzKXY9z/PjxZGVlOR4HDx50QuQiIiLV72h2EVC/Fzk/VydmSh3JKjjjTPTfdh1jwdajVe7fJYpS48aNY86cOSxevJjo6GjH9sjISIBTZjylpKQ4Zk9FRkZSXFxMRkbGaducTMmViIjUZYVWG+v2ZwLQ+/haSlLq8g6NeeDilgBM+T2Ru/+7BsMwnByV67jkkkvYtGkTGzZscDy6devGjTfeyIYNG7BYTl3k1dPTk4CAgDIPERGR+iD5+EypiEAVpU4n1M8DXw8LhgEH0wvKbZORV8ztU1dz53/XsD25aleiObUoZRgG999/P9988w2LFi0iLi6uzP64uDgiIyOZP3++Y1txcTFLly6ld+/eAHTt2hV3d/cybZKSkti8ebOjzcmUXImISF22JjGDYpudxoFexIX6Ojscl2IymXhkUBsm39wVL3czi3cc4+fN5V/O3xD5+/sTHx9f5uHr60tISIhj+QQREZGGIuVEUcpfa0qdjslkqnBdqaU7j2G1lX4I+J/f9lWpf6cWpcaOHcv06dOZMWMG/v7+JCcnk5ycTEFBafXNZDLx0EMP8dJLLzF79mw2b97M6NGj8fHxYdSoUQAEBgZyxx138Oijj7Jw4ULWr1/PTTfdRIcOHRx34xMREalPFm4vnRrdq0VIhZezN1SD2kdyT98WALzy83YtfC4iIiKnODFTKlIzpc6oWeiZ78C3cHuK4/vvNhx2FPsqw62qwRQVFbFq1SoSExPJz88nLCyMzp07nzLLqTImTpwIQP/+/ctsnzJlCqNHjwbg8ccfp6CggDFjxpCRkUHPnj355Zdf8Pf3d7R/6623cHNz49prr6WgoIBLLrmEqVOnljsFXUREpC7Lyrfy5erSy86HJkQ5ORrXdnff5sxYdYAD6fl8tmI/d17Y3NkhuaQlS5Y4OwQREZFaZ7MbHMvRmlKVcaaZUlabnaU7SotSoX6epOYWMW1FIvf0qlyeWumi1PLly3nvvff49ttvKS4uJigoCG9vb9LT0ykqKqJ58+bcfffd3HvvvWUKRmdSmTUeTCYTzz77LM8+++xp23h5efHee+/x3nvvVfbpiIiI1En/XZFIXrGNtpH+9G8T5uxwXJqvpxuPDWrNE7M28crP2zEMuPPCOM0uExERaaDS84qZujyRb9YdokdcMHYDzKbSYoqc3ok78O1LPbUotSYxg+zCEoJ9PXhuWHvGzljH//44wO09IivVd6Uu3xs+fDgjR46kSZMmzJs3j5ycHNLS0jh06BD5+fns2rWLp556ioULF9K6desy6zuJiIhI9SgotjFleSIA9/VvoeJKJYzsGsOwjlGU2A3+/dM2Hv5igxY+FxERaYC2HMmi32uLeXfhLg5lFPDNusMAhPl7YjErpzqTEzOltifncOunq7j2oxVk5VsBWHR8WYn+bcIYEh+Jt7uFzHwrRzLLXxT9ZJUqSg0aNIjExEQmTJhA37598fHxKbO/efPm3HrrrcydO5cFCxZU+omJiIhI5X219iDpecXEBHtzeYfGzg6nTrCYTbxzfSdeHBGPu8XEtxuO8N2GI84OS0RERGqRzW7w5DebyCkqoU2EP2MvauEoREXq0r0KNTtelDqWU8TSncdYlZjOk7M3kVVgZe6W0hvKXNI2AovZREywNwCHMipXlKrU5Xtjx46tdLDt27enffv2lW4vIiIiFTMMg+kr9wNwxwVxuFmceq+SOsVkMnHT+bFk5BXzxvydPPf9Fvq0CtVUfRERkQbi81UH+PNQFv6ebnx2Rw/CA7xoHxXIE7M2ckm7CGeH5/LC/T3x93Ijp7CE+CYBbE/K4cdNSfyxL43U3GICvd25sHUoAE2Dfdl5NJeDGeUvin6yKi90XlBQwPz589m5cycmk4lWrVoxcOBAvL29q9qViIiIVNK6A5nsPJqLl7uZK7tEOzucOune/i34aXMy25KyeXDmeiZc05HGgcpfRERE6rOUnEJen7cDgEcHtSb8+Myoyzo0ZnD7SF26Vwlms4n3bujMoYwCru8ew3+W7eOVn7eTmltM40AvPr6lGwFe7gA0DS69sq5aZ0qdMGfOHO68805SU1PLbA8NDeWTTz5h6NChVelOREREKunzVQcAuCIhikBvdydHUze5W8y8PjKBqz5czu+707h4wlKeH96ea7rFODs0ERERqQFFJTbu/WwtWQVW2kcFcNP5sWX2qyBVef3bhDu+v/vC5hzOKCA1t4jnhrcn3P+vSyCbnrh8L71yM6UqPfd/+fLljBw5kr59+/L777+Tnp5Oeno6y5Yt48ILL2TkyJGsWLGist2JiIhIJWUVWPlhY+k6SDf0UAHlXMQ3CeSbMb3pFtuIAquNf323mdyiEmeHJSIiItXMMAz+9e1m1h3IxN/Ljfdu6KzlD6qJ2WzihRHxTLypa5mCFEDT43fqO1jJmVKVHpEXX3yR2267ja+//ppevXoRFBREUFAQvXv3ZtasWYwePZoXXnihCk9DREREKuPrtYcotNppHeFHl6aNnB1OnRffJJCv7u1F8zBfCq12ft6U5OyQREREpBrZ7QbPfb+VL9ccwmyC90d1oXmYn7PDahD+unyvmteUWrFiBa+++upp948dO5Z+/fpVtjsRERGphPS8Yt5duAuAW3s3w2TSNPPqYDKZuLpLNK/P28GsdYfqxCV8eXl5LF26lAMHDlBcXFxm3wMPPOCkqERERFxLSnYhz/+wlR82ln7o9NzwePq1DnNyVA1HdKPSolReka1S7StdlCosLCQgIOC0+wMDAykqKqpsdyIiIlIJr8/bQVaBlbaR/lxXBwondcmIzk2Y8MsOVu5N51BGviOJckXr16/nsssuIz8/n7y8PIKDg0lNTcXHx4fw8HAVpUREpMHLKrDy/PdbmfPnYaw2AzeziTeu7cjwTk2cHVqD4uVuITLAiyPHqnlNqdatW7No0aLT7l+4cCEtW7asbHciIiJSgU2Hspi5unSB8+eHx2sdhGrWJMibXs1DAHh/0W7mbUkmI6+4gqOc4+GHH2bo0KGkp6fj7e3NypUr2b9/P127dmXChAnODk9ERMSpDmXkc81Hy5m17hBWm0G32EZ8dkdPFaSc5MQlfJVR6ex29OjRPPbYY/z000+n7Pvxxx95/PHHue222yp9YhERETmzl3/ehmHAiE5R9IgLdnY49dJVXaIBmLn6IPd8tpaBb/3KzqM5To7qVBs2bODRRx/FYrFgsVgoKioiJiaG1157jSeffNLZ4YmIiDjNpkNZXPnhcnYezSUiwJOv7+3F1/f1pleLEGeH1mDFVKEoVenL9x588EGWL1/OFVdcQZs2bWjXrh0AW7duZdeuXYwYMYIHH3yw6tGKiIjIKZbtSmX5njQ8LGb+b0hbZ4dTb12R0JilO49xKCOf5KxCkrIKuWHySiZc25FusY3w93J3dogAuLu7O9YTi4iI4MCBA7Rr147AwEAOHDjg5OhEREScY+G2o9w/Yz0FVhttI/2Zclt3Ggd6OzusBq8qM6UqXZQym8189dVXfPHFF3z++eds374dgLZt2/Lss89y/fXXVz1SEREROYVhGLw+r/T37I3nN6VJkJKrmuLlbuG9GzoDkJlfzE2f/MHmw9ncNmU1JhPccn4szw5r7/QF5jt37syaNWto3bo1F110EU8//TSpqal89tlndOjQwamxiYiIOMPiHSnc9d812A24sFUoH97YxWU+TGromoZUPnetdFHqhOuuu47rrruuqoeJiIhIJc3bksyfh7Lw8bAw9iKt11hbgnw8+N+d5/PiD1tZvieNw5kFTFuxn+Zhftzau5lTY3vppZfIySm9rPCFF17g1ltv5b777qNly5ZMmTLFqbGJiIjUtl1Hc3hgxnrsx5c5eP2ajrhr7U2XUSMzpURERKTmldjsvD5vBwB39okj1M/TyRE1LIHe7rx+TUcA/vPbXl78cRsv/riV+CaBtGpkqfV4cnNz8fPzo1u3bo5tYWFh5a7xKSIi0hBkF1q5Y9oacopK6BEXzGsjVZByNU2DfSvdttIjZzabHYtrnu7h5qYal4iIyLn4Zv1h9hzLI8jHnTv7Nnd2OA3aHX3iuLxDY6w2g3Ez1pGVb631GEJDQ7n00kuZOHEihw8frvXzi4iIuJqXftzGgfR8YoK9+eimrni4qSDlakL9PIhuVLlL+CpdRZo9e/Zp9y1fvpz33nsPwzAq252IiIicpKjExjsLdgEwpn8LArQuglOZTCZeHZnA5iNZ7E/L5/kfttR6DDt27GDOnDnMmjWLhx56iISEBIYNG8bw4cNJSEio9XhERESc6ffdqcxcfRCAN67pRLCvh5MjkvKYTCbmPtSXwGcqblvpotTw4cNP2bZ9+3bGjx/P999/z4033sgLL7xQpUBFRETkL5+t2M/hzAIiA7y4pVczZ4cjgJ+nG+9c35mRE5czb8vRWj9/bGws48aNY9y4cWRlZfHTTz/x3Xff8cYbb9CoUSNHgapfv35YLLV/eaGIiEhtKSqxMf6bTQDcfH4sPeKCnRyRVIezmud25MgR7rrrLhISEigpKWHDhg1MmzaNpk2bVnd8IiIiDcKxnCLHLKmHBrTCy10FBlfRKSaIhwe2dnYYBAYGcsMNNzBz5kxSU1OZNGkSdrud2267jbCwMP73v/85O0QREZEas+VINgfS8wnyceeJS9s6OxypJlUqSmVlZfHEE0/QsmVLtmzZwsKFC/n++++Jj4+vqfhEREQahNfnbSenqIQOTQK5pluMs8ORk9zbrwUjuzZxdhgObm5uDBo0iPfee4/9+/ezYMECWrd2fuFMRESkphzLKQKgWYgvfp5az7q+qPRIvvbaa7z66qtERkby+eefl3s5n4iIiFTdyr1pfLX2EADPDjsPi9nk5IjkZBaziWeHxfOWk86/cePGcrebTCa8vLxo3749np66U6OIiNRfqbmlRSndmbh+qXRR6h//+Afe3t60bNmSadOmMW3atHLbffPNN9UWnIiISH23Yk8ad0xbjWHAVV2a0DVW6yPIqTp16oTJdPpipbu7O9dddx2TJk3Cy8urFiMTERGpHak5xQCE+Wtx8/qk0kWpW2655YzJkIiIiFTNdxsO8/jXGykqsdOnZSj/HtHB2SGJi5o9ezZPPPEE//d//0ePHj0wDIPVq1fzxhtv8Mwzz1BSUsI//vEPnnrqKSZMmODscEVERKqdZkrVT5UuSk2dOrUGwxAREWk4Cq02npy9iW/WHQbg4rbhfHhjFy1uLqf173//m3feeYfBgwc7tiUkJBAdHc2//vUvVq1aha+vL48++qiKUiIiUi+pKFU/aXUwERGRWvba3B18s+4wZhOMu7gV4y5uiZvlrG6IKw3Epk2biI2NPWV7bGwsmzaV3h67U6dOJCUl1XZoIiIitUJFqfqpUhnwvffey8GDByvV4RdffKFbEouIiJzGliNZTF2+D4CPburKwwNbqyAlFWrbti2vvPIKxcXFjm1Wq5VXXnmFtm1Lb4t9+PBhIiIinBWiiIhIjUrNLf0dGOqnNaXqk0rNlAoLCyM+Pp7evXszbNgwunXrRlRUFF5eXmRkZLB161aWLVvGzJkzadKkCZMnT67puEVEROocu93gqW83Yzfg8oTGDGof6eyQpI744IMPGDZsGNHR0SQkJGAymdi4cSM2m40ffvgBgL179zJmzBgnRyoiIlIzUnOOz5Ty10yp+sRkGIZRmYYpKSl88sknzJw5k82bN5fZ5+/vz4ABA7j77rsZNGhQjQRak7KzswkMDCQrK4uAgABnhyMiIvVQblEJT83exLcbjuDrYWHho/2JDNRd0uoSZ+cLubm5TJ8+nZ07d2IYBm3btmXUqFH4+/vXahzOfh1ERKThKbTaaPuvuQD8+cwgAr3dnRyRVKSy+UKl15QKDw9n/PjxjB8/nszMTPbv309BQQGhoaG0aNFCd+YTEREpR4nNzrwtR3njlx3sTc3DbILnhserICWVcvvtt/POO+/g7++Pn58f9957r7NDEhERqXUn1pPysJgJ8NLS2PXJWY1mUFAQQUFB1RyKiIhI/bIvNY/RU1axPy0fgMgAL969oTM94oKdHJnUFdOmTeOVV16p9dlQIiIiruTv60lpQkz9UuWi1MaNG8vdbjKZ8PLyomnTpnh66hpPERFp2AzD4J+zN7E/LZ9gXw9uOj+W2y9oRpCPFueUyqvkKgsiIiL12jGtJ1VvVbko1alTpzNWJt3d3bnuuuuYNGkSXl66NEFERBqmnzYls3xPGh5uZr4dcwFNQ3ycHZLUUfpEWEREGroTl++F+qkoVd9U+R7Us2fPplWrVkyePJkNGzawfv16Jk+eTJs2bZgxYwaffPIJixYt4qmnnqqJeEVERFxefnEJL/64FYD7+rVQQUrOSevWrQkODj7jQ0REpD5z3HnPTzPO65sqz5T697//zTvvvMPgwYMd2xISEoiOjuZf//oXq1atwtfXl0cffZQJEyZUa7AiIiJ1wcxVB0nKKqRJkDf39W/h7HCkjnvuuecIDAx0dhgiIiJOo5lS9VeVi1KbNm0iNjb2lO2xsbFs2rQJKL3ELykp6dyjExERqWMMw+B/f+wH4N7+LfBytzg5Iqnrrr/+esLDw50dhoiIiNP8tdC5ilL1TZUv32vbti2vvPIKxcXFjm1Wq5VXXnmFtm3bAnD48GEiIiKqL0oREZE64o996ew5loePh4URnaKcHY7UcVpPSkREBI7laqHz+qrKM6U++OADhg0bRnR0NAkJCZhMJjZu3IjNZuOHH34AYO/evYwZM6bagxUREXF1M/44AMDwTlH4e7k7ORqp63T3PRERkb9fvqc1peqbKhelevfuTWJiItOnT2fnzp0YhsHIkSMZNWoU/v7+ANx8883VHqiIiIirO5pdyNzNyQCM6nHqpe4iVWW326u9z5dffplvvvmG7du34+3tTe/evXn11Vdp06ZNtZ9LRESkOpxY6DxMl+/VO5W+fO/2228nJycHAD8/P+69917efPNN3nrrLe655x5HQaoqfv31V4YOHUpUVBQmk4lvv/22zH7DMHj22WeJiorC29ub/v37s2XLljJtioqKGDduHKGhofj6+jJs2DAOHTpU5VhERETOxR970xj2/jKKbXYSogPpEK2FqcU1LV26lLFjx7Jy5Urmz59PSUkJgwYNIi8vz9mhiYiInKKoxEZ2YQmgNaXqo0oXpaZNm0ZBQUG1njwvL4+OHTvy/vvvl7v/tdde48033+T9999n9erVREZGMnDgQEdxDOChhx5i9uzZzJw5k2XLlpGbm8sVV1yBzWar1lhFREROZ96WZG74eCVHs4toHubLm9d2dHZIIqc1d+5cRo8eTfv27enYsSNTpkzhwIEDrF271tmhiYiInOJwRmkdws1sItBbSyPUN5W+fK8m1jS49NJLufTSS097vrfffpt//vOfXHXVVUBpYSwiIoIZM2Zwzz33kJWVxSeffMJnn33GgAEDAJg+fToxMTEsWLCAwYMHV3vMIiIif7fpUBYPzlyP3YChHaN45aoO+HpW+ep4EafJysoCIDg42MmRiIiIlPXnwUzum176oUmrCH/MZt0ApL6p0t33avMOMPv27SM5OZlBgwY5tnl6etKvXz+WL18OwNq1a7FarWXaREVFER8f72hTnqKiIrKzs8s8REREqupgej53TFtNodVOv9ZhvHVtRxWkpE4xDINHHnmEPn36EB8fX24b5U0iIlLb1u5P567/rmHEh79zJKuQuFBf3rm+k7PDkhpQpcy5devWFRam0tPTzymgE5KTSxeKjYiIKLM9IiKC/fv3O9p4eHjQqFGjU9qcOL48L7/8Ms8991y1xCkiIg3TwfR8rp+8kpScIlpH+PH+qM64War0WY+I091///1s3LiRZcuWnbaN8iYREalNczcnc9//1nLiYq3LOzTm5as7EKC7GtdLVSpKPffccwQG1u7CrScXwQzDqLAwVlGb8ePH88gjjzh+zs7OJiYm5twCFRGRBiM1t4gbPl7J4cwC4kJ9+eyOnvgrUZI6Zty4ccyZM4dff/2V6Ojo07ZT3iQiIrVl7f50Hpy5HsOAS+MjeXRQa1qGV/2malJ3VKkodf311xMeHl5TsZQRGRkJlM6Gaty4sWN7SkqKY/ZUZGQkxcXFZGRklJktlZKSQu/evU/bt6enJ56eWrVfRETOzks/buNQRgGxIT58ftf5RAR4OTskkUozDINx48Yxe/ZslixZQlxc3BnbK28SEZHacDizgDunraGoxM4lbcN57wbNQm8IKj3CtbmeFEBcXByRkZHMnz/fsa24uJilS5c6Ck5du3bF3d29TJukpCQ2b958xqKUiIjI2fpjbxrfrD+MyQTvXN+ZyEAVpKRuGTt2LNOnT2fGjBn4+/uTnJxMcnJytd9lWUREpLKsNjv3z1hHRr6V+CYBvKdlERoMp959Lzc3l927dzt+3rdvHxs2bCA4OJimTZvy0EMP8dJLL9GqVStatWrFSy+9hI+PD6NGjQIgMDCQO+64g0cffZSQkBCCg4N57LHH6NChg+NufCIiItXFarPz9HdbALi+e1M6xQQ5NyCRszBx4kQA+vfvX2b7lClTGD16dO0HJCJST2UVWAnwcqv1CR510Wtzt7P+QCb+Xm5MvLErPh66cUxDUemRttvt1X7yNWvWcNFFFzl+PrFewa233srUqVN5/PHHKSgoYMyYMWRkZNCzZ09++eUX/P3/uqb0rbfews3NjWuvvZaCggIuueQSpk6disViqfZ4RUSkYft5czI7juYQ5OPO44PbODsckbNSEx80iog0NH/sTePxWRt5eEBrRnRuUmafzW7wwg9bmbo8kVA/T85vHswTQ9oSE+zjpGhd27JdqXz82z4AXh/ZUa9TA2MylJmQnZ1NYGAgWVlZBAQEODscERFxUbd8uopfdx7jgYtb8sggFaUaGuULpfQ6iEhDl11oZchbv3Ikq5Bwf09+e+IiPN1KJ0XkFZUw7vP1LNqeUuaYa7tF89rIjs4I16X9/bW86fymvDiig7NDkmpS2XxBF2mKiIicwYG0fPKLS0jOKmTZrmMAXN319HcqExERkfrt3z9s40hWIQApOUV8t/4IUDoT9bGv/mTR9hQ83cy8c30nXrmqtMiydOcxDMOgoNjGnD+PUGi1lenzx41J9H1tMQu3Ha3dJ+NEhmHw3JytHMkqJDbEh/GXtnN2SOIEKkqJiIicxprEdC56YwmXv7uMj5buwW5Aj2bBxIb4Ojs0ERERcYLvNhzmizUHMZng8g6ld4mf/Nte7HaDqcsT+XlzMu4WE5/d0ZPhnZowonMTvNzNHM0uYufRXF78cSsPfL6eDxbvLtPvR0v3cCA9n/tnrGfjocxTzptVYGX57lRs9tILnQ6m5zN7/SFKbNW/zE5tSMkpZPSU1cxadwiTCSZc0xFfT60j1RBp1EVERMphGAYv/bQNm91gX2oe+1LzABjZTbOkRERE6pv84hI+XLyHQe0jSIgOOmW/YRh8s+4w//f1nwDccUEcDw5oxa87j7E7JZfrJ69k/cEMAJ68rB094oIB8HK3cH7zEJbsOMaPG48we/1hoHSdykePLwVwKCOfTYezACiw2rj101VEBXmTV1TC1V2iiY8OZPysTSRnFzKgXQR3XhjHvdPXkplvZefRXJ4Y0ramX55qk55XzJTf9zF1eSI5hSV4upl5blh7ujcLdnZo4iQqSomIiJRj/tajrDuQiZe7mUY+HiRlFeLtbuGy45+KioiISP3xzoJdTPp1L7PWHWLxY/3xci9dI+q7DYd5fd4OkrIKHbOUru8ew/jL2mExm7ipVywTl+xhVWI6UDp7anTvZmX67tsqjCU7jvHR0r0UH5/ZtDsll/1pecSG+DJvS+klex1jgiiy2tienENGvhWAN+bvLNPXgm1HWfC3S/z+89teru4STctwv+p/UU5SaLWRW1SCv5ebYw2tyvpxYxIzVx9gxZ40So6/juc1DuDt6zvROsK/gqOlPlNRSkRE5CQlNjuvzdsBwB194ri2WwxPzNrIwPMi8dPUchERkXrlaHYhU5cnApCUVcgny/Zxa+9mPP3dZr5Zd9jRzmyC2y+I48nL2mE2mwB48JJWxAb7YDabiAzwok/LUEwmU5n++7UJgx9wFKTczCZK7AYLtqVwR5845m1JBmB4xyiGd4pi3pajhPt7klVg5f3Fu9mXmsfIrtEM7xTFA5+vJyPfSq/mIbhZTPy2K5Vn52zhszt6nHLec5GSXciqxHS2HMlmy5Fsth7JIjW3GIBQP08WPtKPQB/3Cvux2w1e/nmb4+56AAnRgdzXrwWD20c6XkdpuJRZi4iInOS9RbvZnZJLkI879/RrQYCXOzPv7uXssERERKQGvLtwF0UldoJ9PUjPK2bikj18teYgiWn5mE0w7uJW3NCjKUE+7o4ZVCd4uVu4vkfTM/bfPNSXJkHeHM4swNPNzD19m/Puot0s3HaUYR2jWH18ltXg+EhC/DwZ1fOv/oZ3iuJYbhGNA70B+OGBC/ljbxqXdWjM0exCBr71K8t2pzJ/61EGtY8859di+e5U3lu0m5X70jCM8tuk5haxeEcKIzo3OWNfhVYbj375Jz9uSgLg7r7Nub57DM3Dan5Wl9QdKkqJiIj8zfI9qby7aBcAzw5tT4BXxZ8CioiISN1jtxt8v/EIX6w+CMCHN3bhpZ+2sfFQFrlFJUQFevH29Z0d60OdLZPJxEVtw5i+8gBXJERxZZdo3l20m1X70nl/0S4Mo3T2UJMg71OOdbOYHQUpgCZB3lzVpXR9y9gQX+7oE8fEJXv4YMkeBp4XcU6zpQ6m53P7tNUUWktndLWPCiAhOoj2UQHENwkkLtSXiUv28NHSPSzcXrYoZbXZmbclmZmrDlJitzOyawwzVx1gzf4M3C0mXh/ZscIiljRMKkqJiIhQ+mle6boROzEMuLZbtJInERGReupodiF3/XcNGw+VLjA+oF0E5zcP4fnh8dz13zWc3zyEF4fHV+oStcp4dGAbooK8ubFHLIE+7jQP82XvsTymrdgPwIhOZ5dz3H5BHJ8u28efBzNZsTeN3i1CKzzGarMz+de97EnJ5emh5xHk44FhGDw7ZwuFVjtdYxvx9nWdiAn2OeXYgeeF89HSPSzdkUKJzY6bxUx6XjGjPl7J9uQcR7uVe0tnf/l7uTHp5q6ViksaJhWlRESkwcorKuG+/61jW1I2mfnFWG2l89TbRPjz7LD2To5OREREakKh1cbdxwtSfp5u3NO3OXde2ByATjFBrHrykmpdnwmgka8HY/q3dPx8dZdoXp+3g+hG3tzdtzk39Yw9q37D/D25tlsMn63cz8Qleyos/uxPy+OBmRv482AmAKl5xUwZ3Z1ftiSzcHsK7hYTr1zVodyCFECnmEY08nEnI9/K2v0ZxDcJ5LYpq9ienEMjH3du7tUMd7OJ6X/sx8vdwse3dNNC5nJGKkqJiEiDNenXvfy685jj5yZB3tzaO5YbejTFx0O/IkVEROqLohIbE5fswW432J6cw5+Hsgjycee7sRcQG+Jbpm11F6TKU7rQdwTNQnxxs5jPqa+7+zZnxqoD/LYrlc2Hs4hvElhuu02Hsrjl0z/IyLcS4OVGsc3OrzuPcc1Hy/nz+Iyxu/s2p9UZikgWs4n+bcKZvf4ws9Yd4q0FO/nzUBaNfNz56t7ejrsA3n9xSwwDLWQuFVLGLSIiDVJKdiH/+W0vAC+OiOeituFEBnhhUfIkIiJS73yweA/vLtzl+NliNvHBqC6nFKRqi9lsomV49cwgign2YWhCY77dcISJS/fwwagujn2GYXAoo4Dfd6fy4o/byC0qISE6kI9u6srqxHQenLmBdQcyARjSPpJxF7eq8HwXty0tSn255hAAPh4WPh3d3VGQgtLCXi3U9qQeUFFKREQapLcX7iK/2EanmCBu7Nm0Vj4VFRERkdp3IC2fj5buAUoLLwVWGyM6R3FBy/qzztG9/Vvw7YYj/LwpiX2pecSF+pJVYOXhLzawaHuKo13PuGD+c2s3/L3cGd6pCcdyili5N527LoyjZ/OQSp2rb+swLGYTNrtBizBfPryxK20idYmenB0VpUREpN4rKrExa+1hGvm4M7h9JHP+/OtOO09e1k4FKRERkXrKMAye/2ELxSV2LmgZwsSbutTL3/ttIwO4uG04i7anMPnXPVzXvSmPfrmBPcfycDOb6BAdyIWtwhjTvwVe7hbHcXde+Nd6WpUV6O3OS1fGk5iWz/0XtcTXU2UFOXv61yMiIvXa4u0pPPf9FhLT8gGIC/VlX2oeANd0jT7n2zyLiIiI6zEMg3lbjjJxyW7+PJSFm9nEc8Pa18uC1An39W/Bou0pfL7qIJ+vKv3wLTLAi//c2u2060ydreu6N63W/qThUlFKRETqrc9XHWD8N5sACPXzpNBqcxSk7rowjvGXtnNmeCIiIlIDkrIKePKbTSzeUXozE083M09d3q7a1nByVd2bBdOreQgr9qbh7W7hknbhPH3FeYQHeDk7NJHTUlFKRETqhZ1HcwActx3+e0Hqhh5N+efl7SgusfPfFYk0C/FlROcmTotVREREqp/VZmfa8kTeWbCLnKISPCxm7rwwjtv7xBHq5+ns8GrFRzd3ZVtSNp1igspcpifiqlSUEhGROm/dgQyu/WgFJXaDkV2jycy3smDbUQBuu6AZT19xXul0fU94aEBrJ0crIiIi1e1odiG3fLKKHcc/pOoUE8TrIxNoFVG/Z0edLNDbnfMruWC5iCtQUUpEROq07EIrD85cT4ndAODrtaW3J3YzmxhzUUseHtCqXq8fISIi0tAVFNu4c9oadhzNIdjXg8cHt+HabjGYzfr9L+LqVJQSEZE6yzAM/jl7MwfTC4hu5M1LV3bgg8W78fV048nL2tb7tSNEREQauqISGw9/sYFNh7No5OPOt2MuoGmIj7PDEpFKUlFKRERcwtHsQnKLSmgR5lep9qW3eN7K938ewWI28c71neka24i+rcNqOFIRERFxBWv3p/OPWZvYlZKLh8XM5Fu6qSAlUseoKCUiIk63Yk8ad05bTYHVxosjOjCq55lvM1xis/PST9uZ8nsiAC9f2YGusY1qIVIRERFxll1Hc9h8JIsjmYXM3ZzMpsNZQOkddl8fmUD3ZsFOjlBEqkpFKRERcYoSm53tyTmsO5DBv3/cRlGJHYAnZ28iOauAcZe0wt1iPuW4xNQ8HvvqT9bszwDg31fGc233mFqNXURERGrXZysSeXrOFgzjr21uZhMjOjfhn5e1o5Gvh/OCE5GzpqKUiIjUutTcIm76zx9sT85xbBvQLpw2kf58sHgP7y7azQ8bk3jqinZc3DaCEpud9xfvZs6fR9h7LA8AP083/n1lPMM7NXHW0xAREZFqZrXZ+W3XMQ5nFlJis2O12dmXms/nqw4A0KVpELEhviREBzKsYxQhfp5OjlhEzoWKUiIiUqsy8oq5+ZNVbE/OwdfDQvsmgVzQIpQxF7XA3WImLtSPl3/axt7UPG6fuoZhHaNIzS1i+Z40AEwm6NMylJeu7EBMsNaNEBERqQ+y8q1M+nUPX645SGpucbltHhrQigcv0V11ReoTFaVERKRGrDuQwap96TQL8SEz38rs9YfZciSb3KISAML8Pfni7vNpftLC5iO7RjOofQTvL9rNf37by5w/jwDg42Hh2aHtGdw+kkAf91p/PiIiIlIzPlu5nwnzdpBVYAVK14jqGhuEu8WMh8WMm8VE/zbhXNahsZMjFZHqpqKUiIhUuy1Hsrjx4z8osNrK3d8kyJspt3U/pSB1QoCXO09e1o7LOzTmqW83U1Ri470butAm0r8mwxYREZFa9t2Gw/zr280AtInw5+GBrbikXUS560qKSP2jopSIiFSrtNwi7v7vWgqsNlpH+OHlbsEw4NIOkQxsF0GInyeB3u5YzBVPve8YE8T34/pgGIam6ouIiNQz+1LzePKbTQDc3bc5TwxpW6n8QETqDxWlRESk2uxLzeP+Ges4nFlAsxAfvrqnd7VcaqeClIiISP3xzbpDLNyewprEdPKKbfSIC+bxwW1UkBJpgFSUEhGRc/LzpiS+3XAYN7OZJTtSyCu20cjHnY9v6aa1n0RERKSM/65I5Onvtjh+DvP35J3rO+Gmy/VEGiQVpURE5Kx9ufogj8/aWGZbz7hg3r6+E40DvZ0UlYiIiLiixTtSeHZOaUHqpvOb0r91ON2bBetDLJEGTEUpERGpkGEYbE3KZtW+dA6k55OWW4zVZmfulmSg9I558VEBhPh5clmHxpp+LyIiIg75xSW8v2g3H/+2F7sB13aL5oXh8bo8X0RUlBIRkb+cvKD4nmO5fP/nEeb8eYS9x/LKPeam85sqsRQREZEyDMPgcGYBX689xPSVB0jNLQLg0vhIXhzRQXmDiAAqSomINHgFxTZ+353KJ8v2sWZ/Oo18PPDzcuNYdhE5RSWOdh5uZi5sGUrLcD/C/D0xm0xEBXkz6LwIJZYiIiINnGEYrDuQyfLdqfx5KJM/D2VxLKfIsT+6kTfPDG3PgHbhyhtExEFFKRGResowDDLzrXh7WPB0M5ORb2V/Wh5rEjPYdDiLA+n5HMrIJzW3uMxxKTlFpBxPIt3MJvq2DmNox8YMaBeBv5fWfBAREZG/pOYWMXvdYWauPsCek2ZVu5lNdGnaiJt7xTIkPhJ3LWYuIidRUUpEpJ4wDINjuUXkFpawLSmHyb/t5c+DmQCYTGAYpz822NeDa7pGM7JrNIVWOzmFVsIDvGgS5I23h6V2noCIiIjUCRsPZbJg61HWH8xk5d40rLbSJMPb3cLF7cLp2rQRHWOCaB8VgJe78ggROT0VpURE6qCsAitrEtP582AmydmFHMooYMuRbLIKrOW2P1GQCvXzoFNMEJ2bNqJ5qC8xwT7ENPIhwNtNU+lFRETktDLyill/MIP/rtjPkh3HyuzrGBPEdd1iGNqxsWZVi0iVqCglIuKi8opK2Jea53jsT8vnQHrp15S/rdHwd2YT+Hq6EeTjzohOTbilVzO83M3kF9to5OOBh5umzYuIiDR0JTY7iWl57E7JIzO/mCAfD8Bgb2oeRzILyMy3klVgJbvASmZB6feZ+X998GUxmxgSH8n5ccH0bB5C6wh/5z0ZEanT6k1R6sMPP+T1118nKSmJ9u3b8/bbb3PhhRc6OywRaeAKim0UWG2U2OxY7UbpV5tBUYmNA2n57EvLIyOv2JH8ZR5PANPzik9beDqheagvXWMb0TTYh4hAL85rHEDrCP9yC0/61FJE/k55k0j9VGKzk5FvJbeohJxCKzmFJccfVjLyizmcUcDOo7n8eSiT/GJblfuPC/WlV4sQ7r6wOc1CfWvgGYhIQ1MvilJffPEFDz30EB9++CEXXHABkyZN4tJLL2Xr1q00bdrU2eGJSD1WVGIjNbeY1JwijuUUkZxdyJYj2Ww+nMXBjPwynyqejRBfD+JCfWkW6kuzEB+ahvgSG+xDbIjP8U81RUSqRnmTSN1iGAZ5xTbScktzjZScIlKyCzmWW0RKdunPJ7an5xVhP8Makn/n62GhRbgfoX6eZOYXYzMgLsSHmODSHCPI251Ab3cCfdwJ8nYn3N+LQB99yCUi1ctkGGda+rZu6NmzJ126dGHixImObe3atWPEiBG8/PLLFR6fnZ1NYGAgWVlZBAQE1GSoIuIkhmFgtRmU2O2U2A1KbAYFVhv5RSXkFpWQX2wjr6iEvOIS8opOfF/6Nb+4hNyi0rZ/35+WV3zaNZxOZjaBm8WMm9mEm9mEh5uZJo18aB7qS7i/JwHe7gT5HE/+vN0J8vagabCPkj8RF1Jf8gXlTSLOZbcbZBZYSc8rIj2v9GtaXjHpucWk5RWTkV9Mel4xabmlX9PziykusVfpHH6ebvh7lT5Kvy/NL5o08iY22IcusY1oGeaH2az1JEWkZlQ2X6jzM6WKi4tZu3Yt//jHP8psHzRoEMuXL69SX/O3HsXXL7+cPWeu21VU1jvT7oqPPftzV1RtPNd65JnPfY6vWQ0+rwqfdU0+r3M6tubOXdHBFb1mdruBzQCb3Y7NXvq1xG5gtxuU2A1shoHNVvq93TDK7HO0Of74e5vS/oyyD6O0oHTie9vJx57cr1F6yVxlPzU8G+4WE6F+noT5exLm50nLCD86RgfRIsyPxkFe+Hm4KekTEZdQs3nTqf/Rlvfrpbz/jstvdy79Ve4//XM67znEUm501f4aVG9/5TWs9HlPc6zd+GufYYDdKI3QMEpjNY7vL/35+P7j32MYpcdTdj/HvzdO7D+5r7/1f+L8JbZTcwpbmXzk1Fzk5Pzl78c7cpHTHF9ylkmJl7uZcH8vwv1Lc45wf0/CA7wI8/MkLMDTsT3E1xOL8g4RqSPqfFEqNTUVm81GREREme0REREkJyeXe0xRURFFRX+t1ZKdnQ3Aw19swOzpU3PBiohL8bCY8fW04ONR+imij6el9KuHBV9PN3w9jm/zcMPH0w2/v7f1sBDs60GYvyeB3u66c52I1AnKm0RcR4CXG8G+HscfnoT4ehDs50GIrweNfP76PtjXgxBfT7w9LM4OWUSk2tX5otQJJ/9BaBjGaf9IfPnll3nuuedO2d45Jgh37/IX7Kvo700TFTY4m13nfO4Kjz3H53Uuf4dX9Ef8mfZWHLfzzl3R2c90fE3+W6jw3OfStwnczCYsJhMW86kPN7MJ8/GvpW3MWMyU+Xpqm8r0U14b8ynt3U/8bDHjbin93t1s1uwlEWmwaipvKq+Lcn9/VG7TaX83lddnueeuZDxVyWfKe50qG3v57co/eeVfj0q+FpXur/pf39OlEGZTaWuzqfR1MB1ve2K76cT3x3eU/lx6DpOJ421OfG863s9fff217299HQ/8RD8WM47cwmw6Nd8wm0y4WU7a97dtbmYzZjNYytnmdjzPOXWbiSAfd9wtuiOuiEidL0qFhoZisVhO+XQvJSXllE8BTxg/fjyPPPKI4+fs7GxiYmL47M6eWhtBRERE6i3lTSIiIuJK6nx53sPDg65duzJ//vwy2+fPn0/v3r3LPcbT05OAgIAyDxEREZH6TnmTiIiIuJI6P1MK4JFHHuHmm2+mW7du9OrVi8mTJ3PgwAHuvfdeZ4cmIiIi4lKUN4mIiIirqBdFqeuuu460tDSef/55kpKSiI+P56effiI2NtbZoYmIiIi4FOVNIiIi4ipMRmXvmVuPZWdnExgYSFZWlqaki4iISLmUL5TS6yAiIiIVqWy+UC9mSp2rE3W5E7c4FhERETnZiTyhoX+ep7xJREREKlLZvElFKSAnJweAmJgYJ0ciIiIiri4nJ4fAwEBnh+E0yptERESksirKm3T5HmC322ndujVr167FZDJVS5/du3dn9erV1dLXiVsvHzx4sFqmyVdnbA2tv+oeC6je+Fz5tavu/lx9LFy9P41F/exPY1Gz/RmGQU5ODlFRUZjNdf4GxmetoeVN4Nr/bl05toY2FtXdn8aifvansXCt/lx9PFz5tauov8rmTZopBZjNZjw8PKr1U0+LxVLt6yxU122Yqzu2htYfVN9YQPXG5+qvXUMaC1fvT2NRv/vTWNRcfw15htQJDS1vAtf+d+vKsZ3QUMaiuvvTWNTv/jQWrtMfuO54uPprVx15U8P9mO8kY8eOden+qpOrP1dX76+6VWd8rv7aNaSxcPX+NBb1u7/q5OrP1dX7q68a2uvuys/XlWOrCa7+fF15bKubK792daG/6uTqz9XV+6turvz/gCv2p8v36gDd5cZ1aCxch8bCdWgsXIfGQkTvA1eisXAdGgvXobFwLRoP59NMqTrA09OTZ555Bk9PT2eH0uBpLFyHxsJ1aCxch8ZCRO8DV6KxcB0aC9ehsXAtGg/n00wpERERERERERGpdZopJSIiIiIiIiIitU5FKRERERERERERqXUqSomIiIiIiIiISK1TUaoW/PrrrwwdOpSoqChMJhPffvttmf0mk6ncx+uvvw5AYmLiadt89dVXjn4yMjK4+eabCQwMJDAwkJtvvpnMzMxafKZ1Q0XjkZuby/333090dDTe3t60a9eOiRMnOvanp6czbtw42rRpg4+PD02bNuWBBx4gKyurTD8aj4qd61jovVF9KhqLo0ePMnr0aKKiovDx8WHIkCHs2rXLsV/vi+pzrmOh94XUB8qdXIfyJtehvMl1KG9yLcqd6jYVpWpBXl4eHTt25P333y93f1JSUpnHp59+islk4uqrrwYgJibmlDbPPfccvr6+XHrppY5+Ro0axYYNG5g7dy5z585lw4YN3HzzzbXyHOuSisbj4YcfZu7cuUyfPp1t27bx8MMPM27cOL777jsAjhw5wpEjR5gwYQKbNm1i6tSpzJ07lzvuuKNMPxqPip3rWOi9UX3ONBaGYTBixAj27t3Ld999x/r164mNjWXAgAHk5eUBel9Up3MdC70vpD5Q7uQ6lDe5DuVNrkN5k2tR7lTHGVKrAGP27NlnbDN8+HDj4osvPmObTp06Gbfffrvj561btxqAsXLlSse2FStWGICxffv2c4q5PitvPNq3b288//zzZbZ16dLFeOqpp07bz5dffml4eHgYVqvVMAyNx9morrHQe+PcnTwWO3bsMABj8+bNjm0lJSVGcHCw8fHHH5+2H70vzl11jYXeF1KXKXdyHcqbXIfyJtehvMm1KHeqezRTysUcPXqUH3/88ZQq+d+tXbuWDRs2lGmzYsUKAgMD6dmzp2Pb+eefT2BgIMuXL6/RmOubPn36MGfOHA4fPoxhGCxevJidO3cyePDg0x6TlZVFQEAAbm5ugMajulR1LPTeqBlFRUUAeHl5ObZZLBY8PDxYtmzZaY/T+6L6nc1Y6H0h9Z1yJ+dS3uQ6lDe5BuVNrkW5k+tTUcrFTJs2DX9/f6666qrTtvnkk09o164dvXv3dmxLTk4mPDz8lLbh4eEkJyfXSKz11bvvvst5551HdHQ0Hh4eDBkyhA8//JA+ffqU2z4tLY0XXniBe+65x7FN41E9qjoWem/UjLZt2xIbG8v48ePJyMiguLiYV155heTkZJKSkso9Ru+LmnE2Y6H3hdR3yp2cS3mT61De5BqUN7kW5U6uT0UpF/Ppp59y4403lqnk/l1BQQEzZswo99NAk8l0yjbDMMrdLqf37rvvsnLlSubMmcPatWt54403GDNmDAsWLDilbXZ2NpdffjnnnXcezzzzTJl9Go9zV5Wx0Huj5ri7uzNr1ix27txJcHAwPj4+LFmyhEsvvRSLxXJKe70vak5Vx0LvC2kIlDs5l/Im16G8yTUob3Ityp1cn5uzA5C//Pbbb+zYsYMvvvjitG2+/vpr8vPzueWWW8psj4yM5OjRo6e0P3bsGBEREdUea31VUFDAk08+yezZs7n88ssBSEhIYMOGDUyYMIEBAwY42ubk5DBkyBD8/PyYPXs27u7ujn0aj3NXlbEAvTdqWteuXdmwYQNZWVkUFxcTFhZGz5496datW5l2el/UvMqOBeh9IfWfcifnUt7kOpQ3uRblTa5FuZNr00wpF/LJJ5/QtWtXOnbseMY2w4YNIywsrMz2Xr16kZWVxapVqxzb/vjjD7KysspMO5Qzs1qtWK1WzOaybw2LxYLdbnf8nJ2dzaBBg/Dw8GDOnDmnfDqr8Th3lR2LE/TeqB2BgYGEhYWxa9cu1qxZw/Dhwx379L6oXWcaixP0vpD6TrmTcylvch3Km1yT8ibXotzJRTljdfWGJicnx1i/fr2xfv16AzDefPNNY/369cb+/fsdbbKysgwfHx9j4sSJp+1n165dhslkMn7++edy9w8ZMsRISEgwVqxYYaxYscLo0KGDccUVV1T786nrKhqPfv36Ge3btzcWL15s7N2715gyZYrh5eVlfPjhh4ZhGEZ2drbRs2dPo0OHDsbu3buNpKQkx6OkpMRxHo1Hxc51LE7Qe+PcVTQWX375pbF48WJjz549xrfffmvExsYaV111leN4vS+qz7mOxQl6X0hdptzJdShvch3Km1yH8ibXotypblNRqhYsXrzYAE553HrrrY42kyZNMry9vY3MzMzT9jN+/HgjOjrasNls5e5PS0szbrzxRsPf39/w9/c3brzxRiMjI6Oan03dV9F4JCUlGaNHjzaioqIMLy8vo02bNsYbb7xh2O32Mx4PGPv27XOcR+NRsXMdixP03jh3FY3FO++8Y0RHRxvu7u5G06ZNjaeeesooKiqq8Hi9L6ruXMfiBL0vpC5T7uQ6lDe5DuVNrkN5k2tR7lS3mQzDMKo2t0pEREREREREROTcaE0pERERERERERGpdSpKiYiIiIiIiIhIrVNRSkREREREREREap2KUiIiIiIiIiIiUutUlBIRERERERERkVqnopSIiIiIiIiIiNQ6FaVERERERERERKTWqSglIiIiIiIiIiK1TkUpERERERERERGpdSpKiUi9ZhgGAwYMYPDgwafs+/DDDwkMDOTAgQNOiExERETEtShvEpHapqKUiNRrJpOJKVOm8McffzBp0iTH9n379vHEE0/wzjvv0LRp02o9p9Vqrdb+RERERGqD8iYRqW0qSolIvRcTE8M777zDY489xr59+zAMgzvuuINLLrmEHj16cNlll+Hn50dERAQ333wzqampjmPnzp1Lnz59CAoKIiQkhCuuuII9e/Y49icmJmIymfjyyy/p378/Xl5eTJ8+3RlPU0REROScKW8SkdpkMgzDcHYQIiK1YcSIEWRmZnL11VfzwgsvsHr1arp168Zdd93FLbfcQkFBAU888QQlJSUsWrQIgFmzZmEymejQoQN5eXk8/fTTJCYmsmHDBsxmM4mJicTFxdGsWTPeeOMNOnfujKenJ1FRUU5+tiIiIiJnT3mTiNQGFaVEpMFISUkhPj6etLQ0vv76a9avX88ff/zBvHnzHG0OHTpETEwMO3bsoHXr1qf0cezYMcLDw9m0aRPx8fGO5Ortt9/mwQcfrM2nIyIiIlJjlDeJSG3Q5Xsi0mCEh4dz9913065dO6688krWrl3L4sWL8fPzczzatm0L4JhqvmfPHkaNGkXz5s0JCAggLi4O4JRFPrt161a7T0ZERESkBilvEpHa4ObsAEREapObmxtubqX/9dntdoYOHcqrr756SrvGjRsDMHToUGJiYvj444+JiorCbrcTHx9PcXFxmfa+vr41H7yIiIhILVLeJCI1TUUpEWmwunTpwqxZs2jWrJkj4fq7tLQ0tm3bxqRJk7jwwgsBWLZsWW2HKSIiIuJ0yptEpCbo8j0RabDGjh1Leno6N9xwA6tWrWLv3r388ssv3H777dhsNho1akRISAiTJ09m9+7dLFq0iEceecTZYYuIiIjUOuVNIlITVJQSkQYrKiqK33//HZvNxuDBg4mPj+fBBx8kMDAQs9mM2Wxm5syZrF27lvj4eB5++GFef/11Z4ctIiIiUuuUN4lITdDd90REREREREREpNZpppSIiIiIiIiIiNQ6FaVERERERERERKTWqSglIiIiIiIiIiK1TkUpERERERERERGpdSpKiYiIiIiIiIhIrVNRSkREREREREREap2KUiIiIiIiIiIiUutUlBIRERERERERkVqnopSIiIiIiIiIiNQ6FaVERERERERERKTWqSglIiIiIiIiIiK1TkUpERERERERERGpdf8PsjThWAwirW8AAAAASUVORK5CYII=",
+      "text/plain": [
+       "<Figure size 1200x480 with 4 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
    "source": [
     "fig, axs = plt.subplots(2,2)\n",
     "fig.set_figwidth(12)\n",
     "\n",
-    "N = 265\n",
-    "dates = pd.date_range(\"1/1/1750\", periods=265, freq='Y')\n",
-    "\n",
-    "\n",
-    "axs[0,0].plot(dates, NOx_hist_road_yearly_global_weighted_averages)\n",
+    "NOx_hist_emissions.plot(ax = axs[0,0])\n",
     "axs[0,0].set_title('NOx(NO) emissions')\n",
     "axs[0,0].set_xlabel('Year')\n",
     "axs[0,0].set_ylabel('Tg/a')\n",
     "\n",
-    "\n",
-    "\n",
-    "axs[0,1].plot(dates, NH3_hist_road_yearly_global_weighted_averages)\n",
+    "NH3_hist_emissions.plot(ax = axs[0,1])\n",
     "axs[0,1].set_title('NH3 emissions')\n",
     "axs[0,1].set_xlabel('Year')\n",
     "axs[0,1].set_ylabel('Tg/a')\n",
     "\n",
-    "axs[1,0].plot(dates, CO_hist_road_yearly_global_weighted_averages)\n",
+    "CO_hist_emissions.plot(ax = axs[1,0])\n",
     "axs[1,0].set_title('CO emissions')\n",
     "axs[1,0].set_xlabel('Year')\n",
     "axs[1,0].set_ylabel('Tg/a')\n",
     "\n",
-    "\n",
-    "axs[1,1].plot(dates, SO2_hist_road_yearly_global_weighted_averages)\n",
+    "SO2_hist_emissions.plot(ax = axs[1,1])\n",
     "axs[1,1].set_title('SO2 emissions')\n",
     "axs[1,1].set_xlabel('Year')\n",
     "axs[1,1].set_ylabel('Tg/a')\n",
@@ -799,13 +819,12 @@
     "axs[0,0].set_ylabel('Tg(NO)')\n",
     "axs[1,0].set_ylabel('Tg(NO)')\n",
     "\n",
-    "\n",
     "fig.tight_layout()"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 33,
+   "execution_count": 142,
    "id": "375be570-4824-415d-8bf9-5f4bd3ddacb0",
    "metadata": {
     "tags": []
@@ -813,7 +832,7 @@
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAHWCAYAAACmMzqDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUxdfA8e+m904qIYTQS+i9d0F6L1IFqSpNqnQUBAT8qYBKCUpHIQREJFRRinRQem8JgYQU0su8f8TsS0iAAEk2Wc7nefaBvfXM7r13T+bOndEopRRCCCGEEEIIIYQQQuQiA10HIIQQQgghhBBCCCHePlIpJYQQQgghhBBCCCFynVRKCSGEEEIIIYQQQohcJ5VSQgghhBBCCCGEECLXSaWUEEIIIYQQQgghhMh1UiklhBBCCCGEEEIIIXKdVEoJIYQQQgghhBBCiFwnlVJCCCGEEEIIIYQQItdJpZQQQgghhBBCCCGEyHVSKaXHWrVqhZ2dHXfu3MkwLywsDDc3N2rXrk1KSkqOx3Lz5k00Gg1+fn7Zsr3z588zbdo0bt68+drb2LFjB9OmTXujOPr27UvhwoXfaBu5pXDhwvTt21fXYWhNmzYNjUaT7dvdv38/Go2G/fv3Z/u2c1NCQgKDBw/Gzc0NQ0NDKlSo8Nxl+/bti0ajoUyZMiQnJ2eYr9FoGD58eIbpd+7cYfjw4fj4+GBmZoa9vT0NGjRgzZo1KKWyszhCT+TUeStETpJ86MUkH9ItyYdeLCfzobTzcf78+Zlub/78+Wg0mnTn17p166hXrx4uLi6Ympri7u5O69atOXTo0GuXUeQ/+nJ+5RVSKaXHli1bhpGREQMGDMgwb/jw4URFRbFq1SoMDPLfYXD+/HmmT5/+xknY9OnTsy8o8UoGDBjA4cOHs327lSpV4vDhw1SqVCnbt52blixZwnfffcekSZP4888/+emnn166zvnz57P8h85ff/2Fr68vW7du5eOPP2bnzp34+fnh4eHBe++9R/fu3XPlDzSRv+TUeStETpJ86MUkH9ItyYdeLKfzoVcVGhpK7dq1Wbx4Mbt27WLBggU8ePCAevXqceDAgRzZp8h79OX8yiuMdB2AyDmurq4sXryYrl278t133zFo0CAAtmzZwrp161i8eDFFixbN0RiSk5NJSkrK0X3kVzExMVhYWOg6DJ0pWLAgBQsWzPbt2tjYUKNGjWzfbm77559/MDc3z7SFU2YsLS2pVKkSU6dOpUePHpibmz932fDwcDp06ICtrS1Hjx7FxcVFO69t27b4+voyfvx4KlSowPjx49+4LLnhbT+fclra55tT560QOUnyobztbb9+Sz70YjmZD72OzOJo0aIFBQoUYPny5dSvXz9b9/eq3vbzKaclJiai0Wj05vzKK/LfLSHxSrp06UK3bt0YM2YMN2/eJDQ0lMGDB9O0aVOGDBnC8ePHadOmDQ4ODpiZmVGxYkU2btyYbhsPHz5k6NChlC5dGisrK5ydnWnUqBEHDx5Mt1xaE9i5c+cya9YsvL29MTU1Zd++fRniOnjwIBqNhnXr1mWY9+OPP6LRaDh27FimZfLz86Nz584ANGzYEI1Gk6Ep/IoVKyhfvjxmZmY4ODjQvn17Lly4oJ3ft29fvv32WwDt+k83z/3222+pV68ezs7OWFpaUq5cOebOnUtiYuLLP/RMNGjQgLJly/LHH39Qq1YtLCws6N+/PwC3b9/mvffew9nZGVNTU0qVKsWXX36ZoZXK9OnTqV69Og4ODtjY2FCpUiWWL1+e4TGrxMRExo4di6urKxYWFtSpU4e///47y7EmJCQwa9YsSpYsiampKQUKFKBfv348fPgw3XKFCxemVatWbN++nYoVK2Jubk6pUqXYvn07kPo9lSpVCktLS6pVq8bx48fTrZ9Zc/W9e/fSoEEDHB0dMTc3p1ChQnTs2JGYmBjtMkuWLKF8+fJYWVlhbW1NyZIlmThxonb+85rTBgQEULNmTSwsLLC2tqZp06YZ7kymxfTvv//SvXt3bG1tcXFxoX///kRERKRbdtOmTVSvXh1bW1ssLCwoUqSI9jt9kbi4OCZMmIC3tzcmJiZ4eHgwbNgwwsPDtctoNBqWLVtGbGxspsf383zxxRfcu3ePr7766oXLLVu2jJCQEObMmZOuQirN2LFjKVmyJPPmzdMe84MHD8bMzIwTJ05ol0tJSaFx48a4uLgQFBT0wn1m9fgFWLt2LTVr1sTKygorKysqVKjA8uXLtfOz43x62XEUExPDmDFj8Pb21l5HqlSpkuk162lZXe/o0aO0bt0aR0dHzMzM8PHxYcSIEemWuXLlCj169EhXlrTrVpq0433dunVMmjQJd3d3bGxsaNKkCZcuXUq3bGBgIG3btqVgwYKYmZlRtGhRBg0axKNHj9Itl3YenDx5kk6dOmFvb4+Pj0+6eU9LSUlh7ty52muGs7MzvXv35u7du+mWO3XqFK1atdKWx93dnXfffTfDckLkBMmHJB+SfCiV5EPZz9raGjMzM4yMXt7eY8OGDTRr1gw3NzftsTJ+/Hiio6MzLPuyXOFFv9dZ+Xwhe46158nKevfu3eODDz7A09MTExMT3N3d6dSpEw8ePNAuExkZqc2t0soyYsSIDJ9Z2uOZP/30E6VKlcLCwoLy5ctrz8U0V69epV+/fhQrVgwLCws8PDxo3bo1586dS7dc2jn0008/MXr0aDw8PDA1NeXq1atvdH49fPhQW+a0a0vt2rXZvXv3Sz9TvaWE3gsNDVVubm6qYcOGqkuXLsrOzk7duXNH7d27V5mYmKi6deuqDRs2qJ07d6q+ffsqQK1cuVK7/sWLF9WQIUPU+vXr1f79+9X27dvV+++/rwwMDNS+ffu0y924cUMBysPDQzVs2FD9/PPPateuXerGjRvaeU9vt2LFiqp27doZ4q1ataqqWrXqc8sTEhKiPv/8cwWob7/9Vh0+fFgdPnxYhYSEKKWUdl737t3Vr7/+qn788UdVpEgRZWtrqy5fvqyUUurq1auqU6dOCtCuf/jwYRUXF6eUUmrkyJFqyZIlaufOnWrv3r1q4cKFysnJSfXr1y9dLH369FFeXl4v/Q7q16+vHBwclKenp/r666/Vvn371IEDB1RISIjy8PBQBQoUUEuXLlU7d+5Uw4cPV4AaMmRIum307dtXLV++XAUGBqrAwEA1c+ZMZW5urqZPn54hJo1Goz755BO1a9cutWDBAuXh4aFsbGxUnz59XhhncnKyeuedd5SlpaWaPn26CgwMVMuWLVMeHh6qdOnSKiYmRrusl5eXKliwoCpbtqxat26d2rFjh6pevboyNjZWU6ZMUbVr11abN29WW7ZsUcWLF1cuLi7p1p86dap6+hJ048YNZWZmppo2bar8/f3V/v371Zo1a1SvXr3U48ePlVJKrVu3TgHqww8/VLt27VK7d+9WS5cuVR999JF2O/v27VNAumNzzZo1ClDNmjVT/v7+asOGDapy5crKxMREHTx4MENMJUqUUFOmTFGBgYFqwYIFytTUNN13f+jQIaXRaFS3bt3Ujh071N69e9XKlStVr169Xvj5pqSkqObNmysjIyM1efJktWvXLjV//nxlaWmpKlasqD3+Dh8+rFq2bKnMzc0zHN+Z6dOnj7K0tFRKKdW+fXtlZ2enQkNDtfMBNWzYMO37Zs2aKUNDQ/XkyZPnbnPs2LHa80MppWJjY1WFChVUkSJFtN/HlClTlIGBgdq1a9cLy61U1o/fyZMnK0B16NBBbdq0SXsMT548WbvMm55PWTmOBg0apCwsLNSCBQvUvn371Pbt29WcOXPU119//cJyZmW9nTt3KmNjY+Xr66v8/PzU3r171YoVK1S3bt20y/z777/K1tZWlStXTv34449q165davTo0crAwEBNmzZNu1za8V64cGHVs2dP9euvv6p169apQoUKqWLFiqmkpCTtskuWLFGzZ89WAQEB6sCBA2rVqlWqfPnyqkSJEiohIUG7XNp54OXlpcaNG6cCAwOVv79/unlP++CDDxSghg8frnbu3KmWLl2qChQooDw9PdXDhw+VUko9efJEOTo6qipVqqiNGzeqAwcOqA0bNqjBgwer8+fPv/AzFSK7SD4k+ZDkQ5IPPZ0PpZ2PX3zxhUpMTMzw+uKLLxSgbty4kWFfSUlJKiEhQd24cUN98MEHysrKSh0/fvyF5VZKqZkzZ6qFCxeqX3/9Ve3fv18tXbpUeXt7q4YNG6ZbLiu5wvN+r7P6+WbXsZaZrKx39+5d5ebmppycnNSCBQvU7t271YYNG1T//v3VhQsXlFJKRUdHqwoVKqRb5quvvlK2traqUaNGKiUlJd33W7hwYVWtWjW1ceNGtWPHDtWgQQNlZGSkrl27pl3uwIEDavTo0ernn39WBw4cUFu2bFHt2rVT5ubm6uLFi9rl0s4hDw8P1alTJxUQEKC2b9+uQkND3+j8at68uSpQoID6/vvv1f79+5W/v7+aMmWKWr9+/csOH70llVJviR07dihAAeqnn35SSilVsmRJVbFiRZWYmJhu2VatWik3NzeVnJyc6baSkpJUYmKiaty4sWrfvr12etqF3cfHJ90fOE/PezoJW7lypQLUqVOntNP+/vtvBahVq1a9sDybNm3KcCFQSqnHjx8rc3Nz1bJly3TTb9++rUxNTVWPHj2004YNG5bhj6vMJCcnq8TERPXjjz8qQ0NDFRYWpp33KkkYoPbs2ZNu+vjx4xWgjh49mm76kCFDlEajUZcuXXphTDNmzFCOjo7aC/KFCxcUoEaOHJlu+bSL5MuSsLQfkF9++SXd9GPHjilALV68WDvNy8tLmZubq7t372qnnT59WgHKzc1NRUdHa6f7+/srQAUEBGinPZuE/fzzzwpQp0+ffm58w4cPV3Z2di8sw7M/EsnJycrd3V2VK1cu3TEdFRWlnJ2dVa1atTLENHfu3HTbHDp0qDIzM9N+zvPnz1eACg8Pf2Esz9q5c2em29+wYYMC1Pfff6+d9nRi9TJPL3vx4kVlaGioRo8erZ3/bBJWsmRJ5erq+sJtLlmyRAFqw4YN2mlXrlxRNjY2ql27dmr37t3KwMBAffrpp1mK8WnPO36vX7+uDA0NVc+ePV+4/pueT1k5jsqWLavatWv3qkXL0no+Pj7Kx8dHxcbGPneZ5s2bq4IFC6qIiIh004cPH67MzMy016G04/3Za97GjRvTVSo+KyUlRSUmJqpbt24pQG3dulU7L+08mDJlSob1nj1v0645Q4cOTbfc0aNHFaAmTpyolFLq+PHjCtBWbgmhK5IPST4k+ZDkQ2nSzseXvTKrlCpRooR2vpubm/rzzz9f5SNQSv3/b/GBAwcUoM6cOaOdl5Vc4Xm/11n9fLPrWHvd9fr376+MjY1feHNq9uzZysDAQB07dizd9LTYd+zYoZ0GKBcXFxUZGamdFhwcrAwMDNTs2bOfu4+0CsZixYqlu2aknUP16tXLsM6bnF9WVlZqxIgRz43nbSSP770lWrRoQY0aNShWrBjvvfceV69e5eLFi/Ts2ROApKQk7atly5YEBQWle/Rj6dKlVKpUSds01djYmD179qRrAp6mTZs2GBsbvzSm7t274+zsnO5xlK+//poCBQrQtWvX1yrn4cOHiY2NzTCqiqenJ40aNWLPnj1Z2s6pU6do06YNjo6OGBoaYmxsTO/evUlOTuby5cuvFZu9vT2NGjVKN23v3r2ULl2aatWqpZvet29flFLs3bs33bJNmjTB1tZWG9OUKVMIDQ0lJCQEQPtoQNr3mqZLly5ZalK8fft27OzsaN26dbpjokKFCri6umZoolqhQgU8PDy070uVKgWkNs9/+nn2tOm3bt167r4rVKiAiYkJH3zwAatWreL69esZlqlWrRrh4eF0796drVu3ZnjsKDOXLl3i/v379OrVK10ntlZWVnTs2JEjR46ka6IMqcfw03x9fYmLi9N+zlWrVgVSP9eNGzdy7969l8YBaL/PZ4/Pzp07Y2lpmeXj80VKlCjB+++/zzfffMPt27dfezvqv8cgnn6koGjRovzwww/4+/vTqlUr6tatm+URm7Jy/AYGBpKcnMywYcNeur03OZ+ychxVq1aN3377jfHjx7N//35iY2OzVM6XrXf58mWuXbvG+++/j5mZWabbiIuLY8+ePbRv3x4LC4sM1+e4uDiOHDmSbp3MjllIf86FhIQwePBgPD09tddxLy8vgEyv5R07dnxpedOuOc8e09WqVaNUqVLaY7po0aLY29szbtw4li5dyvnz51+6bSFyguRDkg9JPiT50LM+/vhjjh07luH18ccfP3edX375haNHj7Jp0yZKly5NixYtsjQS2/Xr1+nRoweurq7a4zetH6q060hWcoWnPft7ndXPN6eOtayu99tvv9GwYUPteZGZ7du3U7ZsWSpUqJDuXGzevHmmj881bNgQa2tr7XsXFxecnZ3TnXNJSUl8/vnnlC5dGhMTE4yMjDAxMeHKlSuvnQ+9yvlVrVo1/Pz8mDVrFkeOHHntx6H1iVRKvUVMTU0xMTEB0D6nO2bMGIyNjdO9hg4dCqC9eCxYsIAhQ4ZQvXp1fvnlF44cOcKxY8d45513Mv1Dzc3NLcvxDBo0iLVr1xIeHs7Dhw/ZuHEjAwYMwNTU9LXKGBoa+twY3N3dtfNf5Pbt29StW1f7LPrBgwc5duyYNlnM6h+nz8osptDQ0OfGmjYf4O+//6ZZs2YA/PDDD/z1118cO3aMSZMmpYspbXlXV9d02zMyMsLR0fGlMT548IDw8HBMTEwyHBfBwcEZflAcHBzSvU87vp43PS4u7rn79vHxYffu3Tg7OzNs2DB8fHzw8fFJ1x9Ar169WLFiBbdu3aJjx444OztTvXp1AgMDn7vdlx0TKSkpPH78ON30Zz+rtOMx7XOuV68e/v7+JCUl0bt3bwoWLEjZsmVf2t9QaGgoRkZGFChQIN10jUaDq6trlo7PrJg2bRqGhoZMnjw50/mFChXi4cOHmfZfkCatPxFPT8900999911cXFyIi4tj1KhRGBoavjSerB6/af10ZKXD1zc5n7JyHP3vf/9j3Lhx+Pv707BhQxwcHGjXrh1Xrlx5YVwvWy8rZQwNDSUpKYmvv/46w3nYsmVLgAzn4suO2ZSUFJo1a8bmzZsZO3Yse/bs4e+//9ZWbr3utTyr11xbW1sOHDhAhQoVmDhxImXKlMHd3Z2pU6dKMiZyneRDkg+9jORDqfQ9H0pTsGBBqlSpkuH1ot/qMmXKUK1aNTp16sTOnTvx8vJ6YSUWwJMnT6hbty5Hjx5l1qxZ7N+/n2PHjrF582bg9fIhyPidZvXzzaljLavrPXz48KVlfPDgAWfPns1wHlpbW6OUemk+BKnH7dPXq1GjRjF58mTatWvHtm3bOHr0KMeOHaN8+fI5lg89fX5t2LCBPn36sGzZMmrWrImDgwO9e/cmODj4pfvRVzL63lvKyckJgAkTJtChQ4dMlylRogQAq1evpkGDBixZsiTd/KioqEzXe7azxhcZMmQIc+bMYcWKFcTFxZGUlMTgwYOzvP6z0i5EmXW6fP/+fW25X8Tf35/o6Gg2b96sbUUAcPr06deOCzL/XBwdHZ8bK/z/97R+/XqMjY3Zvn17ujsm/v7+GbYHEBwcnO6OXVJSUpZ+4J2cnHB0dGTnzp2Zzn/6zkNOqFu3LnXr1iU5OZnjx4/z9ddfM2LECFxcXOjWrRsA/fr1o1+/fkRHR/PHH38wdepUWrVqxeXLl9N9X2ledkwYGBhgb2//yrG2bduWtm3bEh8fz5EjR5g9ezY9evSgcOHC1KxZM9N1HB0dSUpK4uHDh+kSBaUUwcHB2juOb8rNzY0RI0YwZ84cRo8enWF+06ZN2bVrF9u2bdN+rk9TShEQEICDgwOVK1dON2/w4MFERUVRpkwZPvroI+rWrfvSzy+rx2/aZ3L37t0MlWHPepPzCV5+HFlaWjJ9+nSmT5/OgwcPtK2fWrduzcWLF58b18vWe7qMz2Nvb4+hoSG9evV6bqsxb2/v566fmX/++YczZ87g5+dHnz59tNOvXr363HWyci1/+vx6NrF89ppbrlw51q9fj1KKs2fP4ufnx4wZMzA3N883ozwK/SP50PNJPiT5UFbk53wouxgZGVGpUqUMgyM8a+/evdy/f5/9+/enG6Xv2c7Hs5IrPO3Zc+pVPt+cONbSvGy9AgUKvLSMTk5OmJubs2LFiufOf1WrV6+md+/efP755+mmP3r0CDs7uwzLv2o+9Kxnzy8nJycWLVrEokWLuH37NgEBAYwfP56QkJDnXnP0nbSUekuVKFGCYsWKcebMmUzvDFSpUkX7g6vRaDLcqTt79myGkQReh5ubG507d2bx4sUsXbqU1q1bU6hQoZeu9+ydmjQ1a9bE3Nyc1atXp5t+9+5d9u7dS+PGjV+6jbQLz9NlVkrxww8/vELJsqZx48acP3+ekydPppueNuJOw4YNtTEZGRmla5USGxvLTz/9lG69Bg0aALBmzZp00zdu3JiloahbtWpFaGgoycnJmR4TaYl5TjM0NKR69erau7HPfj6Q+sd/ixYtmDRpEgkJCfz777+ZbqtEiRJ4eHiwdu3adCPzREdH88svv2hHyHhdpqam1K9fny+++AJIfdThedKOv2ePz19++YXo6Oh0x+ebGjduHA4ODpn+sT9gwACcnZ2ZMGGCtgn+0+bOncvFixcZO3ZsukdPli1bxurVq/nmm28ICAggPDycfv36vTSWrB6/zZo1w9DQMMMffFmV1fPpaVk5jlxcXOjbty/du3fn0qVLGR5veJ7M1itevDg+Pj6sWLGC+Pj4TNezsLCgYcOGnDp1Cl9f30zPxazc6X9aZtc1gO++++6VtvOstEdwnj2mjx07xoULFzI9pjUaDeXLl2fhwoXY2dllen4LkVskH5J8KDOSD726/JgPZZe0x+qLFi36wuWy+luclVzhRV7n883OYy2r67Vo0YJ9+/ZlGC34aa1ateLatWs4Ojpmei4WLlw4SzE8LbNr+a+//prlx08z87rnV6FChRg+fDhNmzZ9q/MhaSn1Fvvuu+9o0aIFzZs3p2/fvnh4eBAWFsaFCxc4efIkmzZtAlIvBjNnzmTq1KnUr1+fS5cuMWPGDLy9vbP0w/4yH3/8MdWrVwdg5cqVWVqnbNmyAHz//ffaYVi9vb1xdHRk8uTJTJw4kd69e9O9e3dCQ0OZPn06ZmZmTJ06VbuNcuXKAanDxrZo0QJDQ0N8fX1p2rQpJiYmdO/enbFjxxIXF8eSJUsyNGnODiNHjuTHH3/k3XffZcaMGXh5efHrr7+yePFihgwZQvHixYHUR6YWLFhAjx49+OCDDwgNDWX+/PkZLqilSpXivffeY9GiRRgbG9OkSRP++ecf5s+fj42NzUvj6datG2vWrKFly5Z8/PHHVKtWDWNjY+7evcu+ffto27Yt7du3z/bPAVL76di7dy/vvvsuhQoVIi4uTntXpEmTJgAMHDgQc3NzateujZubG8HBwcyePRtbW9vn3lUzMDBg7ty59OzZk1atWjFo0CDi4+OZN28e4eHhzJkz55VjnTJlCnfv3qVx48YULFiQ8PBwvvrqq3T9AmSmadOmNG/enHHjxhEZGUnt2rU5e/YsU6dOpWLFivTq1euVY3keGxsbJk2axMiRIzPMs7OzY/PmzbRq1YrKlSvzySefUL58eSIjI9mwYQNr1qyha9eufPLJJ9p1zp07x0cffUSfPn20FVHLly+nU6dOLFq0KN0Qxc/K6vFbuHBhJk6cyMyZM4mNjdUOQ33+/HkePXrE9OnTX1jmrJ5PWTmOqlevTqtWrfD19cXe3p4LFy7w008/vTRpz8p63377La1bt6ZGjRqMHDmSQoUKcfv2bX7//XftH1BfffUVderUoW7dugwZMoTChQsTFRXF1atX2bZtW7r+VbKiZMmS+Pj4MH78eJRSODg4sG3btpc2v3+ZEiVK8MEHH/D1119jYGBAixYtuHnzJpMnT8bT01N7/G3fvp3FixfTrl07ihQpglKKzZs3Ex4eTtOmTd8oBiHelORDkg89S/KhrMnv+dDrqFWrFm3atKFUqVLY2tpy8+ZNlixZwrVr19iyZctL17W3t2fw4MFMnToVY2Nj1qxZw5kzZzIsm5Vc4Xmy+vnm1LGW1fVmzJjBb7/9Rr169Zg4cSLlypUjPDycnTt3MmrUKEqWLMmIESP45ZdfqFevHiNHjsTX15eUlBRu377Nrl27GD16tPa6mVWtWrXCz8+PkiVL4uvry4kTJ5g3b16WH5fMTFbPr4iICBo2bEiPHj0oWbIk1tbWHDt2jJ07dz63te5bIde7Vhc6U79+fVWmTJl0086cOaO6dOminJ2dlbGxsXJ1dVWNGjVSS5cu1S4THx+vxowZozw8PJSZmZmqVKmS8vf3zzDSStoIFvPmzcuw78xGm3la4cKFValSpV6pPIsWLVLe3t7K0NAww7aXLVumfH19lYmJibK1tVVt27ZV//77b7r14+Pj1YABA1SBAgWURqNJN7rGtm3bVPny5ZWZmZny8PBQn3zyifrtt98yjHDzKqPNPPvZp7l165bq0aOHcnR0VMbGxqpEiRJq3rx5GUb7WbFihSpRooQyNTVVRYoUUbNnz1bLly/PMCpIfHy8Gj16tHJ2dlZmZmaqRo0a6vDhw8rLy+ulo80opVRiYqKaP3++tvxWVlaqZMmSatCgQerKlSva5by8vNS7776bYX2eGdlEqcyPjWdHmzl8+LBq37698vLyUqampsrR0VHVr18/3Qg1q1atUg0bNlQuLi7KxMREubu7qy5duqizZ89ql8lsiFalUke8qV69ujIzM1OWlpaqcePG6q+//kq3TFpMacPYp0kbGSntc96+fbtq0aKF8vDwUCYmJsrZ2Vm1bNky3XCvzxMbG6vGjRunvLy8lLGxsXJzc1NDhgzRDr2b5nVHm3lafHy88vb2zvQ7USp1FKZhw4apIkWKaM+VevXqqdWrV6cbYvfJkyeqZMmSqnTp0ulGEVIqddQmY2PjDCMmPSurx69SSv3444+qatWq2uOvYsWK6c7vNz2fsnIcjR8/XlWpUkXZ29trYx45cqR69OjRC8uZ1fUOHz6sWrRooWxtbZWpqany8fHJMErUjRs3VP/+/ZWHh4cyNjZWBQoUULVq1VKzZs3SLpN2vG/atCnDus9eF8+fP6+aNm2qrK2tlb29vercubO6ffu2AtTUqVO1yz3vPHh63tOSk5PVF198oYoXL66MjY2Vk5OTeu+999SdO3e0y1y8eFF1795d+fj4KHNzc2Vra6uqVaum/Pz8Xvh5CpETJB+SfEjyIcmHlHrxuaqUUvPmzctwXI0ePVqVL19e2draKiMjI+Xq6qrat2+f4TN8nkOHDqmaNWsqCwsLVaBAATVgwAB18uTJTK8LL8sVXvR7nZXPN7uOtcxkdb07d+6o/v37K1dXV2VsbKxd7sGDB9plnjx5oj799FNVokQJ7bWsXLlyauTIkSo4OFi73PPy3WfP+cePH6v3339fOTs7KwsLC1WnTh118OBBVb9+fVW/fn3tcs/LsZ6e96rnV1xcnBo8eLDy9fVVNjY2ytzcXJUoUUJNnTo1Q479NtEo9VT7MiF04OzZs5QvX55vv/1W26moEEIIIcTbRPIhIYQQbyOplBI6c+3aNW7dusXEiRO5ffs2V69efaNn2YUQQggh8hvJh4QQQrzNpKNzoTMzZ86kadOmPHnyhE2bNkkCJoQQQoi3juRDQggh3mbSUkoIIYQQQgghhBBC5DppKSWEEEIIIYQQQgghcp1USgkhhBBCCCGEEEKIXCeVUkIIIYQQQgghhBAi1xnpOoC8ICUlhfv372NtbY1Go9F1OEIIIYTIx5RSREVF4e7ujoHB69//W7x4MfPmzSMoKIgyZcqwaNEi6tat+9zl4+PjmTFjBqtXryY4OJiCBQsyadIk+vfvn6X9ST4khBBCiOyS1XxIKqWA+/fv4+npqeswhBBCCKFH7ty5Q8GCBV9r3Q0bNjBixAgWL15M7dq1+e6772jRogXnz5+nUKFCma7TpUsXHjx4wPLlyylatCghISEkJSVleZ+SDwkhhBAiu70sH5LR94CIiAjs7Oy4c+cONjY2ug5HCCGEEPlYZGQknp6ehIeHY2tr+1rbqF69OpUqVWLJkiXaaaVKlaJdu3bMnj07w/I7d+6kW7duXL9+HQcHh9fap+RDQgghhMguWc2HpKUUaJuo29jYSBImhBBCiGzxuo/AJSQkcOLECcaPH59uerNmzTh06FCm6wQEBFClShXmzp3LTz/9hKWlJW3atGHmzJmYm5u/UrySDwkhhBAiu7wsH5JKKSGEEEKIPOTRo0ckJyfj4uKSbrqLiwvBwcGZrnP9+nX+/PNPzMzM2LJlC48ePWLo0KGEhYWxYsWKTNeJj48nPj5e+z4yMjL7CiGEEEIIkQUy+p4QQgghRB707J1FpdRz7zampKSg0WhYs2YN1apVo2XLlixYsAA/Pz9iY2MzXWf27NnY2tpqX9KflBBCCCFym1RKCSGEEELkIU5OThgaGmZoFRUSEpKh9VQaNzc3PDw80vXZUKpUKZRS3L17N9N1JkyYQEREhPZ1586d7CuEEEIIIUQWyON7ryA5OZnExERdhyEAExOTNxpmWwgh9JlSioRr13jy559oDAywrFkTk6JFX7uPI5G7TExMqFy5MoGBgbRv3147PTAwkLZt22a6Tu3atdm0aRNPnjzBysoKgMuXL2NgYPDcEW9MTU0xNTV95fgkH8o7jI2NMTQ01HUYQgiR56iUFJKCgoi/eZOEmzdJDnuMZZ3amFeoIPlQHiOVUlmglCI4OJjw8HBdhyL+Y2BggLe3NyYmJroORQgh8oSU2Fhi/v6bJwf+4MmBAyTeu5duvpGLC5a1a2NZuxaWtWphZG+vo0hFVowaNYpevXpRpUoVatasyffff8/t27cZPHgwkNrK6d69e/z4448A9OjRg5kzZ9KvXz+mT5/Oo0eP+OSTT+jfv3+WOzp/GcmH8iY7OztcXV3ljywhxFsp6fFjEm7eJOFGauVT6v9vkHD7NuqpfhMBHn37LSaFC2Pbrh22bdtg7Oamo6jF06RSKgvSEjBnZ2csLCzkR1/HUlJSuH//PkFBQRQqVEi+DyHEWyvh7j2e/HGAJwcOEHPkaLrkS2NigkW1aqAUMcePk/TgARGbNxOxeTNoNJiVKYNl7dpY1amNefnyaKSSP0/p2rUroaGhzJgxg6CgIMqWLcuOHTvw8vICICgoiNu3b2uXt7KyIjAwkA8//JAqVarg6OhIly5dmDVrVrbFJPlQ3qKUIiYmhpCQECD1EU4hhNBnyU+eEL5xE/GXLmkroJIjIp6/grExJp6emBQujMbUhCf7D5Bw8yYPFy3i4VdfYVmzBrbt22PdpAkG2XQDR7w6jVJK6ToIXYuMjMTW1paIiIgMQyAnJydz+fJlnJ2dcXR01FGE4lkRERHcv3+fokWLYmxsrOtwhBAiV6jERGJOnuLJgdSKqIRr19LNN3Jzw6pePazq18eyRnUMLCwASImLI+b4CaL/+ovov/4i/vLldOsZWFhgUb06lnVqY1W7NsZeXlLh8AZelFfkZZIP5U+hoaGEhIRQvHhxeZRPCKG3Eh884M4Hg4i/dCnDPCM3N0y8vDAp7IWptzcmhQtjUrgwxh4eaIz+vx1O8pNoon7/nQh/f2KOHdNON7C0xLrFO9i1b495pUqSA2WTrOZD0lLqJdL6TLD4L7EXeUPaY3vJyclSKSWE0GspCQlEBQYStSuQ6L/+IuXJk/+faWiIecUKWNWvj1W9+pgWL5ZpImVgZoZVndRWUQCJD0KIPnQotZLq0CGSw8J4sm8fT/bt4wFg7OGBZb26WDdqhEX16hhIK6q3nuRDeVfad5KYmCiVUkIIvRR3+TJ3PhhEUnAwhk5OOPTsoa14MvHy0t6EexlDK0vsOnbArmMHEu7eJWKLPxFbt5J49y4RP/9CxM+/YFyoELbt2mLXti3GHh45XDIB0lIKeHENXlxcHDdu3MDb2xszMzMdRSieJd+LEELfxd+4QfjGTURs2ULyU334GDo4YFW3TmprqNq1MXxqtLXXoVJSiLtwgei/UiupYk6ehKc6sTawsEh9zK9RI6zq18PIweGN9vc20MeWUvK7m3fJdyOE0GfRR45y98MPSYmKwqRIETy//x6TgtlXWaRSUog9cYLwLf5E7dxJSkyMdp5FtWrYdmiPbcuW0s3Ba5CWUkIIIUQ+k5KQwJPdu3m8YSMxR49qpxu5umLbti3WjRpiVq4cmmwcfVRjYIB5mTKYlymD0wcDSYmOJvrvv3my/wBP9u0jKSQktaVWYCAYGGBeoQLWjRpi1agRJt7e0sRdCCGEEDkiYtt27k+cCImJmFeujOe332BoZ5et+9AYGGBRtSoWVauS8ukkonbvJnzzFmKOHiXm77+J+ftvHv7vfzgNGoxd+3ZSOZUDpKUUcmcwP5LvRQihTxJu3uRxWquox49TJxoYYFW3LnZdu2JVr266PhFyi1KKuH/+5cm+vUTt20/8hQvp5pt4eWHVsCFWjRpiUamSTmLMi6SllMhN8t0IIfSNUorQZct4+OUCAKzfeQf3L+ZgYGqaazEk3r9PxNathK1dS/LDRwAYu7vjOHgQdu3bo5EuZF4qq/lQ9t1qFXlOSEgIgwYNolChQpiamuLq6krz5s05fPgwAKdOnaJVq1Y4OztjZmZG4cKF6dq1K48epZ50N2/eRKPRaF/29vbUq1ePAwcOaPfxxx9/0Lp1a9zd3dFoNPj7+2eIY/PmzTRv3hwnJyc0Gg2nT5/OsMy1a9do3749BQoUwMbGhi5duvDgwYMc+VyEECIvUAkJRP72G7f69uPaOy0IW7GC5MePMXJ2xmnoUIruDsTzu6VYN2qos8oejUaDebmyFPjoI4ps2UzRvXtwmfwplrVrg7ExCbduEebnx+3efbhcuw73PhlL1N69qKce/xMiL5CcSAgh8geVnMyDmTO1FVIOffviseDLXK2QgtQKKKchQygaGIjLhPEYFnAi8f59gqdM5do7LXi8aZPkO9lEKqX0WMeOHTlz5gyrVq3i8uXLBAQE0KBBA8LCwggJCaFJkyY4OTnx+++/c+HCBVasWIGbmxsxTz1HC7B7926CgoI4cOAANjY2tGzZkhs3bgAQHR1N+fLl+eabb54bR3R0NLVr12bOnDnPnd+sWTM0Gg179+7lr7/+IiEhgdatW5OSkpJ9H4gQQuQBCbduETJ/PlcaNOTeyFHEHDkCGg2W9epS8NtvKLp3DwU++hBjd3ddh5qBsbs7Dj17Umj5MoofPoTHokXYtm2LoZ0dKRERRG7bxt2hw7hSvwEPZs8m7uJFXYcsBCA5kRBC5AcpsbHc/fAjHq9dBxoNLhMn4DJ+XLZ2W/CqDMzMcOjTh6K7duE8fhyGTk4k3rtH8OQpXHunBeE//yyVU29IHt9DP5urh4eHY29vz/79+6lfv36G+f7+/nTu3JnY2FiMnnMH/ubNm3h7e3Pq1CkqVKgAwL179yhYsCBLly5l0KBB6ZbXaDRs2bKFdu3aZXl7ALt27aJFixY8fvxY+/k/fvwYBwcHAgMDadKkSYZt5dfvRQjx9kiJjyfhxg3ir14j/tpVEq5eI/7qVRL++wMWwMjZGduOHbDv1Clfj/CikpOJPXWKqMDdRGzfTnJoqHaeacmS2LVvh02rVhg5Ouowytwjj+/lLZITCSFE3pcUFsadIUOIO3MWjYkJ7vPmYdO8ma7DyiAlNpbHGzYQumw5yf+1pjUuWBCnIYOxbdNGHut7inR0nlOUgsSYly+XE4wtIIsdylpZWWFlZYW/vz81atTA9Jnmjq6uriQlJbFlyxY6deqU5Y5qnx52OLvEx8ej0WjSxWhmZoaBgQF//vlnpgmYEELkFSlxcf9VPl39/wqoK1dJuHMHMmvZoNFgWbcO9l26YNWggV70w6QxNMSiShUsqlTBecxonvz5JxH+W3mydy/xFy/yYPYcHsybj1W9eti2a4t1gwbSUag+kJwIkJxICCHeVMKtW9z+4AMSb93GwNYWzyWLsahUSddhZcrA3BzHvn2x79qVx+s3ELpsGYl37xI06VMeLf0Op8GDsW3TWiqnXkGezoSXLFnCkiVLuHnzJgBlypRhypQptGjRAkjtAG369Ol8//33PH78mOrVq/Ptt99SpkyZnAsqMQY+19EjFRPvg4lllhY1MjLCz8+PgQMHsnTpUipVqkT9+vXp1q0bvr6+1KhRg4kTJ9KjRw8GDx5MtWrVaNSoEb1798bFxSXTbUZHRzNhwgQMDQ0zvdP4umrUqIGlpSXjxo3j888/RynFuHHjSElJISgoKNv2I4QQ2SXu0mUeffM1cZcvk3jnbuaVT4CBjQ2mPj6YFvXBtGhRTIoWxaxECYycnHI54tyjMTbGumFDrBs2JDk8nIhffyXCfytx587xZO9enuzdi6GdHTbvvott+/aYlSktI/jlV5ITSU4khBBvKPbMGe4MHkLy48cYe3jg+cP3mBYpouuwXsrA3BzHfn2x79oltXJq+XIS79whaNIkHn33HU5DhmDbto1OHz3ML/L0J1SwYEHmzJnD8ePHOX78OI0aNaJt27b8+++/AMydO5cFCxbwzTffcOzYMVxdXWnatClRUVE6jjxv6NixI/fv3ycgIIDmzZuzf/9+KlWqhJ+fHwCfffYZwcHBLF26lNKlS7N06VJKlizJuXPn0m2nVq1aWFlZYW1tzbZt2/Dz86NcuXLZFmeBAgXYtGkT27Ztw8rKStvEr1KlShgaGmbbfoQQIjukxMZyd8gQogJ3k3jrNqSkYGhri3nlyth17YrLxIkUWrGcon8coPjRIxRetxa3mTNx6NMHq9q19bpC6lmGdnY49OyJ96aNFNm+DceBAzBydiY5PJzHa9Zws1MnbrRpQ+jy5cRduIBKStJ1yEJPSU4khBB5T9SePdzq05fkx48xK12awuvX5YsKqacZWFjg2L8fRQN34Tx2LIYODiTevk3QhAnceq8X8deu6TrEPC/f9Snl4ODAvHnz6N+/P+7u7owYMYJx48YBqU2eXVxc+OKLLzI82/8ir9SHQj5pqv48AwYMIDAwkFu3bmWYl5CQQMWKFalSpQqrVq3S9ncQEBBA6dKlsbOzw/EF/YG8bv8JT3v06BFGRkbY2dnh6urK6NGj+eSTTzIsJ/0nCCF0JeTLLwn9YRlGbm64f/4ZpsWKYejoKK19skglJxN96BARW/yJ2rMHFR+vnacxM8OsTBnMy5XD3LccZr6+GHt45LvP9q3pU0pyouduW3IiIYR4sbC1a3kw6zNISUkd7GXhQgwss9YCNi9LiYkhbM0aHi1ZioqJAWNjnAYOxHHwIAzesq4L9K5PqeTkZDZt2kR0dDQ1a9bkxo0bBAcH06zZ/3d+ZmpqSv369Tl06NArVUq9Eo0my83F86LSpUtnOkQxgImJCT4+PkRHR6eb7unpiY+PTy5EB07/tSDYu3cvISEhtGnTJlf2K4QQWRF3+TKhK/0AcJ08GcuaNXUbUD6kMTTEqm5drOrWJTkyksjfdhL1++/Enj1LypMnxJ44QeyJE9rlDR0dMS9XDjPfcpiX88XctxyGtrY6LIHQkpwoR0lOJITQVxG//sqDGTMBsOvcCdepU/Wij01IbTnlNHAgtu++S/D0GTw5cIBHixcT+dtvuM2YjkXVqroOMc/J89/8uXPnqFmzJnFxcVhZWbFlyxZKly7NoUOHADI86+/i4pLpHa+nxcfHE//UndnIyMjsD1zHQkND6dy5M/3798fX1xdra2uOHz/O3Llzadu2Ldu3b2f9+vV069aN4sWLo5Ri27Zt7Nixg5UrV2Z5P0+ePOHq1ava9zdu3OD06dM4ODhQqFAhAMLCwrh9+zb3798H4NKlS0Bqx6Kurq4ArFy5klKlSlGgQAEOHz7Mxx9/zMiRIylRokR2fSRCCPFGVEoKwVOnQVISVk0aY92ooa5DyvcMbWyw79oF+65dUCkpJNy8SeyZs8SdO5v67+XLJIeG8mT/fp7s369dz8TLCzNfX8zLl8eqQQNMCubfkQtFzpOcSAgh8o7EkBCC/6uQcujXD+exn+S7FtFZYezuTsGlS4j6/XeCZ31Gwo0b3OrVG7vOnXAeM0ZusD0lz1dKlShRgtOnTxMeHs4vv/xCnz59OHDggHb+swewUuqlB/Xs2bOZPn16jsSbV1hZWVG9enUWLlzItWvXSExMxNPTk4EDBzJx4kSCgoKwsLBg9OjR3LlzB1NTU4oVK8ayZcvo1atXlvdz/PhxGjb8/z/MRo0aBUCfPn20/TQEBATQr18/7TLdunUDYOrUqUybNg1ITcomTJhAWFgYhQsXZtKkSYwcOfINPwUhhMg+4b/8QuypU2gsLHCdNEnX4egdjYEBpkWKpPYl0b4dACnx8cRfuEDs2bPEnvuH2LNnSLx1m4Rbt0i4dYvIbdt4MGsWZqVLY92sGdbNmua7vihEzpOcSAgh8galFMFTppISEYFZmTI4jxqplxVSaTQaDTbvvINlrVqEfLmA8A0bCN/0M1H79uMyYTw2LVvqdfmzKt/1KdWkSRN8fHwYN24cPj4+nDx5kooVK2rnt23bFjs7O1atWvXcbWTWUsrT0zPrfSgInZPvRQiRm5LCwrjWoiUpERE4jxuHY7++ug7prZUcHk7suXPEnj1LzNG/iTl+PN3ohyZFfbBp1gzr5s0xLV5cJ8neW9OnlMgT5LsRQuQX4b/8QtCkT9EYG+O9+RdMixXTdUi5KubECYImTyHh+nUALOvVxXXKVL1t8Z3VfChPj76XGaUU8fHxeHt74+rqSmBgoHZeQkICBw4coFatWi/chqmpKTY2NuleQgghxPOEfDGXlIgITEuVwqHXe7oO561maGeHVd26FBg2DK8fV1Hs4B+4zpiOZZ06YGREwtVrPFq8hBtt23HtnXcImT+f2LNnyWf34IQQQgi9knjvHg8+nw1AgREfv3UVUgAWlSvj7b8Fp+HD0RgbE/3HQa63bk2on99bPQJxnn58b+LEibRo0QJPT0+ioqJYv349+/fvZ+fOnWg0GkaMGMHnn39OsWLFKFasGJ9//jkWFhb06NFD16ELIYTQE9FHjhKxdStoNLhN05+OOPWFkaMj9l26YN+lC8kRETzZv5/IXYFE//knibduE7psOaHLlmPk5oZ10ybYNG2KeaVKaAwNdR26EEII8VZQKSncnziJlOhozCtWxKFvX12HpDMGJiYUGD4Mm5YtCJ4ylZjjxwmZ8wWRAdtwnTkD8zJldB1irsvTmfWDBw/o1asXQUFB2Nra4uvry86dO2natCkAY8eOJTY2lqFDh/L48WOqV6/Orl27sLa21nHkQggh9EFKQgLB//VBaN+9G+bly+s4IvEihra22LZti23btqRER/Pkjz+ICgwkav8BkoKCePzjTzz+8ScMnZxwnTQRmxYtdB2yEEIIofcer1lLzNGjaMzNcZ8zW24MAaZFilDox1WE//wzIfO/JO78eW527oJ9t2449O6FSeHCug4x1+TpSqnly5e/cL5Go2HatGnajiGFEEKI7BT6ww8k3LiBoZMTBUaM0HU44hUYWFpi06IFNi1akBIXR/RffxG1axdRe/eR/OgRRk5Oug5RCCGE0HsJN28S8uWXADiPHo2Jl5eOI8o7NAYG2HfpgnXDhjyYPZvIHb/xeO1aHq9di2WtWtj36I5VgwZ630pfv0snhBBCvKbzf20gZfE3GAIuE8ZjKP0P5lsGZmZYN26MdePGqIQEov8+hnmlSroOSwghhNBrKjmZ+xMmouLisKhZA/se3XUdUp5kVKAAHgsWYNepE6F+fkQf/JPoQ4eIPnQII1dX7Dp3wq5TZ4xdnHUdao7Idx2dCyGEELnh7qyZGCbDwyKm2LRsqetwRDbRmJhgVae2PDoghBBC5LAwPz9iT53CwNIS91mz0BhI9cOLWNaqRaHvv8dn1+84DhyAob09ScHBPPr6G642bszdj0cQfeSI3g3eIkeFEEIIkQmzAd246AHfNoon5eKvug5HCCGEECLfiL9yhYeLvgLAZeJEjD08dBxR/mHi6Ynz6NEUPbAf93nzUlt3JyUR9fvv3O7bj+vvtiLsxx9JjozUdajZQiqlhBBCiEzUaDeWL/tYcL6AEUcDP4G4CF2HJIQQQgiR56nERO6PG49KTMSqfn1sO7TXdUj5koGJCbatW1F47Rq8t/pj170bBhYWJFy/zoPPZ3OlXn3uT5pE7D//6jrUNyKVUkIIIUQmTAxNeKdoawC2G8TD7mm6DUgIIYQQIh949N33xJ0/j4GtLa4zZ6DRaHQdUr5nVqIEblOnUvSPP3CdOgXT4sVRcXFE/LKZm506cbNHT5789Ve+fLRPKqWEEEKI52hVtB0Auy3NiTmxEm7+pduAhBBCCCHysNh//uXR0qUAuE6ejLGzfnbOrSuGVpbYd++O91Z/vNauwaZVKzTGxsSePMmd9wdw671eRB8+nK8qp6RSSo+FhIQwaNAgChUqhKmpKa6urjRv3pzDhw8DcOrUKVq1aoWzszNmZmYULlyYrl278ujRIwBu3ryJRqPRvuzt7alXrx4HDhzQ7mP27NlUrVoVa2trnJ2dadeuHZcuXXpuTIMGDUKj0bBo0aJ00xs0aJBuXxqNhm7dumX/hyKEEK+gfIHyFLIuRKyBAXsszGHbR5AYp+uwhBCvSHIiIYTIeSnx8QRNGA9JSVi/8w4278pAMTlFo9FgUakSHvPn4bNnN/a9e6ExMSH2xAlu9+vPrV69iD5yVNdhZolUSumxjh07cubMGVatWsXly5cJCAigQYMGhIWFERISQpMmTXBycuL333/nwoULrFixAjc3N2JiYtJtZ/fu3QQFBXHgwAFsbGxo2bIlN27cAODAgQMMGzaMI0eOEBgYSFJSEs2aNSM6OjpDPP7+/hw9ehR3d/dM4x04cCBBQUHa13fffZf9H4oQQrwCjUZDqyKtANhu5wChV+HAFzqOSgjxqiQnEkKInPfo66+Jv3IVQycnXKdOkcf2comxszOuEyfiExiI/XvvpbacOn6C2337cqtXb6L//lvXIb6Qka4DEDkjPDycP//8k/3791O/fn0AvLy8qFatGpCaDEVGRrJs2TKMjFIPA29vbxo1apRhW46Ojri6uuLq6sp3331HwYIF2bVrF4MGDWLnzp3pll25ciXOzs6cOHGCevXqaaffu3eP4cOH8/vvv/Puu+9mGrOFhQWurq7ZUn4hhMgurYq0YvGZxRwxMSTE0BDnv76CMu3BzVfXoQkhskByIiGEyHkxJ08RunwFAG4zpmNkb6/jiN4+xi7OuH46CccB7xP6/Q+Eb9pEzLFj3O7dB4vq1Snw4XAsqlTRdZgZSEupV6SUIiYxRievV3ku1MrKCisrK/z9/YmPj88w39XVlaSkJLZs2fJK27WwsAAgMTEx0/kREamjUzk4OGinpaSk0KtXLz755BPKlCnz3G2vWbMGJycnypQpw5gxY4iKispyXEIIkVM8bTypUKACKSh+K1IVVDIEDIfkJF2HJoROSU4kOZEQQgCkxMRwf8J4UArbtm2xzqRSX+QeY1dXXKdMxmfX79h17wbGxsQcPcqt93pxq28/Yk6e1HWI6UhLqVcUmxRL9bXVdbLvoz2OYmFskaVljYyM8PPzY+DAgSxdupRKlSpRv359unXrhq+vLzVq1GDixIn06NGDwYMHU61aNRo1akTv3r1xcXHJdJvR0dFMmDABQ0ND7Z3GpymlGDVqFHXq1KFs2bLa6V988QVGRkZ89NFHz423Z8+eeHt74+rqyj///MOECRM4c+YMgYGBWSqvEELkpFZFWnH64Wm2WZrTx8wWgs7AkW+h9se6Dk0InZGcSHIiIYQACPlyAYm3bmPk6orLpIm6Dkf8x9jNDbepU3EaOJBH331P+ObNxBw5wq0jR7CsVQunD4djUbGirsOUllL6rGPHjty/f5+AgACaN2/O/v37qVSpEn5+fgB89tlnBAcHs3TpUkqXLs3SpUspWbIk586dS7edWrVqYWVlhbW1Ndu2bcPPz49y5cpl2N/w4cM5e/Ys69at0047ceIEX331FX5+fi98pnjgwIE0adKEsmXL0q1bN37++Wd2797NyTxWiyuEeDs1L9wcIwMjLkVc43K9kakT930OYdd1G5gQIkskJxJCiJwRffgwj9esAcBt1iwMbWx0HJF4lrG7O27Tp1F052/Yde4MRkZEHzrEre49uD3wA1ISEnQan0blp7ECc0hkZCS2trZERERg88xJFBcXx40bN/D29sbMzAylFLFJsTqJ09zI/I07ixswYACBgYHcunUrw7yEhAQqVqxIlSpVWLVqFTdv3sTb25uAgABKly6NnZ0djo6OmW73ww8/xN/fnz/++ANvb2/t9EWLFjFq1CgMDP6//jM5ORkDAwM8PT25efNmpttTSmFqaspPP/1E165dM8x/9nsRQoic9vHej9l7Zy/9yvRj1D974eZBaDgJ6o/VdWgij3lRXpGXvUo+BEhOJDmREOItlxITw7VWrUi6H4Rd9264TZ2q65BEFiTcvcujpUuJ2OKPVb16eC5ZnCP7yWo+JI/vvSKNRpPl5uJ5UenSpfH39890nomJCT4+PhlGifH09MTHxyfTdZRSfPjhh2zZsoX9+/enS74AevXqRZMmTdJNa968Ob169aJfv37PjfPff/8lMTERNze3LJRKCCFyXmuf1uy9s5dfb/zKxyU6YHjzINw/peuwhNAZyYnSk5xICPG2ebx+A0n3gzD28MBlzBhdhyOyyKRgQdxnzcJp0CBITtZ1OFIppa9CQ0Pp3Lkz/fv3x9fXF2tra44fP87cuXNp27Yt27dvZ/369XTr1o3ixYujlGLbtm3s2LGDlStXZnk/w4YNY+3atWzduhVra2uCg4MBsLW1xdzcHEdHxwx3Eo2NjXF1daVEiRIAXLt2jTVr1tCyZUucnJw4f/48o0ePpmLFitSuXTv7PhQhhHgD9QrWw8bEhpCYEI6ZW1ADpFJKiHxAciIhhMh+KXFxhK5IHW3PaehQDCwtdRyReFUmnp66DgGQSim9ZWVlRfXq1Vm4cCHXrl0jMTERT09PBg4cyMSJEwkKCsLCwoLRo0dz584dTE1NKVasGMuWLaNXr15Z3s+SJUsAaNCgQbrpK1eupG/fvlnahomJCXv27OGrr77iyZMneHp68u677zJ16lQMDQ2zHIsQQuQkE0MTmhduzqbLm9gWeZEaGgOICoLIILCRFgxC5FWSEwkhRPYL3/QzyY8eYezujm2b1roOR+Rj0qcUr96HgtA9+V6EELpw8sFJ+uzsg4WRBfvDwfzhRei+Hkq00HVoIg95W/qUEnmDfDdCiNyWkpDAtWbNSQoOxnXqFOy7d9d1SCIPymo+JKPvCSGEEFlU0bkiHlYexCTFsK/Af02e5RE+IYQQQrxFIrb4kxQcjJGzM7YdOug6HJHPSaWUEEIIkUUajYZWRVoBEGDw36hj92SYdiGEEEK8HVRiIqE//ACA4/v9MTA11XFEIr+TSikhhBDiFbT2Se034XD0HW4bGUHQaZAn4UUOWLx4sfaRrMqVK3Pw4MEsrffXX39hZGREhQoVcjZAIYQQb52I7b+SePcuhg4O2HXpoutwhB6QSikhhBDiFXjZeOHr5EsKinc93elpY8Cy4wu4Fn4N6aZRZJcNGzYwYsQIJk2axKlTp6hbty4tWrTg9u3bL1wvIiKC3r1707hx41yKVAghxNtCJScT+t13ADj064uBubmOIxL6QCqlhBBCiFc0tdZUyjmVA+CsmSlfnfej3dZ2tNrSivnH5nPiwQmSU5LfaB9KKYKeBHHgzgGWnVvGz5d/JiklKTvCF/nAggULeP/99xkwYAClSpVi0aJFeHp6akd4e55BgwbRo0cPatasmUuRCiGEeFtE7txJws2bGNraYt+9h67DEXrCSNcBCCGEEPlNcfvirH13LSFbBrL/+g72FSzN0YRQbkfdZtX5Vaw6vwp7U3vqFaxHw0INqelWEwtji+duLyohiqvhV7kcdpkr4Ve48jj1FZUYlW65bde2Ma/+PJwtnHO6iEKHEhISOHHiBOPHj083vVmzZhw6dOi5661cuZJr166xevVqZs2aldNhCiGEeIuolBRCl6a2krLv3QtDK0sdRyT0hVRKCSGEEK/JuWANupzZSJcEK6K7+fPXvb/Yd2cff9z9g8fxj9l6bStbr23F1NCUGm41aOjZkFKOpbgZcZMr4Ve4/PgyVx5fISg6KNPtG2mMKGxbmKJ2RTl47yAnQ07SZVsX5tabSzW3arlcWpFbHj16RHJyMi4uLummu7i4EBwcnOk6V65cYfz48Rw8eBAjo6yld/Hx8cTHx2vfR0ZGvn7QQggh9NqTvXuJv3IFAysrHHr10nU4Qo9IpZQQQgjxutwrpv57/xSWRhY0K9yMZoWbkZiSyKkHp9h3Zx/77uzj3pN7HLh7gAN3Dzx3Uy4WLhSzL0Zx++IUsy9GMbtiFLEtgrGhMQA3I24y+sBoLj++zMDAgQyvMJz3y72PgUaexNdXGo0m3XulVIZpAMnJyfTo0YPp06dTvHjxLG9/9uzZTJ8+/Y3jFEIIod+UUjxanPr4uP17PTG0sdFxREKfSKWUEEII8bpcyoCBMcQ+hvBbYF8YAGMDY6q5VaOaWzXGVh3L5ceXtRVUd6Pu4m3rna7yqZh9MWxNbV+4q8K2hVndcjWfHfmMrde28r9T/+NUyClm15390nVF/uLk5IShoWGGVlEhISEZWk8BREVFcfz4cU6dOsXw4cMBSElJQSmFkZERu3btolGjRhnWmzBhAqNGjdK+j4yMxNPTM5tLI4QQIr+L/uMP4s6fR2NhgUOfProOR+gZqZQSQgghXpeRaWrFVNBpuH9aWyn1NI1GQwmHEpRwKMHg8oPfaHfmRubMqjOLSi6V+OzIZxy8d5Au27rwZYMvKetU9o22LfIOExMTKleuTGBgIO3bt9dODwwMpG3bthmWt7Gx4dy5c+mmLV68mL179/Lzzz/j7e2d6X5MTU0xNTXN3uCFEELolYehV7g682PsAPsqBTA6OCWTpTK24tULmbROzvteMWa7QlB31MuXy0E5UikVHx/P33//zc2bN4mJiaFAgQJUrFjxuUmRyBkhISFMnjyZ3377jQcPHmBvb0/58uWZNm0aNWvW5NSpU0yePJm///6byMhIXF1dqV69Ot9++y1OTk7cvHkz3XdmZ2dHuXLlmDlzJvXr1wdgyZIlLFmyhJs3bwJQpkwZpkyZQosWLbTrZfaoAcDcuXP55JNPgNRjZsyYMaxbt47Y2FgaN27M4sWLKViwYA59OkIIkU3cK/5XKXUKyrTLlV12KNaB0o6lGbV/FHei7tD7t96MrTqWriW6PveaK/KXUaNG0atXL6pUqULNmjX5/vvvuX37NoMHp1ZsTpgwgXv37vHjjz9iYGBA2bLpKyWdnZ0xMzPLMP1tJTmREEK8ntC/9mN3N54EI0hxOg4nD+s6JJGdPCrrV6XUoUOH+Prrr/H39ychIQE7OzvMzc0JCwsjPj6eIkWK8MEHHzB48GCsra2zc9ciEx07diQxMZFVq1ZRpEgRHjx4wJ49ewgLCyMkJIQmTZrQunVrfv/9d+zs7Lhx4wYBAQHExMSk287u3bspU6YMISEhTJw4kZYtW/LPP//g7e1NwYIFmTNnDkWLFgVg1apVtG3bllOnTlGmTBkAgoLSd+D722+/8f7779OxY0fttBEjRrBt2zbWr1+Po6Mjo0ePplWrVpw4cQJDQ8Mc/qSEEOINuFeAE6RWSuWikg4l2dBqA5P/msye23v47OhnnAw5ybSa01440p/IH7p27UpoaCgzZswgKCiIsmXLsmPHDry8vIDU39bbt2/rOMr8Q3IiIYR4PSUadmBB2xU8jojEtXpzhttX0HVI/0/pOoDckMOFtHbN2e1nhcombdq0UW5ubmr06NHqwIEDKjo6Ot38a9euKT8/P9W8eXPl6uqqdu3alV27fmMREREKUBERERnmxcbGqvPnz6vY2FgdRPb6Hj9+rAC1f//+TOdv2bJFGRkZqcTExOdu48aNGwpQp06d0k67e/euAtTSpUufu569vb1atmzZc+e3bdtWNWrUSPs+PDxcGRsbq/Xr12un3bt3TxkYGKidO3dmuo38+r0IIfTQ/dNKTbVR6nNPpVJScn33KSkpyu8fP1VhVQVV1q+sar2ltboSdiXX4xD/70V5RV6mj/mQUpITCSHEm9p5Y6cq61dW1VtfT8Unxes6HJFPZDUfyrYhe5o1a8bNmzeZP38+9erVw8Ii/V3aIkWK0KdPH3bu3Mnu3buza7e5TilFSkyMTl5KZb2W1MrKCisrK/z9/dMN95zG1dWVpKQktmzZ8krbTfteExMTM8xLTk5m/fr1REdHU7NmzUzXf/DgAb/++ivvv/++dtqJEydITEykWbNm2mnu7u6ULVuWQ4cOZTk2IYTQiQKlwNAU4iMg7Hqu716j0dCnTB9WvLMCZ3NnbkTcoMeOHmy/vj3XYxFvF8mJJCcSQrwdGhVqhLOFM2FxYfx+83ddhyP0TLY9vjds2LAsL1umTBltM+b8RsXGcqlSZZ3su8TJE2gssvZIhpGREX5+fgwcOJClS5dSqVIl6tevT7du3fD19aVGjRpMnDiRHj16MHjwYKpVq0ajRo3o3bt3piP7AERHRzNhwgQMDQ21/ScAnDt3jpo1axIXF4eVlRVbtmyhdOnSmW5j1apVWFtb06FDB+204OBgTExMsLe3T7esi4tLhpGHhBAizzEyAdeycO9E6iN8jj46CaOic0U2tt7IuIPjOBp0lAkHJ3DqwSnGVhuLqaF0Zi2yn+REkhMJId4OxgbGdCnehW9Of8P6S+tp7dNa1yEJPZJtLaWeFhsbS0BAAPPnz+fLL78kICCA2NjYV97O7NmzqVq1KtbW1jg7O9OuXTsuXbqUbhmlFNOmTcPd3R1zc3MaNGjAv//+m11Fydc6duzI/fv3CQgIoHnz5uzfv59KlSrh5+cHwGeffUZwcDBLly6ldOnSLF26lJIlS2YYwadWrVpYWVlhbW3Ntm3b8PPzo1y5ctr5JUqU4PTp0xw5coQhQ4bQp08fzp8/n2lMK1asoGfPnpiZmb00fqWUdNgrhMgf3Cum/pvL/Uo9y9Hcke+afMcg30Fo0LDx8kb6/96fmMSYl68shB6TnEgIId5Mx+IdMTIw4uzDs/z7SP7eFtlHo16lnXIWBAQEMGDAAB49epRuupOTE8uXL6d166zXqr7zzjt069aNqlWrkpSUxKRJkzh37hznz5/H0tISgC+++ILPPvsMPz8/ihcvzqxZs/jjjz+4dOlSljtTj4yMxNbWloiICGxsbNLNi4uL48aNG3h7e2NmZoZSCvUaFWzZQWNu/sYJyYABAwgMDOTWrVsZ5iUkJFCxYkWqVKnCqlWrtCPNBAQEULp0aezs7HB0dHzpPpo0aYKPjw/fffdduukHDx6kXr16nD59mvLly2un7927l8aNGxMWFpbuzmD58uVp164d06dPz7CPZ78XIYTQqVOrYeswKFwX+uaNx+b+vPcn4/4YR2RCJPUL1uerhl9haCCdJOeGF+UVedmr5EOA5ESSEwkh3jLjD47n1+u/0sanDZ/V+ey1t/Mg+gF+//oRmRCJsYExRgZGmf5rbGCMsaExRhojjA1T31sYWVDDvQaWxpbZWDKRE7KaD2X76HudOnWiTZs2jB49mlKlSgFw/vx5vvzySzp16sT+/fuf+2z9s3bu3Jnu/cqVK3F2dubEiRPUq1cPpRSLFi1i0qRJ2qbPq1atwsXFhbVr1zJo0KDsLB6Q2ndHVpuL50WlS5fG398/03kmJib4+PgQHR2dbrqnpyc+Pll/HEUplWmfDcuXL6dy5crpki+AypUrY2xsTGBgIF26dAFSR6f5559/mDt3bpb3K4QQOqNtKXUaUlLAIEcaIr+SOh51+LbxtwzYNYADdw8w5+85TKw+UVpbiGwjOdHLSU4khNAn3Ut259frv7Lzxk7GVBmDvZn9y1d6ilKKHTd28NnRz4hKiHrtODysPJhddzYVnSu+9jZE3pGtlVKzZs2iX79+Ge4G1apVi1q1ajFo0CBmzpzJjh07Xmv7ERERADg4OABw48YNgoOD03UGaWpqSv369Tl06FCOVErlF6GhoXTu3Jn+/fvj6+uLtbU1x48fZ+7cubRt25bt27ezfv16unXrRvHixVFKsW3bNnbs2MHKlSuzvJ+JEyfSokULPD09iYqKYv369ezfvz9DhWJkZCSbNm3iyy+/zLANW1tb3n//fUaPHo2joyMODg6MGTOGcuXK0aRJkzf+LIQQIsc5lQAjc0iIgtCrUKC4riMCoIJzBWbXnc3o/aNZf2k9Ba0L0qdMH12HJUSukpxICCGyh6+TL6UdS3M+9Dybr2zm/XLvv3yl/4TFhTHryCwCbwUCUMaxDM0LNycxJZHElESSUpJISkkiITkh9f8qicTkxHTzE1MSuRp+lXtP7tF3Z18GlBvA4PKDMTYwzqkii1yQrZVShw8f5osvvnju/GHDhqXrDPJVKKUYNWoUderUoWzZsgDaDh+f7YTSxcUl06bYaeLj49PdtYqMjHytmPIyKysrqlevzsKFC7l27RqJiYl4enoycOBAJk6cSFBQEBYWFowePZo7d+5gampKsWLFWLZsGb169cryfh48eECvXr0ICgrC1tYWX19fdu7cSdOmTdMtt379epRSdO/ePdPtLFy4ECMjI7p06UJsbCyNGzfGz88PQ0N51EQIkQ8YGoGbL9w5mtqvVB6plAJo6tWU0VVGM//4fL48/iXuVu409Wr68hWF0BOSEwkhRPbQaDR0L9mdyX9NZsOlDfQt0zdLXQPsub2HGYdnEBYXhpHGiA/Kf8CAcgNeqzLpScITZv89m4BrAXx/9nsO3TvEnHpz8LLxep0iiTwgW/uUMjc35+LFi3h5ZX5A3Lp1i1KlShET8+odrg4bNoxff/2VP//8k4IFCwKpjwvWrl2b+/fv4+bmpl124MCB3LlzJ8OdqTTTpk3L9Jn8rPahIHRPvhchRJ7z2zg4uhSqD4EWc3QdTTpKKT47+hkbLm3A1NCU5c2XU75A+ZevKF7L29KnlMgb5LsRQuSm+OR4mmxqQnh8OF81/IpGhRo9d9nIhEi++PsLAq4FAFDUriif1/mcUo6l3jiOnTd3MuPwDKISojA3MueTqp/QqVgn6aYgD8lqPpStnV4UL16cvXv3Pnf+nj17KFq06Ctv98MPPyQgIIB9+/ZpK6QAXF1dATIMkRsSEvLcIXwBJkyYQEREhPZ1586dV45JCCGESCePjMCXGY1Gw/hq46lfsD7xyfF8tPcj7kTKb58QQgghXo2poSkdi3UEYN3Fdc9d7vD9w3TY2oGAawEYaAzoX7Y/G1ptyJYKKYB3Cr/D5jabqeZajdikWGYcnsHH+z4mLC4sW7Yvck+2Vkr17duXMWPGZNpn1K+//srYsWPp169flrenlGL48OFs3ryZvXv34u3tnW6+t7c3rq6uBAYGaqclJCRw4MABatWq9dztmpqaYmNjk+4lhBBCvJG0SqmgM5CcpNtYMmFkYMTcenMp5VCKsLgwhu4ZSkR8hK7DEkIIIUQ+06VEFww0BhwJOsL18Ovp5sUkxjDryCw+CPyABzEPKGRdCL93/BhZeSQmhibZGoerpSs/NPuB0ZVHY2xgzL47++iwtQMH7x7M1v2InJWtlVIff/wxjRo1olWrVpQqVYoOHTrQoUMHSpYsSZs2bahfvz4ff/xxlrc3bNgwVq9ezdq1a7G2tiY4OJjg4GBi/xt+WKPRMGLECD7//HO2bNnCP//8Q9++fbGwsKBHjx7ZWTQhhBDixRyLgokVJMXCo8u6jiZTFsYWfNP4G1wtXbkZeZOP9n5EQnKCrsMSQgghRD7ibuVOg4INAFh7ca12+qmQU3Ta1okNlzYA0K1ENza13pSjo+QZaAzoW7Yva99di4+tD6FxoQzdM5TZR2cTlxSXY/sV2SdbK6UMDAzYtGkT69ato0SJEly8eJGLFy9SsmRJ1qxZwy+//ILBKwyTvWTJEiIiImjQoAFubm7a14YNG7TLjB07lhEjRjB06FCqVKnCvXv32LVrF9bW1tlZNCGEEOLFDAzB7b9+mvLgI3xpnC2cWdx4MVbGVpwMOcmnf31KikrRdVhCCCGEyEe6l0odrGHbtW2Exoay4PgC+vzWhztRd3C1dOX7pt8zqcYkLIwtciWekg4lWd9qPT1KpjZOWXtxLd22d+Ni2MVc2b94fdna0Xl+lZWOPQsXLoy5ubmOIhTPio2N5ebNm9KppxAib/l9Ehz+BqoOhHfn6zqaFzp8/zBDdw8lSSUxsNxAPqr0ka5D0hv63NG55EN5j+REQghdUErRbms7rkdcx9rYmqjEKADa+rRlXLVxWJvorpHIn/f+5NM/PyU0LhQjAyM+qvgRfcr0wUCTrW1yxEvopKNzfWRsnDpM5euMGChyTkJC6uMmMjyyECJP0fYrdVqnYWRFTfeaTK01FYAfzv3A5iubdRyRyMskH8q70r6TtO9ICCFyg0ajoXvJ1NZSUYlROJg58L+G/2NWnVk6rZACqONRh81tN9PQsyFJKUksOLGAgbsGEhobqtO4ROaMsnNjBgYGLx2CUaPRkJSU9zqAfR5DQ0Ps7OwICQkBwMLCQoaZ1LGUlBQePnyIhYUFRkbZeggLIcSbSauUCj4HyYlgmLf/SGxXtB13o+7y3dnvmHF4Bq4WrtTyeP5AIeLtJflQ3qOUIiYmhpCQEOzs7ORGnRAi17XxacPh+4exMbVhVOVR2JvZ6zokLQczB75q+BWbr2zmi2Nf8Hfw3wzbM4wVzVfk2iOFImuy9fG9rVu3PnfeoUOH+Prrr1FKaTsqzyte1qxMKUVwcDDh4eG5H5zIlIGBAd7e3piYZO8IDkII8UZSUuCLwhAfAYP/BNdyuo7opZRSTPxzItuvb8fS2JIfW/xIcfviug4rX9PHx/dA8qG8ys7ODldXV6kkFEKI57gefp0+O/sQHh9O/YL1WdRwEUYG0rghp2U1H8rxPqUuXrzIhAkT2LZtGz179mTmzJkUKlQoJ3f5yrL6YSUnJ5OYmJiLkYnnMTExeaVO84UQItesag03/oDW/4PKfXQdTZYkJCcwKHAQxx8cx8XChbXvrsXZwlnXYeVb+loplUbyobzD2NhYWkgJIUQWnA45zYBdA4hPjqdria5Mqj5JKvNzWFbzihyrHrx//z5Tp05l1apVNG/enNOnT1O2bNmc2l2uMDQ0lB9+IYQQL+ZeMbVSKug0kD8qpUwMTVjUcBG9fuvFjYgbDNszDL93/LA0ttR1aCIPknxICCFEflPBuQKz685m9P7RbLi0gYJWBelbtq+uwxLkQEfnERERjBs3jqJFi/Lvv/+yZ88etm3blu8rpIQQQogsSetX6v4p3cbximxNbVnceDEOZg5cDLvI2D/GkqJSdB2WEEIIIUS2aOrVlDFVxgDw5Ykv2Xlzp44jEpDNlVJz586lSJEibN++nXXr1nHo0CHq1q2bnbsQQggh8jZtZ+f/QFK8bmN5RQWtC/JNo28wNTTlj7t/8P3Z73UdkhBCCCFEtulVuhc9S/UEYNLBSZx8cFLHEYls7VPKwMAAc3NzmjRp8sJm3Zs3561hp/Nr3w9CCCHyIKVgrjfEPoYP9v9/JVU+4n/Vn8l/TUaDhqVNlsqIfK8ov+YV+TVuIYQQ4lUkpyQzcv9I9t3Zh62pLT+1+AlvW29dh6V3sppXZGtLqd69e9OlSxccHBywtbV97ksIIYTQWxoNuFVI/X8+e4QvTbui7ehYrCMKxbiD4wh6EqTrkIQQQgghsoWhgSFf1PuCck7liIiPYOjuoYTGhuo6rLdWtnZ07ufnl52bE0IIIfIn94pwfV++rZQCmFB9AhfCLnA+9Dyj9o9iVYtVmBia6DosIYQQQog3Zm5kzteNvqbnjp7cfXKXj/Z+xLLmyzA3Mtd1aG+dbO/oXAghhHjr5dPOzp9mamjKggYLsDGx4Z/Qf/ji7y90HZIQQgghRLZxNHdkSZMl2JracvbRWcb/MZ7klGRdh/XWybZKqcGDB3Pnzp0sLbthwwbWrFmTXbsWQggh8pa0SqmQC5AYp9tY3oCHlQdz6s5Bg4aNlzey7do2XYckhBBCCJFtvG29+V/D/2FiYMLeO3uZf3y+rkN662RbpVSBAgUoW7YsLVq0YMmSJRw7dox79+4RGhrK1atXCQgIYOzYsRQqVIhFixbh6+ubXbsWQggh8hbbgmDhBClJ8OBfXUfzRuoWrMug8oMAmHF4BpfCLuk4IiGEEEKI7FPJpRKf1fkMgNUXVvPT+Z90HNHbJdsqpWbOnMmVK1eoV68eS5cupUaNGhQqVAhnZ2dKlChB7969uX79OsuWLePw4cOUK1cuu3YthBBC5C0azVOP8OX/oYYH+w6mtkdt4pLjGLV/FJEJkboOSQghhBAi27zj/Q4jK48EYN6xeey+tVvHEb09srVPKWdnZyZMmMCZM2cIDQ3l5MmT/PXXX1y6dInHjx/z888/06xZs+zcpRBCCJE3aSulTus0jOxgaGDInDpzcLN043bUbT7981OUUroOSwghhBAi2/Qr04+uJbqiUIw/OJ4zD8/oOqS3Qo51dG5nZ0f58uWpUaMGRYsWRaPR5NSuhBBCiLxHDzo7f5qdmR0LGyzE2MCYfXf2sfLflboOSQghhBAi22g0GsZXG0+9gvWIT47nwz0fcicya/1mi9eXI5VSZ8+ezfR17tw5rly5Qnx8fE7sVgghhMg70iqlHl6AhBjdxpJNyjiVYUL1CQB8dfIr/g76W8cRCSGEEEJkHyMDI+bVm0cph1I8jn/MkD1DuBlxU9dh6bUcqZSqUKECFStWzPCqUKECJUuWxNbWlj59+hAXl39HJBJCCCFeyMYNrFxBpUDwOV1Hk206FetEG582pKgUPvnjEx5EP9B1SEIIIYQQ2cbC2ILFTRbjbunOrchbdAjowDenviEuSeovckKOVEpt2bKFYsWK8f3333P69GlOnTrF999/T4kSJVi7di3Lly9n7969fPrppzmxeyGEECJv0LNH+CC1afunNT6lhH0JwuLCGHNgDInJiboOSwghhBAi2ziZO7HynZXU8ahDYkoi3539jvZb23Pw7kFdh6Z3cqRS6rPPPuOrr77i/fffp1y5cvj6+vL++++zcOFCvvzyS3r27MnXX3/Nli1bcmL3QgghRN6gh5VSAOZG5ixssBBrY2tOPzzNlye+1HVIQgghhBDZyt3KncWNF7OgwQKcLZy5++QuQ/cMZdT+UQRHB+s6PL2RI5VS586dw8vLK8N0Ly8vzp1LfYShQoUKBAUF5cTuhRBCiLxBTyulADxtPPmszmcArLmwht9u/KbjiIQQQgghspdGo6GpV1MC2gXQu3RvDDWGBN4KpI1/G1b9u4rEFGkt/qZypFKqZMmSzJkzh4SEBO20xMRE5syZQ8mSJQG4d+8eLi4uObF7IYQQIm9wr5D676PLEB+l01ByQsNCDRlQbgAAUw9N5Vr4NR1HJIQQQgiR/SyNLfmk6idsaLWBCgUqEJsUy/zj8+m6vSunQ07rOrx8zSgnNvrtt9/Spk0bChYsiK+vLxqNhrNnz5KcnMz27dsBuH79OkOHDs2J3QshhBB5g5Uz2BSEyLsQdBYK19Z1RNlueIXhnHt0jqNBRxm5fyTr3l2HpbGlrsMSQgghhMh2JRxKsKrFKvyv+rPwxEKuPL5Cr9960aFYB0ZUGoG9mX2Wt5WQnMDV8KtcDLvIhdALXAy7SLJKxtvWG29bb4rYFsHb1htPa0+MDHKk6iZP0CilVE5s+MmTJ6xevZrLly+jlKJkyZL06NEDa2vrnNjdG4mMjMTW1paIiAhsbGx0HY4QQgh9sr4nXNwOzWZBrQ91HU2OCI0Npcv2LoTEhOBh5UG7ou1o49MGdyt3XYemE/k1r8ivcQshhBC68DjuMQtPLGTL1dS+sm1NbRlZaSTti7XHQJP+obToxGguhV3iQtgFbSXUtYhrJKUkvXQ/RgZGFLYprK2oKmJbhCJ2RShsUxgzI7McKVt2yGpeka2VUv379+err77KkxVPLyJJmBBCiBzzx3zYOxPKdoJOy3UdTY458/AMw/YMIyI+Qjutumt12hZtSxOvJpgbmeswutyVX/OK/Bq3EEIIoUunQk4x88hMrjy+AkCFAhXoXaY3tyNvczHsIhfDLnIr8haKjFUvNiY2lHIoRSnHUpR0KImJoQk3Im5wLfwaNyJucCPiBnHJcZnuV4MGdyt3vG29qeNRh87FO2NiaJKjZX0VOqmUMjQ0JCgoCGdn5+zaZK6QJEwIIUSOuboHVncABx/46KSuo8lRMYkx7Lm9h63XtnI06Kh2uqWxJc0LN6dd0XZUKFABjUajwyhzXnblFYsXL2bevHkEBQVRpkwZFi1aRN26dTNddvPmzSxZsoTTp08THx9PmTJlmDZtGs2bN8/1uIUQQoi3TVJKEmsurOHb098SmxSb6TLOFs6UckitfCrlUIqSjiVxt3R/YV6UolIIig7ievh1rkdc50bEDa5HpP7/6RuBAB5WHoyoNILmhZvniVxLJ5VSBgYGBAcHS6WUEEIIkSYmDOZ6p/5/3C0wt9NpOLnl/pP7bL22lYCrAdx9clc7vZB1IdoWbUsbnza4WrrqMMKckx15xYYNG+jVqxeLFy+mdu3afPfddyxbtozz589TqFChDMuPGDECd3d3GjZsiJ2dHStXrmT+/PkcPXqUihUr5lrcQgghxNssODqYr05+xcWwi/jY+WgroEo5lsLBzCHb9qOUIiwujOsR1zkfep5V/67iYexDAMo5lWN0ldFUdqmcbft7HTqrlHrw4AEFChTIrk3mCknChBBC5KhFvhB+C3oHQJH6uo4mVymlOPHgBP5X/dl1a5f27qEGDdXdqtOuaDsaF2qcp/tEeFXZkVdUr16dSpUqsWTJEu20UqVK0a5dO2bPnp2lbZQpU4auXbsyZcqUXItbCCGEELkvJjGGVedXsfKfldpcq6FnQ0ZWHom3rbdOYspqXpHtXbgXL178pU3FwsLCsnu3QgghRN7lXjG1Uur+qbeuUkqj0VDFtQpVXKswsfpEAm8F4n/Vn+MPjnMk6AhHgo5gZWxF+2Lt6V26t962nnoVCQkJnDhxgvHjx6eb3qxZMw4dOpSlbaSkpBAVFYWDQ/bdlRVCCCFE3mRhbMGQ8kPoXLwzS04v4Zcrv7Dvzj7+uPsHnYp3YnD5wTiZO+k6zExle6XU9OnTsbW1ze7NCiGEEPmXe0U4759aKfUWszC2oG3RtrQt2pa7UXcJuBZAwLUA7j25x0/nf2LdhXW0LNKSPmX6UNy+uK7D1ZlHjx6RnJyMi4tLuukuLi4EBwdnaRtffvkl0dHRdOnS5bnLxMfHEx8fr30fGRn5egELIYQQIk9wMndics3J9CzVk4UnFrL/7n42XNrAtmvb6F+2P73L9M5zg89ke6VUt27d8l2fUkIIIUSOcv+vT5/7+t3R+asoaF2QoRWGMrj8YA7dP8TKf1byd/Df2oqqOh516FemH1Vdq+aJzjp14dlyK6Wy9FmsW7eOadOmsXXr1hfmZLNnz2b69OlvHKcQQggh8pYidkX4uvHXHAs+xoLjC/gn9B++Of0NGy9tZHjF4bTxaYOhgaGuwwTAIDs39rYmjUIIIcQLuZVP/Tf8dmrH50LLQGNAHY86LG++nHXvrqOZVzMMNAb8ee9P3t/1Pj1+7cGum7tITknWdai5xsnJCUNDwwytokJCQjK0nnrWhg0beP/999m4cSNNmjR54bITJkwgIiJC+7pz584bxy6EEEKIvKOqa1XWvLuGufXm4mHlQUhsCFMOTaHz9s78ee9PsrGL8deWrZVSOVGgP/74g9atW+PunjpUor+/f4Z9Tps2DXd3d8zNzWnQoAH//vtvtschhBBCvDZzO3Aokvr/t/wRvhcp61SWLxt8yfZ22+laoiumhqb8E/oPow+Mpo1/GzZe2khcUpyuw8xxJiYmVK5cmcDAwHTTAwMDqVWr1nPXW7duHX379mXt2rW8++67L92PqakpNjY26V5CCCGE0C8GGgNaeLcgoF0AY6qMwcbEhiuPrzBk9xAGBQ4iPjn+5RvJyfiyc2MpKSnZ/uhedHQ05cuX55tvvsl0/ty5c1mwYAHffPMNx44dw9XVlaZNmxIVFZWtcQghhBBvRPsIn1RKvYynjSef1viU3zv+ziDfQdia2nI76jYzj8yk+S/NWXpmKRHxEboOM0eNGjWKZcuWsWLFCi5cuMDIkSO5ffs2gwcPBlJbOfXu3Vu7/Lp16+jduzdffvklNWrUIDg4mODgYCIi9PtzEkIIIUTWmBia0KdMH3Z02EHv0r0xNjDG3MgcU0NTncalUXmhvVYWaTQatmzZQrt27YDUVlLu7u6MGDGCcePGAamddrq4uPDFF18waNCgLG1XhkAWQgiR4w59Dbs+hVKtoetqXUeTr8QkxrDl6hZ+/PdH7kffB8DcyJyOxToy0HcgDmZ5a4S57MorFi9ezNy5cwkKCqJs2bIsXLiQevXqAdC3b19u3rzJ/v37AWjQoAEHDhzIsI0+ffrg5+eXq3ELIYQQIu+7G3UXjUaDh5VHjmw/q3lFvq6Uun79Oj4+Ppw8eZKKFStql2vbti12dnasWrUq0+1kNtqMp6enJGFCCCFyzs0/we9dsPWEkf/oOpp8KSklid9v/o7fv35cDLsIgI2JDaMqj6J9sfYYaLK1Afhry6+VO/k1biGEEELkPVnNK/JG9vaa0joAfdUhk2fPno2tra325enpmaNxCiGEELj6pv4bcQeePNRtLPmUkYER7xZ5l42tNvJdk+8oYV+CyIRIph2eRp/f+nD58WVdhyiEEEIIIV5Bvq6USvOqQybLaDNCCCFynZkNOBVP/f+pH3UbSz6n0Wio5VGL9a3WM6bKGMyNzDn98DRdtnXhy+NfEpMYo+sQhRBCCCFEFuTrSilXV1eAVx4yWUabEUIIoRM1h6f+u/czuHVYt7HoASMDI/qU6UNAuwCaFGpCskrG718/2m1tx77b+3QdnhBCCCGEeIl8XSnl7e2Nq6truiGTExISOHDgwAuHTBZCCCF0olJvKNcFVDL83A+iH+k6Ir3gaunKwoYL+abRN7hbuhMUHcRH+z7io70fEfQkSNfhCSGEEEKI58jzlVJPnjzh9OnTnD59GoAbN25w+vRpbt++jUajYcSIEXz++eds2bKFf/75h759+2JhYUGPHj10G7gQQgjxLI0GWi1MfYwvKgh+GQApybqOSm/U96zPlrZb6F+2P0YaI/bd2UfbrW1Z9e8qElMSdR2eEEIIIYR4Rp6vlDp+/DgVK1bUjq43atQoKlasyJQpUwAYO3YsI0aMYOjQoVSpUoV79+6xa9curK2tdRm2EEIIkTlTK+jyIxiZw/V9cPBLXUekVyyMLRhZeSSbWm+iknMlYpNimX98Pl23d+V0yGldhyeEEEIIIZ6iUUopXQehazIEshBCiFx3ei34DwGNAfTyhyL1dR2R3klRKWy9upUFJxYQHh8OQKfinRhRaQS2prY5tt/8mlfk17iFEEIIkfdkNa/I8y2lhBBCCL1UoQdUfA9USupjfFHBL19HvBIDjQHti7UnoF0A7Yq2A+Dnyz/Txr+NdIQuhBBCCJEHSKWUEEIIoSst5oFzaYgOSa2YSk7SdUR6yd7Mnpm1Z7Ky+UqK2BYhLC4MS2NLXYclhBBCCPHWk0opIYQQQldMLFL7lzK2hJsH4cAcXUek16q4VuHn1j/zv4b/o5pbNV2HI4QQQgjx1pNKKSGEEEKXnIpB669S///HfLi6W7fx6DljQ2MaFmqo6zCEEEIIIQRSKSWEEELonm9nqNIfULD5A4i4p+uIhBBCCCGEyHFSKSWEEELkBc1ng1t5iAmFn/tDcqKuIxJCCCGEECJHSaWUEEIIkRcYm0FnPzC1gTtHYM8MXUckhBBCCCFEjpJKKSGEECKvcCgCbb9J/f+h/8Gl33QbjxBCCCGEEDlIKqWEEEKIvKR0W6g+JPX/WwZD+G3dxiOEEEIIIUQOkUopIYQQIq9pOgM8KkNcOGzqC0kJuo5ICCGEEEKIbCeVUkIIIUReY2QCnVaCmS3cOwGBk3UdkRBCCCGEENlOKqWEEEKIvMjeC9otTf3/0aVwfqtu4xFCCCGEECKbSaWUEEIIkVeVbAm1Pkr9v/8wuHVIt/EIIYQQQgiRjaRSSgghhMjLGk+BwnUhIQp+ag8Xf9V1REIIIYQQQmQLqZQSQggh8jJDY+i5CUq0hKQ42PAeHF+p66iEEEIIIYR4Y1IpJYQQQuR1xubQ5Seo2AtUCmwfAfu/AKV0HZkQQgghhBCvTSqlhBBCiPzA0AjafA31Pkl9v/9z+HUUpCTrNi4hhBBCCCFek1RKCSGEEPmFRgONPoWW8wENHF8BG3tDYpyuIxNCCCGEEOKVSaWUEEIIkd9UGwid/cDQBC5uh9UdIDZc11EJIYQQQgjxSqRSSgghhMiPyrSD9zaDqQ3c+gtWtoTI+7qOSgghhBBCiCyTSikhhBAiv/KuC/12gJULhPwLy5vBw8u6jkoIIYQQQogskUopIYQQIj9zLQfv7wIHH4i4Ayuaw93juo5KCCGEEEKIl5JKKSGEECK/sy+cWjHlXgliw2BVa7i8S9dRCSGEEEII8UJSKSWEEELoA0sn6LMNijaBxBhY1w1OrdF1VEIIIYQQQjyXVEoJIYQQ+sLUCrqvB99uoJJh61DY+xnEP9F1ZEIIIYQQQmQglVJCCCGEPjE0hnZLoNZHqe//mAuLysK+2RATptvYhBBCCCGEeIpUSgkhhBD6xsAAms2EDj+AQxGIfQwH5sDCMrBzAkTc03WEQgghhBBCSKWUEEIIobd8u8Dw49DZD1x9U/uaOrIYvioPW4fBo6u6jlAIIYQQQrzFpFJKCCGE0GcGhlCmPQz6A977BbzqQEoinFoN31SBDb3g/ildRymEEEIIId5CUiklhBBCvA00mtSR+fr9Cu8HQomWgIILAfB9A/ixLdz4A5TSdaRCCCGEEOItIZVSQgghxNvGsxp0XwdDDoNvV9AYwvX9sKo1LGsCF7ZDSoquoxRCCCGEEHpObyqlFi9ejLe3N2ZmZlSuXJmDBw/qOiQhhBAib3MpDR2+h49OQtUBYGQG947Dhp7wuTssrgnre8KuT+H4Cri2Dx7fgpRkXUf+VnjV3ObAgQNUrlwZMzMzihQpwtKlS3MpUiGEEEKI12Ok6wCyw4YNGxgxYgSLFy+mdu3afPfdd7Ro0YLz589TqFAhXYcnhBBC5G32heHdL6H+ODiyBI4th/gICDmf+nqWgXHqOg7eqaP7ORQBe+/U92a2YGgMhiZgaJrap5VGk9slyvdeNbe5ceMGLVu2ZODAgaxevZq//vqLoUOHUqBAATp27KiDEgghhBBCvJxGqfzfeUT16tWpVKkSS5Ys0U4rVaoU7dq1Y/bs2S9dPzIyEltbWyIiIrCxscnJUIUQQoi8LzkRwm9D2PX/Xjfg8Q0IvQbhtyA54RU2pvmvgsoEjP779+lKK0NjMDL972WWyb9Pv0zB2Dz9MoamT233qe0Zmvz/v9r/m4JBzjcSz4684lVzm3HjxhEQEMCFCxe00wYPHsyZM2c4fPhwrsUthBBCCAFZzyvyfUuphIQETpw4wfjx49NNb9asGYcOHdJRVOkdvPKQuETpm0Pf6UH9rsgi+abfHvWKFcDcxFDXYeQ+Q2Nw9El9PSslGSLvQ9i11Mqqpyuuwm9BwpNnVlCQHJ/6epW6rJyiMUytoOq4DEq+q+toMvU6uc3hw4dp1qxZumnNmzdn+fLlJCYmYmxsnGPxZtWdsBguBkfpOgwhhBCvqKC9OaXc5GaFyBn5vlLq0aNHJCcn4+Likm66i4sLwcHBma4THx9PfHy89n1kZGSOxjju57Pcj4jL0X0IIYTIfofGN8LcxFzXYeQtBoZg55n6KtIg43ylICUJkuJTW1QlJ/7371OvpIRMpsVDUhwkxv63bjwkxkHSf+/T5ifFpU5Pm58cD8lJqf9q95m2j/iMrbpUMiTGgCbvdqv5OrlNcHBwpssnJSXx6NEj3NzcMqyT2/nQ/ssPmez/T47uQwghRPZ7r0YhZrUrp+swhJ7K95VSaTTP9FehlMowLc3s2bOZPn16boQFQGl3W1xszXJtf0J3pNeUt8fzri9Cvxgb5t2KizxLo/nv8Tzdt8wBUivJkhP/q7RKqwSLB8sCuo7spV4lt3ne8plNT5Pb+ZCTpQkVPO1ybX9CCCGyR0F7C12HIPRYvq+UcnJywtDQMMOdw5CQkAx3DNNMmDCBUaNGad9HRkbi6emZYzEu61Mlx7YthBBCiBfQaFL7nDIyAVNdB5M1r5PbuLq6Zrq8kZERjo6Oma6T2/lQi3JutCiXscWWEEIIId5e+f4WsImJCZUrVyYwMDDd9MDAQGrVqpXpOqamptjY2KR7CSGEEELkBa+T29SsWTPD8rt27aJKlSrP7U9K8iEhhBBC6Fq+r5QCGDVqFMuWLWPFihVcuHCBkSNHcvv2bQYPHqzr0IQQQgghXtnLcpsJEybQu3dv7fKDBw/m1q1bjBo1igsXLrBixQqWL1/OmDFjdFUEIYQQQoiXyveP7wF07dqV0NBQZsyYQVBQEGXLlmXHjh14eXnpOjQhhBBCiFf2stwmKCiI27dva5f39vZmx44djBw5km+//RZ3d3f+97//0bFjR10VQQghhBDipTRKxrEnMjISW1tbIiIipOm6EEIIId5Ifs0r8mvcQgghhMh7sppX6EVLqTeVVi+X00MhCyGEEEL/peUT+e2+n+RDQgghhMguWc2HpFIKiIqKAsjREWeEEEII8XaJiorC1tZW12FkmeRDQgghhMhuL8uH5PE9ICUlhfv372NtbY1Go9F1OMD/D8t8584dvWtCr89lA/0un5Qt/9Ln8ulz2UC/y6evZVNKERUVhbu7OwYG+WdMGcmHcp8+l0/Kln/pc/n0uWyg3+XT57KBfpYvq/mQtJQCDAwMKFiwoK7DyJQ+D9Gsz2UD/S6flC3/0ufy6XPZQL/Lp49ly08tpNJIPqQ7+lw+KVv+pc/l0+eygX6XT5/LBvpXvqzkQ/nn9p0QQgghhBBCCCGE0BtSKSWEEEIIIYQQQgghcp1USuVRpqamTJ06FVNTU12Hku30uWyg3+WTsuVf+lw+fS4b6Hf59LlsInvo+zGiz+WTsuVf+lw+fS4b6Hf59LlsoP/lexHp6FwIIYQQQgghhBBC5DppKSWEEEIIIYQQQgghcp1USgkhhBBCCCGEEEKIXCeVUkIIIYQQQgghhBAi10mllBBCCCGEEEIIIYTIdVIpJYQQIk/T5/E49LlsoP/lE0IIIXKTPv+uStneXlIppWP6fIDqc9lAv8unz2UD/S6fvpUtJCSEqKgo7Xt9Kp8+lw30v3wie+n78aHP5dPnsoF+l0+fywb6Vz59/l2Vsr3dNEo+lVyTkJDAwoULsbS0pFy5ctSvX1/XIWUbfS4b6Hf59LlsoN/l0+eyJSUlMWjQIPbs2YOzszPFihXjq6++wsnJSdehvTF9Lhvof/nEm9Pnaxfod/n0uWyg3+XT57KBfpdPn39XpWwCACVyxY4dO5Sjo6OqUaOGqlSpkrK3t1eTJk1SsbGxug7tjelz2ZTS7/Lpc9mU0u/y6XPZEhMTVc+ePVWNGjXU/v371YIFC1TZsmVV3bp11fnz53Ud3hvR57Ippf/lE29On69dSul3+fS5bErpd/n0uWxK6Xf59Pl3Vcom0kilVC7p3LmzGjRokFJKqbCwMLVp0yZlamqqFi5cqGJiYnQc3ZvR57Ippd/l0+eyKaXf5dPnst2+fVsVK1ZM/fTTT9ppQUFBysPDQ3344YcqODhYh9G9vpSUFL0tm1L6Xz6RPfT52qWUfpdPn8umlH6XT5/LppR+l09ff1f1OWfQ57LlFKmUyiFJSUna/1+/fl15eHio1atXp1vmww8/VJUrV1a7du3K7fCyjT6XTSn9Lt+1a9f0tmxK6d9397ZcU5RS6tSpU8rc3FxduXJFKaVUXFycUkqpb775RpUoUUJt3LhRl+G9kujoaJWQkKB9r09lU0qp+Pj4dO9PnjypV+UTb+5tunbpc/n0uWxK6XdOpI/f3dt0XdGnvEGfcyLJh96MdHSeAyZPnszkyZO17wsXLkxSUhKRkZEAxMbGAjB16lSio6P57bffePLkiU5ifVWXLl0iKSlJ+97Ly4vExES9KBvAjz/+yNWrV7Xvvby89Oa727VrF2fOnCE5ORkAb29vvfrugoOD073Xp+9On68pn3/+OVOnTmX9+vXaaaVKlcLZ2ZnVq1cDYGCQ+lM1bNgwrK2t+e2334iPj9dJvFmh/uuqcfbs2VStWpXjx49r5xUvXhxXV9d8W7anTZo0iZ49ezJ48GAuXLhASkoKZcqUwcXFRS/KJ96cPl+7QL9zIn3Oh0C/cyJ9zodAv68rkhPlr7KlkXwoG+i6Vkyf+Pv7KxcXF1W9enX1zTffqLCwMKVUam3+4MGDla+vr3bZtFriOXPmKE9PT/X48WNdhJxly5cvVx4eHqpkyZKqfPnyys/PT1uGDz74IF+XTSmlkpOTVfv27ZVGo1Hz5s3TPoOekJCQ77+7lStXKldXV1WuXDllbW2thg4dqu7du6eUUmrQoEH5umxKKfXDDz+oihUrqho1aqjWrVur/fv3K6WUio2NzfffnT5fU44ePaoKFSqkKlWqpFq0aKGsra1Vx44d1bVr15RSSo0ZM0YVL15cPXjwQCmltOfkqlWrlJ2dXZ7vJyI5OVlVqVJFaTQa9fHHH6vw8HCllFJPnjxRY8eOzddlO3DggCpSpIiqWbOm+uyzz5SXl5eqV6+eun//voqJicn35RNvTp+vXUrpd06kz/mQUvqdE+lzPqSUfl9XJCfKn2WTfCj7SKVUNnny5Ilq3bq1mjFjRqbzf/nlF1WiRAm1aNEipdT/N+F7+PChMjc3VwcPHsy1WF/V5s2bVeHChZWfn5/as2eP+uSTT5SlpaX6+uuvVXJystq+fbsqXrx4viybUqkXSqWUGj58uKpatapyc3NTJ0+e1M7/5ZdfVMmSJfNl+ZYtW6aKFi2q1q1bpx4+fKjWrFmjLC0t1enTp5VS+btsQUFBqkuXLsrLy0stX75cLV26VLVq1Uq5urpql/n555/zbfn0+ZqilFKjRo1S7777rlIq9Rw8d+6c8vLyUoMHD1bh4eHqyJEjqlKlSmro0KFKqdTn85VSat++fcrZ2VmdOXNGZ7FnxZ07d9SgQYPUkiVLlEajUTt37tQ+brBr1y5VrVq1fFu2/v37qz59+mjfX7p0SWk0GnX9+nWllFKBgYGqatWq+bZ84s3o+7VLn3Mifc6HlNLfnEjf8yGl9P+6IjlR/syJJB/KPlIplU22b9+uChQooJKTk1VYWJgaN26cmjNnjvb55vDwcPXhhx8qT09P7R0ZpVJPxEKFCml/EPOStIvFyJEjVZ06ddLNGz58uKpevbratm2bio+Pz3dle9bDhw9VlSpVVEREhCpSpIjq37+/CgkJUUopdf/+ffXRRx/lq/IlJyerpKQk1aNHD9WrV69084oXL65NMoODg/Nd2dL8/PPPqlatWurff//VTrty5Yry8vJS/v7+SimlHjx4oD7++ON8WT59vKYolfqDHB4erurUqaPGjBmjlPr/P4QWL16sKlasqJYuXaqUUmrhwoXKwsJCbd68Wfus/qxZs1SDBg20P+x51YMHD1ThwoWVUkrVq1dPNWjQQD18+FAplXqnLL+W7fbt26pIkSJq4cKF2ml79+5VXbt2VXfv3lVKpf4xkF/LJ96cvl673pacSN/yIaX0PyfS93xIKf29rkhOlH9zIsmHspdUSr2m5cuXq4CAgHTv27Vrp3bv3q28vb1V8+bNVZs2bZShoaEaPny4CgsLUzdu3FA1a9ZUFSpUUKtXr1ZXrlxR3bp1U02aNFHR0dE6LE16z8bSrFkz9cEHHyil/r857L1791STJk1Ujx49VGRkpLpy5YqqVatWni+bUhnLl5SUpGJjY1W9evVUcnKy2rBhgzIyMlLHjx9XSqVeUG7evJkvyvdsLOXLl1cDBgzQjvDw4YcfqhIlSqhp06apQ4cOKaVSO/fMD8fls86fP6/Wrl2bbtr169eVm5ubOnz4sHba2bNnVd26dfNN+dJ+oPTpmnLixAltU+00VapU0Y6Uk3ZHMyEhQXXo0EG1adNG3bt3TyUkJKhPPvlEWVtbq/r166vOnTsrc3Nz9e233yqlVJ74Mc+sbEql3gVr3LixUir1GNRoNGrVqlVq9uzZ6sSJE0oplefLplTm5atTp46qWrWq+v7779WkSZOUkZGRKlOmjLK3t1ejRo1SV69eVUopNXr06DxfPvHm9DkfUkq/cyJ9zoeUentyIn3Nh5SSnEhyorxdNsmHso9USr2in376STk7OyuNRqO+/vpr7fSNGzcqW1tbNXToUDVlyhRtouLn56eqV6+u5s+fr5RKvQvzzjvvqFKlSikPDw9Vu3ZtdePGDV0UJYN169aphg0bqrZt26pFixZpa3lnzZqVrglw2t3CxYsXK19fX7V7926lVN4um1IZy/f0UJxXr15VhQsX1j5z3rBhQ1W6dGnl7u6u5s2bp5TK2+V7tmx37txRSim1fv165eXlpZo1a6YcHR1VyZIl1YwZM1TDhg2Vr6+vmjNnjlIqb5dNqdTza8CAAWrRokWZNnVNSUnRNnf29PRUly9fTjc/L5fv6bKdPXtWO33dunX5/pry888/q4IFCyofHx9VqFAhNWXKFO115auvvlJWVlbaRDHt7tEvv/yiChYsqP766y/tdjZt2qSmTp2qBg8erC5cuJD7BclEZmV7+pqyb98+1aRJE+37hg0bKkNDQ+Xj46P9A0+pvFk2pTIvX9p15eLFi2r69OmqXbt2ysPDQ23btk0FBwern376SdWsWVN7t1epvFs+8eb0OR9SSr9zIn3Oh5TS75xIn/MhpSQnkpwof5RN8qHsJ5VSWXTy5ElVqVIlZWdnpxYtWqQ6deqkOnfurJ0fHx+vypcvrzQajVq5cqV2ekpKiurYsaN6//33tReYuLg4FRQUpM6dO5fbxcjU48ePVbdu3ZSrq6uaOXOmGjhwoPLy8tLW4J4+fVo5ODhomyem1eAnJSUpFxcX7XJp8/JS2ZR6fvkWL16sXWbfvn2qZ8+eSqnUJs/lypVTGo1GdejQIV3niHmtfM8r2zfffKNd5tGjR2revHmqfv36KjIyUjt94MCBqn379uk638tLZVMqNfZOnTopV1dXNXjwYFWnTh3l7u6uVq1apV0mKSlJe5fhhx9+UNWqVVNK/f+dh7Rm0HmtfM8rm5+fn1IqNf6yZcvmy2uKUkodO3bs/9i77/iY7z8O4K+75O6yE9l7iBFEhBpBiREjxF5BzVKzraJmFVU1a/yMovZWRexNUJvae4SEJEK27PH+/XFydZLIRcb37ryfj8c97vKd78/Nd973uc9HMX7FjRs3aOnSpWRlZUVDhgyhuLg4ev78Obm7uyu+GXx/imALCwtatWqVUKEX6GNti46OJiJ5N/tRo0bRixcvqFatWmRqakoymYzGjBlDGRkZArfg4z7Wvpzu9kTysRTGjRuntG+XLl2oY8eOlJycXNphs1KizfkQkXbnRNqcDxFpd06kzfkQEedEnBOpJ86HSg8XpVSwbt06xWwBORXsr776itq0aUOJiYlEJH+jX7FiBYlEIlqyZInSC6xv375Ut25dxd/q1k3vyJEj5OnpqehiSERUu3Zt+vHHH4mIKD4+nkaPHk2mpqaKbos5H2w+Pj40fPjw0g+6EPJr39ixYxV/HzhwgCpWrEi9evUiiURCw4cPp27dulHlypWVvmXSlMcup21ZWVmUnZ1NgYGB9OuvvxLRf9++jBw5ktzd3ent27dEpH5tI5J/q1C7dm3FN0lERO3atSM3NzfatWsXEf33XCQiatu2LY0YMULxd2hoqOLDQN3ap0rbli5dqnHvKTmx/PHHH+To6Ejx8fGKdYsXL6batWvTjBkziIhoyZIlpKOjQ6dOnVJs8+TJE3J3d6cdO3aUbuAqKKhtPj4+NHXqVCKSD6grEolILBZTr169KC0tjRYtWkSGhoZqO+CqKu3LGWQ2OTmZKlSooBivJGffTp06Ub9+/Uo5clZatD0fItLunEib8yEi7c6JtDkfIuKciIhzInXC+VDpE4MVKDAwEA8fPsSCBQtgYGAAAKhevTouXboEIyMjAIBYLEb37t3RsmVLLFq0CCdOnAAAREZGIjw8HP3791ccTyQSlX4j8kBEAIDTp09DX18furq6inWOjo5o2LAhEhISYGJigqFDh8LJyQldu3ZFaGgoxGIx7t+/j7i4OHTo0EGoJnxUQe378ssvkZCQAADQ1dVFQkICIiIicOLECSxatAjr16/HvXv3sGrVKmRkZADQnMfuyy+/RGJiIgB5zNHR0bhy5QoAQCqV4tWrV3j48CECAwNhaGio2E7dbN68GY6OjnBwcMDbt28BAB06dMCzZ8+wePFivHnzBmKxGBkZGYiNjcXNmzfRpk0bpKSkYMSIEXBxcUFwcDAA9WtfQW2Ljo7GoEGD0KxZM415TwH+iyUkJAQVKlRQem727dsXtWrVwu7du/Hw4UMMGTIEgYGB6NatG3755Rdcv34ds2fPhoGBAXx8fIRqQr4KatsXX3yBQ4cOISQkBB4eHhgxYgTOnDmD9evXQyqVYvjw4TAzM8Pjx4+FasJHqdq+W7duQV9fH9WqVcP48eOxb98+PH78GCNGjMClS5fQo0cPoZrASpi25kOAdudE2pwPAZ9HTqTN+RDAORHnROqF8yEBCFkRU1enTp2iQ4cOKarwORXP9yvv+/fvJzs7O7p06ZLSvm/evKGGDRuShYUF+fv7k42NDTVu3JjCw8NLrwEf8WHbiIg2b95M7u7u1LNnT1q1ahW5urqSqakpVapUiWrWrKmY9eHu3bvk7OxMzs7O1KVLF7K0tKTWrVsrumaqg09p3+rVq4mI6NKlS4pvkXL2//vvv9Xmd7+FbVvt2rUVXdaPHz9OEomE6tWrR0OGDCFHR0dq2LAhPX/+XKjm5JJX+8aMGUMVK1ZU2m7cuHHUtGlTql+/Pq1YsUKx/N9//6Xy5cvT5MmTycbGhqpXr04XLlwotfg/prBtq1evnqJtr1+/Vuv3lCNHjtC3335LCxYsoIsXLyqW7969m/T09OjJkydEREpT/9arV4/mzZun2Pbbb78lb29vKleuHNWoUUNpHAkhfUrb6tatS//73/+ISPlb65zHPudbeHVQ1McuIiKCvL29qWzZslS2bFny8fGha9eulXo7WMnR5nyISLtzIm3Oh4i0OyfS5nyIiHMiIs6J1C0n4nxIeFyUes/r16+pd+/eJBKJqFq1ah8dGO/MmTNkbW2tNKtFzhP11atXdOTIEZozZ46iy6nQCmrbhg0baMqUKeTo6Ejjxo2jyMhIun//Po0ePZq8vLwUgynevn2bNm7cSD/88AP99ddfArQkb0Vt3927d5W2V6euv0VtW84UwTt27KCxY8dSjx49NOaxe/LkCVlZWZGvry/NmjWL6tatS25ubnT8+HGqVq0aTZo0SbHtggULSCQSkYuLiyKxFlpR2vbTTz+p9XtKeHg4BQQEkLW1NfXs2ZOqVq1Kpqamig/zlJQU8vDwUMxS9X4y0qBBAxoyZIji76ysLEpKSqL79++XbiPyUVxte3+5OinOxy4mJoYePXqkNFAp03zanA8RaXdOpM35EJF250TanA8RcU7EOZH65UScD6kPLkq9k5GRQUuXLqUWLVrQ1q1bycDAgGbMmKH4rfmH0tLSyMrKSjE4pDq+0HKo2razZ89S5cqV6eXLl4plOVOvHj16tLTDVllxtC9nthx1U9S2ubq60pEjR0o7bJXl176cgWOJiP755x8aOHAg1ahRg4YPH64YWLBXr17UqVMnxXYXL15UGsxUaMXZNnWTlJREffr0oW7dutHTp08Vy2vVqkV9+/YlIvk/pevXryexWKw0awwRUc+ePalx48aKv9Xpn57ibpu60fb2saLT5nyISLtzIm3Oh4i0OyfS5nyIiHMizonUjza3TRNxUeo9Fy5coL179xIR0dSpU8nKyirfrndv3ryhZs2aqfWAlu9TpW0zZ86kRo0aKS3bu3cvlS1bVunFqo60uX3a3DYi1V937yedr169Ik9PT8VApeqqONqmrv/gffPNN3Tw4EEi+q8b9tSpU6lOnTqKbVJTU6lDhw5UqVIlCg4OpuzsbIqIiKDatWvTypUrBYlbFdrcNiLtbx8rOm3Oh4i0+3NVm9tGpN3t0+Z8iIhzIk39XOW2aWbbNA0Xpd7zYWXa3t6evvnmG6UpY9/XokULxTTI6vommUOVtl2/fp1EIhFNmjSJTp48SRs2bCAXFxf67rvvKCUlRa0q9x/S5vZpc9uICm7f++tTUlIoPT2dli5dStWrV1eb39nnR5vb9v50xTnt+Oqrr2jgwIFKy1JSUqhRo0ZkbW1NzZs3J3t7e/Lx8aHQ0NDSD1pF2tw2Iu1vHys6bc6HiLT7c1Wb20ak3e3T5pyBSLvbp82fq9w2zWybpuGiVB5yKvR//fUX6erq5urqm/Ob5hEjRlC1atVKO7wiKahtv/zyC5UvX54qV65M7u7utHz5ciHC/GTa3D5tbhtRwe178eIFLV26lGrWrEnm5ua0efNmIcL8JNrctvc1aNCA1qxZQ0TyD/Kc98rIyEg6cuQITZ8+nTZt2iRghJ9Om9tGpP3tY59Gm/MhIu3+XNXmthFpd/u0PWfQ9vbl0ObPVW6bZrZNnXFRqgB169YlPz8/evXqFRHJR9fP8eDBA6HCKhY5bYuMjCQiUswY8/btW7p69aqQoRULbW6fNreNKPfrLioqiojkM+vMnTtXyNCKTFvb9uTJE7KxsVEa4DG/MWg0jTa3jUj728eKhzbnQ0Ta/bmqzW0j0u72aWvOkENb26fNn6vcNlYSuCiVj5zfld6+fZt0dHRo4cKF9N1331GtWrU0flT9/NpWs2ZNjW8bkXa3T5vbRpR/+2rUqEG3bt0SOLqi0da25XRtXrduHbm7uyuWT5kyhQYPHqxINDWRNreNSPvbx4qHNudDRNr9uarNbSPS7vZpa86QQ1vbp82fq9w2VpK4KKWCWrVqKaZWPXTokNDhFCttbhuRdrdPm9tGpN3t08a2DRs2jMaMGUNHjhwhV1dXsra2psOHDwsdVrHQ5rYRaX/7WPHRxveu92lz+7S5bUTa3T5tbhuRdrZPmz9XuW2sJHBR6iMeP35Mnp6eZGBgoHWj62tz24i0u33a3DYi7W6ftrYtJSWFypUrRyKRiGQyGc2cOVPokIqNNreNSPvbx4qHtr535dDm9mlz24i0u33a3DYi7W2fNn+ucttYSdEFy5eOjg46deqEsWPHQl9fX+hwipU2tw3Q7vZpc9sA7W6ftrZNT08Prq6uaNasGebNmwc9PT2hQyo22tw2QPvbx4qHtr535dDm9mlz2wDtbp82tw3Q3vZp8+cqt42VFBERkdBBMMYY02xZWVnQ0dEROowSoc1tA7S/fYwxxlhp0ubPVW4bKwlclGKMMcYYY4wxxhhjpU4sdACMMcYYY4wxxhhj7PPDRSnGGGOMMcYYY4wxVuq4KMUYY4wxxhhjjDHGSh0XpRhjjDHGGGOMMcZYqeOiFGOMMcYYY4wxxhgrdVyUYowxxhhjjDHGGGOljotSjDHGGGOMMcYYY6zUcVGKMcYYY4wxxhhjjJU6LkoxxhhjjDHGGGOMsVLHRSnGGGOMMcYYY4wxVuq4KMUYY4wxxhhjjDHGSh0XpRhjjDHGGGOMMcZYqeOiFGOMMcYYY4wxxhgrdVyUYowxxhhjjDHGGGOljotSjDHGGGOMMcYYY6zUcVGKMcYYY4wxxhhjjJU6Lkp9ZgICAmBmZoawsLBc62JiYmBnZ4f69esjOzu7xGN59uwZRCIR1q5dWyzHu3v3LqZMmYJnz5598jEOHDiAKVOmFCmOvn37wtXVtUjHKC2urq7o27ev0GEoTJkyBSKRqNiPGxwcDJFIhODg4GI/dmlKT0/H4MGDYWdnBx0dHXh7exe4z969e9GmTRvY2NhAKpXC3NwcTZs2xaZNm5CRkaG0bXR0NMaPH4/KlSvDwMAAJiYm8PHxwZIlS3Jty7SbtrxmGMvB+c/Hcf4jLM5/Pq4w+Q8RYevWrWjQoAGsra2hp6cHR0dHtGjRAitXrsy1fWFyn4iICPz000+oW7cuLC0tYWJigi+++AIrVqxAVlZWcTebqTFNer/TBFyU+sysXLkSurq6GDBgQK51w4cPR2JiItatWwexWPOeGnfv3sXUqVOLnJRNnTq1+IJihTJgwACcP3++2I9bo0YNnD9/HjVq1Cj2Y5emP/74A8uXL8fEiRPxzz//YMOGDfluS0To168f2rZti+zsbMybNw/Hjh3DunXrUK1aNQwdOhRLly5VbH///n1Ur14dy5cvR8+ePbF//35s3boVNWrUwPfff49mzZohOTm5NJrJ1IC2vGYYy8H5z8dx/iMszn8+rjD5z/jx49G9e3dUqlQJK1euxMGDB/Hrr7/CxsYGu3fvVtq2sLnP1atXsX79ejRt2hTr16/Hjh074OvriyFDhmDgwIEl1n6mfiZNmoRdu3YJHYb2IPbZ2bZtGwGgZcuWKZbt3LmTANDSpUtL/PyZmZmUmppKISEhBIDWrFlTLMfdvn07AaCTJ09+8jGGDRtGRX1Z9OnTh1xcXD5p36SkpCKdu7BcXFyoT58+pXpO9ukGDBhA+vr6Km07a9YsAkBTp07Nc31ERASdOXOGiOSvycqVK5OpqSk9ePAg17Zbt24lADRo0KBPD76YlPZr5HOTnp5OGRkZQofBWIng/Cd/nP8wdaZq/pOcnEwymYx69+6d5/qsrCzF7U/JfWJiYig9PT3Xtjmvn9DQUFWaU6KSk5OFDkGrcR5aMrgo9ZkKDAwkIyMjCgkJoTdv3pC1tTU1a9aMiIguX75Mbdq0oTJlypBMJiNvb2/atm2b0v5RUVE0ZMgQqlSpEhkaGpKVlRU1btyYTp8+rbRdTuI1a9YsmjZtGrm6upKOjg4dPHgwV1J2+vRpAkCbN2/OFe+6desIAF26dCnP9qxZs4YA5Lq8n/CtWrWKvLy8SCaTUZkyZah9+/Z09+5dxfo+ffrkeYyQkBAiIlq8eDE1aNCArKysyMDAgDw9PWnWrFm5PpxUTcp8fX2pSpUqdOrUKapbty7p6+tTt27diIjo+fPn1LNnT7KysiKpVEoeHh40d+5cpQ9TIqIpU6ZQ7dq1qUyZMmRsbEzVq1enlStXUnZ2ttJ26enp9OOPP5KNjQ3p6+tT/fr16eLFiyonZWlpaTRt2jSqWLEiSaVSsrS0pL59+1JUVJTSdi4uLtS6dWvau3cveXt7k56eHnl4eNDevXuJSP44eXh4kIGBAdWqVYsuX76stP/kyZNzJcXHjx8nX19fMjc3Jz09PXJycqKOHTsqfSgsXbqUvLy8yNDQkIyMjKhixYo0fvx4xfqTJ0/mmbDv3r2bfHx8SF9fn4yMjMjPz4/OnTuXZ0y3b9+mwMBAMjExIWtra+rXrx/FxcUpbfvXX39R7dq1ycTEhPT19cnNzY369etX4P2bkpJC48aNI1dXV5JIJGRvb09Dhw6l2NhYxTYFPb/fl56eTubm5uTh4ZHruZCXnH9oZsyYke82zZs3J11dXYqIiPjosbZu3UrNmjUjW1tbxeM/duxYevv2ba5tL1y4QAEBAWRubk4ymYzKli1L33//vWJ9zn1/9epV6tSpE5mZmZGtrS0RqXafERXP8yc/quz34sULGjhwIDk6OpJEIiE7Ozvq1KkTRUZGKraJj4+nUaNGKbXl+++/z3WfAaBhw4bR+vXrycPDg/T19cnLy0vx+srx6NEj6tu3L5UrV4709fXJ3t6eAgIC6ObNm0rb5bwu1q9fTyNHjiR7e3sSiUR07969Ir1moqKiFG3Oeb+oV68eHT16tMD7lLGSxvkP5z+c/2hv/vP69WsCQGPHji3w3MWZ++S8Tj+8Dz+UkpJCI0eOpGrVqpGJiQmVKVOGfHx8KCgoKNe2WVlZ9L///Y+qVatGenp6ZGpqSnXq1KHdu3crtsl53u3YsYO8vb1JJpMp2n7r1i1q27YtmZmZkUwmo2rVqtHatWtznWPatGlUoUIFxTmqVq1KCxYsUGzzqZ/pqu538OBBatKkieK54+HhQb/99pvSNqq8N+e8F544cYIGDx5MFhYWZG5uTh06dKCXL18qbatqrtqnTx8yNDSkmzdvUrNmzcjIyIh8fHwU6z58vyvO3PRzw0Wpz1R0dDTZ2dlR48aNqWvXrmRmZkZhYWF04sQJkkql1KBBA9q2bRsdOnSI+vbtm+sD4P79+zRkyBDaunUrBQcH0759++jrr78msVis9MGXk3g5ODhQ48aN6e+//6YjR45QSEhInt8UVq9enerXr58r3lq1alGtWrXybU9UVBT99ttvBICWLFlC58+fp/PnzyuShpx13bt3p/3799P69eupbNmyZGpqSg8fPiQiosePH1Pnzp0JgGL/8+fPU2pqKhER/fDDD/THH3/QoUOH6MSJEzR//nyytLTM9aFbmKTM3NycnJycaNGiRXTy5Ek6deoURUVFkYODA1lZWdGyZcvo0KFDNHz4cAJAQ4YMUTpG3759adWqVXT06FE6evQoTZs2jfT19XP1junTpw+JRCL68ccf6ciRIzRv3jxycHAgExOTApOyrKwsatmyJRkaGtLUqVPp6NGjtHLlSnJwcKDKlSsrfSPj4uJCjo6O5OnpSVu2bKEDBw5QnTp1SCKR0M8//0z169ennTt30q5du6hChQpkY2OjtP+HSVlISAjp6elRs2bNKCgoiIKDg2nTpk3Uq1cvxRv8li1bCAB9++23dOTIETp27BgtW7aMvvvuO8Vx8krKNm3aRACoefPmFBQURNu2baMvvviCpFKpogfR+zFVrFiRfv75Zzp69CjNmzePZDKZ0mN/7tw5EolEFBgYSAcOHKATJ07QmjVrqFevXh+9f7Ozs6lFixakq6tLkyZNoiNHjtDcuXPJ0NCQqlevrnj+nT9/nlq1akX6+vq5nt8fOnfunMpJGRHRN998QwDo3r17+W6zdOlSAkBbtmz56LGmTZtG8+fPp/3791NwcDAtW7aM3NzcqHHjxkrbHTp0iCQSCXl5edHatWvpxIkTtHr1agoMDFRsk3Pfu7i40NixY+no0aMUFBSk8n1WXM+fvKiy34sXL8jOzo4sLS1p3rx5dOzYMdq2bRv1799fcV8nJSWRt7e30jYLFy4kU1NTatKkidI/WADI1dWVateuTX/99RcdOHCAGjVqRLq6uvTkyRPFdqdOnaJRo0bR33//TadOnaJdu3ZR+/btSV9fn+7fv6/YLud14eDgQJ07d6Y9e/bQvn37KDo6ukivmRYtWpCVlRWtWLGCgoODKSgoiH7++WfaunXrR+9TxkoD5z+c/3D+o735DxFRuXLlyNjYmH7//Xe6d+9evl/OFWfu06dPH9LV1aU3b958dLu4uDjq27cvbdiwgU6cOEGHDh2i0aNHk1gspnXr1ilt26tXLxKJRDRgwADavXs3HTx4kKZPn04LFy5UbOPi4kJ2dnZUtmxZWr16NZ08eZIuXbpE9+/fJ2NjY3J3d6f169fT/v37qXv37opCeY4ZM2aQjo4OTZ48mY4fP06HDh2iBQsW0JQpUxTbfOpnuir7rVy5kkQiETVq1Ig2b95Mx44do6VLl9LQoUMV26j63pxTlCpbtix9++23dPjwYVq5ciWVKVMmVw6qaq7ap08fkkgk5OrqSjNmzKDjx4/T4cOHFevef78rztz0c8RFqc/YgQMHFN84bNiwgYiIPDw8qHr16rl+vhEQEEB2dna5vqnKkZmZSRkZGdS0aVPq0KGDYnlO4uXu7p7rG7W8krKcN5Rr164pll26dIkA5Hqz/lB+3ddjY2NJX1+fWrVqpbQ8NDSUZDIZ9ejRQ7FM1e7rWVlZlJGRQevXrycdHR2KiYlRrCtMUgaAjh8/rrR83LhxBIAuXryotHzIkCEkEony7GL8fky//PILWVhYKD6E7927RwDohx9+UNo+JykpKCnLSXp27NihtPzy5cu5fvLg4uJC+vr69OLFC8Wy69evEwCys7NT+gYgKCiIANCePXsUyz5Myv7++28CQNevX883vuHDh5OZmdlH2/BhUpaVlUX29vZUtWpVped0YmIiWVtbU7169XLFNHv2bKVjDh06lPT09BT389y5cwlArm8PC3Lo0KE8j5/zM5MVK1YoluV8Y1OQnC7n7/9E5WNatmxJABQfmHk5ePBgrmSmINnZ2ZSRkUGnTp0iAHTjxg3FOnd3d3J3d6eUlJR898+573/++Wel5areZ8X1/PnU/fr3708SiUSpR8KHZsyYQWKxONe35jmxHzhwQLEMANnY2FBCQoJiWWRkJInF4o9+05uZmUnp6elUvnx5pfeBnNdFw4YNc+1TlNeMkZERjRgxIt94GBMa5z+c/3D+o535D5H8dePs7Kx4jRsbG1NAQACtX79eqUBVXLnP4cOHSSwW53qeqSLn/ePrr7+m6tWrK5bn9J6cOHHiR/d3cXEhHR2dXK+NwMBAkslkuX5O6O/vTwYGBorHKiAggLy9vT96jk/9TC9ov8TERDIxMaEvv/zyo736VX1vznkPfb+gRUQ0e/ZsApBvb7eP5ao5vUhXr16da78P3++KMzf9HGneaI6s2Pj7+8PHxwfly5fHV199hcePH+P+/fvo2bMnACAzM1NxadWqFSIiIvDgwQPF/suWLUONGjWgp6cHXV1dSCQSHD9+HPfu3ct1rrZt20IikRQYU/fu3WFtbY0lS5Yoli1atAhWVlbo1q3bJ7Xz/PnzSElJyTXLipOTE5o0aYLjx4+rdJxr166hbdu2sLCwgI6ODiQSCXr37o2srCw8fPjwk2IrU6YMmjRporTsxIkTqFy5MmrXrq20vG/fviAinDhxQmlbPz8/mJqaKmL6+eefER0djaioKADAyZMnAUDxuObo2rUrdHV1C4xx3759MDMzQ5s2bZSeE97e3rC1tc01o4u3tzccHBwUf1eqVAkA0KhRIxgYGORa/vz583zP7e3tDalUim+++Qbr1q3D06dPc21Tu3ZtxMXFoXv37ti9ezfevHlTYJsePHiA8PBw9OrVS2lQWyMjI3Tq1AkXLlzINah327Ztlf728vJCamqq4n6uVasWAPn9+tdff+Hly5cFxgFA8Xh++Pzs0qULDA0NVX5+ljQiAoACZwd6+vQpevToAVtbW8Vz0tfXFwAU7w0PHz7EkydP8PXXX0NPT6/Ac3fq1Enpb1Xvs5J6/qi638GDB9G4cWPFcz0v+/btg6enJ7y9vZVeXy1atMhzxqTGjRvD2NhY8beNjQ2sra2VXkeZmZn47bffULlyZUilUujq6kIqleLRo0d5vj9/eP/mpTCvmdq1a2Pt2rX49ddfceHCBZ65kakdzn84/+H8R3vzn1q1auHx48c4dOgQJkyYgLp16+L48ePo3bs32rZtq8hnVFFQ7vPvv/+ia9eu8PHxwYwZM1Q65vbt21G/fn0YGRkp3j9WrVql9P5x8OBBAMCwYcMKPJ6XlxcqVKigtOzEiRNo2rQpnJyclJb37dsXycnJikH1a9eujRs3bmDo0KE4fPgwEhISch3/Uz/TC9rv3LlzSEhIwNChQ/O9fwv73gzk/XwFlF9vquSq71MlTyrO3PRzxEWpz5xMJoNUKgUAvHr1CgAwevRoSCQSpcvQoUMBQPGBN2/ePAwZMgR16tTBjh07cOHCBVy+fBktW7ZESkpKrvPY2dmpHM+gQYOwefNmxMXF4fXr1/jrr78wYMAAyGSyT2pjdHR0vjHY29sr1n9MaGgoGjRogJcvX2LhwoU4c+YMLl++rEge82qzKvKKKTo6Ot9Yc9YDwKVLl9C8eXMAwJ9//omzZ8/i8uXLmDhxolJMOdvb2toqHU9XVxcWFhYFxvjq1SvExcVBKpXmel5ERkbmSoLMzc2V/s55fuW3PDU1Nd9zu7u749ixY7C2tsawYcPg7u4Od3d3LFy4ULFNr169sHr1ajx//hydOnWCtbU16tSpg6NHj+Z73IKeE9nZ2YiNjVVa/uF9lfN8zLmfGzZsiKCgIGRmZqJ3795wdHSEp6cntmzZkm8cObHo6urCyspKablIJIKtra1Kz88POTs7AwBCQkKKbfucWZ0+THDe9/btWzRo0AAXL17Er7/+iuDgYFy+fBk7d+4E8N999fr1awCAo6OjSvF9+Dipep+V1PNH1f1ev35dYBtfvXqFmzdv5nptGRsbg4hyvb7yes3KZDKl96CRI0di0qRJaN++Pfbu3YuLFy/i8uXLqFat2ie/PxfmNbNt2zb06dMHK1euRN26dWFubo7evXsjMjKywPMwVlo4/+H8pyCc/8hpUv6TQyKRoEWLFpg+fToOHz6MsLAwNGrUCPv27VMUfIqa+1y7dg3NmjVD+fLlceDAAZVepzt37kTXrl3h4OCAjRs34vz587h8+TL69++v9Hx4/fo1dHR0cj1381KU19L48eMxd+5cXLhwAf7+/rCwsEDTpk1x5coVxT6f+ple0H6q5IKFeW/OUdDzVdVcNYeBgQFMTEw+2lageHPTz1HBXxOwz4alpSUA+RtUx44d89ymYsWKAICNGzeiUaNG+OOPP5TWJyYm5rlfQb0r3jdkyBDMnDkTq1evRmpqKjIzMzF48GCV9/9QzptTRERErnXh4eGKdn9MUFAQkpKSsHPnTri4uCiWX79+/ZPjAvK+XywsLPKNFfjvcdq6dSskEgn27dun1NskKCgo1/EAIDIyUukbvMzMTJU+8C0tLWFhYYFDhw7luf79XhsloUGDBmjQoAGysrJw5coVLFq0CCNGjICNjQ0CAwMBAP369UO/fv2QlJSE06dPY/LkyQgICMDDhw+VHq8cBT0nxGIxypQpU+hY27Vrh3bt2iEtLQ0XLlzAjBkz0KNHD7i6uqJu3bp57mNhYYHMzEy8fv1a6YOMiBAZGan4BrIwatasCXNzc+zevRszZswo8PXXrFkzrFixAkFBQRg3blye2wQFBUFXVxeNGjXK9zgnTpxAeHg4goODFd84AUBcXJzSdjntfPHihUrt+TD+wtxnJfH8yVHQflZWVgW20dLSEvr6+li9enW+6wtr48aN6N27N3777Tel5W/evIGZmVmu7VV5fy7Ma8bS0hILFizAggULEBoaij179mDcuHGIiorK932EMSFx/pM/zn84/1GFuuQ/+bGwsMCIESMQHByM27dvo1WrVkXKfa5duwY/Pz+4uLjgyJEjMDU1VSmOjRs3ws3NDdu2bVN6DaSlpSltZ2VlhaysLERGRhZY2C7Ka0lXVxcjR47EyJEjERcXh2PHjmHChAlo0aIFwsLCYGBg8Mmf6QXtp0ouWJj3ZlWpmqvmUPU9vLhz088N95RiChUrVkT58uVx48YN1KxZM89LzgewSCTK9Y3AzZs3Fd1Bi8LOzg5dunTB0qVLsWzZMrRp00bxbcbHfFgJz1G3bl3o6+tj48aNSstfvHih6N5a0DFy3pDebzMR4c8//yxEy1TTtGlT3L17F//++6/S8vXr10MkEqFx48aKmHR1daGjo6PYJiUlBRs2bFDaL+eDdNOmTUrL//rrL2RmZhYYT0BAAKKjo5GVlZXnc6KwHwafSkdHB3Xq1FF8O/vh/QMAhoaG8Pf3x8SJE5Geno47d+7keayKFSvCwcEBmzdvVurGnZSUhB07dqBu3bpKXe0LSyaTwdfXF7NmzQIgT17yk/P8+/D5uWPHDiQlJSk9P1UlkUgwduxY3L9/H9OmTctzm6ioKJw9exYA0KFDB1SuXBkzZ87M86cY27Ztw5EjRzBgwICPfmuX1+sEAJYvX670d4UKFeDu7o7Vq1fnSsRU8Sn3WXE+f1Tdz9/fHydPnszVtfx9AQEBePLkCSwsLPJ8fbm6uqoUw/vyen/ev3+/yj+pyMunvmacnZ0xfPhwNGvWLM/7nDF1wPkP5z954fyn8ITOfzIyMvItOOb8LCunt9Cn5j7Xr1+Hn58fHB0dcfTo0UIV8UQiEaRSqVKhIzIyErt371bazt/fHwByFb9V1bRpU0Xx5X3r16+HgYEBfHx8cu1jZmaGzp07Y9iwYYiJiVH0Envfp36m57VfvXr1YGpqimXLluX7k8rCvDerStVctbBKKjf9XHBPKaZk+fLl8Pf3R4sWLdC3b184ODggJiYG9+7dw7///ovt27cDkH9QT5s2DZMnT4avry8ePHiAX375BW5ubip90Bfk+++/R506dQAAa9asUWkfT09PAMCKFStgbGwMPT09uLm5wcLCApMmTcKECRPQu3dvdO/eHdHR0Zg6dSr09PQwefJkxTGqVq0KAJg1axb8/f2ho6MDLy8vNGvWDFKpFN27d8eYMWOQmpqKP/74I1cX5+Lwww8/YP369WjdujV++eUXuLi4YP/+/Vi6dCmGDBmi+N1469atMW/ePPTo0QPffPMNoqOjMXfu3FxvspUqVcJXX32FBQsWQCKRwM/PD7dv38bcuXNV6o4aGBiITZs2oVWrVvj+++9Ru3ZtSCQSvHjxAidPnkS7du3QoUOHYr8fAPm4HSdOnEDr1q3h7OyM1NRURY8SPz8/AMDAgQOhr6+P+vXrw87ODpGRkZgxYwZMTU3z/ZZNLBZj9uzZ6NmzJwICAjBo0CCkpaVhzpw5iIuLw8yZMwsd688//4wXL16gadOmcHR0RFxcHBYuXKj0O/W8NGvWDC1atMDYsWORkJCA+vXr4+bNm5g8eTKqV6+OXr16FToWAPjxxx9x7949TJ48GZcuXUKPHj3g5OSE+Ph4nD59GitWrMDUqVNRv3596OjoYMeOHWjWrBnq1q2LUaNGoW7dukhLS8PevXuxYsUK+Pr64vfff//oOevVq4cyZcpg8ODBmDx5MiQSCTZt2oQbN27k2nbJkiVo06YNfHx88MMPP8DZ2RmhoaE4fPhwrn8gPvU+K6nnj6r7/fLLLzh48CAaNmyICRMmoGrVqoiLi8OhQ4cwcuRIeHh4YMSIEdixYwcaNmyIH374AV5eXsjOzkZoaCiOHDmCUaNGKd4LVRUQEIC1a9fCw8MDXl5euHr1KubMmaPyzyXzouprJj4+Ho0bN0aPHj3g4eEBY2NjXL58GYcOHcr3W07G1AHnP5z/fIjzH9WoU/4THx8PV1dXdOnSBX5+fnBycsLbt28RHByMhQsXolKlSorPok/JfR48eKC4/6dPn45Hjx7h0aNHivXu7u65fr71voCAAOzcuRNDhw5F586dERYWhmnTpsHOzk7pOA0aNECvXr3w66+/4tWrVwgICIBMJsO1a9dgYGCAb7/99qP3w+TJk7Fv3z40btwYP//8M8zNzbFp0ybs378fs2fPVvTsatOmDTw9PVGzZk1YWVnh+fPnWLBgAVxcXFC+fPlP/kxXZT8jIyP8/vvvGDBgAPz8/DBw4EDY2Njg8ePHuHHjBhYvXgxA9fdmVRUmVy2M4sxNP0ulP7Y6Uye+vr5UpUoVpWU3btygrl27krW1NUkkErK1taUmTZoozeSVlpZGo0ePJgcHB9LT06MaNWpQUFBQrpkIcmaYmTNnTq5z5zX7zPtcXV2pUqVKhWrPggULyM3NjXR0dHIde+XKleTl5UVSqZRMTU2pXbt2dOfOHaX909LSaMCAAWRlZUUikYgAUEhICBER7d27l6pVq0Z6enrk4OBAP/74o2JWjvdnvCnM7DMf3vc5nj9/Tj169CALCwuSSCRUsWJFmjNnTq7Zf1avXk0VK1YkmUxGZcuWpRkzZtCqVauU4s5p16hRo8ja2pr09PTIx8eHzp8/Ty4uLgXOPkNElJGRQXPnzlW038jIiDw8PGjQoEH06NEjxXYuLi7UunXrXPsDoGHDhikty+u58eHsM+fPn6cOHTqQi4sLyWQysrCwIF9fX6UZa9atW0eNGzcmGxsbkkqlZG9vT127dqWbN28qtslrSmQi+Qw4derUIT09PTI0NKSmTZvS2bNnlbbJien169dKy3Nm+ci5n/ft20f+/v7k4OBAUqmUrK2tqVWrVkrTK+cnJSWFxo4dSy4uLiSRSMjOzo6GDBmSa2rYwsw+k2P37t3UunVrsrKyIl1dXcXUuMuWLaO0tDSlbd+8eUPjxo0jDw8PxeNcu3ZtWrx4ca7Zo/Jz7tw5qlu3LhkYGJCVlRUNGDCA/v333zxf6+fPnyd/f38yNTUlmUxG7u7uSrPX5HffE6l2nxXX8ycvqu4XFhZG/fv3J1tbW5JIJIrtXr16pdjm7du39NNPP1HFihUV709Vq1alH374gSIjIxXb5fU6IqJcr+PY2Fj6+uuvydramgwMDOjLL7+kM2fOkK+vL/n6+iq2y3ldbN++PdcxP/U1k5qaSoMHDyYvLy8yMTEhfX19qlixIk2ePFlp9inGhMb5D+c/nP9oX/6TlpZGc+fOJX9/f3J2diaZTEZ6enpUqVIlGjNmDEVHR+fapzC5T07b87vk95p+38yZM8nV1ZVkMhlVqlSJ/vzzz1yPP5F8psT58+eTp6en4rVbt25d2rt3r2Kb/J53RES3bt2iNm3akKmpKUmlUqpWrVqu+H7//XeqV68eWVpaklQqJWdnZ/r666/p2bNnRPTpn+mF2e/AgQPk6+tLhoaGZGBgQJUrV84126Eq7805j82Hsxnn9RpQNVf92PMur/e74spNP0ciokJMQcBYKbl58yaqVauGJUuWKAayY4wxxhjTZpz/MMYY+9xwUYqplSdPnuD58+eYMGECQkND8fjx4yL9tp0xxhhjTN1x/sMYY+xzxQOdM7Uybdo0NGvWDG/fvsX27ds5IWOMMcaY1uP8hzHG2OeKe0oxxhhjjDHGGGOMsVLHPaUYY4wxxhhjjDHGWKnjohRjjDHGGGOMMcYYK3VclGKMMcYYY4wxxhhjpU5X6ADUQXZ2NsLDw2FsbAyRSCR0OIwxxhjTYESExMRE2NvbQyzWnO//OB9ijDHGWHFRNR/iohSA8PBwODk5CR0GY4wxxrRIWFgYHB0dhQ5DZZwPMcYYY6y4FZQPcVEKgLGxMQD5nWViYiJwNIwxxhjTZAkJCXByclLkF5qC8yHGGGOMFRdV8yEuSgGKLuomJiachDHGGGOsWGjaT+A4H2KMMcZYcSsoH9KcgQ4YY4wxxhhjjDHGmNbgohRjjDHGGGOMMcYYK3VclGKMMcY+AREJHQJjjDHGGFMzlJ0NysgQOgyNwWNKFUJWVhYy+MmlFqRSqUZNs80Y0y6vFy1G9Jo1MO/ZA5bDhkGspyd0SIyVGs6H1IdEIoGOjo7QYTDG2GeHsrOR+fo10p89R/rzZ8gIDUX68+dIfx6K9NBQUFoadG1sIHF0gNTBARJHJ0gcHSF1dIDEwQG6NjYQ8fs3AIGLUqdPn8acOXNw9epVREREYNeuXWjfvr1ifd++fbFu3TqlferUqYMLFy4o/k5LS8Po0aOxZcsWpKSkoGnTpli6dGmxTsFMRIiMjERcXFyxHZMVjVgshpubG6RSqdChMMY+M/F79+HNkiUAgOg/VyLhyBHY/TINhnVqCxwZYyWL8yH1ZGZmBltbW40bWJ8xxtQdESEzKir/wlNq6kf3z4yMRGZkJFKuXM29UiKBxM7uXZHKERIHB3nRytkJUjc36GjYDL5FIWhRKikpCdWqVUO/fv3QqVOnPLdp2bIl1qxZo/j7wyLEiBEjsHfvXmzduhUWFhYYNWoUAgICcPXq1WL75ignAbO2toaBgQF/6AssOzsb4eHhiIiIgLOzMz8ejLFSk3rvHiImTQIAmLTyR/KVq8h4HorQPn1g1qULrH8cDR2etYxpKc6H1AsRITk5GVFRUQAAOzs7gSNijDHNR0RIu3cPCYcOI+HwIWQ8D81/Yx0dSBwcIHVxkV+cnSF1cYbUxQViQ0NkvHyJ9JcvkfHiJTJevED6izBkvAxHRng4kJGBjNBQZITmfXwdS0vIXF0hdXN7d3GFzM0NEkdHiHS16wdvgrbG398f/v7+H91GJpPB1tY2z3Xx8fFYtWoVNmzYAD8/PwDAxo0b4eTkhGPHjqFFixZFjjErK0uRgFlYWBT5eKx4WFlZITw8HJmZmZBIJEKHwxj7DGTGxuLF8G9Bqakw/PJL2M+Zg+zkZETN/R1x27Yhbvt2vA0Ohs3Pk2DSrJnQ4TJWrDgfUk/6+voAgKioKFhbW/NP+Rhj7BMQEVLv3EXi4UNIOHxEuVCUV+HJVX5bYm8P0Uf+F9W1soK+t3fu82VlIfPVK6S/eCEvUoWFvStgvUD68+fIev0GWW/eIPnNGyRfuaK8s0QCqZO8N5XM7b+ilaxCRegYGRbTPVK61L7EFhwcDGtra5iZmcHX1xfTp0+HtbU1AODq1avIyMhA8+bNFdvb29vD09MT586dK5aiVM6YCQYGBkU+Fis+OT3msrKyuCjFGCtxlJWF8FGjkfHyJSROTnCYOwciHR3oGBvDbuoUmAa0RsSkn5H+7BlefvsdEpo3h+2kn6BrZSV06IwVC86H1FfOY5KRkcFFKcYYU5FSIerQYWSEhSnWiWQyGPn6wqRlCxj5+kJsWLzFHpGODiT29pDY2+e5PisxEenPnskvISFICwlBeoj8b0pNRfrTp0h/+hRv399JIoFBjRowatgARg0bQlqunMb0aFbropS/vz+6dOkCFxcXhISEYNKkSWjSpAmuXr0KmUyGyMhISKVSlClTRmk/GxsbREZG5nvctLQ0pKWlKf5OSEgoMBZNeUA/F/x4MMZK0+sFC5B07hxE+vpwXLwIOmZmSusNatWC2+4gvFmyFNGrVyPxyBEkXbgAmzE/wrRTJ37PYlqDn8vqhx8TxhhTDREh9fad/wpRL14o1on09GDUsGGJFaIKQ8fYGPpVq0K/alWl5ZSdjczIyP+KVCEh8qLVkyfIfPUKyRcvIvniRUTNmQtdOzsYffklDBs2gGHdemrdi0qti1LdunVT3Pb09ETNmjXh4uKC/fv3o2PHjvnuR0Qf/YCeMWMGpk6dWqyxMsYY004Jhw4h+s+VAAC7X6dBr2LFPLcTy2SwHvkDTFr5I2LiT0i9cwcRP01C/L79sPtlKqTOzoU6LxEhMzwcqQ8fIu3hI2RGv4FIJAZ0dCDSEQMiMSAWQSR+d1tH/N9tsQgisQ4gFkPq6gKjL7/8aPdyxhhjjDFtlfEqCrEb1ucuROnr/9cjqmFDiNW8N7BILP6vh1X9+krr0p89w9vTZ/D2zBkkX7qEzIgIxG3fjrjt25V6URk2aABZ+fJq9YWGWOgACsPOzg4uLi549OgRAMDW1hbp6emIjY1V2i4qKgo2Njb5Hmf8+PGIj49XXMLe66qnTaKiojBo0CA4OzsrxuZq0aIFzp8/DwC4du0aAgICYG1tDT09Pbi6uqJbt2548+YNAODZs2cQiUSKS5kyZdCwYUOcOnVKcY7Tp0+jTZs2sLe3h0gkQlBQUK44du7ciRYtWsDS0hIikQjXr1/Ptc2TJ0/QoUMHWFlZwcTEBF27dsWrV69K5H5hjDFVpT58iPAJEwEA5v37w7R16wL30fPwgOu2rbD+8UeI9PSQfOECnrZth+hVq0CZmXnukxUXh6RLlxCzcRMifp6MZ4Hd8bBmLTxu6ocXQ4bi9fz5iF2/ATHr1iFm9WpE/7kS0StWIHrZcrxZ+gfeLFmCN/9bhNcLFuL1/Pl4/fs8RM2Zg6hZs/BiyFA8atwEUXPnIi0kpFjvH8Y0BedEjDH2eUo8eRIh7doheuUqZLx4AZG+PoxbtoTDgvmocPYfOC6YD5OWLdW+IFUQqasrzHv3gvOfK1Dhwnk4rViOMl99BYmLM5CRoehBFdK2HR43boKIST8j4ehRZL1NEjp09e4p9aHo6GiEhYUpZhf54osvIJFIcPToUXTt2hUAEBERgdu3b2P27Nn5Hkcmk0Emk5VKzELq1KkTMjIysG7dOpQtWxavXr3C8ePHERMTg6ioKPj5+aFNmzY4fPgwzMzMEBISgj179iA5OVnpOMeOHUOVKlUQFRWFCRMmoFWrVrh9+zbc3NxUmkExKSkJ9evXR5cuXTBw4MA81zdv3hzVqlXDiRMnAACTJk1CmzZtcOHCBYjFGlU7ZYxpicjQm4js1xuy5DQY1PWB9cgfVN5XpKsLi6/7w7iZHyJ+nozkCxcQNWcuEg4chNWI75H5JhppDx8i7dEjpD18iMx3s2flIpFA5uYGWYUKkNjZAkSgrGz5dXYWkE3/3c7Kll8TAVnZAGWDMjKRdPEist68QfTKVYheuQr6Nb+AWafOMGnZAuJ3gyQzpu04J2KMsc9Ldno6oubMReyGDQAAWaVKsBw0CEa+DbU+/xHr68OoYUMYNWwIYKK8F9WZf/D2zGkkX7yEzMhIRS8qXWtrlDsVLGjPKRERkVAnf/v2LR4/fgwAqF69OubNm4fGjRvD3Nwc5ubmmDJlCjp16gQ7Ozs8e/YMEyZMQGhoKO7duwdjY2MAwJAhQ7Bv3z6sXbsW5ubmGD16NKKjo3H16lWVB3tMSEiAqakp4uPjYfLBVN6pqakICQmBm5sb9PT0ivcOKEFxcXEoU6YMgoOD4evrm2t9UFAQunTpgpSUFOjmM6Xks2fP4ObmhmvXrsH73awBL1++hKOjI5YtW4ZBgwYpbS8SibBr1y60b99e5eMBwJEjR+Dv74/Y2FjF/R8bGwtzc3McPXpUMbPi+zT1cWGMaQbKzsahNl5wfZKFVFNdVD14Crrm5p92LCLE79yFV7NmIfsjYxhKHBwgK18esgoV3l3KQ+bmVuSf3VFGBt6eOoW47X/j7ZkzQHY2AEBsZAST1q1h1rkz9DyrqFU3bk33sbxCnWljPgRwTsQYY5+btKcheDlqFNLu3QMAmPfpDatRoyB+N1nW5yw7NRXJly/j7ekzSDp9GnpeXnCYk3+HnqJQNR8StKfUlStX0LhxY8XfI0eOBAD06dMHf/zxB27duoX169cjLi4OdnZ2aNy4MbZt26YoSAHA/Pnzoauri65duyIlJQVNmzbF2rVrS272ESIgI7ng7UqCxABQ8Z8GIyMjGBkZISgoCD4+Prl6htna2iIzMxO7du1C586dVf5n5P0ZXopLWloaRCKRUox6enoQi8X4559/8kzAGGOsJInEYojbNkLMn8fxV5s0LAzZC5j3+bRjiUQw69QRRg0b4NXMWUi+cgVSZ2d54al8ecgqyq91jIyKuRXvzi+RwNjPD8Z+fsh49Qrxu4IQt2MHMsLCELdtG+K2bYOsYkWYdeoE07Ztcg3izli+OCcCwDkRY4ypCyJC/K4gRP76Kyg5GTplysBuxm8wbtRI6NDUhlhPD0YNGsCoQQNg4gRkp6YKHZKwRalGjRrhYx21Dh8+XOAx9PT0sGjRIixatKg4Q8tfRjLwW95TN5a4CeGAVLVR83V1dbF27VoMHDgQy5YtQ40aNeDr64vAwEB4eXnBx8cHEyZMQI8ePTB48GDUrl0bTZo0Qe/evfMdjyspKQnjx4+Hjo5Ont80fiofHx8YGhpi7Nix+O2330BEGDt2LLKzsxEREVFs52GMscKo2XsqmusGI11XF5GHx8LWrhpg7/3Jx9O1soLD73OLL8BPILGxgeXgQbD4ZiCSL11C3N87kHjkCNIePMCr335D1Ny5MPbzg1mXzjCoU0c+cDpj+eGciHMixhhTE1lv3yJy8hQk7N8PADDw8YH9rFmQ2FgLHJl6E6tBD1vONrVYp06dEB4ejj179qBFixYIDg5GjRo1sHbtWgDA9OnTERkZiWXLlqFy5cpYtmwZPDw8cOvWLaXj1KtXD0ZGRjA2NsbevXuxdu1aVP1gesqisLKywvbt27F3714YGRkpuvjVqFGj5Hq8McZYASz0LeBpXwMAcEKmA/zVC0iJLWAvzSASi2Ho4wOHuXNQ/sxp2Ez6CbJKlUDp6Ug4cACh/frjib8/YjZsVIsBMBkrKs6JGGNMe6XcuoWQDh3lBSkdHVj98AOcV63kgpSGEHRMKXVRqDEUNKSren4GDBiAo0eP4vnz57nWpaeno3r16qhZsybWrVunGO9gz549qFy5MszMzGBhYZHvsT91/IT3vXnzBrq6ujAzM4OtrS1GjRqFH3/8Mdd2PH4CY6w0rLuzDnOvzEWdDGDli1CgQksgcAtQyj2I0rPSkZaVBmOpccEbF0HKnTuI+/tvJOzbj+zERADysafMOnVCmV5fQeroWKLn1xafzZhSnBPle2zOiRhjrORRdjZiVq9G1IKFQGYmJPb2sP99LgyqVxc6NAYNGVNKI4lEKncXV0eVK1fOc4piAJBKpXB3d0dSkvK34k5OTnB3dy+F6ABLS0sAwIkTJxAVFYW2bduWynkZYywvTZyaYO6VubgiFSNeVw+mDw8BZxcADUaWyvmJCAdDDmLOlTlITE/EgKoD0N+zP6Q6JTNQp36VKtCvUgU2o0cjbvduxG7YiPSQEMSsW4eYDRtg1KQxzHv3hkGtWjwwOuOcqIRxTsQYY/nLfPMG4WPGIuncOQCAccuWsPtlKnQ06MsgJsdFKS0VHR2NLl26oH///vDy8oKxsTGuXLmC2bNno127dti3bx+2bt2KwMBAVKhQAUSEvXv34sCBA1izZo3K53l/BkUACAkJwfXr12Fubg5nZ2cAQExMDEJDQxEeHg4AePDgAQD5wKK2trYAgDVr1qBSpUqwsrLC+fPn8f333+OHH35AxYoVi+suYYyxQnMycUI5s3J4HPcYp316o80/K4AT0wDHmoBbwxI9d2hCKH698CvOR5xXLFtyfQn2P92PiT4T4WPnU2LnFhsawrxHD5QJDETSP/8gZt16JJ09i7fHjuPtseOQeXjAvHdvmAS05plsmNrjnIgxxrTL23/OInzsWGRFR0OkpwebiRNgVoiJKph64aKUljIyMkKdOnUwf/58PHnyBBkZGXBycsLAgQMxYcIEREREwMDAAKNGjUJYWBhkMhnKly+PlStXolevXiqf52MzKOaM07Bnzx7069dPsU1gYCAAYPLkyZgyZQoAeVI2fvx4xMTEwNXVFRMnTsQPP/xQxHuBMcaKrolzEzyOe4yTOploU607cGML8Hd/YNAZwMSu2M+XnpWOVbdXYeXNlUjPTodULMVAr4FwNHbE71d+x7OEZxh4ZCD83fzxY80fYWVgVewx5BCJxTBq2BBGDRsi7fFjxGzYiPjdu5F2/z4iJkxA1O+/o0xgIMoEdoOuVcnFwVhRcE7EGGPaITs9Ha8XLETM6tUAAFn58nCYPw+ycuUEjowVBY8phU8YQ4EJjh8XxlhpuRN9B4H7AqGvq4/THQ5Bb20AEHUHcK4L9NkL6EiK7VwXIy7i1wu/4lnCMwBAXbu6+MnnJzibyHtZJKYnYvG1xdj6YCuyKRtGEiMMrz4c3Sp2g664dL5nyoqLQ+xf2xG7eTMyIyPlCyUSmLZqhTK9e0G/SpVSiUOdfTZjSjG1wI8NY+xzkHThAiKn/oL0kBAAQJke3WE9ZoxazB7H8qZqPsSz7zHGGGMfUdm8MmwNbZGSmYIL0TeBbhsAmQkQeh64ua1YzvEm5Q3GnRmHAUcG4FnCM1jqW2J2w9lY3my5oiAFAMZSY4yvMx6bW2+Gp4Un3ma8xcxLM9Fjfw/cen3rI2coPjpmZrD8ZiDKHT0Ch3m/Q9/bG8jIQPzu3XjWqTNC+/dH8r//lkosjDHGGNNuma9f4+Wo0Qjt2w/pISHQsbSE4+JFsP35Zy5IaQkuSjHGGGMfIRKJ0NhJ/pOck2EnAQt3oPZA+crQC0U6djZl468Hf6FtUFvsf7ofIojQ3aM79rTfA383/3zHRqhiUQUbW23EJJ9JMJYa417MPfQ80BPTzk9DfFp8kWJSlUgigUmrVnDdugWuf22DSUAAoKuLpHPn8bxHTzzv1w/JV6+WSiyMMcYY0y6UlYWYjZvwxL8VEvbvB8RilOnRA+4H9sPYz0/o8Fgx4qIUY4wxVoAmzk0AAMFhwcjKzgLsa8hXhF//5GM+iHmAXgd7YdqFaUhMT0Ql80rY3HozJtSZAGOpcYH764h10LViV+xtvxdt3duCQPjrobzAtefJHpTmr/P1vbzgMHcO3A8dglmXLoCuLpLPX8Dznl9xzynGGGOMFUrKzZt41qUrXv36K7LfvoWepydc//oLtj9P4tn1tBAXpRhjjLECfGHzBYylxohJjcHNNzcBe2/5itf3gIyUQh0rKSMJcy7PQbd93XDz9U0YSgwxrvY4bGm9BZ6WnoWOzULfAtO/nI7VLVajrGlZxKTGYOI/E9H/cH88iXtS6OMVhdTRAXbTfpEXp7p2Veo5Fdr/ay5OMcYYYyxfWfHxiJg6Fc+6BSL17l2IjY1h8/MkuG7bCn1PHrNSW3FRijHGGCuARCxBQ8eGAIDjz48DJg6AoRWQnQm8uqPSMYgIx58fR7ugdlh/dz2yKAvNXJphd7vd6FmpJ3TEOkWKsZZtLfzd5m98X+N76Ono4cqrK+i8pzP+vPlnkY77KaSODrD7ZapSz6mkc+feFae45xRjjDHG/kNEiN+9G09atUbclq0AEUzbtYX7wQMw79EDIp2i5UhMvXFRijHGGFNBEyf5T/hOhJ0AAYCdt3xF+LUC9w1LDMOw48MwIngEXiW/goORA5Y2XYp5jebBxtCm2GKU6EgwoOoA7G6/G42cGiGTMvG/a//Dv6+EKQIp9ZxSFKfe7zlV8H3HGGOMMe2V9uQJQvv0RfjYcciKjobU3R3O69fBftYs6FpaCh0eKwVclGKMMcZUUN+hPqRiKcISw+Q/i7OvLl/xkXGl0rPSsfzGcnTY3QFnXp6BrlgXA6sOxK52u9DAsUGJxWpvZI9FTRahU/lOAIC5V+aW6hhTH8q7OHUOz3v0QOjXA7g4xRhjjH1mspOTEfX7PDxt1x7Jly5BpKcHq5EjUXbXThjWri10eKwUcVGKMcYYU4GhxBA+9j4A3s3ClzOuVD49pc6Fn0PHPR2x+PpipGWloY5tHexsuxPf1fgO+rr6pRLz8OrDoa+rj1tvbuHws8Olcs6PUS5OdZYXp86exfMePRDSuQtiNm1CZmys0GEyxhhjrASlP3uGp23aIvrPP4HMTBg1boyy+/bB8puBEEmlQofHShkXpRhjjDEVKX7CF3riv5/vvb4PpCcrtolKjsKPp37EoKOD8DzhOSz1LTGrwSz82fxPuJm6lWq8lvqW6O/ZHwCw4N8FSM9KL9Xz50denJoG90MH5cUpiQSpt2/j1bRf8aihL1589z0ST54EZWYKHSpjjDHGilFWfDzCBg9BxsuX0LW3g+OSxXD6Yymkjg5Ch8YEwkUpxhhjTEW+Tr4QQYTb0bcRqSMGDK0BygJe3UZmdiY23N2AtkFtcejZIYhFYvSs1BN72u9Bq7KtIBKJBIm5d+XesNa3xsu3L7H53mZBYsiP1NERdtOmofypYNhMGA9ZpUpARgYSjxzBiyFD8ahRY7yaNRupDx4KHSpjjDHGiogyM/Hyhx+Q/uwZdO3s4PbXXzBu2lTosJjAuCilxaKiojBo0CA4OztDJpPB1tYWLVq0wPnz5wEA165dQ0BAAKytraGnpwdXV1d069YNb968AQA8e/YMIpFIcSlTpgwaNmyIU6dOKc4xY8YM1KpVC8bGxrC2tkb79u3x4MGDfGMaNGgQRCIRFixYoLS8UaNGSucSiUQIDAws/juFMcaKwFLfEt7W3gCAky+CFeNKXX98EIH7AjH78mwkZSTBy9ILW1tvxbja42AsNRYuYAAGEgMMrz4cALDi1grEpcYJGk9edM3NYd67N8ru2gm3oF0w79MbOubmyHrzBjFr1iCkXTuEdOyEmA0b+ed97JNwTsQYY8J7NWMmks6dh8jAAE5Ll/BA5gwAF6W0WqdOnXDjxg2sW7cODx8+xJ49e9CoUSPExMQgKioKfn5+sLS0xOHDh3Hv3j2sXr0adnZ2SE5OVjrOsWPHEBERgVOnTsHExAStWrVCSEgIAODUqVMYNmwYLly4gKNHjyIzMxPNmzdHUlJSrniCgoJw8eJF2Nvb5xnvwIEDERERobgsX768+O8Uxhgrovd/whdrUwmTLc3RK/RvPIh9AFOZKSbXnYwNrTagkkUlgSP9T1v3tihfpjwS0xOx/KZ6v7fqeXjAZvx4lD8VDMelS2HczE/+8767d/Fq+nT5z/u+/Q6JJ06AMjKEDpdpCM6JGGNMWDGbNyN20yYAgMPsWdCrpD55EhOWrtABsJIRFxeHf/75B8HBwfD19QUAuLi4oPa7mQyCgoKQkJCAlStXQldX/jRwc3NDkyZNch3LwsICtra2sLW1xfLly+Ho6IgjR45g0KBBOHTokNK2a9asgbW1Na5evYqGDRsqlr98+RLDhw/H4cOH0bp16zxjNjAwgK2tbbG0nzHGSkpj58b4/ervuBBxAY0gQraxEQCgQ7kO+OGLH1BGr4zAEeamI9bB6C9GY9CxQdj6YCu6e3SHs4mz0GF9lEgigXGTxjBu0hiZsbFI2LsP8UFBSL17F4lHjyLx6FHoWFjArFMnlOkeCImdndAhMzXFORFjjAkr6dw5vJr+GwDA6ocfYOznJ3BETJ1wT6lCIiIkZyQLcinMdN5GRkYwMjJCUFAQ0tLScq23tbVFZmYmdu3aVajjGhgYAAAy8vl2Oj4+HgBgbm6uWJadnY1evXrhxx9/RJUqVfI99qZNm2BpaYkqVapg9OjRSExMVDkuxhgrLS4mLihrWhYAkA1C+fR0rI+Iwi+1xqplQSpHPYd6qG9fH5nZmVj470KhwykU3TJlYN67F9x27oDb7t0w79sXOhYWyIqORvSKFXjs1wwvvv0OSRcuFuozTZvNmDEDIpEII0aMKLFzcE7EORFjjBUkLSQEL0b8AGRlwaRtG1h8M1DokJia4Z5ShZSSmYI6m+sIcu6LPS7CQGKg0ra6urpYu3YtBg4ciGXLlqFGjRrw9fVFYGAgvLy84OPjgwkTJqBHjx4YPHgwateujSZNmqB3796wsbHJ85hJSUkYP348dHR0FN80vo+IMHLkSHz55Zfw9PRULJ81axZ0dXXx3Xff5Rtvz5494ebmBltbW9y+fRvjx4/HjRs3cPToUZXayxhjpWmY9zAsvb4UHct3RI+D06GbmgpE3gKcfYQO7aNG1hyJ83vP48jzI7gedV0xPpYm0atYAXrjxsJ61EgknjiJ2E2bkHzpkqL3lKx8eZTp2ROmbdtAbKDaZ6a2uXz5MlasWAEvL68SPQ/nRJwTMcbYx2TFx+PFkKHITkiAvrc37KZNE2ziF6a+uKeUFuvUqRPCw8OxZ88etGjRAsHBwahRowbWrl0LAJg+fToiIyOxbNkyVK5cGcuWLYOHhwdu3bqldJx69erByMgIxsbG2Lt3L9auXYuqVavmOt/w4cNx8+ZNbNmyRbHs6tWrWLhwIdauXfvRN6CBAwfCz88Pnp6eCAwMxN9//41jx47h33//LZ47gzHGilFz1+YIah+E3lV6Q9feW74w/LqQIamkQpkKaF+uPQDg9yu/a3SvIpFEApMWzeGyfh3c9uyGWWA3iPT1kfboESKnTMEj30Z4NWMm0p8/FzrUUvX27Vv07NkTf/75J8qUUd+ee6WNcyLGGCtdlJHx30x79nZwXLwIYplM6LCYGhKRJmekxSQhIQGmpqaIj4+HiYmJ0rrU1FSEhITAzc0Nenp6ICKkZKYIEqe+rn6RK8sDBgzA0aNH8TyPJD09PR3Vq1dHzZo1sW7dOjx79gxubm7Ys2cPKleuDDMzM1hYWOR53G+//RZBQUE4ffo03NzcFMsXLFiAkSNHQiz+r/6ZlZUFsVgMJycnPHv2LM/jERFkMhk2bNiAbt265Vr/4ePCGGOCOTkDODUTqNYd6LBM6GgKFJUchYBdAUjJTMG8RvPQzKWZ0CEVm6yEBMTt3InYLVuQ8TxUvlAkgmHDBjDv2ROGX34Jkbjkv4/7WF5R0vr06QNzc3PMnz8fjRo1gre3d67Z3fJTmHwIAOdEnBMxxli+In/5BbGbt0BkYADXzZug5+EhdEislKmaD/HP9wpJJBKp3F1cHVWuXBlBQUF5rpNKpXB3d881S4yTkxPc3d3z3IeI8O2332LXrl0IDg5WSr4AoFevXvD7YCC7Fi1aoFevXujXr1++cd65cwcZGRmw44FrGWPqzr66/FoDekoBgLWBNfpU6YNlN5Zh/tX5aOTYCBIdidBhFQsdExNY9O0L8969kXT2LGI2bkTSqdOKi8TFGeY9esC0QwfolHKxqDRs3boV//77Ly5fvqzS9mlpaUpjLCUkJBTqfJwTKeOciDHG5GI2b0bs5i2ASCSfaY8LUuwjuCilpaKjo9GlSxf0798fXl5eMDY2xpUrVzB79my0a9cO+/btw9atWxEYGIgKFSqAiLB3714cOHAAa9asUfk8w4YNw+bNm7F7924YGxsjMjISAGBqagp9fX1YWFjk+iZRIpHA1tYWFStWBAA8efIEmzZtQqtWrWBpaYm7d+9i1KhRqF69OurXr198dwpjjJWEnJ/vvXkApCcBUkNBw1FFvyr9sP3BdoQlhmHbg234qvJXQodUrERiMYwaNIBRgwZIf/4csZu3IG7nTmQ8D8WrGTMRtfB/sJv8M0zbtRM61GITFhaG77//HkeOHFG5t8yMGTMwderUEo5MeJwTMcZY6Xl79izPtMcKhYtSWsrIyAh16tTB/Pnz8eTJE2RkZMDJyQkDBw7EhAkTEBERAQMDA4waNQphYWGQyWQoX748Vq5ciV69eql8nj/++AMA0KhRI6Xla9asQd++fVU6hlQqxfHjx7Fw4UK8ffsWTk5OaN26NSZPngwdHR2VY2GMMUEY2wJGtsDbSI0Y7BwADCQGGF59OKaen4plN5ehjXsbmMpMhQ6rREhdXGAzfhysvvsW8Xv3InbTJqQ9egypezmhQytWV69eRVRUFL744gvFsqysLJw+fRqLFy9GWlpars/U8ePHY+TIkYq/ExIS4OTkVGoxlxbOiRhjrHSkPQ3Byx9GAllZMG3XDhYDBwgdEtMAPKYUCj+GAhMePy6MMbWyORB4eBBoOQvwGSx0NCrJzM5El71d8DjuMfpW6YtRNUcJHVKpICKk3roF/RKcmU6IMaUSExNzjY3Ur18/eHh4YOzYsUozwOWH8yHNxI8NY0wdZMXH41nXbkh//hz61avDed1aiKVSocNiAlI1H+LZ9xhjjLGiUszAd03QMApDV6yLkV/Ie8lsurcJL9++FDii0iESiUq0ICUUY2NjeHp6Kl0MDQ1hYWGhUkGKMcYY+1SUkYEXI0Yg/fnz/2ba44IUUxEXpRhjjLGiyhnsPOK6oGEU1pcOX6KOXR1kZGdg4dWFQofDGGOMMQ30asYMJJ+/AJGBAZz++AO6+cxOylheuCjFGGOMFZWdt/z69QMg7a2goRSGSCTC6JqjIYIIB58dxO03t4UOiRWj4OBgLFiwQOgwGGOMabGYTZv+m2lvzmzovZu4gTFVcVGKMcYYKypjG8DYHgABkTeFjqZQPMw90Ma9DQBg7pW54KEmGWOMMaaKtCdP8Oq3GQAAq5E/wLhpU4EjYpqIi1KMMcZYccj5CV/4dUHD+BTfVv8WMh0Zrr66ipNhJ4UOhzHGGGMa4M3y5UBWFox8fWExgGfaY5+Gi1KMMcZYcVAUpTRnsPMctoa26F25NwBg/tX5yMjOEDgixhhjjKmz9NBQJOzbDwCw/O5biEQigSNimoqLUowxxlhx0MAZ+N7X37M/zPXM8SzhGbY/2C50OIwxxhhTY9F//glkZ8PQtyH0q1QROhymwbgoxRhjjBWHnJ5S0Y+A1ARhY/kERlIjDK02FACw7MYyJKYnChwRY4wxxtRRRkQE4oJ2AwAsBw0WOBqm6QQtSp0+fRpt2rSBvb09RCIRgoKClNYTEaZMmQJ7e3vo6+ujUaNGuHPnjtI2aWlp+Pbbb2FpaQlDQ0O0bdsWL168KMVWMMYYYwAMLQETR/ltDRvsPEfHCh3hZuqG2LRYrLq1SuhwGGOMMaaGoletBjIyYFCnDgxqVBc6HKbhBC1KJSUloVq1ali8eHGe62fPno158+Zh8eLFuHz5MmxtbdGsWTMkJv737e2IESOwa9cubN26Ff/88w/evn2LgIAAZGVllVYzGGOMMTnFT/iuCxnFJ5OIJRj5xUgAwPq76xESHyJwRIwxxhhTJ5mvXyNuu/xn/paDBwkcDdMGhS5KpaWl4cyZM9iwYQOWL1+OnTt3IiTk05JWf39//Prrr+jYsWOudUSEBQsWYOLEiejYsSM8PT2xbt06JCcnY/PmzQCA+Ph4rFq1Cr///jv8/PxQvXp1bNy4Ebdu3cKxY8c+KSZtEhUVhUGDBsHZ2RkymQy2trZo0aIFzp8/DwC4du0aAgICYG1tDT09Pbi6uqJbt2548+YNAODZs2cQiUSKS5kyZdCwYUOcOnVKcY4//vgDXl5eMDExgYmJCerWrYuDBw8qxfH+Md6/zJkzR7EN93hjjGkFDR9XCgB8HX3RwKEBMrIzMO3CNBCR0CExVmScEzHGWPGIXrsWlJYG/WrVYODjI3Q4TAuoXJQ6d+4cunfvDjMzMzRq1AgjRozAtGnT8NVXX6FcuXIoX7485syZo9SLqShCQkIQGRmJ5s2bK5bJZDL4+vri3LlzAICrV68iIyNDaRt7e3t4enoqtvmcderUCTdu3MC6devw8OFD7NmzB40aNUJMTAyioqLg5+cHS0tLHD58GPfu3cPq1athZ2eH5ORkpeMcO3YMEREROHXqFExMTNCqVStFIdLR0REzZ87ElStXcOXKFTRp0gTt2rVT+pllRESE0mX16tUQiUTo1KmTYhvu8cYY0wp277qwR1wXNIyiEIlEmOgzEXo6ergceRm7n+wWOiTGioxzIsYYK7rM2FjEbdkKALAYMphn3GPFg1TQtm1bsrOzo1GjRtGpU6coKSlJaf2TJ09o7dq11KJFC7K1taUjR46oclglAGjXrl2Kv8+ePUsA6OXLl0rbDRw4kJo3b05ERJs2bSKpVJrrWM2aNaNvvvkm33OlpqZSfHy84hIWFkYAKD4+Pte2KSkpdPfuXUpJSSl0m4QUGxtLACg4ODjP9bt27SJdXV3KyMjI9xghISEEgK5du6ZY9uLFCwJAy5Yty3e/MmXK0MqVK/Nd365dO2rSpIni77i4OJJIJLR161bFspcvX5JYLKZDhw7leQxNfVwYY1ru7WuiySbyS0ruzxRNsurWKvJc60lfbvmSYlJihA5Ho8THx+ebV6izj8WtyZ+7nBMxxljxiFr4P7pb0YOetO9A2dnZQofD1Jyq+ZBKPaWaN2+OZ8+eYe7cuWjYsCEMDAyU1pctWxZ9+vTBoUOHiv1ncx9WX4mowIpsQdvMmDEDpqamiouTk5PK8RARspOTBblQIX5CYWRkBCMjIwQFBSEtLS3XeltbW2RmZmLXrl2FOm7OY5+RkZFrXVZWFrZu3YqkpCTUrVs3z/1fvXqF/fv34+uvv1Ys4x5vjDGtYWgJmL77TIm4IWwsRdSrci+UL1MecWlx+P3K70KHw9QQ50ScEzHGPh9ZiYmI2bgRAGA5aBD3kmLFRleVjYYNG6byAatUqYIqVap8ckA5bG1tAQCRkZGws7NTLI+KioKNjY1im/T0dMTGxqJMmTJK29SrVy/fY48fPx4jR45U/J2QkKByYYpSUvCgxheFaktxqfjvVYg+KAjmR1dXF2vXrsXAgQOxbNky1KhRA76+vggMDISXlxd8fHwwYcIE9OjRA4MHD0bt2rXRpEkT9O7dW3H/figpKQnjx4+Hjo4OfH19Fctv3bqFunXrIjU1FUZGRti1axcqV66c5zHWrVsHY2NjpXHEIiMjIZVKlR5DALCxsUFkZKRK7WWMMbVh7w3Eh8l/wufWQOhoPplELMHPPj+j98He2P1kN9qVa4datrWEDoupEc6JOCdijH0+YjdvQXZCAqRly8K4eTOhw2FapNADnaekpGDPnj2YO3cufv/9d+zZswcpKSnFHpibmxtsbW1x9OhRxbL09HScOnVKUXD64osvIJFIlLaJiIjA7du3P1qUkslkikEocy7aqFOnTggPD8eePXvQokULBAcHo0aNGli7di0AYPr06YiMjMSyZctQuXJlLFu2DB4eHrh165bScerVqwcjIyMYGxtj7969WLt2LapWrapYX7FiRVy/fh0XLlzAkCFD0KdPH9y9ezfPmFavXo2ePXtCT0+vwPhV6RXHGGNqx85bfq3Bg53n8Lb2RucKnQEA0y5MQ3pWusARMfZpOCdijLFPl52cjJh375cW3wyESFzoMgJj+RJRIfop79mzBwMGDFDMRJLD0tISq1atQps2bQp18rdv3+Lx48cAgOrVq2PevHlo3LgxzM3N4ezsjFmzZmHGjBlYs2YNypcvj99++w3BwcF48OABjI2NAQBDhgzBvn37sHbtWpibm2P06NGIjo7G1atXoaOjo1IcCQkJMDU1RXx8fK4CVWpqKkJCQuDm5gY9PT0QEagEinCqEOnrFzkhGTBgAI4ePYrnz5/nWpeeno7q1aujZs2aWLduHZ49ewY3Nzfs2bMHlStXhpmZGSwsLAo8h5+fH9zd3bF8+XKl5WfOnEHDhg1x/fp1VKtWTbH8xIkTaNq0KWJiYpS+GaxWrRrat2+PqVOn5jrHh48LY4ypjcfHgY0dAXN34Lt/hY6myOLT4tEuqB2iU6Mx3Hs4BlXj6Z8L8rG8Qp0VJh8CwDkR50SMsc9E9OrViJo9BxJHR7gfOgiRrko/uGKfOVXzoULNvte5c2c0bNgQZ8+eRUxMDGJiYvDPP/+gQYMG6Ny5s2JaXVVduXIF1atXR/Xq8tmKRo4cierVq+Pnn38GAIwZMwYjRozA0KFDUbNmTbx8+RJHjhxRFKQAYP78+Wjfvj26du2K+vXrw8DAAHv37lW5IFVYIpEIYgMDQS7F8Q1Z5cqVkZSUlOc6qVQKd3f3XOudnJzg7u6uUvIFyJPUvMZsWLVqFb744gul5Av49B5vjDGmluzfzcAX8wRIjRc2lmJgKjPFmFpjAAArbq7A84Tc/8CzzxPnRAXjnIgxpunu3d6Fx0vnAAAsBg7kghQrdio/o3799Vf069cv1zc99erVQ7169TBo0CBMmzYNBw4cUPnkjRo1+uiAkiKRCFOmTMGUKVPy3UZPTw+LFi3CokWLVD7v5yA6OhpdunRB//794eXlBWNjY1y5cgWzZ89Gu3btsG/fPmzduhWBgYGoUKECiAh79+7FgQMHsGbNGpXPM2HCBPj7+8PJyQmJiYnYunUrgoODcejQIaXtEhISsH37dvz+e+7Bck1NTfH1119j1KhRsLCwUPR4q1q1Kvz8/Ip8XzDGWKkyMAfMnIG4UPlg524NhY6oyPzd/LH7yW6cCz+HaRem4c9mf/JPiZjG4JyIMcY+nXl4JjKTgTfGQLZDBMoUvAtjhaJyUer8+fOYNWtWvuuHDRumNNAjE5aRkRHq1KmD+fPn48mTJ8jIyICTkxMGDhyICRMmICIiAgYGBhg1ahTCwsIgk8lQvnx5rFy5Er169VL5PK9evUKvXr0QEREBU1NTeHl54dChQ2jWTHnwu61bt4KI0L179zyPM3/+fOjq6qJr165ISUlB06ZNsXbt2hLr8cYYYyXKzltelAq/phVFKZFIhJ/q/IQOezrgYsRF7Hu6D23cC/eTfcaEwjkRY4x9OpvmXbBs5CrciXiByndWokqdQYCEfyrMio/KY0rp6+vj/v37cHFxyXP98+fPUalSJSQnJxdrgKWhsGMoMOHx48IYU2tn5gHHpwJVOgBd1godTbFZeWslFv67EOZ65tjTfg9MZaZCh6SWPpcxpZh64MeGMVbSLr/4B/2PD4F+djZOuPWEUaMJQofENECxjylVoUIFnDhxIt/1x48fR7ly5QoXJWOMMaaN7L3l1+HXhYyi2PWp3AflzMohJjUG86/OFzocxhhjjJWCmg714SazQIpYjAPXVwKJr4QOiWkRlYtSffv2xejRo/McM2r//v0YM2YM+vXrV6zBMcYYYxrJzlt+HRsCpMQKGkpxkuhIMMlnEgBgx6Md+PeV5s8uyBhjjLGPE4lE6Owp/19/u4EEdDz3TKCMfSqVi1Lff/89mjRpgoCAAFSqVAkdO3ZEx44d4eHhgbZt28LX1xfff/99ScbKGGOMaQYDc8Ds3c/dI24IG0sxq2FTAx3LdwQA/HL+F2RkZQgcEWOMMcZKWrvy7SEV6+K+TIo7d//WuvyGCUflopRYLMb27duxZcsWVKxYEffv38f9+/fh4eGBTZs2YceOHRCLVT4cY4wxpt3sq8uvtewnfAAw8ouRMNczx5P4J1h7Z63Q4TDGGGOshJnKTNHctSUAYLuJIXBoAqDa8NSMfVShq0jdunVDUFAQ7t69i7t37yIoKAiBgYElERtjjDGmuRTjSl0TNIySYCozxeiaowEAy28uR1hCmMARMcYYY6ykda7QGQBw0NAQb0PPAvf3CRwR0wbctUlFKk5SyEoJPx6MMbWX01Mq4rqgYZSUgLIBqGNXB2lZafj14q/8vvyZ4MdZ/fBjwhgrLTWsa6CsaVmkiEXYb2QIHJkEZKYJHRbTcIX6+Z6Ojs5HL7q6uiUZqyAkEgkAIDk5WeBI2PvS09MBADo6OgJHwhhj+bCrJr+OfQYkxwgaSkkQiUSY5DMJUrEU58LP4dCzQ0KHxEoQ50PqK+cxyXmMGGOspIhEIkVvqe1mZqDYEODicoGjYppO5SrSrl278l137tw5LFq0SCu/qdHR0YGZmRmioqIAAAYGBhCJRAJH9XnLzs7G69evYWBgoJWFUMaYltAvA5Rxk8/AF3EDcG8sdETFzsXEBQO9BmLJ9SWYdWkW6tnXg6nMVOiwWAngfEj9EBGSk5MRFRUFMzMz/qKOMVYq2rq3xYKrC/BANx23pVJUPT0H8O4BGFoKHRrTUCr/R9+uXbtcy+7fv4/x48dj79696NmzJ6ZNm1aswakLW1tbAFAkYkx4YrEYzs7OnBAzxtSbvbe8KBV+TSuLUgDQ37M/DoQcQEh8CBb+uxA/1/1Z6JBYCeF8SD2ZmZkpHhvGGCtppjJTtHBtgb1P92K7jTOqhj0GTk4HAuYLHRrTUJ/UzSQ8PByTJ0/GunXr0KJFC1y/fh2enp7FHZvaEIlEsLOzg7W1NTIyeOprdSCVSnm2R8aY+rOvDtzZpbXjSgGAVEeKST6T0P9wf2x/uB1t3dvC29pb6LBYCeB8SP1IJBLuIcUYK3WdK3TG3qd7cUgK/CgSwfjGVsB/NqDDPyNmhVeoolR8fDx+++03LFq0CN7e3jh+/DgaNGhQUrGpnZyxsxhjjDGV2HnLr7VwBr731bKthfbl2iPocRDGnh6Lja02wsrASuiwWAnhfIgxxj5v1a2rw93UHU/in2BfGUt0j3kNRN4EHL4QOjSmgVTuajJ79myULVsW+/btw5YtW3Du3LnPqiDFGGOMFVrOYOdxoVo52Pn7RtccDRcTF4QnhWPIsSF4m/5W6JAYY4wxVgJEIhG6VOwCANhuagYCgNALgsbENJeIVBydXCwWQ19fH35+fh/9dmznzp3FFlxpSUhIgKmpKeLj42FiYiJ0OIwxxrTJ/6oDMU+Br3YC5ZoKHU2JCksMQ68DvRCdGg0fOx8sbboUks+wK7+m5hWaGjdjjLHSF58Wj6bbmyItKw0bwiPhXbYF0G2j0GExNaJqXqFyT6nevXuja9euMDc3h6mpab4XxhhjjL3Hvrr8Wst/wgcATsZOWOK3BPq6+rgQcQGTzk1CNmULHRZjjDHGilnOgOcAsN7UBJmhFwDV+rswpkTlMaXWrl1bgmEwxhhjWsrOG7i9Q6sHO39fFYsqmN9oPoYfH479T/fD2sAaI78YKXRYjDHGGCtmXSt2xZ4ne3DU0ADddNMx4dFefFGhrdBhMQ3D05cxxhhjJUnRU+q6oGGUpvoO9TG1/lQAwJrba7Dp3iaBI2KMMcZYcatmVQ3T6k+DKYnwUCZF3/MTMf7MeLxJeSN0aEyDqFSUGjx4MMLCwlQ64LZt27BpEyefjDHGGADAzkt+HR8GJH0+SVpb97b4rvp3AIBZl2bhyLMjAkfEGGOMseLWvlx77LNrjS4JiRAB2Pd0HwJ2BWD9nfXIyM4QOjymAVQqSllZWcHT0xP+/v74448/cPnyZbx8+RLR0dF4/Pgx9uzZgzFjxsDZ2RkLFiyAl5dXScfNGGOMaQY9U8CinPz2Z9RbCgAGVB2AbhW7gUAYf2Y8rr66KnRIjDHGGCtmZm6N8HN0LLa8lcDTwhNJGUmYc2UOuu7tisuRl4UOj6k5lYpS06ZNw6NHj9CwYUMsW7YMPj4+cHZ2hrW1NSpWrIjevXvj6dOnWLlyJc6fP4+qVauWdNyMMcaY5rDzll9HaP9g5+8TiUQYX3s8mjg1QXp2Or498S0exz4WOizGGGOMFSfHWgCAKq+fYFOjhZhSdwrMZGZ4HPcY/Q/3x9jTYxGVHCVwkExdqTymlLW1NcaPH48bN24gOjoa//77L86ePYsHDx4gNjYWf//9N5o3b16SsTLGGGOa6TMcVyqHjlgHsxrOgreVNxLTEzH42GBEJkUKHRZjjDHGiouBOWBVCQAgDruEThU6YV+HfehaoStEEOFAyAG02dUG6+6s45/0sVw+aaBzMzMzVKtWDT4+PihXrhxEIlFxx8UYY4xpD0VR6vPqKZVDT1cPi5suhpupG14lv8KQY0OQkJ4gdFiMMcYYKy7OPvLr0PMAAFOZKSbVnYQtAVvgZemF5MxkzL0yF533dMbFiIsCBsrUjW5hd7h582aey0UiEfT09ODs7AyZTFbkwBhjjDGtYecFQAQkvATevgaMrISOqNSZykyxzG8ZvjrwFR7HPcaIkyOwzG8ZpDpSoUNjjDHGWFE51wWurgFCLygtrmJRBRtabcDux7sx/+p8PI1/igFHBqCla0u0LtsaJlIT+UUmv9bT1ROoAUwoIiKiwuwgFos/2jNKIpGgW7duWL58OfT0NOMJlZCQAFNTU8THx8PExETocBhjjGmjRTWB6EdAz7+B8s2EjkYw92Puo++hvkjKSEJL15aY1XAWxKJP6rittjQ1r9DUuBljjKmB2OfAQi9ArAuMCwOkBrk2iU+Lx+Jri/HXw7+QTdl5HkYqlsJEZgJTqamiUGUqM1UUr8z0zNDEqQlsDG1KukWsiFTNKwqdBe7atQvly5fHihUrcP36dVy7dg0rVqxAxYoVsXnzZqxatQonTpzATz/9VKQGMMYYY1rlM/8JXw4Pcw8saLwAumJdHHp2CL9f+V3okBhjjDFWVGbOgLE9kJ0JvMx7tl1TmSkm+kzE1tZb0dylOTwtPOFs7AwzmZniC6r07HS8SXmDJ/FPcC3qGk69OIU9T/Zg472NWHpjKX67+BsCdgVg0bVFSMpIKs0WshJS6J/vTZ8+HQsXLkSLFi0Uy7y8vODo6IhJkybh0qVLMDQ0xKhRozB37txiDZYxxhjTWPbewK2/PsvBzj/kY+eDafWnYfyZ8Vh/dz1sDGzQu0pvocNijDHG2KcSieTjSt3ZKf8Jn1uDfDetZFEJvzdS/lIqm7KRlJGEhPQEJKQlyK/TExCfFq9YFp8ej/vR93E7+jZW3FyBHQ93YKj3UHQs3xG64kKXNpiaKPQjd+vWLbi4uORa7uLiglu3bgEAvL29ERERUfToGGOMMW1h5y2//sx7SuUIKBuAqOQozL86H3OuzIG5vjkCygYIHRZjjDHGPpVz3XdFqfOF3lUsEsNYagxjqTEcjBzy3Y6IcDz0OOZfnY/QxFBMuzANm+5twsgvRqKhY0OehE0DFfrnex4eHpg5cybS09MVyzIyMjBz5kx4eHgAAF6+fAkbG/6NJ2OMMaaQM9h5YjjwNkroaNRCvyr90LNSTwDAxH8m4sDTAwJHpNlmzJiBWrVqwdjYGNbW1mjfvj0ePHggdFiMMcY+Fzkz8IVdArKzSuQUIpEIfi5+CGoXhHG1x8FMZoan8U8x/MRwDDgyAHej75bIeVnJKXRRasmSJdi3bx8cHR3h5+eHZs2awdHREfv27cMff/wBAHj69CmGDh1a7MEyxhhjGktmDFhWkN++tkHYWNSESCTCmFpj0LF8R2RTNsb/Mx4HQw4KHZbGOnXqFIYNG4YLFy7g6NGjyMzMRPPmzZGUxGNuMMYYKwU2VQCpMZCeCLy6U6KnkuhI0LNST+zvuB/9PPtBKpbiUuQldNvXDePPjEfEW/7llqYo9Ox7APD27Vts3LgRDx8+BBHBw8MDPXr0gLGxcUnEWOJ4thnGGGOl4t/1wJ5v5TPT9D8COH4hdERqIZuyMfX8VOx8tBNikRizGsxCS7eWQof1ydQlr3j9+jWsra1x6tQpNGzYsMDt1SVuxhhjGmxDR+DJccB/DlDnm1I7bfjbcPzv2v+w/+l+APJZ/L6q/BUGVB0AY6lm1ik0XbHPvte/f38kJiYCAIyMjDB48GDMmzcP8+fPx6BBgzS2IMUYY4yVmuq9gMrt5TPT7OgPpCYIHZFaEIvEmFx3MjqU64Bsysa4M+Nw6NkhocPSePHx8QAAc3PzPNenpaUhISFB6cIYY4wViXNd+fUnjCtVFPZG9pjZYCa2tt6KWra1kJ6djtW3V6PVzlbYdG8TMrIzSjUepjqVi1Lr1q1DSkpKScbCGGOMaTeRCGizEDB1BmKfAftHAoXvsKyVxCIxptSbgnbu7ZBFWRh3mgtTRUFEGDlyJL788kt4enrmuc2MGTNgamqquDg5OZVylIwxxrSOy3tFKQFynCqWVbCq+SosarIIbqZuiEuLw8xLM9Fhdwdcj7pe6vGwgqlclPqEX/kxxhhj7EP6ZkCnlYBIB7i1HbixReiI1IZYJMbUelPR1r2tojB1+NlhocPSSMOHD8fNmzexZUv+z6/x48cjPj5ecQkLCyvFCBljjGkl+xqAWAIkRgBxzwUJQSQSoZFTI+xsuxOTfCbBXM8czxOeo//h/tj1aJcgMbH8FWqgc55ekTHGGCsGznWAxuPlt/ePBqKfCBuPGtER6+CXer8oClNjT4/FkWdHhA5Lo3z77bfYs2cPTp48CUdHx3y3k8lkMDExUbowxhhjRSI1AOy95befl+5P+D6kK9ZF14pdsb/Dfvg5+yEjOwM/n/sZMy7O4J/zqZFCFaUqVKgAc3Pzj14YY4wxpoIvRwKuDYCMJODvfkBmutARqY0PC1NjTo/B0edHhQ5L7RERhg8fjp07d+LEiRNwc3MTOiTGGGOfI2cf+XXYBWHjeMdIaoTfG/2OodWGAgA239+MwUcHIzY1VuDIGADoFmbjqVOnwtTUtKRiyWXKlCmYOnWq0jIbGxtERkYCkCdfU6dOxYoVKxAbG4s6depgyZIlqFKlSqnFyBhjjH0SsQ7QcQXwRz0g4gZwfCrQYrrQUamNnMIUEWHv070Yc2oM5vjOgZ+Ln9Chqa1hw4Zh8+bN2L17N4yNjRX5kqmpKfT19QWOjjHG2GfDuS5wbhEQqh5FKUA+RMAQ7yGoaF4R48+Mx6XIS+i+vzsWNl6IiuYVhQ5PMNmUDbGoUH2Vip2IVBwsSiwWIzIyEtbW1iUdk8KUKVPw999/49ixY4plOjo6sLKyAgDMmjUL06dPx9q1a1GhQgX8+uuvOH36NB48eFCo2QB5CmTGGGOCuX8A2NpdfrvnDqA8F13el5WdhZ/O/oR9T/dBV6SLub5z0dSlqdBhfZRQeUV+wyysWbMGffv2LXB/zocYY4wVi6Q3wBx3+e0xIYCBev2i6nHsY3x38juEJYZBX1cf07+cjmYuzYQOq1Q9iHmA+f/OR02bmhhQdUCJnEPVvELlkphQ40np6urC1tZWcckpSBERFixYgIkTJ6Jjx47w9PTEunXrkJycjM2bNwsSK2OMMVZoHq2A2t/IbwcNBhJfCRuPmtER6+DX+r+iddnWyKRMjD41GsefHxc6LLVERHleVClIMcYYY8XG0BKwrCC/HXZJ2FjyUK5MOWxpvQV17eoiJTMFI4NHYvG1xcimbKFDK3EvEl9g3Jlx6LK3C86+PIv1d9YjLStN0JjUfva9R48ewd7eHm5ubggMDMTTp08BACEhIYiMjETz5s0V28pkMvj6+uLcuXMfPWZaWhoSEhKULowxxphgmk0DbDyBpNfArkFAtvYnRYWhI9bB9PrTlQtToVyYYowxxtSWUx35daiwg53nx1RmiqV+S9Grci8AwPKby/H9ie/xNv2twJGVjJjUGMy6NAttgtpg/9P9IBD8Xf2xsdVGyHRkgsamclEqOzu7VH+6BwB16tTB+vXrcfjwYfz555+IjIxEvXr1EB0drRgnwcbGRmmf98ecys+MGTNgamqquDg5OZVYGxhjjLECSfSAzqsBXX3g6Ung3P+Ejkjt5BSmWrm1khemgkfjROgJocNijDHGWF6c68qv1bQoBchn5xtTawymfzkdUrEUwS+C0fNATzxPeC50aMUmOSMZf9z4A612tsLGexuRmZ0JHzsfbA3Yitm+s+Fs4ix0iIWbfa+0+fv7o1OnTqhatSr8/Pywf/9+AMC6desU23z4s0IiKvCnhuPHj0d8fLziEhYWVvzBM8YYY4VhVRHwnyW/fWIa8PKqsPGoIR2xDqZ/OR3+bv7IpEyMCh6F5TeWIyUzRejQGGOMMfa+nBn4wq8BGanCxlKAtu5tsc5/Haz1rfE0/im67++Ocy8//usrdZeRlYEt97eg1c5WWHp9KZIyklDJvBKWN1uOP5v/iSoW6jM5nFoXpT5kaGiIqlWr4tGjR7C1tQWAXL2ioqKicvWe+pBMJoOJiYnShTHGGBNcjd5A5fZAdibwd38glX9e/iFdsS5++/I3RY+pxdcXo82uNtjzZM9nMRYEY4wxphHMywKG1kBWurwwpeY8LT2xNWArvKy8kJieiCHHh2DdnXWCDWP0qbIpGwdDDqLd7nb47eJviE6NhpOxE+Y0nIOtAVtRz76e0CHmolFFqbS0NNy7dw92dnZwc3ODra0tjh49qlifnp6OU6dOoV499bujGWOMsQKJRECbhYCpMxD7DDgwWuiI1JKuWBczG8zErAazYGdoh1fJrzDxn4novr87LkdeFjo8xhhjjIlE//WWUuOf8L3PysAKa1qsQYdyHZBN2Zh7ZS4m/DMBsamxQoemknPh5xC4LxBjTo9BWGIYLPQsMLHOROxuvxst3VpCLFLP8o96RvXO6NGjcerUKYSEhODixYvo3LkzEhIS0KdPH4hEIowYMQK//fYbdu3ahdu3b6Nv374wMDBAjx49hA6dMcYY+zT6ZkCnlYBIB7i5Dbi+ReiI1JJIJEKrsq2wt8NefF/jexhKDHE3+i76H+6P7098r1XjQTDGGGMaSTGu1AVh4ygEqY4UU+tNxbja46Aj0sG+p/vQYkcLzL08F6+TXwsdXi5EhBuvb2DAkQEYdHQQ7sXcg6HEEMO8h+FAxwMI9AiERCwROsyPEpEa90cLDAzE6dOn8ebNG1hZWcHHxwfTpk1D5cqVAcgfgKlTp2L58uWIjY1FnTp1sGTJEnh6ehbqPAkJCTA1NUV8fDz/lI8xxph6ODUHOPkrIDUCBp0GLNyFjkitRadEY+n1pdjxaAeyKAu6Il0EegRicLXBMJWZlmosmppXaGrcjDHG1NTLf4E/GwN6psCYZ4BYrfvE5HIl8gpmX56NezH3AABSsRSdKnRCf8/+sDW0FTS2F4kvcCDkAPY/3Y+n8U8BABKxBN0qdsNAr4Ew1zMXND5A9bxCrYtSpYWTMMYYY2onOwtY1xZ4/g9g5w18fRTQlQodldp7EvcEc6/MxT8v/wEAmEhNMLjaYARWDIREp3S+KdTUvEJT42aMMaamsjKBmc5ARhIw5Bxgoz6Da6uKiPDPy3+w/OZy3Hh9A4B8GIF27u3wtefXcDJxKrVYolOicfjZYRwIOaCIBZAXy1q6tcRQ76FwMHIotXgKwkWpQuAkjDHGmFqKfwksqw+kxAJ1hwMtpgsdkcY4F34Oc6/MxaPYRwAAZ2NnjPxiJJo4Nylwlt6i0tS8QlPjZowxpsbWtQVCTgGt5wG1vhY6mk9GRLgUeQnLby5XjF+pI9JBK7dWGOA1AGVNy5bIeZMzknE89Dj2h+zHhfALyKIsAIBYJEZt29po5dYKfi5+MJYal8j5i4KLUoXASRhjjDG1dX8/sPXdWIld1gFV2gsajibJys5C0OMgLLq2CNGp0QCAGtY1MKbWGFSxLLlvazU1r9DUuBljjKmxkzOAUzOBql2BTn8KHU2xuBZ1DctvLsfZl2cBACKI0Ny1OQZWHYiK5hWLfPyMrAycDT+LA08P4GTYSaRmpSrWeVp4onXZ1mjh2gJWBlZFPldJ4qJUIXASxhhjTK0dngicXwxIDID+hwE7L6Ej0ihJGUlYfXs11t9Zr0jsxtcejx6VSmZiFE3NKzQ1bsYYY2rsyUlgQ3v5zMI/3BI6mmJ1580dLL+5HCfDTiqWNXJqhEFeg+BpmXucayJCalYqUjJT5JeMlP9uZ6YgOTMZlyMv48jzI4hPi1fs52LigtZureHv5g9XU9fSaFqx4KJUIXASxhhjTK1lZQKbOgNPTwKmTsDAk4CRen87po4ikyLxv3//h8PPDmNXu11wNnEukfNoal6hqXEzxhhTY2mJwEwXgLKAH+4Apo5CR1TsHsQ8wJ+3/sSRZ0dAkJdXypcpDyJSKjqlZqYq1hfEUt8SLV1bonXZ1qhiUaXEhx4oCVyUKgROwhhjjKm9lFjgz6ZAzBP5FMu99/DA558oKjkK1gbWJXZ8Tc0rNDVuxhhjam65LxBxHei0CqjaWehoSszT+KdYdWsV9j/drxj7KT8yHRn0dfWVLgYSAzgZO6Gla0vUtq0NHbFOKUVeMlTNK3RLMSbGGGOMfSr9MkD3rcBKPyD0PHBgFNDmf4AGfnMmtJIsSDHGGGPsA84+8qJU6HmtLkqVNS2L6V9OxzDvYXgQ8wB6unqKYpO+jj70JfLik56OnsYXnIoTF6UYY4wxTWFVAei8CtjcFfh3PWBdBfAZLHRUjDHGGGP5c/YBLi4DQi8KHUmpsDeyh72RvdBhaAyx0AEwxhhjrBDKNwP8pspvH54APDkhbDyMMcYYYx/jZvbAjgAAJJ1JREFUXFd+/eo2kBr/8W3ZZ4eLUowxxpimqfctUK27fNDQ7X2B6CdCR8QYY4wxljdjW6CMGwACwi4LHQ1TM1yUYowxxjSNSAQELAAca8m/cdzcjb95ZIwxxpj6yuktFXpe2DiY2uGiFGOMMaaJJHpAt02AiQMQ/Qj4+2sg++MzvTDGGGOMCcLZR34dekHYOJja4aIUY4wxpqmMbYDATYCuHvD4KHBsitARMcYYY4zlltNT6uUVIDNd2FiYWuGiFGOMMabJ7KsD7ZbIb5/7H3Bjq7DxMMYYY4x9yLI8YGABZKYCETeEjoapES5KMcYYY5quamegwWj57T3fAS+uCBsPY4wxxtj7RCLAKecnfDyuFPsPF6UYY4wxbdB4IlCxNZCVBmztAcS/FDoixhhjjLH/8LhSLA9clGKMMca0gVgMdFwOWFcG3r6SF6YyUoSOijHGGGNM7v0Z+IiEjYWpDS5KMcYYY9pCZgx03wLomwMR14HdwznpY4wxxph6sKsmn5wlJQZ480joaJia4KIUY4wxpk3KuALdNgBiXeD238Cp2VyYYowxxpjwdKWAwxfy26HnhI2FqQ0uSjHGGGPaxvVLwH+2/Hbwb/Kf8iW+EjYmxhhjjDHFuFIXhY2DqQ0uSjHGGGPaqNbXQLNpgFgCPDgALPUB7uwSOirGGGOMfc7eH1eKMXBRijHGGNNe9b8DvgkGbKvKx2/Y3hf4uz+QHCN0ZIwxxhj7HDnVBiACYkOAxEiho2FqgItSjDHGmDaz9QQGnAAa/giIdIDbO+S9ph4eFjoyxhhjjH1u9EwBG0/57dALwsbC1AIXpRhjjDFtpysFmvwEDDgKWFYA3r4CNncFdg8DUhOEjo4xxhhjn5OccaWenhQ2DqYWuCjFGGOMfS4cvgAGnQbqDgcgAq5tBP6oBzw9JXRkjDHGGPtcuDWQX19dC2zoALy6I2g4TFhclGKMMcY+JxJ9oMV0oN8BoIwrEB8GrG8LHPgRSE8SOjrGGGOMaTuPNkD9EfLJWJ6cAJZ9Cez5lseY+kxxUYoxxhj7HLnUAwafBWp+Lf/70gp5UshTNDPGGGOsJInFQLOpwPDLQOX2AGUD/64H/lcDODUHSE8WOkJWirgoxRhjjH2uZEZAwDzgq52AiQMQ8xRY0xI4+jOQmSZ0dIwxxhjTZuZuQNd1QP/D8iEGMpKAk78Ci2sCN7YC2dlCR8hKARelGGOMsc9duabAkHOAV6D828qzC4HZ7sDGzsA/84Gwy0BWhtBRMsYYY0wbOfsAXx8DOq0CTJ2BhJfArkHAn42BZ/8IHR0rYSIiIqGDEFpCQgJMTU0RHx8PExMTocNhjDHGhHN/P7B/FJAYobxcYgg41QZc6wMuXwIONQBdmTAxqjlNzSs0NW7GGGNaJCMVuLAUODMPSE+UL/MIAJr9Ali4CxsbKxRV8wouSoGTMMYYY0xJdhbw6jbw7Czw/N0lJVZ5G109wLEW4Pol4FIfcKwpH0SdaWxeoalxM8YY00JvXwPBM+Qz9FEWINYFag0AfMcCBuZCR8dUwEWpQuAkjDHGGPuI7Gzg9X15F/rn/8iLVclvlLfRkcrHgzBzBqRGgMw474v0/b+N5D2wxNo1moCm5hWaGjdjjDEtFnUfODoJeHRE/rfMFPDuAVTpIP9yTMtyCG3CRalC4CSMMcYYKwQi4M3Dd0Wqs/Ii1dtPncZZJC9Q6ZcBDCz+uxhayr8JNbD8YJkFoGem1kmopuYVmho3Y4yxz8CTE8CRSfKe3DmM7YHK7YAq7QHH2mqdG3yOuChVCJyEMcYYY0VAJJ+5L+wikBwNpCYAaYnysSDS3r67/e467S2QFi+/pqxPO59I/F8RS7+MvEilb5b/7fevJXrF0uSP0dS8QlPjZowx9pnIzgIeHgbuBgEPDgJpCf+tM7YHKrd914OKC1TqgItShcBJGGOMMVbKiIDM1P8KWMnR7y5v3l3H/Lcs6Q2QEgMkRcsLWkWhqy8vUAXMByr6F0tTPqSpeYWmxs0YY+wzlJkGPD6eT4HKDqjUVt6DysmHC1QCUTWv0C3FmBhjjDHG5EQi+cDoEn3A2AZAOdX2y8p4r4AVDaTEAalx8oHYFbff/a10Ox4AAZkpQGKKvLcVY4wxxjSTrgzwaCW/ZKYBT04Cd3YBDw7IZxC+tFx+MbKV96Cq1Bawqwbo8Zcu6kZrilJLly7FnDlzEBERgSpVqmDBggVo0KCB0GExxhhjrDjpSABjW/mlMLKz5b2scgpXZdxKIjq1wDkRY4yxz4quDKjYUn7JKVDd3Q3c3y8f8/LSCvkFkP/Mz6oCYFnxveuKgKGV/AszVuq0oii1bds2jBgxAkuXLkX9+vWxfPly+Pv74+7du3B2dhY6PMYYY4wJTfxuHCr9MkJHUqI4J2KMMfZZUypQpQNPTwJ3guQDpb+NBBLD5Zenwcr76ZnJi1OWFd5dVwQsywNmLvzzvxKmFWNK1alTBzVq1MAff/yhWFapUiW0b98eM2bMKHB/HkOBMcYYY8VFyLyiKDkR50PsY4gI2QRkEyGbCKS4DcXfH90mW/53lmLde9tmK+8DAPTunDm35TH89xeR8nIt+JeGMbVlbaIHN0tDocMoupRY4M0j4PV94PUD+e03D4DY5/jvHeUDYl1AZiKfKTjPi0ne6yUG8p5XIvF712IA793OtQ55r0Nex4EK27y/rPR7gX02Y0qlp6fj6tWrGDdunNLy5s2b49y5c3nuk5aWhrS0NMXfCQkJeW5XXPquuYTXiWlKy/L63MzrZVCYD9i8j5l7YX6HVPX8ee5eAsfMP07V2lSY3KQoMeUVT/7b5rWe8liW713KGCtFB75rAFvTkp+tjbHiUNicqLTzoX03w/FH8BPF3x/7zPtY/qO8H+W77sPjfnhMyvcP1ffLfb68P9Pz+lt5XTGd46Pny31ffVhUyikMZb9XYMq5Zox9vr7yccav7asKHUbR6ZcBnGrLL+/LSAGiH78rVD387zr6MZCVLp9sJSVGmJiLlSh3IcuhBtD/kKBRaXxR6s2bN8jKyoKNjY3SchsbG0RGRua5z4wZMzB16tTSCA8A8DAyEeHxqaV2PsYYY8Ujm795ZxqksDlRaedDsUnpuBNesoUvpj7EIkAsEkH07lp++W+Zjlj07vZ/y8UiQPTet/k5NxXXEL13O2edSHEbpd8RgLHPgqWRTOgQSpZEH7CtKr+8LysTePtKPrNf2lv52JRpie9uJ75bnvje+oT/1mUkA5T97hsCenf73d+K29nyddnvrvNa9/4+Re62QABlKR8mK72Ixyw6jS9K5RB90B2NiHItyzF+/HiMHDlS8XdCQgKcnJxKLLa5XashPTM71/K84ssr4ryaIcpjy7y3y+uAxXu8PNuh8r55LCxK2/KLR8Vzq3o/5H3ewh/vw33e357H2WNMeFbGWp6EMa2kak5U2vlQk0o2cDI3UFqmVIBQWq6878c+H0X5/pH/fh/eG3kVQlSJC59y/Fzr8o437/PlF+NH4v/I8XXEeFcUEuVZRMr5xcf7RSXlIlL+2zDGmMbT0QVMHQA4CB3Jf4jyL27lKoJRHn9/sK2ORNj2QAuKUpaWltDR0cn1DWBUVFSubwpzyGQyyGSl949GPXfLUjsXY4wxxj5Phc2JSjsfcjDTh4OZfqmdjzHGGNM6IhEg0hE6imKl8cPIS6VSfPHFFzh69KjS8qNHj6JevXoCRcUYY4wxVro4J2KMMcaYptH4nlIAMHLkSPTq1Qs1a9ZE3bp1sWLFCoSGhmLw4MFCh8YYY4wxVmo4J2KMMcaYJtGKolS3bt0QHR2NX375BREREfD09MSBAwfg4uIidGiMMcYYY6WGcyLGGGOMaRIRfWzO3c9EfHw8zMzMEBYWBhMTE6HDYYwxxpgGyxkwPC4uDqampkKHozLOhxhjjDFWXFTNh7Sip1RRJSYmAkCJzjjDGGOMsc9LYmKiRhWlOB9ijDHGWHErKB/inlIAsrOzER4eDmNjY7WZwjanqqiN31Zqc9sA7W4ft01zaXP7tLltgHa3T1vbRkRITEyEvb09xGLNmVOG86HSp83t47ZpLm1unza3DdDu9mlz2wDtbJ+q+RD3lAIgFovh6OgodBh5MjEx0Zon5Ye0uW2AdreP26a5tLl92tw2QLvbp41t06QeUjk4HxKONreP26a5tLl92tw2QLvbp81tA7SvfarkQ5rz9R1jjDHGGGOMMcYY0xpclGKMMcYYY4wxxhhjpY6LUmpKJpNh8uTJkMlkQodS7LS5bYB2t4/bprm0uX3a3DZAu9unzW1jxUPbnyPa3D5um+bS5vZpc9sA7W6fNrcN0P72fQwPdM4YY4wxxhhjjDHGSh33lGKMMcYYY4wxxv7f3p3HVVXnfxz/XLAUzdEyQQUFQXFJRQkQDBceudSjtNRMRnJynFQ0MDO3eThmOjY6Yw/FUamxGNfUMW1qdNKh3MZpRh01l8YVtMwFXBFRZH39/uB3T2AuFHiXr5/nX91zLz6+7y73e958z7nnKKUcThellFJKKaWUUkoppZTD6aKUUkoppZRSSimllHI4XZRSSimllFJKKaWUUg6ni1JKKaVcmsn34zA5m4j5+ZRSSilHMnm/qtnuX7oo5WQm/4KanE3E7HwmZxMxO59p2c6dOydXr161HpuUz+RsIubnU5XL9N8Pk/OZnE3E7HwmZxMxL5/J+1XNdn+zof9XHCY/P19mz54tNWrUkNatW0vnzp2dPaRKY3I2EbPzmZxNxOx8JmcrLCyUYcOGycaNG8Xb21uaNm0qc+bMkUcffdTZQ6swk7OJmJ9PVZzJc5eI2flMziZidj6Ts4mYnc/k/apmUyIignKIzz77jDp16hAZGUloaCgPP/wwEydOJDc319lDqzCTs4HZ+UzOBmbnMzlbQUEBcXFxREZGsmXLFmbNmkWrVq3o2LEjBw8edPbwKsTkbGB+PlVxJs9dYHY+k7OB2flMzgZm5zN5v6rZlJ0uSjlIv379GDZsGACXLl3io48+omrVqsyePZvr1687eXQVY3I2MDufydnA7HwmZzt58iRNmzZl6dKl1razZ8/i6+tLYmIiGRkZThzdT1dcXGxsNjA/n6ocJs9dYHY+k7OB2flMzgZm5zN1v2pyZzA5272ii1L3SGFhofXfx48fx9fXl2XLlpV5TWJiIo8//jipqamOHl6lMTkbmJ0vPT3d2Gxg3nt3v8wpAF999RVeXl4cO3YMgBs3bgAwb948mjVrxqpVq5w5vB/l2rVr5OfnW49NygaQl5dX5vGePXuMyqcq7n6au0zOZ3I2MLsTmfje3U/zikm9weROpH2oYvRC5/fApEmTZNKkSdbjgIAAKSwslOzsbBERyc3NFRGRyZMny7Vr12T9+vWSk5PjlLH+WEeOHJHCwkLrsb+/vxQUFBiRTURkyZIlkpaWZj329/c35r1LTU2Vffv2SVFRkYiING7c2Kj3LiMjo8xjk947k+eU3/3udzJ58mRZuXKlta1Fixbi7e0ty5YtExERD4+SXdWrr74qNWvWlPXr10teXp5Txlse/P+lGqdPny7h4eGya9cu67ng4GCpV6+e22YrbeLEiRIXFyfx8fFy6NAhKS4ulscee0x8fHyMyKcqzuS5S8TsTmRyHxIxuxOZ3IdEzJ5XtBO5VzY77UOVwNmrYib55JNP8PHxoX379sybN49Lly4BJav58fHxtGnTxnqtfZV4xowZNGzYkMuXLztjyOWWkpKCr68vzZs3JyQkhEWLFlkZhg4d6tbZAIqKiujduzc2m42ZM2da30HPz893+/du4cKF1KtXj9atW1OzZk1GjBjB6dOnARg2bJhbZwN4//33adeuHZGRkfTs2ZMtW7YAkJub6/bvnclzyo4dO2jUqBGhoaE8/fTT1KxZk759+5Keng7AmDFjCA4OJjMzE8D6TC5evJjatWu7/HUiioqKCAsLw2az8dprr5GVlQVATk4O48aNc+tsW7duJTAwkKioKN5++238/f3p1KkTZ86c4fr1626fT1WcyXMXmN2JTO5DYHYnMrkPgdnzinYi98ymfajy6KJUJcnJyaFnz55MnTr1ls+vWbOGZs2akZSUBHx/Ct/58+fx8vJi27ZtDhvrj/Xxxx8TEBDAokWL2LhxI2PHjqVGjRrMnTuXoqIi1q1bR3BwsFtmg5KJEiAhIYHw8HDq16/Pnj17rOfXrFlD8+bN3TLfBx98QJMmTVixYgXnz5/nww8/pEaNGuzduxdw72xnz57lxRdfxN/fn5SUFN577z2effZZ6tWrZ71m9erVbpvP5DkFYPTo0TzzzDNAyWfwwIED+Pv7Ex8fT1ZWFtu3byc0NJQRI0YAJd/PB9i8eTPe3t7s27fPaWMvj++++45hw4bx7rvvYrPZ2LBhg/V1g9TUVCIiItw22+DBg3n55Zetx0eOHMFms3H8+HEAPv/8c8LDw902n6oY0+cukzuRyX0IzO1EpvchMH9e0U7knp1I+1Dl0UWpSrJu3Trq1q1LUVERly5dYvz48cyYMcP6fnNWVhaJiYk0bNjQOiIDJR/ERo0aWTtEV2KfLF5//XWio6PLPJeQkED79u1Zu3YteXl5bpftZufPnycsLIwrV64QGBjI4MGDOXfuHABnzpxh5MiRbpWvqKiIwsJCBgwYwMCBA8s8FxwcbJXMjIwMt8tmt3r1ajp06MD//vc/a9uxY8fw9/fnk08+ASAzM5PXXnvNLfOZOKdAyQ45KyuL6OhoxowZA3z/h1BycjLt2rXjvffeA2D27NlUr16djz/+2Pqu/rRp0+jSpYu1Y3dVmZmZBAQEANCpUye6dOnC+fPngZIjZe6a7eTJkwQGBjJ79mxr26ZNm+jfvz+nTp0CSv4YcNd8quJMnbvul05kWh8C8zuR6X0IzJ1XtBO5byfSPlS5dFHqJ0pJSeFvf/tbmcfPP/88X3zxBY0bN6ZHjx706tULT09PEhISuHTpEidOnCAqKoq2bduybNkyjh07RmxsLF27duXatWtOTFPWzWPp3r07Q4cOBb4/Hfb06dN07dqVAQMGkJ2dzbFjx+jQoYPLZ4Mf5issLCQ3N5dOnTpRVFTEX/7yF6pUqcKuXbuAkgnlm2++cYt8N48lJCSEV155xbrDQ2JiIs2aNeOtt97i3//+N1BycU93+L282cGDB1m+fHmZbcePH6d+/fr85z//sbbt37+fjh07uk0++w7KpDll9+7d1qnadmFhYdadcuxHNPPz8+nTpw+9evXi9OnT5OfnM3bsWGrWrEnnzp3p168fXl5ezJ8/H8Aldua3ygYlR8GefPJJoOR30GazsXjxYqZPn87u3bsBXD4b3DpfdHQ04eHhLFiwgIkTJ1KlShUee+wxHn74YUaPHk1aWhoAb7zxhsvnUxVnch8CszuRyX0I7p9OZGofAu1E2olcO5v2ocqji1I/0tKlS/H29sZmszF37lxr+6pVq6hVqxYjRozgzTfftIrKokWLaN++Pe+88w5QchTmqaeeokWLFvj6+vLEE09w4sQJZ0T5gRUrVhATE8Nzzz1HUlKStco7bdq0MqcA248WJicn06ZNG7744gvAtbPBD/OVvhVnWloaAQEB1nfOY2JiaNmyJQ0aNGDmzJmAa+e7Odt3330HwMqVK/H396d79+7UqVOH5s2bM3XqVGJiYmjTpg0zZswAXDsblHy+XnnlFZKSkm55qmtxcbF1unPDhg05evRomeddOV/pbPv377e2r1ixwu3nlNWrV+Pn50dQUBCNGjXizTfftOaVOXPm8NBDD1lF0X70aM2aNfj5+fHll19a/85HH33E5MmTiY+P59ChQ44Pcgu3ylZ6Ttm8eTNdu3a1HsfExODp6UlQUJD1Bx64Zja4dT77vHL48GGmTJnC888/j6+vL2vXriUjI4OlS5cSFRVlHe0F182nKs7kPgRmdyKT+xCY3YlM7kOgnUg7kXtk0z5U+XRRqpz27NlDaGgotWvXJikpiRdeeIF+/fpZz+fl5RESEoLNZmPhwoXW9uLiYvr27cuvfvUra4K5ceMGZ8+e5cCBA46OcUuXL18mNjaWevXq8dvf/pYhQ4bg7+9vreDu3buXRx55xDo90b6CX1hYiI+Pj/U6+3OulA1uny85Odl6zebNm4mLiwNKTnlu3bo1NpuNPn36lLk4oqvlu122efPmWa+5cOECM2fOpHPnzmRnZ1vbhwwZQu/evctcfM+VskHJ2F944QXq1atHfHw80dHRNGjQgMWLF1uvKSwstI4yvP/++0RERADfH3mwnwbtavlul23RokVAyfhbtWrllnMKwH//+1/r+hX79u0jOTmZunXrMnz4cLKysvj2228JCgqyjgyWvkVwnTp1SElJcdbQ7+pO2S5evAiUnGb/xhtvcOrUKcLDw6lVqxZVq1Zl3LhxFBQUODnBnd0pn/10eyi5lsKECRPK/Gy/fv3o06cP169fd/SwlYOY3IfA7E5kch8CszuRyX0ItBNpJ3JN2occRxelymHx4sXW3QLsK9gvvfQSPXv25OrVq0DJRL9gwQJsNhvz588v8wEbNGgQUVFR1mNXO00vNTWVVq1aWacYAkRERDB27FgArly5wpgxY6hVq5Z12qJ9xxYZGUlCQoLjB/0j3C7f+PHjrcefffYZzZo1Y+DAgTzwwAMkJCTQv39/WrZsWeYok7u8d/ZsRUVFFBcXExsby7Rp04Dvj76MHj2aoKAgcnJyANfLBiVHFSIiIqwjSQDPPfccjRs35q9//Svw/e8iQK9evRg1apT1+OTJk9bOwNXylSdbcnKy280p9rG8++67+Pn5ceXKFeu5efPmERERwfTp0wGYP38+np6ebN261XpNeno6QUFBrFmzxrEDL4e7ZYuMjGTKlClAyQV1bTYbHh4eDBw4kLy8PObOnUuNGjVc9oKr5clnv8js9evXCQ4Otq5XYv/Zvn378stf/tLBI1eOYnofArM7kcl9CMzuRCb3IdBOBNqJXIn2IcfzEHVXsbGxcvToUUlKSpLq1auLiEi7du1k586d8tBDD4mIiIeHh/z85z+Xp556SubOnSubNm0SEZGMjAw5c+aMDB482Pr3bDab40PcAiAiIv/85z/Fy8tLqlSpYj3n5+cnnTp1kuzsbPnZz34mI0aMkIYNG8qLL74oJ0+eFA8PDzl8+LBkZWVJ7969nRXhju6WLzo6WrKzs0VEpEqVKpKdnS1nz56VTZs2ydy5c2XJkiVy6NAhSUlJkYKCAhFxn/cuOjparl69KiIlY7548aLs2rVLREQefPBByczMlKNHj0psbKzUqFHDep2rWb58ufj5+Ymvr6/k5OSIiEjv3r3lm2++kXnz5smFCxfEw8NDCgoK5PLly7J//37p2bOn5ObmyqhRo8Tf31+2bNkiIq6X727ZLl68KMOGDZNu3bq5zZwi8v1YTpw4IcHBwWV+NwcNGiTh4eHy6aefytGjR2X48OESGxsr/fv3l6lTp8revXvlD3/4g1SvXl0iIyOdFeG27pbt8ccflw0bNsiJEyekefPmMmrUKNm2bZssWbJEHnzwQUlISJDatWtLWlqasyLcUXnzHThwQLy8vCQkJER+/etfy7p16yQtLU1GjRolO3fulAEDBjgrgrrHTO1DImZ3IpP7kMj90YlM7kMi2om0E7kW7UNO4MwVMVe1detWNmzYYK3C21c8S6+8//3vf6d+/frs3LmzzM9euHCBTp06UadOHZ5++ml8fHyIiYnhzJkzjgtwBzdnA1i+fDlBQUHExcWRkpJCQEAAtWrVokWLFoSFhVl3fTh48CCNGjWiUaNG9OvXj0cffZRnnnnGOjXTFfyUfH/+858B2Llzp3UUyf7zq1evdpnv/f7YbBEREdYp6xs3buSBBx6gQ4cODB8+HD8/Pzp16sS3337rrDg/cKt848aNo1mzZmVeN2HCBJ588kmeeOIJFixYYG3fs2cPTZs2ZfLkyfj4+NCuXTu2b9/usPHfyY/N1qFDByvb+fPnXXpOSU1NJTExkaSkJHbs2GFt//TTT6lWrRrp6ekAZW7926FDB2bNmmW9NjExkbZt29KkSRNCQ0PLXEfCmX5KtqioKP74xz8CZY9a2997+1F4V1DR9+7s2bO0bduWwMBAAgMDiYyM5KuvvnJ4DnXvmNyHwOxOZHIfArM7kcl9CLQTgXYiV+tE2oecTxelSjl//jy/+MUvsNlshISE3PHCeNu2bcPb27vMXS3sv6iZmZmkpqYyc+ZM65RTZ7tbtqVLl/LWW2/h5+fHhAkTyMjI4PDhw4wZM4Y2bdpYF1P8+uuvWbZsGa+//jqrVq1yQpJbq2i+gwcPlnm9K536W9Fs9lsEr1mzhvHjxzNgwAC3ee/S09OpW7cunTt35ve//z1RUVE0btyYjRs3EhISwqRJk6zXJiUlYbPZ8Pf3t4q1s1Uk229+8xuXnlPOnDnDs88+i7e3N3FxcbRu3ZpatWpZO/Pc3FyaN29u3aWqdBnp2LEjw4cPtx4XFRVx7do1Dh8+7NgQt1FZ2UpvdyWV+d5dunSJY8eOlblQqXJ/JvchMLsTmdyHwOxOZHIfAu1E2olcrxNpH3Iduij1/woKCkhOTqZHjx6sXLmS6tWrM336dOu75jfLy8ujbt261sUhXfGDZlfebF9++SUtW7bk9OnT1jb7rVc///xzRw+73Cojn/1uOa6motkCAgJITU119LDL7Xb57BeOBfjXv/7FkCFDCA0NJSEhwbqw4MCBA+nbt6/1uh07dpS5mKmzVWY2V3Pt2jVefvll+vfvz/Hjx63t4eHhDBo0CCj5o3TJkiV4eHiUuWsMQFxcHDExMdZjV/qjp7KzuRrT86mKM7kPgdmdyOQ+BGZ3IpP7EGgn0k7kekzO5o50UaqU7du3s3btWgCmTJlC3bp1b3vq3YULF+jWrZtLX9CytPJkmzFjBl26dCmzbe3atQQGBpb5sLoik/OZnA3K/7krXTozMzNp1aqVdaFSV1UZ2Vz1D7yhQ4eyfv164PvTsKdMmUL79u2t19y4cYPevXvTokULtmzZQnFxMWfPniUiIoIPPvjAKeMuD5Ozgfn5VMWZ3IfA7P2qydnA7Hwm9yHQTuSu+1XN5p7Z3I0uSpVy88p0gwYNGDp0aJlbxpbWo0cP6zbIrjpJ2pUn2969e7HZbEyaNInNmzezdOlS/P39GTlyJLm5uS61cn8zk/OZnA3unq/087m5ueTn55OcnEy7du1c5nv2t2NyttK3K7bneOmllxgyZEiZbbm5uXTp0gVvb2+6d+9OgwYNiIyM5OTJk44fdDmZnA3Mz6cqzuQ+BGbvV03OBmbnM7kzgNn5TN6vajb3zOZudFHqFuwr9KtWraJKlSo/ONXX/p3mUaNGERIS4ujhVcjdsk2dOpWmTZvSsmVLgoKC+NOf/uSMYf5kJuczORvcPd+pU6dITk4mLCyMRx55hOXLlztjmD+JydlK69ixIwsXLgRKduT2uTIjI4PU1FTefvttPvzwQyeO8KczORuYn0/9NCb3ITB7v2pyNjA7n+mdwfR8dibvVzWbe2ZzZboodRdRUVF07dqVzMxMoOTq+nZHjhxx1rAqhT1bRkYGgHXHmJycHHbv3u3MoVUKk/OZnA1++Lk7d+4cUHJnnXfeeceZQ6swU7Olp6fj4+NT5gKPt7sGjbsxORuYn09VDpP7EJi9XzU5G5idz9TOYGdqPpP3q5pN3Qu6KHUb9u+Vfv3113h6ejJnzhxGjhxJeHi4219V/3bZwsLC3D4bmJ3P5Gxw+3yhoaEcOHDAyaOrGFOz2U9tXrx4MUFBQdb2t956i/j4eKtouiOTs4H5+VTlMLkPgdn7VZOzgdn5TO0MdqbmM3m/qtnUvaSLUuUQHh5u3Vp1w4YNzh5OpTI5G5idz+RsYHY+E7O9+uqrjBs3jtTUVAICAvD29uYf//iHs4dVKUzOBubnU5XHxLmrNJPzmZwNzM5ncjYwM5/J+1XNpu4FXZS6g7S0NFq1akX16tWNu7q+ydnA7HwmZwOz85maLTc3lyZNmmCz2ahatSozZsxw9pAqjcnZwPx8qnKYOnfZmZzP5Gxgdj6Ts4G5+Uzer2o2da9UEXVbnp6e0rdvXxk/frx4eXk5eziVyuRsImbnMzmbiNn5TM1WrVo1CQgIkG7dusmsWbOkWrVqzh5SpTE5m4j5+VTlMHXusjM5n8nZRMzOZ3I2EXPzmbxf1WzqXrEBOHsQSiml3FtRUZF4eno6exj3hMnZRMzPp5RSSjmSyftVzabuBV2UUkoppZRSSimllFIO5+HsASillFJKKaWUUkqp+48uSimllFJKKaWUUkoph9NFKaWUUkoppZRSSinlcLoopZRSSimllFJKKaUcThellFJKKaWUUkoppZTD6aKUUkoppZRSSimllHI4XZRSSimllFJKKaWUUg6ni1JKKaWUUkoppZRSyuF0UUoppZRSSimllFJKOZwuSimllFJKKaWUUkoph9NFKaWUUkoppZRSSinlcP8Ha0B1B41Am4sAAAAASUVORK5CYII=",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAHWCAYAAACmMzqDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUVRfA4d+mJ6T3QkJC6CX0Lr13EKVKEVCqSlGqShGliICfUqUr0pREQERCCx3pvRN6QiCQ3pP7/RGzEhIgQJJNyHmfZx/IzJ2ZM7Mzu2fv3LlXo5RSCCGEEEIIIYQQQgiRi/R0HYAQQgghhBBCCCGEKHikUkoIIYQQQgghhBBC5DqplBJCCCGEEEIIIYQQuU4qpYQQQgghhBBCCCFErpNKKSGEEEIIIYQQQgiR66RSSgghhBBCCCGEEELkOqmUEkIIIYQQQgghhBC5TiqlhBBCCCGEEEIIIUSuk0opIYQQQgghhBBCCJHrpFLqDdamTRusra25fft2hnmPHj3CxcWFOnXqkJKSkuOx3LhxA41Gw/Lly7NlfefPn2fixIncuHHjldexZcsWJk6c+Fpx9OnTB09Pz9daR27x9PSkT58+ug5Da+LEiWg0mmxf7+7du9FoNOzevTvb152bEhISGDhwIC4uLujr61OxYsVnlu3Tpw8ajYayZcuSnJycYb5Go2Ho0KEZpt++fZuhQ4fi7e2NiYkJNjY2NGjQgFWrVqGUys7dEW+InLpuhchJkg89n+RDuiX50PPlZD6Udj3OnDkz0/XNnDkTjUaT7vpavXo19erVw8nJCWNjY1xdXWnbti0HDhx45X0U+c+bcn3lFVIp9QZbvHgxBgYG9O/fP8O8oUOHEhkZyYoVK9DTy3+nwfnz55k0adJrJ2GTJk3KvqDES+nfvz8HDx7M9vVWrlyZgwcPUrly5Wxfd26aP38+CxcuZPz48ezbt4+ff/75hcucP38+yz909u/fj4+PD3/88QeffPIJW7duZfny5bi5ufHee+/RrVu3XPmBJvKXnLpuhchJkg89n+RDuiX50PPldD70skJDQ6lTpw7z5s1j27ZtzJo1i/v371OvXj0CAgJyZJsi73lTrq+8wkDXAYic4+zszLx58+jSpQsLFy5kwIABAPj6+rJ69WrmzZtHsWLFcjSG5ORkkpKScnQb+VVMTAxmZma6DkNnChcuTOHChbN9vZaWltSsWTPb15vbzp49i6mpaaYtnDJTqFAhKleuzIQJE+jevTumpqbPLBsWFsbbb7+NlZUVhw8fxsnJSTuvffv2+Pj4MGbMGCpWrMiYMWNee19yQ0G/nnJa2vHNqetWiJwk+VDeVtA/vyUfer6czIdeRWZxtGzZEgcHB5YsWUL9+vWzdXsvq6BfTzktMTERjUbzxlxfeUX+uyUkXkrnzp3p2rUrn376KTdu3CA0NJSBAwfStGlTBg0axNGjR2nXrh22traYmJhQqVIl1q1bl24dDx48YPDgwZQpUwZzc3McHR1p1KgRe/fuTVcurQnsjBkzmDJlCl5eXhgbG7Nr164Mce3duxeNRsPq1aszzFu5ciUajYYjR45kuk/Lly/n3XffBaBhw4ZoNJoMTeGXLl1KhQoVMDExwdbWlo4dO3LhwgXt/D59+jB37lwA7fJPNs+dO3cu9erVw9HRkUKFClG+fHlmzJhBYmLiiw96Jho0aEC5cuXYs2cPtWvXxszMjL59+wJw69Yt3nvvPRwdHTE2NqZ06dJ89913GVqpTJo0iRo1amBra4ulpSWVK1dmyZIlGR6zSkxMZNSoUTg7O2NmZsZbb73FP//8k+VYExISmDJlCqVKlcLY2BgHBwfef/99Hjx4kK6cp6cnbdq0YfPmzVSqVAlTU1NKly7N5s2bgdT3qXTp0hQqVIjq1atz9OjRdMtn1lx9586dNGjQADs7O0xNTfHw8KBTp07ExMRoy8yfP58KFSpgbm6OhYUFpUqVYty4cdr5z2pOu3HjRmrVqoWZmRkWFhY0bdo0w53JtJjOnTtHt27dsLKywsnJib59+xIeHp6u7Pr166lRowZWVlaYmZlRtGhR7Xv6PHFxcYwdOxYvLy+MjIxwc3NjyJAhhIWFactoNBoWL15MbGxspuf3s0yfPp27d+/y/fffP7fc4sWLCQkJYdq0aekqpNKMGjWKUqVK8e2332rP+YEDB2JiYsKxY8e05VJSUmjcuDFOTk4EBQU9d5tZPX8Bfv31V2rVqoW5uTnm5uZUrFiRJUuWaOdnx/X0ovMoJiaGTz/9FC8vL+3nSNWqVTP9zHpSVpc7fPgwbdu2xc7ODhMTE7y9vRk2bFi6MleuXKF79+7p9iXtcytN2vm+evVqxo8fj6urK5aWljRp0oRLly6lK+vv70/79u0pXLgwJiYmFCtWjAEDBvDw4cN05dKug+PHj/POO+9gY2ODt7d3unlPSklJYcaMGdrPDEdHR3r16sWdO3fSlTtx4gRt2rTR7o+rqyutW7fOUE6InCD5kORDkg+lknwo+1lYWGBiYoKBwYvbe6xdu5ZmzZrh4uKiPVfGjBlDdHR0hrIvyhWe932dleML2XOuPUtWlrt79y4ffvgh7u7uGBkZ4erqyjvvvMP9+/e1ZSIiIrS5Vdq+DBs2LMMxS3s88+eff6Z06dKYmZlRoUIF7bWY5urVq7z//vsUL14cMzMz3NzcaNu2LWfOnElXLu0a+vnnnxk5ciRubm4YGxtz9erV17q+Hjx4oN3ntM+WOnXqsH379hce0zeWEm+80NBQ5eLioho2bKg6d+6srK2t1e3bt9XOnTuVkZGRqlu3rlq7dq3aunWr6tOnjwLUsmXLtMtfvHhRDRo0SK1Zs0bt3r1bbd68WfXr10/p6empXbt2acsFBgYqQLm5uamGDRuq3377TW3btk0FBgZq5z253kqVKqk6depkiLdatWqqWrVqz9yfkJAQ9c033yhAzZ07Vx08eFAdPHhQhYSEKKWUdl63bt3Un3/+qVauXKmKFi2qrKys1OXLl5VSSl29elW98847CtAuf/DgQRUXF6eUUmr48OFq/vz5auvWrWrnzp1q9uzZyt7eXr3//vvpYundu7cqUqTIC9+D+vXrK1tbW+Xu7q5++OEHtWvXLhUQEKBCQkKUm5ubcnBwUAsWLFBbt25VQ4cOVYAaNGhQunX06dNHLVmyRPn7+yt/f3/11VdfKVNTUzVp0qQMMWk0GvXZZ5+pbdu2qVmzZik3NzdlaWmpevfu/dw4k5OTVYsWLVShQoXUpEmTlL+/v1q8eLFyc3NTZcqUUTExMdqyRYoUUYULF1blypVTq1evVlu2bFE1atRQhoaG6ssvv1R16tRRGzZsUL6+vqpEiRLKyckp3fITJkxQT34EBQYGKhMTE9W0aVPl5+endu/erVatWqV69uypHj9+rJRSavXq1QpQH330kdq2bZvavn27WrBggfr444+169m1a5cC0p2bq1atUoBq1qyZ8vPzU2vXrlVVqlRRRkZGau/evRliKlmypPryyy+Vv7+/mjVrljI2Nk733h84cEBpNBrVtWtXtWXLFrVz5061bNky1bNnz+ce35SUFNW8eXNlYGCgvvjiC7Vt2zY1c+ZMVahQIVWpUiXt+Xfw4EHVqlUrZWpqmuH8zkzv3r1VoUKFlFJKdezYUVlbW6vQ0FDtfEANGTJE+3ezZs2Uvr6+ioqKeuY6R40apb0+lFIqNjZWVaxYURUtWlT7fnz55ZdKT09Pbdu27bn7rVTWz98vvvhCAertt99W69ev157DX3zxhbbM615PWTmPBgwYoMzMzNSsWbPUrl271ObNm9W0adPUDz/88Nz9zMpyW7duVYaGhsrHx0ctX75c7dy5Uy1dulR17dpVW+bcuXPKyspKlS9fXq1cuVJt27ZNjRw5Uunp6amJEydqy6Wd756enqpHjx7qzz//VKtXr1YeHh6qePHiKikpSVt2/vz5aurUqWrjxo0qICBArVixQlWoUEGVLFlSJSQkaMulXQdFihRRo0ePVv7+/srPzy/dvCd9+OGHClBDhw5VW7duVQsWLFAODg7K3d1dPXjwQCmlVFRUlLKzs1NVq1ZV69atUwEBAWrt2rVq4MCB6vz58889pkJkF8mHJB+SfEjyoSfzobTrcfr06SoxMTHDa/r06QpQgYGBGbaVlJSkEhISVGBgoPrwww+Vubm5Onr06HP3WymlvvrqKzV79mz1559/qt27d6sFCxYoLy8v1bBhw3TlspIrPOv7OqvHN7vOtcxkZbk7d+4oFxcXZW9vr2bNmqW2b9+u1q5dq/r27asuXLiglFIqOjpaVaxYMV2Z77//XllZWalGjRqplJSUdO+vp6enql69ulq3bp3asmWLatCggTIwMFDXrl3TlgsICFAjR45Uv/32mwoICFC+vr6qQ4cOytTUVF28eFFbLu0acnNzU++8847auHGj2rx5swoNDX2t66t58+bKwcFBLVq0SO3evVv5+fmpL7/8Uq1Zs+ZFp88bSyqlCogtW7YoQAHq559/VkopVapUKVWpUiWVmJiYrmybNm2Ui4uLSk5OznRdSUlJKjExUTVu3Fh17NhROz3tg93b2zvdD5wn5z2ZhC1btkwB6sSJE9pp//zzjwLUihUrnrs/69evz/BBoJRSjx8/VqampqpVq1bppt+6dUsZGxur7t27a6cNGTIkw4+rzCQnJ6vExES1cuVKpa+vrx49eqSd9zJJGKB27NiRbvqYMWMUoA4fPpxu+qBBg5RGo1GXLl16bkyTJ09WdnZ22g/kCxcuKEANHz48Xfm0D8kXJWFpXyC///57uulHjhxRgJo3b552WpEiRZSpqam6c+eOdtrJkycVoFxcXFR0dLR2up+fnwLUxo0btdOeTsJ+++03BaiTJ08+M76hQ4cqa2vr5+7D018SycnJytXVVZUvXz7dOR0ZGakcHR1V7dq1M8Q0Y8aMdOscPHiwMjEx0R7nmTNnKkCFhYU9N5anbd26NdP1r127VgFq0aJF2mlPJlYv8mTZixcvKn19fTVy5Ejt/KeTsFKlSilnZ+fnrnP+/PkKUGvXrtVOu3LlirK0tFQdOnRQ27dvV3p6eurzzz/PUoxPetb5e/36daWvr6969Ojx3OVf93rKynlUrlw51aFDh5fdtSwt5+3trby9vVVsbOwzyzRv3lwVLlxYhYeHp5s+dOhQZWJiov0cSjvfn/7MW7duXbpKxaelpKSoxMREdfPmTQWoP/74Qzsv7Tr48ssvMyz39HWb9pkzePDgdOUOHz6sADVu3DillFJHjx5VgLZySwhdkXxI8iHJhyQfSpN2Pb7olVmlVMmSJbXzXVxc1L59+17mECil/vsuDggIUIA6deqUdl5WcoVnfV9n9fhm17n2qsv17dtXGRoaPvfm1NSpU5Wenp46cuRIuulpsW/ZskU7DVBOTk4qIiJCOy04OFjp6empqVOnPnMbaRWMxYsXT/eZkXYN1atXL8Myr3N9mZubq2HDhj0znoJIHt8rIFq2bEnNmjUpXrw47733HlevXuXixYv06NEDgKSkJO2rVatWBAUFpXv0Y8GCBVSuXFnbNNXQ0JAdO3akawKepl27dhgaGr4wpm7duuHo6JjucZQffvgBBwcHunTp8kr7efDgQWJjYzOMquLu7k6jRo3YsWNHltZz4sQJ2rVrh52dHfr6+hgaGtKrVy+Sk5O5fPnyK8VmY2NDo0aN0k3buXMnZcqUoXr16umm9+nTB6UUO3fuTFe2SZMmWFlZaWP68ssvCQ0NJSQkBED7aEDa+5qmc+fOWWpSvHnzZqytrWnbtm26c6JixYo4OztnaKJasWJF3NzctH+XLl0aSG2e/+Tz7GnTb968+cxtV6xYESMjIz788ENWrFjB9evXM5SpXr06YWFhdOvWjT/++CPDY0eZuXTpEvfu3aNnz57pOrE1NzenU6dOHDp0KF0TZUg9h5/k4+NDXFyc9jhXq1YNSD2u69at4+7duy+MA9C+n0+fn++++y6FChXK8vn5PCVLlqRfv378+OOP3Lp165XXo/59DOLJRwqKFSvGTz/9hJ+fH23atKFu3bpZHrEpK+evv78/ycnJDBky5IXre53rKSvnUfXq1fnrr78YM2YMu3fvJjY2Nkv7+aLlLl++zLVr1+jXrx8mJiaZriMuLo4dO3bQsWNHzMzMMnw+x8XFcejQoXTLZHbOQvprLiQkhIEDB+Lu7q79HC9SpAhApp/lnTp1euH+pn3mPH1OV69endKlS2vP6WLFimFjY8Po0aNZsGAB58+ff+G6hcgJkg9JPiT5kORDT/vkk084cuRIhtcnn3zyzGV+//13Dh8+zPr16ylTpgwtW7bM0khs169fp3v37jg7O2vP37R+qNI+R7KSKzzp6e/rrB7fnDrXsrrcX3/9RcOGDbXXRWY2b95MuXLlqFixYrprsXnz5pk+PtewYUMsLCy0fzs5OeHo6JjumktKSuKbb76hTJkyGBkZYWBggJGREVeuXHnlfOhlrq/q1auzfPlypkyZwqFDh175ceg3iVRKFSDGxsYYGRkBaJ/T/fTTTzE0NEz3Gjx4MID2w2PWrFkMGjSIGjVq8Pvvv3Po0CGOHDlCixYtMv2h5uLikuV4BgwYwK+//kpYWBgPHjxg3bp19O/fH2Nj41fax9DQ0GfG4Orqqp3/PLdu3aJu3braZ9H37t3LkSNHtMliVn+cPi2zmEJDQ58Za9p8gH/++YdmzZoB8NNPP7F//36OHDnC+PHj08WUVt7Z2Tnd+gwMDLCzs3thjPfv3ycsLAwjI6MM50VwcHCGLxRbW9t0f6edX8+aHhcX98xte3t7s337dhwdHRkyZAje3t54e3un6w+gZ8+eLF26lJs3b9KpUyccHR2pUaMG/v7+z1zvi86JlJQUHj9+nG7608cq7XxMO8716tXDz8+PpKQkevXqReHChSlXrtwL+xsKDQ3FwMAABweHdNM1Gg3Ozs5ZOj+zYuLEiejr6/PFF19kOt/Dw4MHDx5k2n9BmrT+RNzd3dNNb926NU5OTsTFxTFixAj09fVfGE9Wz9+0fjqy0uHr61xPWTmP/ve//zF69Gj8/Pxo2LAhtra2dOjQgStXrjw3rhctl5V9DA0NJSkpiR9++CHDddiqVSuADNfii87ZlJQUmjVrxoYNGxg1ahQ7duzgn3/+0VZuvepneVY/c62srAgICKBixYqMGzeOsmXL4urqyoQJEyQZE7lO8iHJh15E8qFUb3o+lKZw4cJUrVo1w+t539Vly5alevXqvPPOO2zdupUiRYo8txILICoqirp163L48GGmTJnC7t27OXLkCBs2bABeLR+CjO9pVo9vTp1rWV3uwYMHL9zH+/fvc/r06QzXoYWFBUqpF+ZDkHrePvl5NWLECL744gs6dOjApk2bOHz4MEeOHKFChQo5lg89eX2tXbuW3r17s3jxYmrVqoWtrS29evUiODj4hdt5U8noewWUvb09AGPHjuXtt9/OtEzJkiUB+OWXX2jQoAHz589PNz8yMjLT5Z7urPF5Bg0axLRp01i6dClxcXEkJSUxcODALC//tLQPosw6Xb537552v5/Hz8+P6OhoNmzYoG1FAHDy5MlXjgsyPy52dnbPjBX+e5/WrFmDoaEhmzdvTnfHxM/PL8P6AIKDg9PdsUtKSsrSF7y9vT12dnZs3bo10/lP3nnICXXr1qVu3bokJydz9OhRfvjhB4YNG4aTkxNdu3YF4P333+f9998nOjqaPXv2MGHCBNq0acPly5fTvV9pXnRO6OnpYWNj89Kxtm/fnvbt2xMfH8+hQ4eYOnUq3bt3x9PTk1q1amW6jJ2dHUlJSTx48CBdoqCUIjg4WHvH8XW5uLgwbNgwpk2bxsiRIzPMb9q0Kdu2bWPTpk3a4/okpRQbN27E1taWKlWqpJs3cOBAIiMjKVu2LB9//DF169Z94fHL6vmbdkzu3LmToTLsaa9zPcGLz6NChQoxadIkJk2axP3797Wtn9q2bcvFixefGdeLlntyH5/FxsYGfX19evbs+cxWY15eXs9cPjNnz57l1KlTLF++nN69e2unX7169ZnLZOWz/Mnr6+nE8unP3PLly7NmzRqUUpw+fZrly5czefJkTE1N880oj+LNI/nQs0k+JPlQVuTnfCi7GBgYULly5QyDIzxt586d3Lt3j927d6cbpe/pzsezkis86elr6mWOb06ca2letJyDg8ML99He3h5TU1OWLl36zPkv65dffqFXr15888036aY/fPgQa2vrDOVfNh962tPXl729PXPmzGHOnDncunWLjRs3MmbMGEJCQp75mfOmk5ZSBVTJkiUpXrw4p06dyvTOQNWqVbVfuBqNJsOdutOnT2cYSeBVuLi48O677zJv3jwWLFhA27Zt8fDweOFyT9+pSVOrVi1MTU355Zdf0k2/c+cOO3fupHHjxi9cR9oHz5P7rJTip59+eok9y5rGjRtz/vx5jh8/nm562og7DRs21MZkYGCQrlVKbGwsP//8c7rlGjRoAMCqVavSTV+3bl2WhqJu06YNoaGhJCcnZ3pOpCXmOU1fX58aNWpo78Y+fXwg9cd/y5YtGT9+PAkJCZw7dy7TdZUsWRI3Nzd+/fXXdCPzREdH8/vvv2tHyHhVxsbG1K9fn+nTpwOpjzo8S9r59/T5+fvvvxMdHZ3u/Hxdo0ePxtbWNtMf+/3798fR0ZGxY8dqm+A/acaMGVy8eJFRo0ale/Rk8eLF/PLLL/z4449s3LiRsLAw3n///RfGktXzt1mzZujr62f4wZdVWb2enpSV88jJyYk+ffrQrVs3Ll26lOHxhmfJbLkSJUrg7e3N0qVLiY+Pz3Q5MzMzGjZsyIkTJ/Dx8cn0WszKnf4nZfa5BrBw4cKXWs/T0h7BefqcPnLkCBcuXMj0nNZoNFSoUIHZs2djbW2d6fUtRG6RfEjyocxIPvTy8mM+lF3SHqsvVqzYc8tl9bs4K7nC87zK8c3Ocy2ry7Vs2ZJdu3ZlGC34SW3atOHatWvY2dllei16enpmKYYnZfZZ/ueff2b58dPMvOr15eHhwdChQ2natGmBzoekpVQBtnDhQlq2bEnz5s3p06cPbm5uPHr0iAsXLnD8+HHWr18PpH4YfPXVV0yYMIH69etz6dIlJk+ejJeXV5a+2F/kk08+oUaNGgAsW7YsS8uUK1cOgEWLFmmHYfXy8sLOzo4vvviCcePG0atXL7p160ZoaCiTJk3CxMSECRMmaNdRvnx5IHXY2JYtW6Kvr4+Pjw9NmzbFyMiIbt26MWrUKOLi4pg/f36GJs3ZYfjw4axcuZLWrVszefJkihQpwp9//sm8efMYNGgQJUqUAFIfmZo1axbdu3fnww8/JDQ0lJkzZ2b4QC1dujTvvfcec+bMwdDQkCZNmnD27FlmzpyJpaXlC+Pp2rUrq1atolWrVnzyySdUr14dQ0ND7ty5w65du2jfvj0dO3bM9uMAqf107Ny5k9atW+Ph4UFcXJz2rkiTJk0A+OCDDzA1NaVOnTq4uLgQHBzM1KlTsbKyeuZdNT09PWbMmEGPHj1o06YNAwYMID4+nm+//ZawsDCmTZv20rF++eWX3Llzh8aNG1O4cGHCwsL4/vvv0/ULkJmmTZvSvHlzRo8eTUREBHXq1OH06dNMmDCBSpUq0bNnz5eO5VksLS0ZP348w4cPzzDP2tqaDRs20KZNG6pUqcJnn31GhQoViIiIYO3ataxatYouXbrw2WefaZc5c+YMH3/8Mb1799ZWRC1ZsoR33nmHOXPmpBui+GlZPX89PT0ZN24cX331FbGxsdphqM+fP8/Dhw+ZNGnSc/c5q9dTVs6jGjVq0KZNG3x8fLCxseHChQv8/PPPL0zas7Lc3Llzadu2LTVr1mT48OF4eHhw69Yt/v77b+0PqO+//5633nqLunXrMmjQIDw9PYmMjOTq1ats2rQpXf8qWVGqVCm8vb0ZM2YMSilsbW3ZtGnTC5vfv0jJkiX58MMP+eGHH9DT06Nly5bcuHGDL774And3d+35t3nzZubNm0eHDh0oWrQoSik2bNhAWFgYTZs2fa0YhHhdkg9JPvQ0yYeyJr/nQ6+idu3atGvXjtKlS2NlZcWNGzeYP38+165dw9fX94XL2tjYMHDgQCZMmIChoSGrVq3i1KlTGcpmJVd4lqwe35w617K63OTJk/nrr7+oV68e48aNo3z58oSFhbF161ZGjBhBqVKlGDZsGL///jv16tVj+PDh+Pj4kJKSwq1bt9i2bRsjR47Ufm5mVZs2bVi+fDmlSpXCx8eHY8eO8e2332b5ccnMZPX6Cg8Pp2HDhnTv3p1SpUphYWHBkSNH2Lp16zNb6xYIud61utCZ+vXrq7Jly6abdurUKdW5c2fl6OioDA0NlbOzs2rUqJFasGCBtkx8fLz69NNPlZubmzIxMVGVK1dWfn5+GUZaSRvB4ttvv82w7cxGm3mSp6enKl269Evtz5w5c5SXl5fS19fPsO7FixcrHx8fZWRkpKysrFT79u3VuXPn0i0fHx+v+vfvrxwcHJRGo0k3usamTZtUhQoVlImJiXJzc1OfffaZ+uuvvzKMcPMyo808fezT3Lx5U3Xv3l3Z2dkpQ0NDVbJkSfXtt99mGO1n6dKlqmTJksrY2FgVLVpUTZ06VS1ZsiTDqCDx8fFq5MiRytHRUZmYmKiaNWuqgwcPqiJFirxwtBmllEpMTFQzZ87U7r+5ubkqVaqUGjBggLpy5Yq2XJEiRVTr1q0zLM9TI5solfm58fRoMwcPHlQdO3ZURYoUUcbGxsrOzk7Vr18/3Qg1K1asUA0bNlROTk7KyMhIubq6qs6dO6vTp09ry2Q2RKtSqSPe1KhRQ5mYmKhChQqpxo0bq/3796crkxZT2jD2adJGRko7zps3b1YtW7ZUbm5uysjISDk6OqpWrVqlG+71WWJjY9Xo0aNVkSJFlKGhoXJxcVGDBg3SDr2b5lVHm3lSfHy88vLyyvQ9USp1FKYhQ4aookWLaq+VevXqqV9++SXdELtRUVGqVKlSqkyZMulGEVIqddQmQ0PDDCMmPS2r569SSq1cuVJVq1ZNe/5VqlQp3fX9utdTVs6jMWPGqKpVqyobGxttzMOHD1cPHz587n5mdbmDBw+qli1bKisrK2VsbKy8vb0zjBIVGBio+vbtq9zc3JShoaFycHBQtWvXVlOmTNGWSTvf169fn2HZpz8Xz58/r5o2baosLCyUjY2Nevfdd9WtW7cUoCZMmKAt96zr4Ml5T0pOTlbTp09XJUqUUIaGhsre3l6999576vbt29oyFy9eVN26dVPe3t7K1NRUWVlZqerVq6vly5c/93gKkRMkH5J8SPIhyYeUev61qpRS3377bYbzauTIkapChQrKyspKGRgYKGdnZ9WxY8cMx/BZDhw4oGrVqqXMzMyUg4OD6t+/vzp+/HimnwsvyhWe932dleObXedaZrK63O3bt1Xfvn2Vs7OzMjQ01Ja7f/++tkxUVJT6/PPPVcmSJbWfZeXLl1fDhw9XwcHB2nLPynefvuYfP36s+vXrpxwdHZWZmZl666231N69e1X9+vVV/fr1teWelWM9Oe9lr6+4uDg1cOBA5ePjoywtLZWpqakqWbKkmjBhQoYcuyDRKPVE+zIhdOD06dNUqFCBuXPnajsVFUIIIYQoSCQfEkIIURBJpZTQmWvXrnHz5k3GjRvHrVu3uHr16ms9yy6EEEIIkd9IPiSEEKIgk47Ohc589dVXNG3alKioKNavXy8JmBBCCCEKHMmHhBBCFGTSUkoIIYQQQgghhBBC5DppKSWEEEIIIYQQQgghcp1USgkhhBBCCCGEEEKIXCeVUkIIIYQQQgghhBAi1xnoOoC8ICUlhXv37mFhYYFGo9F1OEIIIYTIx5RSREZG4urqip5e/rn/J/mQEEIIIbJLlvMhJdTt27cVIC95yUte8pKXvOSVba/bt2+/Vn4yd+5c5enpqYyNjVXlypXVnj17nls+Li5OjRs3Tnl4eCgjIyNVtGhRtWTJEsmH5CUveclLXvKSl85eL8qHpKUUYGFhAcDt27extLTUcTRCCCGEyM8iIiJwd3fX5hevYu3atQwbNox58+ZRp04dFi5cSMuWLTl//jweHh6ZLtO5c2fu37/PkiVLKFasGCEhISQlJWV5m5IPCSGEECK7ZDUf0iilVC7FlGdFRERgZWVFeHi4JGFCCCGEeC3ZkVfUqFGDypUrM3/+fO200qVL06FDB6ZOnZqh/NatW+natSvXr1/H1tZWZ3ELIYQQQkDW84r809GBEEIIIUQBkJCQwLFjx2jWrFm66c2aNePAgQOZLrNx40aqVq3KjBkzcHNzo0SJEnz66afExsY+czvx8fFERESkewkhhBBC5CZ5fE8IIYQQIg95+PAhycnJODk5pZvu5OREcHBwpstcv36dffv2YWJigq+vLw8fPmTw4ME8evSIpUuXZrrM1KlTmTRpUrbHL4QQQgiRVdJSSgghhBAiD3p6BDyl1DNHxUtJSUGj0bBq1SqqV69Oq1atmDVrFsuXL39ma6mxY8cSHh6ufd2+fTvb90EIIYQQ4nmkpdRLSE5OJjExUddhiOcwNDREX19f12EIIYQQr8ze3h59ff0MraJCQkIytJ5K4+LigpubG1ZWVtpppUuXRinFnTt3KF68eIZljI2NMTY2fun4JB/KHyQnEkIIkR9IpVQWKKUIDg4mLCxM16GILLC2tsbZ2fmZd5OFEEK8WHJYGFH79hO1J4DEu/cwq1SRQm+9hWnlyugZGek6vDeakZERVapUwd/fn44dO2qn+/v70759+0yXqVOnDuvXrycqKgpzc3MALl++jJ6eHoULF86WuCQfyn8kJxJCiFeTHBVFwo2bJNy4QUJgYOq/d25jXNQbqw4dMKtWFY2ePHiWHWT0PV7cK3xQUBBhYWE4OjpiZmYmX+x5lFKKmJgYQkJCsLa2xsXFRdchCSFEvqGUIv7yZaJ2BxAVEEDsyZOQkpKhnMbUFLNqVTGvU4dCb72FUdGi8r34lOwYxW7t2rX07NmTBQsWUKtWLRYtWsRPP/3EuXPnKFKkCGPHjuXu3busXLkSgKioKEqXLk3NmjWZNGkSDx8+pH///tSvX5+ffvopW+KWfCj/kJxICCFeTCUkkHDnzr8VTze0FVDxN2+Q/ODhc5c1dHPDqn17rDq0x8jDI5cizl+ymg9JS6kXSE5O1iZgdnZ2ug5HvICpqSmQ+oiDo6OjNFsXQojnSImOJvrw4dSKqD17SHrqcTHj4sUxr18PIy8vYv45QtSB/SQ/eEj0nr1E79kLgIGLC4Xq1Ma8Th3MatbEwMZGF7vyxunSpQuhoaFMnjyZoKAgypUrx5YtWyhSpAiQWkF069YtbXlzc3P8/f356KOPqFq1KnZ2dnTu3JkpU6ZkSzySD+U/khMJIUR6ifdDeLRyBfFXr5Jw4waJd+5CcvIzy+vb2WHk6YmRlydGRYpg6OpKzKHDRPz1F4l37/Jw3jwezpuHadUqWHfsiEXzFuibF8rFPXozSEspnl+DFxcXR2BgIJ6entovd5G3xcbGcuPGDby8vDAxMdF1OEIIkack3LxJVEAAUbsDiDlyBPVE30AaExMK1ayJef16mNerh6GbW7pl01pTRe/bT/T+/cQcPYpKSPivgEaDSfnyqZVUb72FqY8PGkPD3Nq1PCM7WkrpguRDbx7JiYQQIlXcpcvc/vBDku7fTzddY2aGkWcRjD09MfL0wsizSGpFlKcn+s/4Dk+JiyPSfzvhvr5EHzwI/1apaExNsWzWFKuOHTGrXr3AP94nLaWymTRRzz/kvRJCiP8opYg9doxI/+1EBQSQcONGuvmGhQtjXq8e5g3qY1a9OnrP+eGq0WgwKVkSk5IlsevXl5S4OGKOHCV6/36i9+8j/spV4k6fJu70aULnL0CvUCHMatbEvEF9LBo0wMDBIYf3VuQ0+Y7NX+T9EkIIiD50iDtDPyIlKgqjokWx7dVL2wLKwNHxpT8r9UxMsGrbBqu2bUgMDib8j42E+/mREBiY+v8/NmLg6oJV+/ZYd+iA0b+tnEXmpKUUWbszKHeY8g95z4QQApIePyZi40Yer1tPwrVr/80wMMCsShXM69fHvEF9jLy8su2Ha+L9+0TvP0D0vn1EHzhA8lMdYpv4+GDRqCHmDRthXKL4G/uD+U1uKSXfrfmLvG9CiIIufNMm7o0bD4mJmFatgvuPP6JvbZ3t21FKEXfqFGG+fkRs2UJKZKR2nmmlSlh17IBly5boW1hk+7bzqqzmQ1IphSRhOcnT05Nhw4YxbNiwTOenNSk/ceIEFStWzJZtynsmhCio0lpFPV67jsi//9Y+WqcxM8OyWTPMGzSgUJ3auZIQqZQU4s6dJ3rfXiJ37iLuzJl08w3d3DBv2BCLRg0xq1oVzRs0op9USonMNGjQgIoVKzJnzpxnltFoNPj6+tKhQ4ds2aa8b0KIgkopRehPi3kwaxYAFi1a4Dp9GnrGxjm+7ZT4eKJ27CDM14/o/fu1A8fomZtj26sXtr17oW9lleNx6FpW86GC/ZDjG6xPnz5oNBqmTZuWbrqfn1+GO9PJycnMnj0bHx8fTExMsLa2pmXLluzfvz/H43R3d9d24PoiN27cQKPRcPLkyRyPSwgh8pPk8HAerVzJ9TZtufleTyI2bUIlJGBcujTOE76k+J4AXKdNxbJF81y7Q6fR08O0fDnsBw3Ca/06iu0JwHnSJMwbNEBjbEzi3bs8/uUXbvXtx+Xadbg7YgThmzZlaF0lxOvKak60e/duNBoNYZmcg56enukqkwYMGIC3tzempqY4ODjQvn17Ll68+NqxBgUF0bJlyyyV1Wg0+Pn5vfY2hRDiTaOSkwmePFlbIWX7/vu4zfouVyqkAPSMjbFs1QqPnxZRbNcuHD8diVHRoqRERfFw3jyuNm7Cg//9QHJ4eK7Ek9dJpdQbzMTEhOnTp/P48eNnllFK0bVrVyZPnszHH3/MhQsXCAgIwN3dnQYNGuR4sqOvr4+zszMGBtK9mRBCvAylFDHHj3Nv9Giu1KvP/W+mknDtGhpTU6ze6YTn+nV4bfgdm27d0Dc313W4GDo6YtOlM+4L5lPi0EEKz/0Rq3c6oW9vT0pUFBFb/uLeZ6O4XOctbvbqTeiy5STcvKnrsMUbIis50cuoUqUKy5Yt48KFC/z9998opWjWrBnJzxnFKSucnZ0xzqUfTUII8SZKiY3lzkcfE7Z6DWg0OI0bi9PoUTrrdNzQyRG7/v0punkTbt9/j3GJEv9VTjVpyoMffiQ5IkInseUVUin1BmvSpAnOzs5MnTr1mWXWrVvHb7/9xsqVK+nfvz9eXl5UqFCBRYsW0a5dO/r37090dDRKKZo0aUKLFi1Ie+IzLCwMDw8Pxo8f/9w4YmJi6Nu3LxYWFnh4eLBo0SLtvKdbPz1+/JgePXrg4OCAqakpxYsXZ9myZQB4eXkBUKlSJTQaDQ0aNHiNoyOEEPlTaquonwls146b3XsQ/sdGVHw8xiVLpraK2rsH1ylTMC1fPs/22aRnaopF48a4TplC8T0BeK5Zjd2HH2JcvDgkJxPzzz+ETJ/OteYtuN7xbR6tWEFSaKiuwxb5WFZyopfx4YcfUq9ePTw9PalcuTJTpkzh9u3b3HhqIIGnpaSkMGrUKGxtbXF2dmbixInp5j/Z+ikhIYGhQ4fi4uKCiYkJnp6e2vg9PT0B6NixIxqNRvu3EEIUZEmPHnGzTx+idu5EY2SE25w52PbqpeuwgNQW5JbNm+Hl54vbnDkYFy9OSmQkD+fOTW05VYArp6R5yktSShGb+Hp3wV6VqaH+S/3A0NfX55tvvqF79+58/PHHFC5cOEOZX3/9lRIlStC2bdsM80aOHMmGDRvw9/enQ4cOrFixgvLly/O///2PTz75hIEDB+Lk5JQhoXrad999x1dffcW4ceP47bffGDRoEPXq1aNUqVIZyn7xxRecP3+ev/76C3t7e65evUpsbCwA//zzD9WrV2f79u2ULVsWozeo/xEhhHie5PBw4i5cINzXj4itW1Hx8QBoTEywbNUKmy6dMfHxybOVUM+j0dPDtGJFTCtWxHHEcBLu3CFq504id+4i5uhR4i9c4P6FC9z/dibm9eph1bEDFvXrv1F9UOVXb1pO9Kqio6NZtmwZXl5euLu7P7fsihUrGDFiBIcPH+bgwYP06dOHOnXq0LRp0wxl//e//7Fx40bWrVuHh4cHt2/f5vbt2wAcOXIER0dHli1bRosWLdDX18+2/RFCiPwo4eZNbn34IYk3b6FvZUXh+fMwq1xZ12FloNHTw7JFcyyaNSVy2zYezp1L/JWrPJw7l0c//4xt717Y9upVoDpEl0qplxSbmEyZL//WybbPT26OmdHLvWUdO3akYsWKTJgwgSVLlmSYf/nyZUqXLp3psmnTL1++DICbmxsLFy6kZ8+e3L9/n02bNnHixAkMDQ2fG0OrVq0YPHgwAKNHj2b27Nns3r0700qpW7duUalSJapWrQqQ7s6fw79DidvZ2eHs7PyCPRdCiPwnOSyM+GvXiL9ylfhr10i4dpX4K1dJevAgXTnjEiWw7tIZq3bt3rikxahw4dROQHv1Sh1B8K+/CPf7g7jTp4nauZOonTvRt7bGsk0brDp0wKRsmXxZGfcmeNNyojSZVVjFxMRkmDZv3jxGjRpFdHQ0pUqVwt/f/4U3zHx8fJgwYQIAxYsX58cff2THjh2ZVkrdunWL4sWL89Zbb6HRaCjyxJDiaTmRtbW15ERCiAIv9tQpbg8cRPLjxxi6ueH+008YF/XSdVjPlVo51QKLZs2I/PtvHsydS8LVazz84UcerViJbZ/e2Pbs+cbleZmRSqkCYPr06TRq1IiRI0e+0vJPJvvvvvsuvr6+TJ06lfnz51OiRIkXLu/j45NuXc7OzoSEhGRadtCgQXTq1Injx4/TrFkzOnToQO3atV8pbiGEyKuSHj8m4erVdBVQ8deukvzg4TOXMXB2plCtWqmtoipUKBAVMQY2Nth2745t9+7EX71KuJ8f4X9sJOnBAx7/8guPf/kF4+LFserYEau2bTD494e6EM+SlZxo7969WDz1IyCzLgN69OhB06ZNCQoKYubMmXTu3Jn9+/c/d5S7J3MiABcXl2fmRH369KFp06aULFmSFi1a0KZNG5o1a/acvRNCiIIncudO7o4YiYqLw6RMGdwXLshX+YBGTw/Lli2xaN6cyK1beTB3HgnXrvHwfz/waMVK7Pr0xqZnzzzRP2hOkUqpl2RqqM/5yc11tu1XUa9ePZo3b864cePo06dPunklSpTg/PnzmS534cIFIPVOXpqYmBiOHTuGvr4+V65cydL2n25JpdFoSPl3WMyntWzZkps3b/Lnn3+yfft2GjduzJAhQ5g5c2aWtiWEEHlVwq1bBH/9NXFnz5H8nP6RDFxdMC5WDOOi3hgXL4ZxsWIYeXu/0clIVhgXK4bjp5/iMGwY0QcPEu7rR+T27cRfuULIjBmEfPcdhd6qg3XHjpg3bJhrI+wUZG9aTpTGy8sLa2vrdNMyG5DFysoKKysrihcvTs2aNbGxscHX15du3bo9c/svkxNVrlyZwMBA/vrrL7Zv307nzp1p0qQJv/322/N3UgghCojHa9YQPPkrSEmhUL26FJ49G71ChXQd1ivR6Olh2aoVFs2bE7F1Kw/nzSfh2jUefP8/QpevwO7997F9v88bmd/k6Uqp+fPnM3/+fG2nkWXLluXLL7/UDpWrlGLSpEksWrSIx48fU6NGDebOnUvZsmVzLCaNRvPSzcXzgmnTplGxYsUMLZu6du1K9+7d2bRpU4Z+pb777jvs7OzSNSkfOXIkenp6/PXXX7Rq1YrWrVvTqFGjbI3VwcGBPn360KdPH+rWrctnn33GzJkztU3iX3dkGyGEyG0qOZm7Iz8l7swZ7TRDV1eMihfD2Du14sm4eDGMvIqib54/k6ncojEwwLxuXczr1iU5IoKILX8R7udH7MmTRAfsITpgD3pWVli2aolli5aYli+HnpmZrsN+I71pOdHrUkoR/29/b9nF0tKSLl260KVLF9555x1atGjBo0ePsLW1xdDQUHIiIUSBpFJSeDB7DqE//QSA9bvv4DxhApo3YER3jb4+Vq1bY9miRWrl1Nx5JFy/zoM5cwj39cV50iQK1ayh6zCzVZ5+1woXLsy0adMoVqwYkNo5ZPv27Tlx4gRly5ZlxowZzJo1i+XLl1OiRAmmTJlC06ZNuXTpUoZm1wVd+fLl6dGjBz/88EO66V27dmX9+vX07t2bb7/9lsaNGxMREcHcuXPZuHEj69evp9C/tc1//vknS5cu5eDBg1SuXJkxY8bQu3dvTp8+jY2NTbbE+eWXX1KlShXKli1LfHw8mzdv1vZt5ejoiKmpKVu3bqVw4cKYmJhgZWWVLdsVQoic9HjtWuLOnEHP3Bz3RQsxKVky397Jy0v0LS2x6doFm65diL8emPp438aNJAUHE7Z6Tepw0Pr6GBcvjmn58phW8MGkvA/GxbzRSMfQBdazcqKsun79OmvXrqVZs2Y4ODhw9+5dpk+fjqmpKa1atcq2OGfPno2LiwsVK1ZET0+P9evX4+zsrG3F5enpyY4dO6hTpw7GxsbZlosJIURephISuDf+cyI2bQLA/uOPsB806I3r1iBd5dSWLYR8OzO1M/c+fbB6+20cP/sUgzfkc19P1wE8T9u2bWnVqhUlSpSgRIkSfP3115ibm3Po0CGUUsyZM4fx48fz9ttvU65cOVasWEFMTAy//vqrrkPPk7766iuUUummaTQa1q1bx/jx45k9ezalSpWibt263Lx5k127dtGhQwcAHjx4QL9+/Zg4cSKV/x3FYMKECbi6ujJw4MBsi9HIyIixY8fi4+NDvXr10NfXZ82aNUBq0/n//e9/LFy4EFdXV9q3b59t2xVCiJySGBLCg1mzAXAYPgyzypWlQioHGBf1wnHEcIrt2I77ksVYtmuLgZMTJCcTf/EiYevXE/T5FwS2b8+latW5+V5P7s/4loitf5N4716G70fxZsssJ8oqExMT9u7dS6tWrShWrBidO3emUKFCHDhwAEdHx2yL0dzcnOnTp1O1alWqVavGjRs32LJlC3p6qen7d999h7+/P+7u7lSqVCnbtiuEEHmVUoq7o0anVkgZGODyzTc4DB78xlVIPUmjr49V27YU/XMz1t26gkZD+IYNXG/dhvBNm96I/EWj8sleJCcna1v0nDhxAhMTE7y9vTl+/Hi6L+L27dtjbW3NihUrnrmu+Pj4dM2rIyIicHd3Jzw8HEtLy3Rl4+LiCAwMxMvL67kdV4q8Q94zIURecnfESCK2bMGkXDk8166RFjq5LPH+fWJPnybu9JnUf8+cISWTkdT0HewxLe+DqY8Ppj7lMSlf/pVHvImIiMDKyirTvCIve17c8t2aP8n7JoR4k4Rv3Mi9UaPB0BD3efMwr/uWrkPKdTHHTxA84Uvir1wFoFCdOjhPnICRu7uOI8soq/lQnn58D+DMmTPUqlWLuLg4zM3N8fX1pUyZMhw4cAAAJyendOWdnJy4efPmc9c5depUJk2alGMxCyGEEABR+/YTsWUL6OnhPGmiVEjpgKGTE4ZNm2L5b/+IKjmZhMBAYk+dJvb0aWLPnCb+0mWSHzwkaudOonbuTF1QXx+z6tWwbNYMiyZN8tVIPkIIIcSbJjE4mOCvpgDgMGRIgayQAjCrXAmv338ndMkSHs5fQPT+/Vxv2w6Hj4Zi27t3vuxXK89HXLJkSU6ePElYWBi///47vXv3JiAgQDv/6aZ6SqkXNt8bO3YsI0aM0P6d1lJKCCGEyC4pcXEET54MgM17PTDNwUE4RNZp9PVTO5YvVgzrTm8DkBIbS9yFC8SeOk3cmdPEnj5D4p07xBw8RMzBQwRP/grTypWxbNYUi6ZNMXR11fFeCCGEEAWHUoqgz78gJTISEx8f7Pr303VIOqUxMsJ+0CAsWrQgeMJEYv75h5BvZxK++U9cJk/GtHw5XYf4UvJ8pZSRkZG2o/OqVaty5MgRvv/+e0aPHg1AcHAwLi4u2vIhISEZWk89zdjYGOM3cChFIYQQecfDhQtJvHULAycnHD7+RNfhiOfQMzXFrHJlzP7tMxEg4dYtIv39idi2jbhTp4k9dozYY8e4P3UaJuXKYdGsGZbNmmLk6am7wIUQQogCIGzdeqL37UNjbIzrtKn5sjVQTjD28sJjxXLCN/hyf8YM4i9c4EaXLtj2fA+Hjz/ON32Y5umOzjOTNtyul5cXzs7O+Pv7a+clJCQQEBBA7dq1dRihEEKIguDs3XC+2XKBiLjEDPPir18ndPESAJzGj0PfPH8kBeI/Rh4e2PXrh9fatRTbtROnceMwq1oVNBrizp7lwaxZXGvRkuvt2vPgx7nEXb78RnQ2KoQQQuQlCXfucH/6dCB1wBjjokV1HFHeotFosO70Nt5b/sSyTRtISeHRipVca9uWyN27dR1eluTpKsZx48bRsmVL3N3diYyMZM2aNezevZutW7ei0WgYNmwY33zzDcWLF6d48eJ88803mJmZ0b17d12HLoQQ4g0QEZdIISMD9PXSPxYem5DMgJ+PcTcslqRkxZdty2jnKaUInjAREhMxr18fi3/7MhL5l6GLC7a9emLbqydJDx8SuX0Hkf7+RB8+TPzly8RfvszDH3/EyNMTi2bNUHJzTAghhHhtKiWFoLHjUDExmFWtim2vXroOKc8ysLPDbea3WLVvR/DESSTevcudgYOwaNkC53Hj8nTfmHm6Uur+/fv07NmToKAgrKys8PHxYevWrTT9N8EfNWoUsbGxDB48mMePH1OjRg22bduGxSuOliOEEEKk2X/1Ie8vP0LjUo7M61E5XX+FC/dc425YLACr/7nFkIbe2JmnPhYe/scfxBw5gsbEBKcvvnijhykuiAzs7bHp2gWbrl1IDgsjcucuIrdtI3r/fhJu3CB00SKi5s/XdZhCCCFEvvf4l19ScyozM1ymfoNGL9896JXrzOvWpeimjTz4cS6Pli8n8q+tRO8/gO17PbDu3BlDZ2ddh5iBRklbcxkC+Q0j75kQ4nU9jk6gxfd7uB8RD8CC96rQolzql/j9iDjqzdhFfFIK1maGhMUk8lGjYoxsVpKkx4+53qo1yY8f4zByBPYffKDL3RC5KDkqiqjdAURu20bw7t1UO3P6hUMg5zWSD7155H0TQuRX8dcDCezYERUfj/PECdh07arrkPKd2HPnCP5yAnHnzqVO0NfHvGEDbLp2o1DtWjleyfe8vOJJUtUohBBCPEEpxejfT3M/Ih5D/dRWTpM3nSM6PgmAVYduEp+UQmUPa6Z2LA/Aoj3XORwYxPFPe5D8+DHGxYth16ePrnZB6IC+uTlWbVpT+H/fU8x/m67DEUIIIfItlZTEvbFjUPHxFKpdG+suXXQdUr5kWrYsnmvX4DZ7FmbVqkFyMlHbd3C7f3+utWxJ6JKlJD1+rOswpVJKCCGEeNLCPdfZdv4+Rvp6rP6gJoVtTLkXHsfKgzdJSErh139uA9D3LS+al3WmYUkH4pNS8Pvf51jsDwTA+pPeaAwNdbkbQof0TE11HYIQQgiRb4UuWUrcqdPoWVjg8vUU6QrhNWgMDLBs2ZIiP6+k6OZN2Lz3Hnrm5iTevEXIt99ytX4D7o0eQ+ypUzobsEUqpYQQQghSH8v7wu8sM7ZeBGBCuzJU9bRleJMSAPy09zq/H7/Dw6h4HC2MaV7WGT09DT90r0wpZwv+0GtBQGV9/Ctp2HfnR5Cn44UQQgghXkrcpUs8+PFHIHUEY0MXFx1H9OYwLlYM58/HUzxgN86TJ2FcujQqIYHwP/7gRpeuBHbqxON160iJicnVuKRS6g0WEhLCgAED8PDwwNjYGGdnZ5o3b87BgwcBOHHiBG3atMHR0RETExM8PT3p0qULDx8+BODGjRtoNBrty8bGhnr16hEQEKDdxp49e2jbti2urq5oNBr8/PwyxLFhwwaaN2+Ovb09Go2GkydPZihz7do1OnbsiIODA5aWlnTu3Jn79+/nyHERQoinRcYl0mn+AX4+dJMUBT1qeNC9ugcA7Su6UsTOjEfRCYzdcAaA7jU8MNRP/Qo1NzZg2fvVeLtuKZKGdOen5npsjrsDx1fqbH+EEOlJTiSEEJnbfPoea/65peswAFAJCdwbPSZ1BONGjbBq317XIb2R9AoVwqZzZ7w2/I7nmtVYtW+PxsiI+PMXCP5yAlfqNyB4ytfEX7uWO/HkylaETnTq1IlTp06xYsUKLl++zMaNG2nQoAGPHj0iJCSEJk2aYG9vz99//82FCxdYunQpLi4uxDxVM7p9+3aCgoIICAjA0tKSVq1aERiY+ohKdHQ0FSpU4Md/a7MzEx0dTZ06dZg2bdoz5zdr1gyNRsPOnTvZv38/CQkJtG3blpSUlOw7IEIIAVx/EMWZO+Hppn2z5SJ3HsfiZm3K6g9qMqVDOW1TcQN9PYY0LKYtW7e4Pf3e8kq3vIuVKVM6lKd9+Z6g0XDYxISQ7V9CRFDO75AQ4oUkJxJCiIwCH0Yz9NcTjNlwhgeR8boOh4cLFhB/8SL61ta4TJ4kj+3lMI1Gg2nFirhOn0axgN04fvYZhh4epERG8viXX7jeug03e/UmcufOnH20TwkVHh6uABUeHp5hXmxsrDp//ryKjY3VQWSv7vHjxwpQu3fvznS+r6+vMjAwUImJic9cR2BgoALUiRMntNPu3LmjALVgwYIM5QHl6+v7UutTSqm///5b6enppTv+jx49UoDy9/d/5vqeJb++Z0KInBeXmKQqTd6miozerL7adE7FJiSp34/dVkVGb1ZFRm9WB64+zHS55OQUteafm2r3pRCVkpLy3G2892cPVW55ObXsOzelVnfPid0Qedzz8oq87E3Mh5SSnCi/vm9CiJw35vdT2hzocnCETmOJOX1anS9TVp0vWUqF//WXTmMpyFKSk1Xknr3q1uAh6nzpMup8yVLqfMlS6nrHt1XEjp0vzIOflNV8SFpKvSylICFaN6+XqJ00NzfH3NwcPz8/4uMz1no7OzuTlJSEr6/vS9V6mpmZAZCYmJjlZV4kPj4ejUaDsbGxdpqJiQl6enrs27cv27YjhBAHr4XyKDoBgMX7Aqn+9XZGrDsFQL+3vKjlbZfpcnp6GrpU86B+CYcX3rVr690OgE0W5nBxM5z/Ixv3QIg8RHIiQHIiIUT+FBIRx+/H7mr/jvx3lGFdSImP596YsZCcjGWrlli2aKGzWAo6jZ4e5nXfwn3ujxTbsR27/v3QmJkRd/48dwYP5sa7nYkKCMjWllMG2bamgiIxBr5x1c22x90Do0JZKmpgYMDy5cv54IMPWLBgAZUrV6Z+/fp07doVHx8fatasybhx4+jevTsDBw6kevXqNGrUiF69euHk5JTpOqOjoxk7diz6+vrUr18/23arZs2aFCpUiNGjR/PNN9+kDsc+ejQpKSkEBcmjL0KI9AIfRrPjwn3uPI4lKSWFYg7m1C3hgLeD+QuX3X4htV+Wyh7WBIfHcS88DoC+dbwY36p0tsTX3LM50/6ZxmUjuGRoSMktn4FXPTC1yZb1C5FnSE4kOZEQIt/67fgdEpL/eyw4WoeVUg++/x8J166h72CP0xdf6CwOkZ6hiwuOn36Kbd++PFq6lEerfiXu7FluDxiISQUfHIYOpdBbb732Y5bSUuoN1qlTJ+7du8fGjRtp3rw5u3fvpnLlyixfvhyAr7/+muDgYBYsWECZMmVYsGABpUqV4syZM+nWU7t2bczNzbGwsGDTpk0sX76c8uXLZ1ucDg4OrF+/nk2bNmFubo6VlRXh4eFUrlwZfX39bNuOECJ/exSdwAcrj9Jw5m6m/HmB5Qdu8MuhW0zcdJ7G3wUw4OejPIx6dn8ISim2nw8B4KNGxdk7uhEr+lbnp15V+aJNafT0sqffAitjK+oVrgfAnw6FIeo+bPs8W9YthHg1khMJIUR61x9Ep/s7Kk43lVIxx47xaNkyAFwmTcbARm7i5TUGtrY4fvopxbb7Y9u3LxoTE+JOneb2Bx9ys1t3ovbtf62WUxqVne2u8qmIiAjtl76lpWW6eXFxcQQGBuLl5YWJiUlqc/HE3B0iUcvQDF6zFrJ///74+/tz8+bNDPMSEhKoVKkSVatWZcWKFdy4cQMvLy82btxImTJlsLa2xs4u80dbILWjNF9fXzp06JDp/LT1nThxgooVK2Za5uHDhxgYGGBtbY2zszMjR47ks88+e6l9zPCeCSHyveDwONrP3cf9iHj09TTU9rajrKsVeho4czecvVdSR8iqVdSOjxoX4+eDN7kbFksld2vGty6DkYEep++E0e7H/ZgZ6XP8i6aYGObcD7wdN3cwbPcwHI2s2XbpNPoAvTZC0exrUSHyruflFXnZS+VDIDmR5ERCiHys66KDHLr+SPv3jHd86FzVPVdjSImO5nqHjiTevo3V22/j+s3Xubp98WqSHj4kdPESHq9ejfr3sXjTSpVw+GgoZrVqaVtOZTUfksf3XpZGk+Xm4nlRmTJlMh2iGMDIyAhvb2+io9PXmru7u+Pt7Z0L0YG9vT0AO3fuJCQkhHbt2uXKdoUQeduPu65wPyIeL/tCzO1emTKu6b/YztwJp8uigxy8HsrB66Ha6afvhBMSGc87VQrzzZYLANQr7pCjFVIAdQvXxdLIkpCEMP6p0JFap3xh08cw6CAYmeXotoXINZIT5SjJiYQQOeluWCwALlYmBIXH6aSlVMh335F4+zYGLi44jR2T69sXr8bA3h6nMaOx7fs+oYsXE7ZmLbEnTnCrbz9Mq1bBYehHFKpZI+vry8FYhQ6Fhoby7rvv0rdvX3x8fLCwsODo0aPMmDGD9u3bs3nzZtasWUPXrl0pUaIESik2bdrEli1bWPZv88msiIqK4urVq9q/AwMDOXnyJLa2tnh4eADw6NEjbt26xb179wC4dOkSkNqxqLOzMwDLli2jdOnSODg4cPDgQT755BOGDx9OyZIls+uQCCHyqaDwWNYduQPA1LfLZ6iQAihf2IqvO5Zj+NrUTsvfqVKYCoWt+GrzBf46G8xfZ4MBcLI0ZkSzEjkes5G+ES08W7Du8jo22zpQy9INHt+A3d9Asyk5vn0hxH8kJxJCiPSSUxRBYan9apZ0tkitlMrlPqWiDxzg8a+rAXD9egr6Fha5un3x+gwdHXEeNw67fv1TK6fWriX26DFu9emDWbVqGL3fJ0vrkUqpN5S5uTk1atRg9uzZXLt2jcTERNzd3fnggw8YN24cQUFBmJmZMXLkSG7fvo2xsTHFixdn8eLF9OzZM8vbOXr0KA0bNtT+PWLECAB69+6t7adh48aNvP/++9oyXbt2BWDChAlMnDgRSE3Kxo4dy6NHj/D09GT8+PEMHz78NY+CECIvOnD1IdEJyTQtk3kHwk9bsPsaCckp1PCypWbRZz8u07FSYcyMDChkZMBbxVNbGLjZmDLb/wrxScmUc7Pi89ZlsC1klC378SJtvduy7vI6/O8EML7FNMzW9YSDc6FcJ3CtlCsxCCEkJxJCiKfdj4gjKUVhoKfB28Gc3Zce5GqlVHJkJPfGp/a3adO9G4Vq1861bYvsZ+jkiPP4cdj170fowkWErV9PzJEjhBw6lKXlpU8pXqEPBZGnyXsmRN51MzSaxt8FkJSi+PWDGtT2tn9u+bCYBGpO3UFcYgqr+tegTrHnl89LlFK02tCKO1F3mFp3Km2O/Q7nNkCF7tBxvq7DEzmowPQpJfI8ed+EEJn5J/ARnRcexMPWjHeqFGaW/2W6Vfdg6tvZN3DD89wbN57wDRsw9PCgqJ8vembStcGbJDE4mIcLF3Jn7TqqXzj/wnxIRt8TQgiRa+Zsv0JSSuq9kM/9znLqdhg3Hv7XZ0ticgqr/7nF5tP3CAqP5dd/bhGXmEIZF0tqez+7lVRepNFoaOPdBoDN1zaDT5fUGfeO6zAqIYQQQhR0d8NSB6lwszbF3Dj14ancaikVd+EC4Rs2gEaD69RvpELqDWTo7IzLhAkU9d2QpfLy+J4QQohcceV+JH4n7wJgaWLA9QfRtJ+7HyMDPbZ8XJdijuZ8+/clFu25DoCeBm2H5P3e8tKO5JGftCnahgWnFnAw6CAPK36MPcCDSxAfBcbmug5PCCGEEAXQnUepnZwXtjHF3OTfSqm4xFzZ9sOFiwCwbNkCsypVcmWbQjcMXVyyVE5aSgkhhMgVPx+6iVLQvKwTM96pgIGeBiN9PRKSUvj274scu/mIn/amVkiVcrYgRUFMQjL25sa0qZC1L7W8pohlEXzsfUhRKWwJOQoWroCC4NO6Dk0IIYQQBdSdx2mVUmZY5GJLqfhr14j8+28A7AYMzPHtifxBKqWEEELkOKUUOy6EANC5qjstyjlzaUpL/vz4LfQ08Pe5+/Ra8g9KpY6ct3VYPXwH16ZrNXdmda6AsYG+jvfg1Wkf4bu++b8Ozu+d0GFEQgghhCjI7oalVkq5PdFSKjIu5yulHi5cCEph3qQxJiVzfjRkkT9IpZQQQogcd+l+JHfDYjE20NN2bq6vp6G4kwXvVnEHIDohmQqFrfiiTRkAKnnYMK2TD/VKOOgs7uzQwrMFBhoDLjy6wFV7r9SJ907qNCYhhBBCFFx3Hqf2KVXYJvf6lEq4dYuIzX8CYD9wUI5uS+Qv0qeUEEKIHJfWSqpOMXtMjdK3ehrXujQOFsb4FLaiSWkn9PTyX99Rz2NjYsNbhd9i9+3dbNJEMRykpZQQQgghdCIlRXEvLA5IrZSKTUgGcr5S6uGiRZCSQqF6dTEtVzZHtyXyF2kpJYQQIsftuHAfgMalHTPMszI15NPmJWlW1vmNq5BK07ZoWwD+fHSGFIDQKxAXrtOYhBBCCFHwXHsQRUJyCqaG+jhbmjzR0XkSSqkc2WbivXuE+/0BgP0gaSUl0pNKKSGEEDnqXlgsJ26HAdCoVMZKqYKgvnt9LAwtuB/7gJ32HiiAIOnsXAghhBC56+S/OVl5NysM9PW0j+8lpSjik1JyZJuhi5dAUhJmNWtiVqlSjmxD5F9SKSWEECJHrTt6G6WghpctLlamug5HJ4z1jWnm2QyA4RbQqrALM07N40jwEZJScr5jUZE/zZs3Dy8vL0xMTKhSpQp79+7N0nL79+/HwMCAihUr5myAQggh8p20SqmKHtYAFDL6r0efnOjsPDEkhLDffgOklZTInFRKCSGEyDHJKYq1R24D0L2Gh46j0a2PK39MI/dGGGn0uWNoyM/hZ+n7d18armvI+H3j2X5zOzGJMdm6zaSUJK6HX2fbjW2cenAqW9ctctbatWsZNmwY48eP58SJE9StW5eWLVty69at5y4XHh5Or169aNy4cS5FKoQQIj/RVkq5WwOgp6d5YWfnKw7cYMivxwmNin/p7T1augyVkIBp5cqYVa/2SjGLN5tUSr3BQkJCGDBgAB4eHhgbG+Ps7Ezz5s05ePAgACdOnKBNmzY4OjpiYmKCp6cnXbp04eHDhwDcuHEDjUajfdnY2FCvXj0CAgK025g6dSrVqlXDwsICR0dHOnTowKVLl54Z04ABA9BoNMyZMyfd9AYNGqTblkajoWvXrtl/UIQQuSrgcghB4XFYmxnSvKyzrsPRKVsTW75v9D17a05j9v0HtEvQYGVsRVh8GBuvbWT47uHUXVOXITuG8Nvl33gY+/Cl1v8w9iEH7h1gxbkVfL7vczpv6kzNX2vS3q89IwNG8t6W95h6eCqJyYk5tIciO82aNYt+/frRv39/SpcuzZw5c3B3d2f+/PnPXW7AgAF0796dWrVq5VKk+YPkREIIAbEJyVwMjgT+q5QC/quUyqSl1JYzQUzYeI4/TwcxbO1JklOy3u9U0qNHPF67FgD7QQPRaN7MvkPF65HR995gnTp1IjExkRUrVlC0aFHu37/Pjh07ePToESEhITRp0oS2bdvy999/Y21tTWBgIBs3biQmJv2d+u3bt1O2bFlCQkIYN24crVq14uzZs3h5eREQEMCQIUOoVq0aSUlJjB8/nmbNmnH+/HkKFSqUbj1+fn4cPnwYV1fXTOP94IMPmDx5svZvU9OC+ZiPEG8S3xP3AHi7UmFMDPVfULpgMHOvQZOYWJrE3CTps6uciLzBrtu72HVrF3ei7rDnzh723NnD5IOTKe9QnobuDWnk3ggvKy80Gg2xSbFcD7vO5ceXufz4MlfCrnDl8RUexT3KdHsm+iYUsSzCpceX+PXir5x9eJaZ9WfiYu6Sy3susiohIYFjx44xZsyYdNObNWvGgQMHnrncsmXLuHbtGr/88gtTpkx54Xbi4+OJj//vrndERMSrB53HSU4khBBw9l44ySkKBwtjXKxMtNPNTQwgAiLj09+4Ons3nFG//dcH5t4rDxmy6jgf1POiShHbF27v0bLlqNhYTMqVo9Bbb2Xfjog3ilRKvaHCwsLYt28fu3fvpn79+gAUKVKE6tWrA6nJUEREBIsXL8bAIPU08PLyolGjRhnWZWdnh7OzM87OzixcuJDChQuzbds2BgwYwNatW9OVXbZsGY6Ojhw7dox69eppp9+9e5ehQ4fy999/07p160xjNjMzw9m5YLekEOJNkpCUwu6LIQC09pEKEC1TG7DxgseBGNw/R7WiDajmXI3Pqn7G1bCr7Lq9i523dnIu9BynH5zm9IPTfH/8ezwsPNBoNNyKuIUi411KDRo8LD0obl2cEjYlKG5TnOI2xSlsXhh9PX0Cbgcwbt84Tj88TefNnZladypvuUmCmBc9fPiQ5ORknJyc0k13cnIiODg402WuXLnCmDFj2Lt3r/Z7/UWmTp3KpEmTXjvevE5yIiGESHX85mMgtZXUk62WMmspdeh6KB+sOEpUfBI1vGx5t6o7n64/xdZzwWw9F0yvWkUY37o0xgaZ33RMDg/n8a+/AmA/eJC0khLPJJVSL0kpRWxSrE62bWpgmuWL2dzcHHNzc/z8/KhZsybGxsbp5js7O5OUlISvry/vvPNOltdrZmYGQGJi5o9/hIenDnFua/tfzXlKSgo9e/bks88+o2zZss9c96pVq/jll19wcnKiZcuWTJgwAQsLiyzFJYTIew4HhhIZn4S9uTGVnmgiLgDXSvA4EO6dgKINANBoNNqKpA99PuR+9H0C7gSw89ZODgcf5lbkf30J2RjbaCue0v4talUUM0OzZ26yvnt91rVdx8jdIzkXeo7B2wfzoc+HDKowCH09acWWFz393ayUyvT7Ojk5me7duzNp0iRKlCiR5fWPHTuWESNGaP+OiIjA3d09y8tLTiQ5kRAi/4hNSGb5gRsA1Pa2SzfPwiR9n1Ln7oXTd/kRYhKSqeFly0+9q2JpYkhRh0KsOnSL34/fYeXBm5y6E87c7pUobJMx/3i08mdSoqMxLlEC8wYNcnTfRP4mlVIvKTYplhq/1tDJtg93P/zcHxxPMjAwYPny5XzwwQcsWLCAypUrU79+fbp27YqPjw81a9Zk3LhxdO/enYEDB1K9enUaNWpEr169MtyZTRMdHc3YsWPR19fX3ml8klKKESNG8NZbb1GuXDnt9OnTp2NgYMDHH3/8zHh79OiBl5cXzs7OnD17lrFjx3Lq1Cn8/f2ztL9CiLxn+/n7ADQp7YientwdS8e1EpzbAHePP7OIUyEnOpfsTOeSnYlKiOJI8BGM9Y0pblMce1P7V7rj6GbuxsqWK5n+z3TWXV7HwtMLOfngJNPrTsfO1O7FKxC5wt7eHn19/QytokJCQjL9jo6MjOTo0aOcOHGCoUOHAqmVH0opDAwM2LZtW6atfoyNjTNU0LwMyYkkJxJC5B+L9lwnKDwON2tTulVPP/jMkx2dB4fHaSukanvbsbRPNW0XDJU9bKjsYUMbHxeGrT3JqdthtPp+Lz1qFqFrNXeK2KU+qpwcFUXoyhXAv31J6UlX1uLZpFLqDdapUydat27N3r17OXjwIFu3bmXGjBksXryYPn368PXXXzNixAh27tzJoUOHWLBgAd988w179uyhfPny2vXUrl0bPT09YmJicHFxYfny5enmpxk6dCinT59m37592mnHjh3j+++/5/jx48/9AfXBBx9o/1+uXDmKFy9O1apVOX78OJUrV86mIyKEyC1JySn4/1sp1bRM5j/qCjTXiqn/Bp3MUnFzI3MaejTMlk0b6RvxRa0vqORUickHJ3M46DCdN3VmZoOZVHKslC3bEK/HyMiIKlWq4O/vT8eOHbXT/f39ad++fYbylpaWnDlzJt20efPmsXPnTn777Te8vLxyPOa8TnIiIURBFpuQzIKAawCMaVkqQz+faZVS9yNSK6TuR8RTzNGc+e9VybRP0IalHPnz47cYsuo4p+6EM3/3Nebvvkbd4vZMaFuWYxOb4BMZRZJ1ChZH+8Gz7sG9kY/0vQH7lF3vS1xK1janlMp69/lvqIiICKysrAgPD8fS0jLdvLi4OAIDA/Hy8sLExCTfNFV/lv79++Pv78/NmzczzEtISKBSpUpUrVqVFStWcOPGDby8vNi4cSNlypTB2toaO7vM76R/9NFH+Pn5sWfPnnTJ75w5cxgxYgR6T9SOJycno6enh7u7Ozdu3Mh0fUopjI2N+fnnn+nSpctL7ePT75kQIvccvBZKaHQ8287dZ+Ope1gYG3Dk8ybSyfnT4sJh2r93KT+7DoV000rpWtg1hu8eTmB4IPoafYZXGU6vMr2k34fX9Ly8IqvWrl1Lz549WbBgAbVq1WLRokX89NNPnDt3jiJFijB27Fju3r3LypUrM11+4sSJ+Pn5cfLkyWyJO7PvVsmJJCcSQuQPF4MjaDFnL5YmBpya0CzD5+ekTedYtv+G9m97cyN8B9fB3fb5LVKTklPYfiGE1f/cYs+VBygFpob6/HhkNK43EtjWLIlPbENyYpdEPhARr7CaFvnCfEhaSr0kjUaT5ebieVGZMmXw8/PLdJ6RkRHe3t5ER0enm+7u7o63t3emyyil+Oijj/D19WX37t0Z7sb27NmTJk2apJvWvHlzevbsyfvvv//MOM+dO0diYiIuLtI5shD5xfUHUfRYfIi0kYIN9DTM7lJRKqQyY2IFdsUg9CoEnYBiTV68TA7wtvZmTes1TDwwkb9u/MXMozM5EXKCr+p8hYWR9F+jS126dCE0NJTJkycTFBREuXLl2LJlC0WKFAEgKCiIW7duvWAtOUtyovQkJxJC5FV3H6feQChsY5ZphX5aSykAE0M9fupV9YUVUgAG+nq0KOdMi3LO3AqNYazvafZfDWVsjQ8pUWMeZzyN6djkLzzMXSHPtIXJK3HkAl0f88hImPbiVvg5UikVHx/PP//8w40bN4iJicHBwYFKlSpJ8/FcFBoayrvvvkvfvn3x8fHBwsKCo0ePMmPGDNq3b8/mzZtZs2YNXbt2pUSJEiil2LRpE1u2bGHZsmVZ3s6QIUP49ddf+eOPP7CwsND2f2FlZYWpqSl2dnYZ7iQaGhri7OxMyZIlAbh27RqrVq2iVatW2Nvbc/78eUaOHEmlSpWoU6dO9h0UIUSO8j9/nxQFFsYGmBnrM6ldOZrIo3vP5loptVLqnu4qpQDMDM2YXm86lZwqMePIDHbc2sGVx1eY1WAWJW1L6iwuAYMHD2bw4MGZzlu+fPlzl504cSITJ07M/qDyIcmJhBAF3d2w1EopNxvTTOe7/9tReSEjfdYOqEU5N6uX3oaHnRkr+9bgx51XsTUvx4Gos6Tc3cea4H2Mqjbq1YMX+ZdhRJaKZWul1IEDB/jhhx/w8/MjISEBa2trTE1NefToEfHx8RQtWpQPP/yQgQMHyggiOczc3JwaNWowe/Zsrl27RmJiIu7u7nzwwQeMGzeOoKAgzMzMGDlyJLdv38bY2JjixYuzePFievbsmeXtzJ8/H4AGT42osGzZMvr06ZOldRgZGbFjxw6+//57oqKicHd3p3Xr1kyYMAF9fWlhIUR+seNiavPsT5uXpHdtT90Gkx+4VoIz6+HeSV1HgkajoVupbpSzK8fIgJHcirxFjy09GF9jPB2Ld3zxCoTIwyQnEkIUdGktpdysM6+U6ljZDWcrEyp6WGNpYvjK29HX0/BJk+IAFLnTjX139+F3xY+hFYfm65a1ImdlW59S7du358iRI3Tv3p127dpRtWpV7VC5ANevX2fv3r2sXr2aU6dOsXLlSpo2bZodm35tL9uHgsjb5D0TIveFxSRQZcp2klMUe0c1zFKT7wLv5gFY1hIs3WDEeV1HoxUWF8a4fePYe3cvAB2LdWRcjXGYGMjnaVZlR59SuiD50JtH3jchBMCQX4/z5+kgPm9dmv51i+bKNlNUCm1823A78jZf1vqSd0u8myvbFXlHVvOhbBubsVmzZty4cYOZM2dSr169dBVSAEWLFqV3795s3bqV7du3Z9dmhRBC5AEBlx+QnKIo4WQuFVJZ5ewDaCDiLkTe13U0WtYm1vzY+Ec+rvQxeho9fK/60mNLDx7EPNB1aEIIIYR4BffCnt9SKifoafToUjJ1cIbVF1cj46uJZ8m2SqkhQ4ZgZGSUpbJly5bNUiupqVOnUq1aNSwsLHB0dKRDhw5cunQpXRmlFBMnTsTV1RVTU1MaNGjAuXPnXmkfhBBCvJrtF1If3WtUSvqQyjJjc3D4t8+moJM6DeVpeho9PvD5gEVNF2FrYsvlx5cZsmMIMYkxug5NCCGEEC9J+/jeM/qUyikdinXA1MCUK4+vcPT+0WxZZ2RCJPvv7ufgvYMcCT7CyZCTnHt4jkuPLnE9/Dq3I28THB3Mw9iHhMeHE5MYQ2JyolSK5WE50tF5bGws/v7+XL58GY1GQ/HixWnatCmmpi93EQQEBDBkyBCqVatGUlIS48ePp1mzZpw/f55ChQoBMGPGDGbNmsXy5cspUaIEU6ZMoWnTply6dEn6rRJCiFwQl5jMzgupLX2alZVKqZfiUhEeXEzt7LxEc11Hk0ENlxr80vIXemzpwYVHFxi1ZxTfN/wefT3p20YIIYTID+KTkgmJjAdyt6UUgJWxFa2Ltua3y7+x5uIaqjlXe6317bq1i4kHJ/Io7tErLW+gZ0Ahw0L0KNWDD3w+wEAvR6pDxEvK9ndh48aN9O/fn4cPH6abbm9vz5IlS2jbtm2W17V169Z0fy9btgxHR0eOHTtGvXr1UEoxZ84cxo8fz9tvvw3AihUrcHJy4tdff2XAgAGvv0NCCCGeK+DyA6ITknG1MqGSu7Wuw8lfXCvB6TWplVJ5lLulOz80/oF+f/cj4E4A0/6Zxrga4zIdUloIIYQQeUtQWBwAJoZ62BbK2pNN2alrya78dvk3dtzawf3o+zgVevkbmJEJkUz/Zzp/XPsDAEczR6yMrUhKSSIhOYGklCSSUpJITEkkMSVR+/+nJaUkER4fzrxT89h3bx/T3pqGu6X7a++jeD3ZPvreO++8Q7t27Rg5ciSlS5cG4Pz583z33Xe888477N69m1q1ar3S+sPDwwGwtbUFIDAwkODgYJo1a6YtY2xsTP369Tlw4MAzK6Xi4+OJj4/X/h0RkbWhCoUQQmS05UwQAC3Lu0hFxctyrZT6770ToBTk0eNXwaECU+tOZeTukay5tIbCFoXpXba3rsMSQgghxAvc/bc/KVdrU53kaSVtS1LFqQrH7h/jtyu/MaTikJda/uC9g3x54EuCo4PRoKFPuT4MrTgUI/3nV7AppUhSSdqKq7TKqiPBR5h6eCqnH5zmnU3vMKb6GDoU6yA5rA5lW59SAFOmTOH999/nt99+o1atWlhbW2NtbU3t2rX5/fff6dOnD1999dUrrVspxYgRI3jrrbcoV64cAMHBwQA4OaWvbXVyctLOy8zUqVOxsrLSvtzdpXZUCCFeRVxiMtvPpz6619rHRcfR5EPO5UGjB1H3ITJI19E8V9MiTRlZdSQA3x39ju03ZdASIYQQIq/T9ieVy4/uPalbqW4ArL+0noTkhCwtE5MYw9eHvuZD/w8Jjg7G3cKdFS1XMKLKiBdWSAFoNBoM9QwxNTDFytgKe1N7nAs509a7Lb+3+50qTlWISYrhywNfMjJgJGFxYa+zi+I1ZGul1MGDBxk6dOgz5w8ZMoSDBw++0rqHDh3K6dOnWb16dYZ5T9dqKqWeW9M5duxYwsPDta/bt2+/UkxCCFHQHb3xmOiEZJwt5dG9V2JkBg6prYrz8iN8aXqV6UWXkl1QKMbuHcvpB6d1HZIQQgghnuPOvy2lCudyJ+dPauTRCEdTR0LjQvG/6f/C8idDTvLupndZc2kNAF1KduG3tr9RybFStsTjYu7CkmZL+KTyJxhoDPC/6U+njZ04eO/V6irE68nWSqm4uDgsLS2fOd/KyirdY3NZ9dFHH7Fx40Z27dpF4cKFtdOdnZ0BMrSKCgkJydB66knGxsZYWlqmewkhhHh5/wSGAlDb206aPb8q7SN8J3UaRlZoNBrGVB9DXbe6xCXH8dHOj7gdKTd2hBBCiLzqVmg0AIVtzHQWg6GeIe+WfBeA1RczNjJJk5CcwOxjs+m9tTe3Im/hZObEwiYL+bzm55gZZm/8+nr69C/fn19a/4KnpSchsSF86P8hM47MID755essxKvL1kqpEiVKsHPnzmfO37FjB8WKFcvy+pRSDB06lA0bNrBz5068vLzSzffy8sLZ2Rl///9qWxMSEggICKB27dovvwNCCCFeyuHA1NFPqnnZ6jiSfMy1Yuq/947rNIysMtAzYGb9mZS2Lc2juEcM3j6Y8PhwXYclhBBCiExcDI4EoKSTbkemf6fEOxjoGXDqwSnOhZ7LMP/io4t0/bMrS88uJUWl0M67HRvab6C2W87+ri9rV5Z1bdfRuURnAH4+/zPd/uzGlcdXcnS74j/ZWinVp08fPv30U7Zs2ZJh3p9//smoUaN4//33s7y+IUOG8Msvv/Drr79iYWFBcHAwwcHBxMamNkHUaDQMGzaMb775Bl9fX86ePUufPn0wMzOje/fu2bZfQgghMopPSubE7TAAqkul1KtzrZz6772TqZ2d5wNmhmb82PhHnAs5cyPiBp/s+iTLfUQIIYQQInckJKVwNSQKgFIuuq2Usje1p1mR1AHKVl/4r7VUUkoSC08tpNvm1IogWxNb5jScw9dvfY2lUe480WRqYMoXtb7gx0Y/Ymtiy5XHV+i6uSu/nP+FFJWSKzEUZNlaKfXJJ5/QqFEj2rRpQ+nSpXn77bd5++23KVWqFO3ataN+/fp88sknWV7f/PnzCQ8Pp0GDBri4uGhfa9eu1ZYZNWoUw4YNY/DgwVStWpW7d++ybds2LCx0e9HlBSEhIQwYMAAPDw+MjY1xdnamefPm2n69Tpw4QZs2bXB0dMTExARPT0+6dOnCw4cPAbhx4wYajUb7srGxoV69egQEBGi3MX/+fHx8fLSPQdaqVYu//vorXRxPruPJ17fffqstEx8fz0cffYS9vT2FChWiXbt23LlzJxeOkhDiVZ2+E05CUgr25kYUtS+k63DyL6eyoGcAMQ8hPP987jmaOTKv8TzMDc05dv8YX+z/ApVPKtVEwSM5kRCiILoaEkVSisLSxECnHZ2nSevw/K/AvwiLC+N6+HV6bunJjyd/JEkl0cSjCb7tfWns0Vgn8dV3r8/v7X6nrltdElISmH5kOoO3D+ZBzAOdxFNQZGullJ6eHuvXr2f16tWULFmSixcvcvHiRUqVKsWqVav4/fff0dPL+iaVUpm++vTpoy2j0WiYOHEiQUFBxMXFERAQoB2dr6Dr1KkTp06dYsWKFVy+fJmNGzfSoEEDHj16REhICE2aNMHe3p6///6bCxcusHTpUlxcXIiJiUm3nu3btxMUFERAQACWlpa0atWKwMBAAAoXLsy0adM4evQoR48epVGjRrRv355z5/5rkhkUFJTutXTpUjQaDZ06ddKWGTZsGL6+vqxZs4Z9+/YRFRVFmzZtSE5Ozp2DJYR4af/8++hedS9b6U/qdRiagGOZ1P/ng87On1TcpjjfNfgOA40BWwK38OPJH3UdkhCZkpxICFEQXQiKAKCUi2WeyNUqOFSgtG1pElIS+GzPZ3Te1JmzoWexMLRgat2pzGowC1sT3ba+tze1Z27juYyvMR4TfRP239vP2xvfZsfNHTqN642mhAoPD1eACg8PzzAvNjZWnT9/XsXGxuogslf3+PFjBajdu3dnOt/X11cZGBioxMTEZ64jMDBQAerEiRPaaXfu3FGAWrBgwTOXs7GxUYsXL37m/Pbt26tGjRpp/w4LC1OGhoZqzZo12ml3795Venp6auvWrc9cz7Pk1/dMiPzm3fkHVJHRm9XSfdd1HUr+98dHSk2wVMp/oq4jeSUbLm9Q5ZaXU+WWl1MbLm/QdTg697y8Ii97E/MhpSQnyq/vmxDi9U3ZfE4VGb1Zfel3RtehaPle8dXmDOWWl1MfbvtQBUUF6TqsTF17fE29u/Fdbaxf7v9SRSdE6zqsfCOr+VC2tpQqCJRSpMTE6OSlXuKxCHNzc8zNzfHz88t0xENnZ2eSkpLw9fV9qfWamaWOepCYmJhhXnJyMmvWrCE6OppatWpluvz9+/f5888/6devn3basWPHSExMpFmzZtpprq6ulCtXjgMHDmQ5NiFE7rlyP5J/bjxCTwPNyzrrOpz8TzsCX/5qKZWmY/GOfFD+AwAmH5wsQyoXEJITSU4khMjbLgSldnJe2iXvjDbfwrMFRSyLpPbjVPMLFjRZgHOhvJlLFrUuyqpWq3i/3Pto0LDhygb6/t2XmMSYFy8ssswgO1emp6f3wmaBGo2GpKSk7NxsrlKxsVyqXEUn2y55/Bgas6wNhWlgYMDy5cv54IMPWLBgAZUrV6Z+/fp07doVHx8fatasybhx4+jevTsDBw6kevXqNGrUiF69euHk5JTpOqOjoxk7diz6+vrUr19fO/3MmTPUqlWLuLg4zM3N8fX1pUyZMpmuY8WKFVhYWPD2229rpwUHB2NkZISNjU26sk5OTgQHB2dpf4UQuWvV4VsANC7thGse6KMg30urlAo6mdrZeR5oYv+yPqr0EXej7rIlcAsjdo9gZcuVFLcpruuwRA6SnEhyIiFE3nYx+L/H9/IKEwMT1rVZh55GDxMDE12H80KG+oaMqDKCum51Gbl7JOdCzzFqzyjmNJyDgV62VqcUWNnaUsrX15cNGzZk+vr0008xNjbG0NAwOzcpnqNTp07cu3ePjRs30rx5c3bv3k3lypVZvnw5AF9//TXBwcEsWLCAMmXKsGDBAkqVKsWZM2fSrad27dqYm5tjYWHBpk2bWL58OeXLl9fOL1myJCdPnuTQoUMMGjSI3r17c/78+UxjWrp0KT169MDE5MUfQEqpPPHssxAivZiEJH4/ltrpbs+aRXQczRvCsQzoG0HsY3h8Q9fRvBKNRsNXdb6ismNlohKjGLxjMCExIboOSwhAciIhRMETEhnHw6gENBoo6ZS3BgEzMzTLFxVST6rmXI3/NfofxvrGBNwJYNo/02SAl2yiUTl8JC9evMjYsWPZtGkTPXr04KuvvsLDwyMnN/nSIiIisLKyIjw8HEvL9LXIcXFxBAYG4uXlhYmJSWpn67GxOolTY2r62glJ//798ff35+bNmxnmJSQkUKlSJapWrcqKFSu4ceMGXl5ebNy4kTJlymBtbY2dnd0Lt9GkSRO8vb1ZuHBhuul79+6lXr16nDx5kgoVKmin79y5k8aNG/Po0aN0dwYrVKhAhw4dmDRp0kvt49PvmRAie208dY+PV5/Aw9aM3Z82QE9Pfihli0UN4d5xeHc5lO2o62heWXh8OO9teY8bETcobVua5S2WY2aYtRYtb4rn5RV52cvkQ4DkRJITCSHysF0XQ3h/+RGKOZqzfUT9Fy8gssT/pj8jd49EoRhZZSR9yvXRdUh5VlbzoRzrU+revXt88MEH+Pj4kJSUxMmTJ1mxYkWeq5B6WRqNBj0zM528suMOWZkyZYiOjs50npGREd7e3hnmu7u74+3tnaXkC1KT1Mz6bFiyZAlVqlRJl3wBVKlSBUNDQ/z9/bXTgoKCOHv2LLVr187SNoUQuefvc6mPkLT2cZEKqezkWjH133zar1QaK2Mr5jWZh62JLRceXeCzPZ+RlJJ/H9sXzyY50YtJTiSE0JWzd8MBKOeaf26O5AdNizTl06qfAvDdse/4+8bfOo4o/8v2hyDDw8P55ptv+OGHH6hYsSI7duygbt262b0Z8QKhoaG8++679O3bFx8fHywsLDh69CgzZsygffv2bN68mTVr1tC1a1dKlCiBUopNmzaxZcsWli1bluXtjBs3jpYtW+Lu7k5kZCRr1qxh9+7dbN26NV25iIgI1q9fz3fffZdhHVZWVvTr14+RI0diZ2eHra0tn376KeXLl6dJkyavfSyEENknLjGZ3RdTH8mSDs6zWT7v7PxJ7hbu/K/R/+j3dz/23NnD7GOz+azaZ7oOSxRQkhMJIQqiM2mVUm5WOo7kzdOzTE/uRt3l14u/Mm7vOBzNHKnkWEnXYeVb2VopNWPGDKZPn46zszOrV6+mffv22bl68RLMzc2pUaMGs2fP5tq1ayQmJuLu7s4HH3zAuHHjCAoKwszMjJEjR3L79m2MjY0pXrw4ixcvpmfPnlnezv379+nZsydBQUFYWVnh4+PD1q1badq0abpya9asQSlFt27dMl3P7NmzMTAwoHPnzsTGxtK4cWOWL1+Ovr7+ax0HIUT22n/1IdEJybhYmeAjSU720lZKnYKUFNDL3wPkVnCowDdvfcPIgJGsPL8SHwcfmns213VYogCSnEgIURCdlUqpHKPRaBhVbRRB0UHsur2Lj3Z+xC8tf8HTylPXoeVL2dqnlJ6eHqampjRp0uS5X5wbNmzIrk1mi5ftQ0HkbfKeCZFzRv12inVH79C7VhEmtS+n63DeLMmJMLUwJMXBR8fBzlvXEWWLWcdmsezsMswMzFjdZjVFrYrqOqQcV1D6lBJ5n7xvQhRMoVHxVJmyHYAzE5thYSKDjeWE2KRY+v3djzMPz1DYvDCrWq/C1sRW12HlGTrpU6pXr1507twZW1tbrKysnvkSQgiRPx24FgpA49KZD5MuXoO+ITj/O4rXG/AIX5qPK31MNedqxCTFMHzXcGISY3QdkhBCCPFGO3svAgAv+0JSIZWDTA1M+aHRD7iZu3En6g4f7fiI2CTdDACSn2Xr43tpw+oKIYR484RExHHncSx6GqjkYa3rcN5MrpXgzpHUSqny7+g6mmxhoGfAjHoz6LypM9fDrzPxwESm15suw9sLIYQQOUQe3cs9dqZ2zG8yn/e2vMfph6cZu3cs39X/Dn09eeQ6q/J3hxVCCCFyzfFbjwEo4WQhd91ySlq/UneP6zaObGZvas93Db7DQGPAXzf+4teLv+o6JCGEEOKNdeZOaqVUebf88wh5fuZl5cX/Gv0PQz1DdtzawcyjM3UdUr6SbZVSAwcO5Pbt21kqu3btWlatWpVdmxZCCJELjt1MrZSqUsRGx5G8wdIqpYJPQ0qybmPJZpUcKzGy6kgAZh6ZycmQk7oNSAghhHgDKaU4cTs1Z6voLjlbbqniVIWv3/oagF8u/MIv53/RcUT5R7ZVSjk4OFCuXDlatmzJ/PnzOXLkCHfv3iU0NJSrV6+yceNGRo0ahYeHB3PmzMHHxye7Np0rsrE/eJHD5L0SImccvxUGQGUPSXByjH0JMDSDhCgIvarraLJdj9I9aO7ZnCSVxMjdIwmNDdV1SOIlyXds/iLvlxAFT1B4HPcj4tHX01BeHt/LVS29WjKs8jAAZhyZwY6bO3QbUD6RbZVSX331FVeuXKFevXosWLCAmjVr4uHhgaOjIyVLlqRXr15cv36dxYsXc/DgQcqXL59dm85Rhoapj6jExEjHrPlF2nuV9t4JIV5ffFKytim4tJTKQXr64PzvTZs3qLPzNBqNhkm1J+Fl5UVIbAij9owiKSVJ12GJLJB8KH+SnEiIgufEvzcRS7tYYGok/Rrltr7l+tK5RGcUitF7R3P6wWldh5TnZWtH546OjowdO5axY8cSFhbGzZs3iY2Nxd7eHm9v73zZqam+vj7W1taEhIQAYGZmli/3oyBQShETE0NISAjW1tbo68uHsBDZ5dTtcBKSU7AtZEQROzNdh/Nmc60Etw+lVkpV6KrraLJdIcNCzG4wm25/duOf4H+Ye3Iun1T+RNdhiReQfCh/kZxIiILrxL99gFaSR/d0QqPRMLbGWIKig9h7dy8f7fyIX1r+grulu65Dy7OytVLqSdbW1lhbW+fU6nOVs7MzgDYRE3mbtbW19j0TQmSP5QcCAWhQwkF+iOa0tH6l3sCWUmm8rb2ZVHsSo/aMYvGZxfjY+9DQo6GuwxIvIPlQ/iM5kRAFz4nbYYCMlKxLBnoGzKw/kz5b+3Dh0QUG7xjMzy1/xtrEWteh5Uk5Uil1+nTmTdQ0Gg0mJiZ4eHhgbGycE5vOERqNBhcXFxwdHUlMTNR1OOI5DA0N5W6gENnsakgUf50NBmBAfW8dR1MAaDs7PwPJSaCfY/ePdKqlV0tOPTjFqgurGL9vPGvbrJW7iHmc5EP5i+REQhQ8CUkpnLmb2t1CJekDVKfMDM2Y23guPbb04EbEDT7Z9QmLmi3CWD//1IPklhzJdCtWrPjcO+mGhoZ06dKFhQsXYmJikhMh5Ah9fX35chdCFDgLAq6hFDQt40RJZwtdh/PmsysGRuapnZ0/vAROZXUdUY4ZWWUk5x6e4+SDkwzfPZyfW/2MqYGprsMSLyD5kBBC5E1n74WTkJSCjZkhntLdgs45mDkwr/E8ev3Vi+MhxxkVMIqv3voKSyNLXYeWp2RbR+dP8vX1pXjx4ixatIiTJ09y4sQJFi1aRMmSJfn1119ZsmQJO3fu5PPPP8+JzQshhMgmkXGJbDp1D4CB0koqd+jpgUvF1P/fO6nLSHKcob4hM+vPxNbElkuPLzHl0BQZLUwIIYR4Rf8EPgKgqqetdLeQRxSzKcbshrMx0DNg5+2dtPVty6ZrmyTfeUKOVEp9/fXXfP/99/Tr14/y5cvj4+NDv379mD17Nt999x09evTghx9+wNfXNyc2L4QQIpv8dTaY+KQUvB0KUVn6Jsg9rhVT/32D+5VK41TIiW/rfYueRo+N1zay/vJ6XYckhBBC5EtplVI1vGx1HIl4Ug2XGixuthgvKy8exT1i3L5x9NvWj+th13UdWp6QI5VSZ86coUiRIhmmFylShDNnzgCpj/gFBQXlxOaFEEJkE9/jdwF4u3JhueOWmwpAZ+dPqu5SnY8rfQzAtH+mce7hOR1HJIQQQuQvySmKIzfSKqXsdByNeFoVpyr83vZ3Pqn8CSb6JhwJPkKnTZ34/vj3xCbF6jo8ncqRSqlSpUoxbdo0EhIStNMSExOZNm0apUqVAuDu3bs4OTnlxOaFEEJkg3thsRwKDAWgfUVXHUdTwKTr7LxgdCjdt1xfGro3JDElkeG7hxMWF6brkIQQQoh840JQBJFxSZgbG1DGVfosyosM9Q3pX74/vu19qV+4PkkpSSw+s5iOf3Rk9+3dug5PZ3KkUmru3Lls3ryZwoUL06RJE5o2bUrhwoXZvHkz8+fPB+D69esMHjw4JzYvhBAiG8zddRWloGZRWwrbSGeZucq2KBhbQXI8hFzQdTS5QqPR8PVbX+Nh4UFQdBBj9o0hRaXoOiwhhBAiX/ivPykb9PWkdXteVtiiMD80+oE5DefgUsiFu1F3+WjnR3y882OCogre02Q5UilVu3Ztbty4weTJk/Hx8aFcuXJMnjyZwMBAatasCUDPnj357LPPcmLzQgghXtPl+5Gs/ucWAMOblNBxNAWQRlOg+pVKY2FkwawGszDRN2H/3f0sPL1Q1yEJIYQQ+cKh66mt2+XRvfxBo9HQ2KMxfu39eL/c+xhoDNh1exft/2jPkjNLSEx5/ZbySinuRd3jUNAhAsMDSUpJyobIs59Bdq6sb9++fP/991hYWGBubs7AgQOzc/VCCCFyydQtF0hR0KKsMzWKSnKjE66VIDAAgk4CvXUdTa4paVuSL2t9ybh945h/cj7uFu609GyJvp6+rkMTQggh8qSEpBT2X30IQJ1ikrflJ2aGZoyoMoK2Rdsy5dAUjoccZ87xOWy+vpnPa35OFacqWVpPckoyNyNucuHRBS4+usiF0AtcfHyR8PhwbRlDPUOKWBbBy8qLolZFU1/WRSliWQRTA9Oc2sUX0qhsHItQX1+foKAgHB0ds2uVuSIiIgIrKyvCw8OxtJTnb4UQBduFoAhafr8XPQ3sHNkAT/tCug6pYDrnB+t7g0tFGBCg62hy3VcHv2Ld5XUAOJk50c67He2LtaeIZcaBVPKa/JpX5Ne4hRCioDtw9SHdFx/G3tyIf8Y1QU8e38uXlFJsvLaR745+x+P4xwC0927PiKojsDX5b0TFhOQEroRd4WLoRS48usCFRxe48vhKph2mG2gMcLNwIyQm5JkdqmvQ4Grumq6iqqhVUbysvLAytnrl/clqXpGtLaWysX5LCCGEjvy0N3V42pblXaRCSpfSHt+7fw6S4sHAWKfh5LbR1UdjYmCC31U/7sfc56czP/HTmZ+o5FiJDsU60KxIM8yNzHUdphBCCKFzuy6FAFC/hKNUSOVjGo2G9sXa08C9AXOOz+G3y7/xx7U/2HV7F11KdiEkJoQLjy5wPew6SSrjo3imBqaUsClBKdtSlLYtTWm70hSzLoaRvhEpKoWg6CCuh13nevh1AsMDuR6e+v/w+HDuRt3lbtRd9t7dm26ddiZ2NCnShIEVBmJvap8z+52dLaX09PS4f/8+Dg4O2bXKXCF3BoUQItX9iDjemr6TxGSF35A6VHS31nVIBZdSMMMLYh/Dh7v/G5GvgIlPjmf37d34XfXjwL0D2s7PTQ1MaeLRhPbF2lPNuRp6mhzpJvOVZFdeMW/ePL799luCgoIoW7Ysc+bMoW7dupmW3bBhA/Pnz+fkyZPEx8dTtmxZJk6cSPPmzXM9biGEELmryawAroZE8WP3SrTxkRGT3xSnHpziq4NfcenxpQzzrIyttJVPaf8WsSzy0t0dKKV4FPcofUXVvxVX92Pua8uZGZjRt1xfepXtleVH/bKaV2R7pZSVlRUazfNrZx89epRdm8wWkoQJIUSqqX9dYGHAdap52rB+YG1dhyN+7gjXdkKb2VC1r66j0bmQmBA2X9+M31U/AsMDtdNdC7nSrlg72nm3w93CXYcRpsqOvGLt2rX07NmTefPmUadOHRYuXMjixYs5f/48Hh4eGcoPGzYMV1dXGjZsiLW1NcuWLWPmzJkcPnyYSpWyVqEp+ZAQQuQ/tx/FUHfGLvT1NBz/vClWZoa6Dklko6SUJNZdWseJkBN4WnmmtoCyLY1zIecX1ru8rujEaE6FnOKHEz9wNvQsAI6mjgypNIT23u1fWAGms0qpOXPmYGX1/OcOe/fOWx22ShImhBAQHptInWk7iYpPYknvqjQu7aTrkMSOybD3O6jcC9r9oOto8gylFGcensHvqh9bA7cSmRipnVfVqSrti7WnWZFmmBma6SS+7MgratSoQeXKlZk/f752WunSpenQoQNTp07N0jrKli1Lly5d+PLLL3MtbiGEELlryb5Avtp8nupetqwbUEvX4Yg3UIpK4e8bf/P98e+5G3UXgGLWxRhZdSR1XOs8s3JMJ31KAXTt2jXfdXQuhBACfjl0k6j4JEo4mdOwpHyO5wlpj+zdO6HbOPIYjUaDj4MPPg4+jKo2il23d+F31Y+D9w5y9P5Rjt4/yjeHv6GlV0t6lemFt7W3rkN+KQkJCRw7dowxY8akm96sWTMOHDiQpXWkpKQQGRmJra3tiwsLIYTIt/4+GwykjpgsRE7Q0+jR0qsljT0as/riahadXsTVsKsM2j6Imi41GVl1JKVsS736+rMx1hxvPiaEECJnxCUms2z/DQAG1veWTjLzirRKqZALkJj5iCkFnYmBCS29WrKw6UK2vbONjyt9TBHLIsQmxbLhygY6/NGBj3Z8xPH7x3UdapY9fPiQ5ORknJzSt1Z0cnIiODg4S+v47rvviI6OpnPnzs8sEx8fT0RERLqXEEKI/ONBZDxHbqZ2jdO8nFRKiZxlpG9E77K92fL2FnqX6Y2hniGHgg7ReVNnxu8bT3B01nKUp2VrpZSMvieEEPnTb8fu8DAqHjdrU9pWkA4y8wxLNyjkAClJEHxW19Hkec6FnPnA5wM2ddjEihYraOLRBA0adt/ZTe+tvXlvy3vsuLVD21l6Xvf0zT6lVJZuAK5evZqJEyeydu3a57Zenzp1KlZWVtqXu7vu++MSQgjxYkopLgZHsPxAIEqBT2Er3Kyz1vm0EK/LytiKT6t9ysYOG2np1RKFYuO1jbTxbcOcY3OITIh88UqekK2VUikpKfLonhBC5DNJySks2nMdgP51vTDUzzujmBV4Gs1/raWCTuo0lPxEo9FQ2akysxvOZmOHjXQq3gkjPSNOPTjFsF3DaO/Xnt8v/05CcoKuQ82Uvb09+vr6GVpFhYSEZGg99bS1a9fSr18/1q1bR5MmTZ5bduzYsYSHh2tft2/ffu3YhRBC5KyTt8N4d8FBWszZy9xd1wBoLo/uCR0obFGYGfVmsLr1aqo6VSU+OZ4lZ5fQekNrVl1YRWJyYpbWk+d/eezZs4e2bdvi6uqKRqPBz88v3XylFBMnTsTV1RVTU1MaNGjAuXPndBOsEELkQ78du8OtRzHYmBnSpZq0lMhzXCqm/iv9Sr0STytPJtaeyN/v/E3/8v2xMLLgRsQNJh6cSPPfm7PkzBIiEvLWY2tGRkZUqVIFf3//dNP9/f2pXfvZo2KuXr2aPn368Ouvv9K6desXbsfY2BhLS8t0LyGEEDlPKfVKTxldDYmk5+LDHL35GCN9PUo4mVOrqJ3kb0KnytmXY2nzpfzQ6Ae8rLx4HP+Yaf9Mo/uW7llaPs9XSkVHR1OhQgV+/PHHTOfPmDGDWbNm8eOPP3LkyBGcnZ1p2rQpkZEv12RMCCEKoovBEUzclFqRP6C+N2ZG2T7+hXhd0tl5trA3teeTyp/g/44/n1X9DCczJx7GPmTO8Tk0+60ZM4/MfOW+EHLCiBEjWLx4MUuXLuXChQsMHz6cW7duMXDgQCC1lVOvXr205VevXk2vXr347rvvqFmzJsHBwQQHBxMeHq6rXRBCCJGJ+xFxtPx+L63+t4+7YVnvLzIsJoF+K44SGZ9ENU8b9o1uyLbh9Vn9YU3szY1zMGIhXkyj0dDAvQEb2m3gi5pfYGtiy+3IrLXA1qh81BGURqPB19eXDh06AKk1zK6urgwbNozRo0cDqZ12Ojk5MX36dAYMGJCl9coQyEKIgkgpRcvv93IxOJJ6JRxY3qeadHCeF0UEwaxSoNGDsXfAqJCuI3ojJCYn8teNv1h2dhlXw64CYKBnQGuv1vQp24diNsVeed3ZlVfMmzePGTNmEBQURLly5Zg9ezb/Z+++w6I43jiAf68fvfeOBUXFXrBhQ+wmmqjRqBg19tiSGE1+GmNiixpNYo09xhYL9q5gwy72LghI7/24Mr8/Ti6egNxJOQ7ez/Pco+zO7r477N29zM7OtG/fHgAQGBiIiIgIBAcHAwA6dOiAkJCQQvsYPnw4Nm/eXKFxE0IIKVpaTj4GrA3F0/gsAICzhQF2jfEtcTwoqVyBwE3XcOl5MpwtDHBgQhtYUUMUqcSypdlYeWUlZrSfUWJeodeNUi9fvkSNGjVw69YtNG7cWFWub9++MDc3x5YtWzTaLyVhhJDq6FVyNvx+DYaAx8GVmZ0puanMlngBWXHAFycA11a6jqZKYYzhwusL2HR/E27E31At7+DcAdOaTYOHmYfW+9TXvEJf4yaEEH2QLZFhyPqrCItKg52pCGIBD6+Sc9DQxRx7xvoWO6ZnnlSOWfvvYd+t1zAU8rB3XGvUdaDPaFL5aZpX6PVzGgUDgBY1ZfKrV6+K3U4ikUAikah+pimQCSHV0ZWXyQCARi7m1CBV2Tk2Bp4eUz7CR41SZYrD4aC9c3u0d26Pu4l3sen+JpyJPIPg6GBcirmEEfVHYHSD0RDzxboOlRBCiJ6SKxjGbruJsKg0mBsK8PfIljAS8dFjxQXciUrDjD130crTCmIhDwkZebj/Oh1ZEjlkCgVeJmYjMiUHHA7w28BG1CBFqhy9bpQqoO2UyQsWLMDcuXPLOyxCCKnUrrxMAQC08rTScSSkRKpGqTBdR1Kl+dj44LeOvyEiPQKLry/GhdcXsO7uOhwLP4YfWv6A1k7FDzJOCCGEFGdraAQuPEuCoZCHTYHNUdvOBACwsF8DjPvnFvbdfo19t18Xu721sQhLPvVBBy+a6Z5UPXrdKGVvr5z6Mi4uDg4ODqrlJU2ZPHPmTEybNk31c0ZGBlxcaMYCQkj1wRhT9ZSiRik9UDDY+bOTyjGmTB3eX56UiruZO1Z2XolTr05h0bVFiMqMwpjTY9DdvTu+af4NbAxtdB0iIYQQPRGTloslJ54AAGb1qIvGrhaqdd0bOGDZgIY4/SgeeVIFcvPlMBLx0djVHBaGQgh4HIgFPLStaQ0LI6GuToGQcqXXjVIeHh6wt7fHqVOnVGNK5efnIyQkBIsWLSp2O5FIBJGIHlUhhFRfUSm5iE3Pg4DHQZO3kiNSSXn6AXb1gfj7wN5RwLADAE+vv8IrPQ6Hg67uXdHasTVWhq3E9sfbcSziGC68voCvmnyFAbUHgMfl6TpMQgghldDDmAwEhb1GSw9L/HriCbLz5WjqZoHBLVwLle3XxBn9mjjrIEpCKoeiR1OrRLKyshAWFoawsDAAQHh4OMLCwhAZGQkOh4MpU6Zg/vz52L9/P+7fv4/AwEAYGhpi8ODBug2cEEIqsZCnCQCAhs7mMBDSH9aVHl8EfLoFEBoDry4CwfN1HVG1YSw0xowWM7Cz507Ut6qPLGkW5l+djyFHh+Bh8kNdh0cIIaSSScqSYPima1h3/iVGbrmBx3GZsDUR4ddPfGiWY0KKUOkbpW7cuIHGjRurekJNmzYNjRs3xuzZswEA3377LaZMmYLx48ejWbNmeP36NU6ePAkTExNdhk0IIZVWbHoulpx8CgDw9y7+UWdSyVjXBPr8rvz/haXAs1O6jaeaqWtVF9t6bMP3Lb+HscAYD5If4LMjn2HhtYXIys/SdXiEEEIqAYWCYfruO0jMlMDGRAQRn4uatsbYO641PG2MdR0eIZUShzHGdB2ErtEUyISQ6iJLIsMXm67jWkQKfJzNsHdc62KnICaV1OFpwI0NgIElMPYCYEZd/itaYk4ifr3+K45FHAMA2BrYYkaLGfB38weHw9HbvEJf4yaEkMri3xtR+GbPXYj4XByc2BZuVobgcTmUa5FqSdO8gt4dhBBSTTxPyMInqy/jWkQKDIU8LB/YiJIkfRQwH3BoCOSmAHu+AORSXUdU7dgY2mCx32Ks9V8LVxNXJOQmYHrIdIw/Mx5RmVG6Do8QQogOZORJsej4YwDAVP/a8LI3gVjAo1yLkBLQO4QQQqo4xhiWnXyCbsvP43FcJmxMRNg+uhV1I9dXArFyfCmRGRB1FTgzV9cRVVutHVtjX999GOMzBgKuABdfX8THBz7GlgdbdB0aIYSQCrbo2GMkZeXD08YIX7Tx0HU4hOgNapQihJAqbt+t1/j97HPIFAxd6tri4MQ2aORiruuwSGlYegAfrVT+//IfwJNjuo2nGhPxRJjYeCL29tmLlvYtIZFLsPrOal2HRQghpALtvhGFf65GAgDm9qkHIZ/+zCZEU/RuIYSQKiwmLRc/HnwAAJjmXxvrhzeHg5mBjqMiZaJub6DlOOX/948BUl/pNp5qzsPMA391/QsL2i2AhchC1+EQQgipIDdfpeKH/fcBAFO61EK7WjY6jogQ/UKNUoQQUoUtPPYYmRIZGruaY3yHGroOh5Q1/58Ap6ZAXjqwZwQgy9d1RNUah8NBL89e2Ntnr65DIYQQUgHi0vMwdttN5MsVCKhnh6861dJ1SIToHWqUIoSQKioiKRuH78YAAH7+qD74NNBm1cMXAp9uBsTmwOubwKn/6ToiAsBQYKjrEAghhJSzPKkcY/6+gcRMCbzsTLBsQCNwuRxdh0WI3qG/UAghpIpae/4lFAzo4GWDeo5mug6HlBdzV+Djtcr/X10DPDyg23gIIYSQKo4xhpn77uFOdDrMDQX4a1gzGIn4ug6LEL1EjVKEEFIFHbwTgz03lVPTj+9QU8fRkHLn1Q1o/ZXy/wcmAikvdRsPIYQQUoX9ezMa+2+/Bo/LwcrBTeBqRT1kCflQ1ChFCCFVzJqQF/hqx21I5Qy9fBzQwsNS1yGRitB5NuDSCpBkALuHA9I8XUdECCGEVDnxGXn4+fBDAMD0rrXRpqa1jiMiRL9RoxQhhFQhGy6GY+GxxwCAL9t7YsWgxjqOiFQYngD4ZCNgaAXE3QVOzNR1RIQQQkiVkpEnxVc7biMjTwYfZzN82c5T1yERoveoUYoQQqoAxhh+P/MM897cuZvSpRZm9agLHg24Wb2YOQH91gHgADc2Avf26DoiQgghpEqIz8hD/1WXcTU8BYZCHhZ/4kOTyBBSBuhdRAghVcDy08+w7NRTAMBXnWpicmeakrjaqtkFaDdd+f9Dk4GkZ7qNhxBCCNFzqdn5+Hz9VTxLyIKdqQi7x/iijr2prsMipEqgRilCCNFzN1+l4o+zyoaHOb29Ma2rFzgc6iFVrXWYCbi3A/KzlONL5efoOiJCCCFELz2MycDAdaF4lpAFe1Mx9oxtjfpONKsxIWWFGqUIIUSP5Unl+PrfO1AwoF9jJ4xo46HrkEhlwOMD/dcDRrZAwgPg2De6jogQQgjRK3IFw+rgF+i78iKexmfB2liEv0e2gIslzbRHSFmiRilCCNFjB8JeIzwpG7YmIszpXU/X4ZDKxMRe2TDF4QK3twFh23UdESGEEKIXIpNzMGhdKBYdfwypnKGrtx1OTGmHWnYmug6NkCqHGqUIIUQPJWdJkC9TYNOlCADAqHYeMDMU6DYoUvl4+ikf5QOAw1OBx0d1Gw8hhBBSiTHGsOt6JLqvOI/rEakwFvHx6yc+WDu0KayMRboOj5Aqia/rAAghhGjn6stkDN14DSYiPpKz82Eg4GFgM1ddh0Uqq3bTgdg7wOPDwK4hQO8VQJNhuo6KEEIIqTSyJTKceBCHXdejcDU8BQDQwt0SSwc0pMf1CCln1ChFCCF6JCdfhm/23EW+TIFkWT4A4OMmTtRLihSPywM+3aKciS9sG3BwEpAVD7T7GqAB8QkhhFRjzxMysTbkJQ7fjUWuVA4AEPK4mN61Nka18wSPS9+ThJQ3apQihBA9Mv/oI0Sm5MDRTIyu9exx/3U6xneooeuwSGXH4wN9/wSMbYGLy4CzPwOZ8UD3RcpGK0IIIaQaeBafiT23oqFQMNyJSse1iBTVOncrQ3zc2Bn9mjhR7yhCKhA1ShFCiJ7YeDEc265EAgAW9PeBX20bHUdE9AqHA3SZoxwA/dgM4PpfQHYC8PE6QCDWdXSEEEJIudp+NRJzDz2ARKZQWx5Qzw5ftvdEE1cLcKgHMSEVjhqlCCGkkkrLycevJ55AwYColBxcfJ4EAJjRrQ41SJEP13IMYGQD7PsSeHgAyEkBBv0DiM10HRkhhBBSLtaEvMDCY48BAG1qWsHbwRQOZgboVt8ejuYGOo6OkOqNGqUIIaQSYozhmz13cephvGoZhwOMbueJsX6eOoyMVAn1+wGGlsDOz4GIC8CmnsDne5S9qAghhJAqIFsiw9bQV7jwLBGXXyQDACZ3roXJnWuBS2NFEVJpUKMUIYRUErn5csgZg7GIj21XI3HqYTwEPA5Gt/OEkYiPPg0daYwDUnY8OwAjjgDbPgHi7wEb/IHP9wPWNXUdGSGEEPLB8qRy7Lv1GivOPEV8hkS1fHLnWpjqX1uHkRFCikKNUoQQomOJmRL8fuYZ9t2KhkSmQBM3C1x7Mx3xNwFe+LI9DWROyolDQ2DkCeDvfkBqOLCxKzDkX8Cpqa4jI4QQQrR25WUypu4KQ2x6HgDAxdIAX7bzhG8NK9S0NdFxdISQolCjFCGEVLDLL5KQmSdDpzq2OPMoAT8E3UNSVr5qfUGD1Oh2HhjVlh7VI+XM0hMYeQr45xMgNgzY3BsYuBWo2UXXkRFCCCHvlS9TIClLAkdzA2wNjcDcQw8hVzA4mIkxup0nBrd0hVhAs8wSUplRoxQhhFSgfbeiMW33HQCAWMBFnlQ5A4yXnQlm9/aGkYiPA2Gv4e9th9Y1rHUZKqlOjG2AwMPArqHAy3PA9oHAR6sBnwG6jowQQggpUmKmBEM3XMXjuEy08LBU3dTr19gJP39cH4ZC+lOXEH1A71RCCKkgu69H4bt9dwH81yBlIuLjc183TO5cS3Unr5GLuQ6jJNWWyAQYvBsIGgfc3wPsGw1kxQOtJ+k6MkIIIUTNw5gMTNx+Cy+TsgH818t8UqeamOZfGxwODWROiL6gRilCCCmFp/GZmHPgAdysDDHNvzZsTcWFyiRmSrDg2CPsu/UaAPBpU2fM7VsPj2Iz4GVvCmMRfRSTSoIvBPr9BRjbAldWASd/UDZMdfkJ4HJ1HR0hhJBqSiKT41p4Cq5HpOJpXCZOP4qHTMHgZG6A//Xyxr5b0WjlaYUv2nroOlRCiJboLyFCCNGSTK7AnpvRuPc6HftuvUauVI7Ql8k4eCcGHzd2QmBrd3jaGCPo9msEP03EuccJyJLIwOUA0/xrY3yHmuByOWjqZqnrUyGkMC4XCJgPmNgDp2YDl/8AMuOBHr8CBua6jo4QQkg1E52ag+Ebr+FFYrba8oB6dpj3UX3YmojRrb69jqIjhJQWNUoRQoiGMvOkiEnLw7zDD3HxeZJqua+nFXKkctyJSsM/VyOx/VokXCwMEZmSoyrj42yG2b280cydGqKIHuBwgDaTASNb4MAE4N5u4MkxoPkXQKsJgImdriMkhBBSRaXl5ONGRCrcrQ0RnpSD/wXdR1xGHiyNhOhQ2wbejqZo6GKO5pRTEVIlUKMUIYQUIzFTgvUXXiJXKkd0ai5CniZCrmAAAEMhD0N93VDP0Qw9GziAywFCXyRj8+UInHwYj8iUHJiI+RjR2h2ta1qjhbsluFwa34DomUafAaYOwPGZQMJD4NIK4MoaoPEQoPVXgCU9JkEIIeTDKRRMlR89T8jEslNPcfKB8tG8t9WyNcbWkS3gYGagizAJIeWIwxhjJRer2jIyMmBmZob09HSYmprqOhxCSCUQm56LIX9dVQ2gWcDMQIAaNkb45eMGqOtQ9OfFnag0hL5MRr8mTrA1KTzGFCF6R6EAnp0ALiwDoq8pl3G4QP3+QJspgH19nYZX2ehrXqGvcRNC9E9GnhRzDz7EwTuvUcvWBGIBF2FRaShoi3KzMkRseh74XA4CW7tjbIcaMBULdBs0IUQrmuYV1CgFSsIIIUpyBUNkSg6uh6dg8YnHSMrKh6OZGB83cYKQx0Ovhg6oYWOs6zAJ0R3GgFeXgYvLgOen/1teKwBoOxVw89VdbJWIvuYV+ho3IaRyuP86HS8Ss9DByxZmBkU3IGVJZPj3RhRWB79AQqak0Hp/bztM86+Nug6mkMjk4HI4EPBoog1C9JGmeQU9vkcIIQCexGVi3Labaj2jatsZY2NgczhbGOowMkIqEQ4HcG+jfMXeAS7+Bjw8oOxF9ewE4OoLtJ0G1PJXliWEEFKlXX6RhJMP4vEwNgPXwlMAAMYiPrrVt4evpxWau1vi7us0BD9JRHxGHq5HpCBPqgCg7A31U9/6SMyUQK5QoG0tGziZ//d4nojP08k5EUIqFvWUAt0ZJKS6USgYHsZm4Gp4Cl4mZiE8KRu3IlORJ1VALODC0dwAnzR1xqi2nhDy6e4cIe+V/EI51lTYdkAhVS6zawC0nQLU+xjgVr8/KvQ1r9DXuAkh5S8+Iw9P4jLB53LwIikbLxOz8Dg2E6Evk1VleFwOHM3FiErJfe++PK2NMLKdBz5p6kwNT4RUYfT4nhYoCSOk6krIyMO1iBRkS2RIyJDgaUIWLj9PQnJ2fqGybWpa4Y/PmsDSSKiDSAnRcxkxQOhK4MYmQPqmx6GFB9DmK8DDDzB3BXjVYzwQfc0r9DVuQkj5iU7NweZLEdga+gr5ckWh9XwuB/2bOKOBsxna17KBi6UBLr9IxoVnSbjyMhn3XqfDykiIfk2c4WltBG9HU9RzNAWHetMSUuVVu0apVatW4ddff0VsbCzq1auH5cuXo127dhptS0kYIforTypHSnY+UnPykZApQWRyDl4l5yAqNQdx6Xm4H5OOoj7ljIQ8tPK0Ql0HU3hYG6GGrTF8nMxohjxCSisnBbj2F3B1DZCb8t9yDg8wcwYsPd+8PP77v4U7IKg6MyqVVV6hbW4TEhKCadOm4cGDB3B0dMS3336LsWPHVnjchBD9dvVlMnbdiMKTuEw8jM1Q5VHuVobgcjlwtTREbTsT2JmK0bmOLdytjYrdl0Qmh4DLpfyKkGqoWo0ptWvXLkyZMgWrVq1CmzZtsHbtWnTv3h0PHz6Eq6urrsMjhJSSTK5AUlY+EjLzEJ8hQXxGHqJTcxH8JAGP4zJL3L6+kynsTMSwMBLCzdIQLTws0cTNggbOJKQ8GFoCHWYArScCt7YCYf8oH/GT5gBpr5Svl+cKb2fiWLixytIDEJsDPCHAFyl7WvHe/FvF77Jrm9uEh4ejR48eGD16NLZt24ZLly5h/PjxsLGxQf/+/XVwBoSQyipfpkBKdj6SsyVIzJQgMiUHEUk5iEzJxsvE7EIzD/t6WuFLP090qG2jdQ8nejyPEFKSKtFTqmXLlmjSpAlWr16tWla3bl189NFHWLBgQYnb051BQsqHQsGQnS9DTr4cWRIZciRyZOfLkC2RITtfjhyJTLk8/7/lORK5allabj7iMyRIypIU2dupAJ/LgYWREFZGQrhaGsLNyhCuloawNRXD28EULpY0UDkhOsUYkBUPpLx88woHUl68+fclIMnQfp9cwTsNVcI3/3/zL1+kXM4XKXth8UUAX/zWv+J3fn7zr+DNclVDmAjgC/9rDOMXHEv43//fGTerLPIKbXObGTNm4ODBg3j06JFq2dixY3Hnzh2EhoZqdEzKhwjRLwV5Vmae8pUlkSIjr+Bnqdq/SVkSPIvPQlx6HjIlsvfuV8jjon9TZ3TwskEDJzM4mlednqyEkIpTbXpK5efn4+bNm/juu+/Ulnft2hWXL1/Wal8vk7JgIlHvOVH8H8LF/4Vc3Dbva/0rfpsPOM57DlTc/j6kabKsj1Pcqve1mxa/TfHHKW6rMv29lXHMxV4HJdSnXMEgZwyMMcgVyp8ZUy6TKxgUjEGhAOSMQaFgULD//p8vUyBfroBEKodEpoBUrixfcH4KBuRK5cjJlyFbIv+voamg0UkiR65UXnyAWuJxObAxFsHOVARbUzFsTURo7GoBv9o2sDYW0tgEhFRmHA5gYq98ubVWX8eY8pG/1HBlj6qUl8r/p7wEUiMASSYgk6DQB55CCuRLK+oM3o/L/6+hiicEZKVLrz4ktwkNDUXXrl3VlgUEBGDDhg2QSqUQCDQfz6uofKiAZvlCyYU02Y8mh9JsP2UUTwUeSxMVeu4axaPBsTTajwaFKvgaUzAGxpT1yRhU/1e8WafKoYrIs6RyBpmcQSpXQCpXKMu/s13BMmV+pdwmTyp/81Io/5UpkPtWA1RGnhRZEtkHX088LgcWhkJYGwvhYmkIdytDuFoZwd3KEN4OprAyFn3YjgkhREt63yiVlJQEuVwOOzs7teV2dnaIi4srchuJRAKJRKL6OSNDeYe2zx+XwBVRjwpCyhqPy4GhkAdjER+GQh6MRHwYCfkwEin/byjkw6hguYgHQyEfxiI+TA34sDURw85UDEsjIXg0HgEhVQ+HAxhZKV/OzYovJ5cpG6JkEkAuBeT5gFwCyPLfLM9/s+ytl0wCyPL++1eaq1wuzX2zHwkgzQNkucrtZbnvbCP57xjy/DfHlSj//zaFTPmS5ih/lpSu1eFDcpu4uLgiy8tkMiQlJcHBwaHQNpQPEVI18LkcmIj5MBEL3vz71v9Fyv+bGwpQ09YYLpaGsDISwlQsoHGeCCGVgt43ShV4t5cEY6zYnhMLFizA3LlzCy03EfPAExWukuL2U1zHjPd9vBe7r2LLF7un9xxDuy2KL1+Wx9D+S6/YY2gZ7/sOrW28H/DrKLNjvP88il7J5XLA4wI8DgccDgc8LufN/5UNRTzum+VvfuZylC8elwMhnwshjwuRQPkvn8cFlwNw32zPASBWNTTxYfymMamgoclI+F8DlIjPpZ5MhJDS4fGVr8owIDpj/zVQyQoaxyT/LUtNARZ2KPVhtMltiitf1PIC2uZDxR2n6DIlrC9xDyUfR7N9lFiiDPZR8l4020cJ51smcZTNd3GJv189Ol9NryMOhwMuRxl3wc8cANw3eRb3TR71bp7F53Ig4HEh4HHB53HeyrcKciplrlaQg3E4gIDHhZjPhUjAg1jAg4jPhVjAg6GQV7jxSSSAWEB5FiFEf+l9o5S1tTV4PF6hO4cJCQmF7hgWmDlzJqZNm6b6OSMjAy4uLgid2YXGUCCEEELI+3E4ynGm+EKgqCdcDD9gjKy3fEhuY29vX2R5Pp8PKyurIrehfIgQQgghuqb3U08JhUI0bdoUp06dUlt+6tQptG7dushtRCIRTE1N1V6EEEIIIZXBh+Q2vr6+hcqfPHkSzZo1K3Y8KcqHCCGEEKJret8oBQDTpk3D+vXrsXHjRjx69AhTp05FZGQkxo4dq+vQCCGEEEK0VlJuM3PmTAwbNkxVfuzYsXj16hWmTZuGR48eYePGjdiwYQO+/vprXZ0CIYQQQkiJ9P7xPQAYOHAgkpOT8dNPPyE2Nhb169fH0aNH4ebmpuvQCCGEEEK0VlJuExsbi8jISFV5Dw8PHD16FFOnTsXKlSvh6OiI33//Hf3799fVKRBCCCGElIjDNJm/tYrLyMiAmZkZ0tPTqes6IYQQQkpFX/MKfY2bEEIIIZWPpnlFlXh8jxBCCCGEEEIIIYTolyrx+F5pFXQWy8go3Ww5hBBCCCEF+YS+dUanfIgQQgghZUXTfIgapQBkZmYCAFxcXHQcCSGEEEKqiszMTJiZmek6DI1RPkQIIYSQslZSPkRjSgFQKBSoXbs2bt68CQ6Ho/X2zZs3x/Xr17XeLiMjAy4uLoiKivrgsRs+9Nj6um1p60wfz7k02+trfenq2Lqsr9Jur4/1VZpj6+u2+vqepM8w7TDG0LRpUzx9+hRcrv6MlFDafAiofr9rXR2bvq+0Q99X2tPX9yR9X1Xs9vpYX6XdXh/rqzTHLs22muZD1FMKAJfLhVAo/OC7mTwer1QDgpqamn7w9qU5tj5uW+BD60xfz1lX15i+nrM+1ldpt9fH+irtsfVx2wL69p6kzzDtCYVCvWqQAkqfDwHV83etj5+/+nrO9H1VcdsW0Lf3JH1fVez2+lhfpd1eH+urtMcuzbaa5EP6lS2VowkTJuhk29LSVdxUXxW3bVlsr4vj6vKc9bG+Sru9PtZXaY+tj9uWlr6esz6+J/X1nEtLX89bX3/X+lhfpd1eH+urtMfWx21LS1/PWR/fk/r6fi4NfT1nek8WjR7f0yGaell7VGfaofrSDtWXdqi+tEd1ph2qr+qDftfaofrSDtWX9qjOtEP1pR2qL+1U9fqinlI6JBKJMGfOHIhEIl2HojeozrRD9aUdqi/tUH1pj+pMO1Rf1Qf9rrVD9aUdqi/tUZ1ph+pLO1Rf2qnq9UU9pQghhBBCCCGEEEJIhaOeUoQQQgghhBBCCCGkwlGjFCGEEEIIIYQQQgipcNQoRQghhBBCCCGEEEIqHDVKldL58+fRu3dvODo6gsPhICgoSG09h8Mp8vXrr78CACIiIoot8++//6r2k5qaiqFDh8LMzAxmZmYYOnQo0tLSKvBMy0ZJ9ZWVlYWJEyfC2dkZBgYGqFu3LlavXq1an5KSgkmTJsHLywuGhoZwdXXFV199hfT0dLX9VJX6AkpfZ3SNBamtj4+PR2BgIBwdHWFoaIhu3brh2bNnqvXV7RorbX1Vt+trwYIFaN68OUxMTGBra4uPPvoIT548USvDGMOPP/4IR0dHGBgYoEOHDnjw4IFqfXW6xsqivqrbNabPKCfSDuVE2qF8SDuUD2mPciLNUT6kPcqJ3oORUjl69Cj7/vvv2d69exkAtn//frX1sbGxaq+NGzcyDofDXrx4wRhjTCaTFSozd+5cZmRkxDIzM1X76datG6tfvz67fPkyu3z5Mqtfvz7r1atXRZ5qmSipvkaNGsVq1KjBzp07x8LDw9natWsZj8djQUFBjDHG7t27x/r168cOHjzInj9/zs6cOcNq1arF+vfvr7afqlJfjJW+zuga269ap1AoWKtWrVi7du3YtWvX2OPHj9mXX37JXF1dWVZWFmOs+l1jpa2v6nZ9BQQEsE2bNrH79++zsLAw1rNnT7X6YIyxhQsXMhMTE7Z371527949NnDgQObg4MAyMjIYY9XrGiuL+qpu15g+o5xIO5QTaYfyIe1QPqQ9yok0R/mQ9ignKh41SpWhor4g39W3b1/WqVOn95Zp1KgR++KLL1Q/P3z4kAFgV65cUS0LDQ1lANjjx49LFbMuFVVf9erVYz/99JPasiZNmrAffvih2P3s3r2bCYVCJpVKGWNVt74YK7s6q67X2JMnTxgAdv/+fdUymUzGLC0t2V9//VXsfqrLNVZW9VVdri/GGEtISGAAWEhICGNMmbTa29uzhQsXqsrk5eUxMzMztmbNmmL3U12usbKqr+p0jekryom0QzmRdigf0g7lQ9qjnEg7lA9pj3Ki/9DjexUoPj4eR44cwciRI4stc/PmTYSFhamVCQ0NhZmZGVq2bKla1qpVK5iZmeHy5cvlGnNFa9u2LQ4ePIjXr1+DMYZz587h6dOnCAgIKHab9PR0mJqags/nA6he9QVoX2fV+RqTSCQAALFYrFrG4/EgFApx8eLFYrerrtfYh9RXdbu+CrqYW1paAgDCw8MRFxeHrl27qsqIRCL4+fm991yryzVWFvVV3a6xqopyopJRTqQdyoc0R/mQ9ignej/Kh7RHOdF/qFGqAm3ZsgUmJibo169fsWU2bNiAunXronXr1qplcXFxsLW1LVTW1tYWcXFx5RKrrvz+++/w9vaGs7MzhEIhunXrhlWrVqFt27ZFlk9OTsa8efMwZswY1bLqVF+A9nVWna+xOnXqwM3NDTNnzkRqairy8/OxcOFCxMXFITY2tshtqvM19iH1VZ2uL8YYpk2bhrZt26J+/foAoDofOzs7tbJ2dnbFnmt1ucbKqr6q0zVWlVFOVDLKibRD+ZDmKB/SHuVExaN8SHuUE6mjRqkKtHHjRgwZMkSthf1tubm52L59e5F3DTkcTqFljLEil+uz33//HVeuXMHBgwdx8+ZNLF26FOPHj8fp06cLlc3IyEDPnj3h7e2NOXPmqK2rLvUFaFdn1f0aEwgE2Lt3L54+fQpLS0sYGhoiODgY3bt3B4/HK1S+ul9j2tZXdbu+Jk6ciLt372LHjh2F1r17XsWda3W6xsqivqrbNVaVUU5UMsqJtEP5kOYoH9Ie5UTFo3xIe5QTqePrOoDq4sKFC3jy5Al27dpVbJk9e/YgJycHw4YNU1tub2+P+Pj4QuUTExMLtaTqs9zcXMyaNQv79+9Hz549AQA+Pj4ICwvDkiVL0KVLF1XZzMxMdOvWDcbGxti/fz8EAoFqXXWpL0C7OgPoGgOApk2bIiwsDOnp6cjPz4eNjQ1atmyJZs2aqZWja0xJ0/oCqtf1NWnSJBw8eBDnz5+Hs7Ozarm9vT0A5V0qBwcH1fKEhIRC51qdrrGyqC+gel1jVRnlRCWjnEg7lA9pj/Ih7VFOVBjlQ9qjnKgw6ilVQTZs2ICmTZuiYcOG7y3Tp08f2NjYqC339fVFeno6rl27plp29epVpKenq3XV03dSqRRSqRRcrvplyePxoFAoVD9nZGSga9euEAqFOHjwYKG7rNWlvgDN66xAdb/G3mZmZgYbGxs8e/YMN27cQN++fVXr6Bor7H31VaA6XF+MMUycOBH79u3D2bNn4eHhobbew8MD9vb2OHXqlGpZfn4+QkJC1M61ulxjZVVfBarDNVYdUE5UMsqJtEP50IejfEh7lBNRPvQhKCd6j4oYTb0qy8zMZLdv32a3b99mANiyZcvY7du32atXr1Rl0tPTmaGhIVu9enWx+3n27BnjcDjs2LFjRa7v1q0b8/HxYaGhoSw0NJQ1aNCgUk/rWJyS6svPz4/Vq1ePnTt3jr18+ZJt2rSJicVitmrVKsYYYxkZGaxly5asQYMG7Pnz52rTYcpkMtVxqkp9MVb6OitA15iyvnbv3s3OnTvHXrx4wYKCgpibmxvr16+favvqdo2Vtr4KVJfra9y4cczMzIwFBwerXRs5OTmqMgsXLmRmZmZs37597N69e+yzzz5Tm863Ol1jZVFfBarLNabPKCfSDuVE2qF8SDuUD2mPciLNUT6kPcqJikeNUqV07tw5BqDQa/jw4aoya9euZQYGBiwtLa3Y/cycOZM5OzszuVxe5Prk5GQ2ZMgQZmJiwkxMTNiQIUNYampqGZ9N+SupvmJjY1lgYCBzdHRkYrGYeXl5saVLlzKFQvHe7QGw8PBw1XGqSn0xVvo6K0DX2HDGGGMrVqxgzs7OTCAQMFdXV/bDDz8wiURS4vZV9RorbX0VqC7XV3HXxqZNm1RlFAoFmzNnDrO3t2cikYi1b9+e3bt3T7W+Ol1jZVFfBarLNabPKCfSDuVE2qF8SDuUD2mPciLNUT6kPcqJisdhjDEQQgghhBBCCCGEEFKBaEwpQgghhBBCCCGEEFLhqFGKEEIIIYQQQgghhFQ4apQihBBCCCGEEEIIIRWOGqUIIYQQQgghhBBCSIWjRilCCCGEEEIIIYQQUuGoUYoQQgghhBBCCCGEVDhqlCKEEEIIIYQQQgghFY4apQghhBBCCCGEEEJIhaNGKUIIIYQQQgghhBBS4ahRihBCCCGEEEIIIYRUOGqUIoQQQgghhBBCCCEVjhqlCCGEEEIIIYQQQkiFo0YpQgghhBBCCCGEEFLhqFGKEEIIIYQQQgghhFQ4apQihBBCCCGEEEIIIRWOGqUIIYQQQgghhBBCSIWjRilCCCGEEEIIIYQQUuGoUYoQQgghhBBCCCGEVDhqlKpmevXqBXNzc0RFRRVal5KSAgcHB7Rp0wYKhaLcY4mIiACHw8HmzZvLZH8PHz7Ejz/+iIiIiA/ex9GjR/Hjjz+WKo7AwEC4u7uXah8Vxd3dHYGBgboOQ+XHH38Eh8Mp8/0GBweDw+EgODi4zPddkfLz8zF27Fg4ODiAx+OhUaNGJW5z6NAh9O7dG3Z2dhAKhbC0tETnzp3xzz//QCqVqpVNTk7GzJkz4e3tDUNDQ5iamqJVq1ZYuXJlobKkaqsq7xlCClD+836U/+gW5T/vp03+wxjDzp070a5dO9ja2kIsFsPZ2RkBAQFYv359ofLa5D6xsbH44Ycf4OvrC2tra5iamqJp06ZYt24d5HJ5WZ82qcT06fNOH1CjVDWzfv168Pl8jBo1qtC6iRMnIjMzE1u2bAGXq3+XxsOHDzF37txSJ2Vz584tu6CIVkaNGoXQ0NAy32+TJk0QGhqKJk2alPm+K9Lq1auxdu1afP/997h48SL+/vvvYssyxjBixAj06dMHCoUCy5Ytw+nTp7FlyxY0bNgQ48ePx6pVq1TlHz9+jMaNG2Pt2rUYMmQIjhw5gp07d6JJkyaYPHky/P39kZOTUxGnSSqBqvKeIaQA5T/vR/mPblH+837a5D8zZ87EZ599hrp162L9+vU4duwYfv75Z9jZ2eHAgQNqZbXNfW7evImtW7eic+fO2Lp1K/bu3Qs/Pz+MGzcOo0ePLrfzJ5XP//73P+zfv1/XYVQdjFQ7u3btYgDYmjVrVMv27dvHALBVq1aV+/FlMhnLy8tj4eHhDADbtGlTmez333//ZQDYuXPnPngfEyZMYKV9WwwfPpy5ubl90LbZ2dmlOra23Nzc2PDhwyv0mOTDjRo1ihkYGGhUdtGiRQwAmzt3bpHrY2Nj2YULFxhjyvekt7c3MzMzY0+ePClUdufOnQwAGzNmzIcHX0Yq+j1S3eTn5zOpVKrrMAgpF5T/FI/yH1KZaZr/5OTkMJFIxIYNG1bkerlcrvr/h+Q+KSkpLD8/v1DZgvdPZGSkJqdTrnJycnQdQpVGeWj5oEapamrQoEHM2NiYhYeHs6SkJGZra8v8/f0ZY4xdv36d9e7dm1lYWDCRSMQaNWrEdu3apbZ9QkICGzduHKtbty4zMjJiNjY2rGPHjuz8+fNq5QoSr0WLFrF58+Yxd3d3xuPx2LFjxwolZefPn2cA2Pbt2wvFu2XLFgaAXbt2rcjz2bRpEwNQ6PV2wrdhwwbm4+PDRCIRs7CwYB999BF7+PChav3w4cOL3Ed4eDhjjLE///yTtWvXjtnY2DBDQ0NWv359tmjRokJfTpomZX5+fqxevXosJCSE+fr6MgMDAzZw4EDGGGOvXr1iQ4YMYTY2NkwoFLI6deqwJUuWqH2ZMsbYjz/+yFq0aMEsLCyYiYkJa9y4MVu/fj1TKBRq5fLz89k333zD7OzsmIGBAWvTpg27evWqxkmZRCJh8+bNY15eXkwoFDJra2sWGBjIEhIS1Mq5ubmxnj17skOHDrFGjRoxsVjM6tSpww4dOsQYU/6e6tSpwwwNDVnz5s3Z9evX1bafM2dOoaT4zJkzzM/Pj1laWjKxWMxcXFxYv3791L4UVq1axXx8fJiRkREzNjZmXl5ebObMmar1586dKzJhP3DgAGvVqhUzMDBgxsbGrEuXLuzy5ctFxnT//n02aNAgZmpqymxtbdmIESNYWlqaWtndu3ezFi1aMFNTU2ZgYMA8PDzYiBEjSqzf3Nxc9t133zF3d3cmEAiYo6MjGz9+PEtNTVWVKen6flt+fj6ztLRkderUKXQtFKXgD5oFCxYUW6Zr166Mz+ez2NjY9+5r586dzN/fn9nb26t+/zNmzGBZWVmFyl65coX16tWLWVpaMpFIxDw9PdnkyZNV6wvq/ubNm6x///7M3Nyc2dvbM8Y0qzPGyub6KY4m20VHR7PRo0czZ2dnJhAImIODA+vfvz+Li4tTlUlPT2fTp09XO5fJkycXqjMAbMKECWzr1q2sTp06zMDAgPn4+KjeXwWePXvGAgMDWc2aNZmBgQFzdHRkvXr1Ynfv3lUrV/C+2Lp1K5s2bRpzdHRkHA6HPXr0qFTvmYSEBNU5F3xetG7dmp06darEOiWkvFH+Q/kP5T9VN/9JTExkANiMGTNKPHZZ5j4F79N36/Bdubm5bNq0aaxhw4bM1NSUWVhYsFatWrGgoKBCZeVyOfv9999Zw4YNmVgsZmZmZqxly5bswIEDqjIF193evXtZo0aNmEgkUp37vXv3WJ8+fZi5uTkTiUSsYcOGbPPmzYWOMW/ePFa7dm3VMRo0aMCWL1+uKvOh3+mabnfs2DHWqVMn1bVTp04dNn/+fLUymnw2F3wWnj17lo0dO5ZZWVkxS0tL9vHHH7PXr1+rldU0Vx0+fDgzMjJid+/eZf7+/szY2Ji1atVKte7dz7uyzE2rG2qUqqaSk5OZg4MD69ixIxswYAAzNzdnUVFR7OzZs0woFLJ27dqxXbt2sePHj7PAwMBCXwCPHz9m48aNYzt37mTBwcHs8OHDbOTIkYzL5ap98RUkXk5OTqxjx45sz5497OTJkyw8PLzIO4WNGzdmbdq0KRRv8+bNWfPmzYs9n4SEBDZ//nwGgK1cuZKFhoay0NBQVdJQsO6zzz5jR44cYVu3bmWenp7MzMyMPX36lDHG2PPnz9knn3zCAKi2Dw0NZXl5eYwxxqZOncpWr17Njh8/zs6ePct+++03Zm1tXehLV5ukzNLSkrm4uLA//viDnTt3joWEhLCEhATm5OTEbGxs2Jo1a9jx48fZxIkTGQA2btw4tX0EBgayDRs2sFOnTrFTp06xefPmMQMDg0K9Y4YPH844HA775ptv2MmTJ9myZcuYk5MTMzU1LTEpk8vlrFu3bszIyIjNnTuXnTp1iq1fv545OTkxb29vtTsybm5uzNnZmdWvX5/t2LGDHT16lLVs2ZIJBAI2e/Zs1qZNG7Zv3z62f/9+Vrt2bWZnZ6e2/btJWXh4OBOLxczf358FBQWx4OBg9s8//7ChQ4eqPuB37NjBALBJkyaxkydPstOnT7M1a9awr776SrWfopKyf/75hwFgXbt2ZUFBQWzXrl2sadOmTCgUqnoQvR2Tl5cXmz17Njt16hRbtmwZE4lEar/7y5cvMw6HwwYNGsSOHj3Kzp49yzZt2sSGDh363vpVKBQsICCA8fl89r///Y+dPHmSLVmyhBkZGbHGjRurrr/Q0FDWo0cPZmBgUOj6ftfly5c1TsoYY+zLL79kANijR4+KLbNq1SoGgO3YseO9+5o3bx777bff2JEjR1hwcDBbs2YN8/DwYB07dlQrd/z4cSYQCJiPjw/bvHkzO3v2LNu4cSMbNGiQqkxB3bu5ubEZM2awU6dOsaCgII3rrKyun6Josl10dDRzcHBg1tbWbNmyZez06dNs165d7IsvvlDVdXZ2NmvUqJFamRUrVjAzMzPWqVMntT+wADB3d3fWokULtnv3bnb06FHWoUMHxufz2YsXL1TlQkJC2PTp09mePXtYSEgI279/P/voo4+YgYEBe/z4sapcwfvCycmJffLJJ+zgwYPs8OHDLDk5uVTvmYCAAGZjY8PWrVvHgoODWVBQEJs9ezbbuXPne+uUkIpA+Q/lP5T/VN38hzHGatasyUxMTNjSpUvZo0ePir05V5a5z/Dhwxmfz2dJSUnvLZeWlsYCAwPZ33//zc6ePcuOHz/Ovv76a8blctmWLVvUyg4dOpRxOBw2atQoduDAAXbs2DH2yy+/sBUrVqjKuLm5MQcHB+bp6ck2btzIzp07x65du8YeP37MTExMWI0aNdjWrVvZkSNH2GeffaZqKC+wYMECxuPx2Jw5c9iZM2fY8ePH2fLly9mPP/6oKvOh3+mabLd+/XrG4XBYhw4d2Pbt29np06fZqlWr2Pjx41VlNP1sLmiU8vT0ZJMmTWInTpxg69evZxYWFoVyUE1z1eHDhzOBQMDc3d3ZggUL2JkzZ9iJEydU697+vCvL3LQ6okapauzo0aOqOw5///03Y4yxOnXqsMaNGxd6fKNXr17MwcGh0J2qAjKZjEmlUta5c2f28ccfq5YXJF41atQodEetqKSs4APl9u3bqmXXrl1jAAp9WL+ruO7rqampzMDAgPXo0UNteWRkJBOJRGzw4MGqZZp2X5fL5UwqlbKtW7cyHo/HUlJSVOu0ScoAsDNnzqgt/+677xgAdvXqVbXl48aNYxwOp8guxm/H9NNPPzErKyvVl/CjR48YADZ16lS18gVJSUlJWUHSs3fvXrXl169fL/TIg5ubGzMwMGDR0dGqZWFhYQwAc3BwULsDEBQUxACwgwcPqpa9m5Tt2bOHAWBhYWHFxjdx4kRmbm7+3nN4NymTy+XM0dGRNWjQQO2azszMZLa2tqx169aFYlq8eLHaPsePH8/EYrGqnpcsWcIAFLp7WJLjx48Xuf+Cx0zWrVunWlZwx6YkBV3O335E5X26devGAKi+MIty7NixQslMSRQKBZNKpSwkJIQBYHfu3FGtq1GjBqtRowbLzc0tdvuCup89e7back3rrKyunw/d7osvvmACgUCtR8K7FixYwLhcbqG75gWxHz16VLUMALOzs2MZGRmqZXFxcYzL5b73Tq9MJmP5+fmsVq1aap8DBe+L9u3bF9qmNO8ZY2NjNmXKlGLjIUTXKP+h/Ifyn6qZ/zCmfN+4urqq3uMmJiasV69ebOvWrWoNVGWV+5w4cYJxudxC15kmCj4/Ro4cyRo3bqxaXtB78vvvv3/v9m5ubozH4xV6bwwaNIiJRKJCjxN2796dGRoaqn5XvXr1Yo0aNXrvMT70O72k7TIzM5mpqSlr27bte3v1a/rZXPAZ+naDFmOMLV68mAEotrfb+3LVgl6kGzduLLTdu593ZZmbVkf6N5ojKTPdu3dHq1atUKtWLXz++ed4/vw5Hj9+jCFDhgAAZDKZ6tWjRw/ExsbiyZMnqu3XrFmDJk2aQCwWg8/nQyAQ4MyZM3j06FGhY/Xp0wcCgaDEmD777DPY2tpi5cqVqmV//PEHbGxsMHDgwA86z9DQUOTm5haaZcXFxQWdOnXCmTNnNNrP7du30adPH1hZWYHH40EgEGDYsGGQy+V4+vTpB8VmYWGBTp06qS07e/YsvL290aJFC7XlgYGBYIzh7NmzamW7dOkCMzMzVUyzZ89GcnIyEhISAADnzp0DANXvtcCAAQPA5/NLjPHw4cMwNzdH79691a6JRo0awd7evtCMLo0aNYKTk5Pq57p16wIAOnToAENDw0LLX716VeyxGzVqBKFQiC+//BJbtmzBy5cvC5Vp0aIF0tLS8Nlnn+HAgQNISkoq8ZyePHmCmJgYDB06VG1QW2NjY/Tv3x9XrlwpNKh3nz591H728fFBXl6eqp6bN28OQFmvu3fvxuvXr0uMA4Dq9/nu9fnpp5/CyMhI4+uzvDHGAKDE2YFevnyJwYMHw97eXnVN+vn5AYDqs+Hp06d48eIFRo4cCbFYXOKx+/fvr/azpnVWXtePptsdO3YMHTt2VF3rRTl8+DDq16+PRo0aqb2/AgICipwxqWPHjjAxMVH9bGdnB1tbW7X3kUwmw/z58+Ht7Q2hUAg+nw+hUIhnz54V+fn8bv0WRZv3TIsWLbB582b8/PPPuHLlCs3cSCodyn8o/6H8p+rmP82bN8fz589x/PhxzJo1C76+vjhz5gyGDRuGPn36qPIZTZSU+9y6dQsDBgxAq1atsGDBAo32+e+//6JNmzYwNjZWfX5s2LBB7fPj2LFjAIAJEyaUuD8fHx/Url1bbdnZs2fRuXNnuLi4qC0PDAxETk6OalD9Fi1a4M6dOxg/fjxOnDiBjIyMQvv/0O/0kra7fPkyMjIyMH78+GLrV9vPZqDo6xVQf79pkqu+TZM8qSxz0+qIGqWqOZFIBKFQCACIj48HAHz99dcQCARqr/HjxwOA6gtv2bJlGDduHFq2bIm9e/fiypUruH79Orp164bc3NxCx3FwcNA4njFjxmD79u1IS0tDYmIidu/ejVGjRkEkEn3QOSYnJxcbg6Ojo2r9+0RGRqJdu3Z4/fo1VqxYgQsXLuD69euq5LGoc9ZEUTElJycXG2vBegC4du0aunbtCgD466+/cOnSJVy/fh3ff/+9WkwF5e3t7dX2x+fzYWVlVWKM8fHxSEtLg1AoLHRdxMXFFUqCLC0t1X4uuL6KW56Xl1fssWvUqIHTp0/D1tYWEyZMQI0aNVCjRg2sWLFCVWbo0KHYuHEjXr16hf79+8PW1hYtW7bEqVOnit1vSdeEQqFAamqq2vJ366rgeiyo5/bt2yMoKAgymQzDhg2Ds7Mz6tevjx07dhQbR0EsfD4fNjY2ass5HA7s7e01uj7f5erqCgAIDw8vs/IFszq9m+C8LSsrC+3atcPVq1fx888/Izg4GNevX8e+ffsA/FdXiYmJAABnZ2eN4nv396RpnZXX9aPpdomJiSWeY3x8PO7evVvovWViYgLGWKH3V1HvWZFIpPYZNG3aNPzvf//DRx99hEOHDuHq1au4fv06GjZs+MGfz9q8Z3bt2oXhw4dj/fr18PX1haWlJYYNG4a4uLgSj0NIRaH8h/KfklD+o6RP+U8BgUCAgIAA/PLLLzhx4gSioqLQoUMHHD58WNXgU9rc5/bt2/D390etWrVw9OhRjd6n+/btw4ABA+Dk5IRt27YhNDQU169fxxdffKF2PSQmJoLH4xW6dotSmvfSzJkzsWTJEly5cgXdu3eHlZUVOnfujBs3bqi2+dDv9JK20yQX1OazuUBJ16umuWoBQ0NDmJqavvdcgbLNTaujkm8TkGrD2toagPIDql+/fkWW8fLyAgBs27YNHTp0wOrVq9XWZ2ZmFrldSb0r3jZu3DgsXLgQGzduRF5eHmQyGcaOHavx9u8q+HCKjY0ttC4mJkZ13u8TFBSE7Oxs7Nu3D25ubqrlYWFhHxwXUHS9WFlZFRsr8N/vaefOnRAIBDh8+LBab5OgoKBC+wOAuLg4tTt4MplMoy98a2trWFlZ4fjx40Wuf7vXRnlo164d2rVrB7lcjhs3buCPP/7AlClTYGdnh0GDBgEARowYgREjRiA7Oxvnz5/HnDlz0KtXLzx9+lTt91WgpGuCy+XCwsJC61j79u2Lvn37QiKR4MqVK1iwYAEGDx4Md3d3+Pr6FrmNlZUVZDIZEhMT1b7IGGOIi4tT3YHURrNmzWBpaYkDBw5gwYIFJb7//P39sW7dOgQFBeG7774rskxQUBD4fD46dOhQ7H7Onj2LmJgYBAcHq+44AUBaWppauYLzjI6O1uh83o1fmzorj+unQEnb2djYlHiO1tbWMDAwwMaNG4tdr61t27Zh2LBhmD9/vtrypKQkmJubFyqvyeezNu8Za2trLF++HMuXL0dkZCQOHjyI7777DgkJCcV+jhCiS5T/FI/yH8p/NFFZ8p/iWFlZYcqUKQgODsb9+/fRo0ePUuU+t2/fRpcuXeDm5oaTJ0/CzMxMozi2bdsGDw8P7Nq1S+09IJFI1MrZ2NhALpcjLi6uxIbt0ryX+Hw+pk2bhmnTpiEtLQ2nT5/GrFmzEBAQgKioKBgaGn7wd3pJ22mSC2rz2awpTXPVApp+hpd1blrdUE8pouLl5YVatWrhzp07aNasWZGvgi9gDodT6I7A3bt3Vd1BS8PBwQGffvopVq1ahTVr1qB3796quxnv825LeAFfX18YGBhg27Ztasujo6NV3VtL2kfBB9Lb58wYw19//aXFmWmmc+fOePjwIW7duqW2fOvWreBwOOjYsaMqJj6fDx6PpyqTm5uLv//+W227gi/Sf/75R2357t27IZPJSoynV69eSE5OhlwuL/Ka0PbL4EPxeDy0bNlSdXf23foBACMjI3Tv3h3ff/898vPz8eDBgyL35eXlBScnJ2zfvl2tG3d2djb27t0LX19fta722hKJRPDz88OiRYsAKJOX4hRcf+9en3v37kV2drba9akpgUCAGTNm4PHjx5g3b16RZRISEnDp0iUAwMcffwxvb28sXLiwyEcxdu3ahZMnT2LUqFHvvWtX1PsEANauXav2c+3atVGjRg1s3LixUCKmiQ+ps7K8fjTdrnv37jh37lyhruVv69WrF168eAErK6si31/u7u4axfC2oj6fjxw5ovEjFUX50PeMq6srJk6cCH9//yLrnJDKgPIfyn+KQvmP9nSd/0il0mIbHAseyyroLfShuU9YWBi6dOkCZ2dnnDp1SqtGPA6HA6FQqNbQERcXhwMHDqiV6969OwAUavzWVOfOnVWNL2/bunUrDA0N0apVq0LbmJub45NPPsGECROQkpKi6iX2tg/9Ti9qu9atW8PMzAxr1qwp9pFKbT6bNaVprqqt8spNqwvqKUXUrF27Ft27d0dAQAACAwPh5OSElJQUPHr0CLdu3cK///4LQPlFPW/ePMyZMwd+fn548uQJfvrpJ3h4eGj0RV+SyZMno2XLlgCATZs2abRN/fr1AQDr1q2DiYkJxGIxPDw8YGVlhf/973+YNWsWhg0bhs8++wzJycmYO3cuxGIx5syZo9pHgwYNAACLFi1C9+7dwePx4OPjA39/fwiFQnz22Wf49ttvkZeXh9WrVxfq4lwWpk6diq1bt6Jnz5746aef4ObmhiNHjmDVqlUYN26c6rnxnj17YtmyZRg8eDC+/PJLJCcnY8mSJYU+ZOvWrYvPP/8cy5cvh0AgQJcuXXD//n0sWbJEo+6ogwYNwj///IMePXpg8uTJaNGiBQQCAaKjo3Hu3Dn07dsXH3/8cZnXA6Act+Ps2bPo2bMnXF1dkZeXp+pR0qVLFwDA6NGjYWBggDZt2sDBwQFxcXFYsGABzMzMir3LxuVysXjxYgwZMgS9evXCmDFjIJFI8OuvvyItLQ0LFy7UOtbZs2cjOjoanTt3hrOzM9LS0rBixQq159SL4u/vj4CAAMyYMQMZGRlo06YN7t69izlz5qBx48YYOnSo1rEAwDfffINHjx5hzpw5uHbtGgYPHgwXFxekp6fj/PnzWLduHebOnYs2bdqAx+Nh79698Pf3h6+vL6ZPnw5fX19IJBIcOnQI69atg5+fH5YuXfreY7Zu3RoWFhYYO3Ys5syZA4FAgH/++Qd37twpVHblypXo3bs3WrVqhalTp8LV1RWRkZE4ceJEoT8gPrTOyuv60XS7n376CceOHUP79u0xa9YsNGjQAGlpaTh+/DimTZuGOnXqYMqUKdi7dy/at2+PqVOnwsfHBwqFApGRkTh58iSmT5+u+izUVK9evbB582bUqVMHPj4+uHnzJn799VeNH5csiqbvmfT0dHTs2BGDBw9GnTp1YGJiguvXr+P48ePF3uUkpDKg/Ifyn3dR/qOZypT/pKenw93dHZ9++im6dOkCFxcXZGVlITg4GCtWrEDdunVV30Ufkvs8efJEVf+//PILnj17hmfPnqnW16hRo9DjW2/r1asX9u3bh/Hjx+OTTz5BVFQU5s2bBwcHB7X9tGvXDkOHDsXPP/+M+Ph49OrVCyKRCLdv34ahoSEmTZr03nqYM2cODh8+jI4dO2L27NmwtLTEP//8gyNHjmDx4sWqnl29e/dG/fr10axZM9jY2ODVq1dYvnw53NzcUKtWrQ/+TtdkO2NjYyxduhSjRo1Cly5dMHr0aNjZ2eH58+e4c+cO/vzzTwCafzZrSptcVRtlmZtWSxU/tjqpTPz8/Fi9evXUlt25c4cNGDCA2draMoFAwOzt7VmnTp3UZvKSSCTs66+/Zk5OTkwsFrMmTZqwoKCgQjMRFMww8+uvvxY6dlGzz7zN3d2d1a1bV6vzWb58OfPw8GA8Hq/QvtevX898fHyYUChkZmZmrG/fvuzBgwdq20skEjZq1ChmY2PDOBwOA8DCw8MZY4wdOnSINWzYkInFYubk5MS++eYb1awcb894o83sM+/WfYFXr16xwYMHMysrKyYQCJiXlxf79ddfC83+s3HjRubl5cVEIhHz9PRkCxYsYBs2bFCLu+C8pk+fzmxtbZlYLGatWrVioaGhzM3NrcTZZxhjTCqVsiVLlqjO39jYmNWpU4eNGTOGPXv2TFXOzc2N9ezZs9D2ANiECRPUlhV1bbw7+0xoaCj7+OOPmZubGxOJRMzKyor5+fmpzVizZcsW1rFjR2ZnZ8eEQiFzdHRkAwYMYHfv3lWVKWpKZMaUM+C0bNmSicViZmRkxDp37swuXbqkVqYgpsTERLXlBbN8FNTz4cOHWffu3ZmTkxMTCoXM1taW9ejRQ2165eLk5uayGTNmMDc3NyYQCJiDgwMbN25coalhtZl9psCBAwdYz549mY2NDePz+aqpcdesWcMkEola2aSkJPbdd9+xOnXqqH7PLVq0YH/++Weh2aOKc/nyZebr68sMDQ2ZjY0NGzVqFLt161aR7/XQ0FDWvXt3ZmZmxkQiEatRo4ba7DXF1T1jmtVZWV0/RdF0u6ioKPbFF18we3t7JhAIVOXi4+NVZbKystgPP/zAvLy8VJ9PDRo0YFOnTmVxcXGqckW9jxhjhd7HqampbOTIkczW1pYZGhqytm3bsgsXLjA/Pz/m5+enKlfwvvj3338L7fND3zN5eXls7NixzMfHh5mamjIDAwPm5eXF5syZozb7FCG6RvkP5T+U/1S9/EcikbAlS5aw7t27M1dXVyYSiZhYLGZ169Zl3377LUtOTi60jTa5T8G5F/cq7j39toULFzJ3d3cmEolY3bp12V9//VXo98+YcqbE3377jdWvX1/13vX19WWHDh1SlSnuumOMsXv37rHevXszMzMzJhQKWcOGDQvFt3TpUta6dWtmbW3NhEIhc3V1ZSNHjmQRERGMsQ//Ttdmu6NHjzI/Pz9mZGTEDA0Nmbe3d6HZDjX5bC743bw7m3FR7wFNc9X3XXdFfd6VVW5aHXEY02IKAkIqyN27d9GwYUOsXLlSNZAdIYQQQkhVRvkPIYSQ6oYapUil8uLFC7x69QqzZs1CZGQknj9/Xqpn2wkhhBBCKjvKfwghhFRXNNA5qVTmzZsHf39/ZGVl4d9//6WEjBBCCCFVHuU/hBBCqivqKUUIIYQQQgghhBBCKhz1lCKEEEIIqSJev36Nzz//HFZWVjA0NESjRo1w8+ZNXYdFCCGEEFIknTZKrV69Gj4+PjA1NYWpqSl8fX1x7Ngx1XrGGH788Uc4OjrCwMAAHTp0wIMHD9T2IZFIMGnSJFhbW8PIyAh9+vRBdHR0RZ8KIYQQQohOpaamok2bNhAIBDh27BgePnyIpUuXwtzcXNehEUIIIYQUSaeP7x06dAg8Hg81a9YEAGzZsgW//vorbt++jXr16mHRokX45ZdfsHnzZtSuXRs///wzzp8/jydPnsDExAQAMG7cOBw6dAibN2+GlZUVpk+fjpSUFNy8eRM8Hk9Xp0YIIYQQUqG+++47XLp0CRcuXNB1KIQQQgghGql0Y0pZWlri119/xRdffAFHR0dMmTIFM2bMAKDsFWVnZ4dFixZhzJgxSE9Ph42NDf7++28MHDgQABATEwMXFxccPXoUAQEBGh1ToVAgJiYGJiYm4HA45XZuhBBCCKn6GGPIzMyEo6MjuNyK65Tu7e2NgIAAREdHIyQkBE5OThg/fjxGjx5dZHmJRAKJRKL6WaFQICUlBVZWVpQPEUIIIaRUNM6HWCUhk8nYjh07mFAoZA8ePGAvXrxgANitW7fUyvXp04cNGzaMMcbYmTNnGACWkpKiVsbHx4fNnj1b42NHRUUxAPSiF73oRS960YteZfaKiooqfYKkBZFIxEQiEZs5cya7desWW7NmDROLxWzLli1Flp8zZ47O64he9KIXvehFL3pV7VdJ+RAfOnbv3j34+voiLy8PxsbG2L9/P7y9vXH58mUAgJ2dnVp5Ozs7vHr1CgAQFxcHoVAICwuLQmXi4uKKPea7dwbZm85iUVFRMDU1LZPzIoQQQkj1lJGRARcXF9VQAxVFoVCgWbNmmD9/PgCgcePGePDgAVavXo1hw4YVKj9z5kxMmzZN9XN6ejpcXV0pHyKEEEJIqWmaD+m8UcrLywthYWFIS0vD3r17MXz4cISEhKjWv9t9nDFWYpfyksosWLAAc+fOLbS8YMB1QgghhJDSquhH4BwcHODt7a22rG7duti7d2+R5UUiEUQiUaHllA8RQgghpKyUlA/pdPY9ABAKhahZsyaaNWuGBQsWoGHDhlixYgXs7e0BoFCPp4SEBFXvKXt7e+Tn5yM1NbXYMkWZOXMm0tPTVa+oqKgyPitCCCGEkIrVpk0bPHnyRG3Z06dP4ebmpqOICCGEEELeT+eNUu9ijEEikcDDwwP29vY4deqUal1+fj5CQkLQunVrAEDTpk0hEAjUysTGxuL+/fuqMkURiUSqu4B0N5AQQgghVcHUqVNx5coVzJ8/H8+fP8f27duxbt06TJgwQdehEUIIIYQUSaeP782aNQvdu3eHi4sLMjMzsXPnTgQHB+P48ePgcDiYMmUK5s+fj1q1aqFWrVqYP38+DA0NMXjwYACAmZkZRo4cienTp8PKygqWlpb4+uuv0aBBA3Tp0kWXp0YIIYQQUqGaN2+O/fv3Y+bMmfjpp5/g4eGB5cuXY8iQIboOjRBCCCGkSDptlIqPj8fQoUMRGxsLMzMz+Pj44Pjx4/D39wcAfPvtt8jNzcX48eORmpqKli1b4uTJk2oDZf3222/g8/kYMGAAcnNz0blzZ2zevBk8Hq/M45XL5ZBKpWW+X6I9oVBYodNsE0JKTypX4HZkGhq5mEPIp/cvIeWhV69e6NWrV7keg/Khyo/yJEIqP7mCISwqFY1cLMDjVuwYhIRUJhxWMPVcNZaRkQEzMzOkp6cX+SgfYwxxcXFIS0ur+OBIkbhcLjw8PCAUCnUdCiFEQ3+df4lfjj5CC3dLbBzRHMYinc+1QUi5KCmvqKwoH6o6KE8ipPJbf+Elfj7yCF91qolpXb10HQ4hZU7TfIj+ItBAQQJma2sLQ0PDCp9Nh6hTKBSIiYlBbGwsXF1d6fdBiJ448zgeAHAtIgUjNl3Dzi996c4gIXqE8iH9QHkSIfrh5ENlXrTzehQmd6lNORGptqhRqgRyuVyVgFlZWek6HPKGjY0NYmJiIJPJIBAIdB0OIaQECgXDo9hM1c/XI1Jx9nEC/L2Lnyn1bYwxnH2cgNj0PDiYidGpji39oUVIBaJ8SL9QnkRI5ZYnlSMsMg0AkJApQeiLZLStZa3boAjREXrYvAQFYyYYGhrqOBLytoLu6HK5XMeREEI0EZ6cjfRcKUR8Lka29QAAbA2N0GhbxhjmHnqIkVtu4Ieg+xi55QaO3Y8rx2gJIe+ifEi/UJ5ESOV2OzIN+XKF6uf9t1/rMBpCdIsapTREd+QrF/p9EKJfbr+5G+jjbIbA1u7gcIALz5LwPCGrxG1XnHmGzZcjAAB17JUTXey4FlleoRJC3oO+f/UD/Z4IqdyuvEwGAHhYGwEA9t+ORs/fL+B2ZKouwyJEJ6hRinywDh06YMqUKe8tw+FwEBQUVCHxEEIqr4Ikq7GrBVwsDdG5jvKxvaEbruKfq68gVxQ958aJB3FYfvoZAGBe33r4a1gzAMDF50mITs2pgMgJIaT03N3dsXz58mLXR0REgMPhICwsrMJiIoToTkGj1Kh2HmjpYQkFAx7EZGD67jvF5kSEVFXUKFWFxcXFYdKkSfD09IRIJIKLiwt69+6NM2fOqJW7fPkyevToAQsLC4jFYjRo0ABLly4tky7fsbGx6N69u0ZlqQGLkKqroKdUIxdzAMA3AV6wMxUhNj0P3++/j74rL+KLzdfx6ZrLGPP3DUzacRvDN17DlJ1hAIAv2nhgqK87XCwN0bqGFRgD9tyM1s3JEEL0SkJCAsaMGQNXV1eIRCLY29sjICAAoaGhauU0yYciIiIwcuRIeHh4wMDAADVq1MCcOXOQn59fqhhdXFwQGxuL+vXrl1iWGrAI0W95UjluR6UBAHw9rbDzy1a48G1HmBsK8DIpGwfv0KN8pHqhgc6rqIiICLRp0wbm5uZYvHgxfHx8IJVKceLECUyYMAGPHz8GAOzfvx8DBgzAiBEjcO7cOZibm+P06dP49ttvceXKFezevbtUXcDt7e3L6pQIIXoqPVeKJ/HKQc4LGqW87E0Q8k1H7LgWiWWnnuL+6wwAGUVu37qGFWb2qKP6eUAzF1x+kYzVwS9gbyrGoBau5X0KhBA91r9/f0ilUmzZsgWenp6Ij4/HmTNnkJKSoiqjaT70+PFjKBQKrF27FjVr1sT9+/cxevRoZGdnY8mSJR8cI4/Ho5yJkGriangK8mUK2JuK4WFtBA6HAxdLQ4xu54lfTzzB72eeo7ePI/g86j9CqglGWHp6OgPA0tPTC63Lzc1lDx8+ZLm5uTqI7MN1796dOTk5saysrELrUlNTGWOMZWVlMSsrK9avX79CZQ4ePMgAsJ07dxZ7DD8/PzZp0iT2zTffMAsLC2ZnZ8fmzJmjVgYA279/P2OMMYlEwiZMmMDs7e2ZSCRibm5ubP78+Ywxxtzc3BgA1cvNze2956evvxdCqqPd1yOZ24zDzH9ZcJHr49Nz2apzz9nWy+Hs8J0YtvVyONt48SXbcfUVu/IiicnkCrXy+TI5+2LTNeY24zBzm3GY7b4eWRGnQYjG3pdXVGZVMR9KTU1lAFhwcNGfP4yVPh9avHgx8/DweG8cbm5u7JdffmEjRoxgxsbGzMXFha1du1a1Pjw8nAFgt2/fZowxlpKSwgYPHsysra2ZWCxmNWvWZBs3bmSMMbV8CQDz8/MrdDx9/X0RUh38dOgBc5txmH3zb5ja8sw8KWs09wRzm3GYbQ2N0FF0hJQdTfMh6imlJcYYcqW6mcnEQMDTqNdSSkoKjh8/jl9++QVGRkaF1pubmwMATp48ieTkZHz99deFyvTu3Ru1a9fGjh07MHDgwGKPtWXLFkybNg1Xr15FaGgoAgMD0aZNG/j7+xcq+/vvv+PgwYPYvXs3XF1dERUVhaioKADA9evXYWtri02bNqFbt27g8XglnichRD8cuhsLAOjt41jkeltTMcZ1qKHx/gQ8Lv4a1gyLTjzG2pCXmH/0EbrUtYOFkbBM4iWEaEYfciJjY2MYGxsjKCgIrVq1gkgkKlSmtPlQeno6LC0tS4xl6dKlmDdvHmbNmoU9e/Zg3LhxaN++PerUqVOo7P/+9z88fPgQx44dg7W1NZ4/f47c3FwAwLVr19CiRQucPn0a9erVU820RwjRDxeeJQIA2te2UVtuLOJjSpfamHPwAX479RR9GjrCzEDw3n2dehiPY/diMad3PZgZvr8sIZUVNUppKVcqh/fsEzo59sOfAmAoLPlX9vz5czDGikxy3vb06VMAQN26dYtcX6dOHVWZ4vj4+GDOnDkAgFq1auHPP//EmTNnimyUioyMRK1atdC2bVtwOBy4ubmp1tnYKD+Uzc3Nqfs6IVVISnY+Lj1PAgD0alh0o9SH4HI5+LqrF0KeJOJxXCZ+PvIISwc0LLP9E0JKpg85EZ/Px+bNmzF69GisWbMGTZo0gZ+fHwYNGgQfHx8ApcuHXrx4gT/++ANLly4tMZYePXpg/PjxAIAZM2bgt99+Q3BwcJH5WmRkJBo3boxmzZSTO7i7u6vWFeRMVlZWlDMRomdi03PxND4LXA7QtqZ1ofWDW7pia2gEXiRm46/zL/F1gFex+8qXKTBz310kZeXD2cIA07oWX5aQyoweVK2CGFPO2KDpWFAF5YtaXtI+ChK6Ag4ODkhISCiybGBgIMLCwuDl5YWvvvoKJ0+e1Cg+Qoj+OnY/FnIFQ30nU9W0x2VFwOPi54+UgwLvvRWNjRfDy3T/hJCqoX///oiJicHBgwcREBCA4OBgNGnSBJs3b1Yrp20+FBMTg27duuHTTz/FqFGjSozj7ZyJw+HA3t6+2Jxp3Lhx2LlzJxo1aoRvv/0Wly9fLnH/hJDK78JT5Y06H2dzmBsW7uUo4HEx1b82AODAndfFfi4ByhwrKUs5ycL2a1HIlynKIWKia0wqRX5kJHIfPIAsOfm914S+op5SWjIQ8PDwpwCdHVsTtWrVAofDwaNHj/DRRx8VW652beUH3qNHj9C6detC6x8/fgxvb+/3HksgUO8myuFwoFAU/YHYpEkThIeH49ixYzh9+jQGDBiALl26YM+ePSWcESFEX517rOyi3r2+Q7nsv5m7Jb7rXgcLjz3GvCMP0cDZDM3dS36MhhBSevqQExUQi8Xw9/eHv78/Zs+ejVGjRmHOnDkIDAz8oHwoJiYGHTt2hK+vL9atW6dRDNrkTN27d8erV69w5MgRnD59Gp07d8aECRNKNZg6IUT3jtxTDmng986je2/rVMcWIj4XUSm5eByXiboOpkWW23bller/SVkSHH8Qhz5l2CudVAzGGORpaZBGRSE/KgrSqGjkRyv/lUZHQxobC7z1XcERiSCwt4fAyRF8BwcIHB0hcHCEwNEBAgcH8B0cwNWzx7qpUUpLHA5Ho+7iumRpaYmAgACsXLkSX331VaFxpdLS0mBubo6uXbvC0tISS5cuLZSEHTx4EM+ePcO8efPKNDZTU1MMHDgQAwcOxCeffIJu3bohJSUFlpaWEAgEatMuE0L0m1zBcDU8GUDRXdTLypj2nrgXnY4j92Jx5G4sNUoRUkH0IScqjre3N4KCggBA63zo9evX6NixI5o2bYpNmzaByy2fBw9sbGwQGBiIwMBAtGvXDt988w2WLFmiGkOKciZC9MvrtFycfzOeVL8mTsWWMxTy0a6WDU4/isfJB/FFNkqdfhiP6xGp4HM5+LSZC3Zci8S20FfUKFWJSePjIXn8GPnR0eoNT1FRUOTkvHdbjkgErokJ5MnJYBIJ8l+9Qv6rV8UU5oBvbQ2+o4OysepNw5XQ1QUCV1cInZzAqWSNVvqZSZASrVq1Cq1bt0aLFi3w008/wcfHBzKZDKdOncLq1avx6NEjGBkZYe3atRg0aBC+/PJLTJw4Eaampjhz5gy++eYbfPLJJxgwYECZxfTbb7/BwcEBjRo1ApfLxb///gt7e3vVwOvu7u44c+YM2rRpA5FIBAsLizI7NiGkYuy7FQ1bEzHa1rLGg5h0ZObJYCLio55j0Xf5ygKHw0G3+vY4ci8WN16llLwBIaTaSE5OxqeffoovvvgCPj4+MDExwY0bN7B48WL07dsXALTKh2JiYtChQwe4urpiyZIlSExMVB2rLMd3mj17Npo2bYp69epBIpHg8OHDqjGvbG1tYWBggOPHj8PZ2RlisRhmZmZldmxCSPnYcyMajAG+nlZws3r/kAZd69kpG6UexmFyl1pq6849TsD4f24BAD5t5oLJnWth1/VIXItIQURSNtzLeLgE8mEYY5A8eYLMM2eQdeYs8h4+fG95vq0tBK4uEDo5Q+DsrGxEcnaGwNkFfBtrcLhcsPx8SOPjIX0dA2lsLGRxsZDGxKh+lsbGguXlQZaYCFliIvLu3C18IC73TSOVKwRurhC6uUHo6qr82cUF3CImBClv1ChVRXl4eODWrVv45ZdfMH36dMTGxsLGxgZNmzbF6tWrVeU++eQTnDt3DvPnz0f79u2Rm5uLmjVr4vvvv8eUKVM0HpdKE8bGxli0aBGePXsGHo+H5s2b4+jRo6o7jEuXLsW0adPw119/wcnJCREREWV2bEJI+bsVmYppu+9AxOfi6qzOCH2h7CXV0tMSfF75DmHYzF3ZiP0wJgNZEhmMRfT1RghR5h4tW7bEb7/9hhcvXkAqlcLFxQWjR4/GrFmzVOU0zYdOnjyJ58+f4/nz53B2dlY7VlmO8yEUCjFz5kxERETAwMAA7dq1w86dOwEoB2///fff8dNPP2H27Nlo164dgoODy+zYhJCyFZ+Rh02XIrD7hnLW8UEtXErcpnMdW3A5wIOYDLWGpnNPEjDm75vIlyvQvb49fupbDwIeF21r2eD800TsuxVNA57rEJNKkXPjBjLPnEXW2bOQxsT8t5LDgahmTWVDkLOywUno4gyBiwsEjo7gisUl7p8jFELo4gKhS9HXEGMM8tRUZQNVTAxkMTGQxsRCGvMa+a8ikR8VBZabq3wsMDoaeHe8Qg4HfHt7VSOV0M0VAldXGDRoAIFD+QzFAQAcVhVHytJSRkYGzMzMkJ6eDlNT9bv5eXl5CA8Ph4eHB8QaXCikYtDvhZDKZ/aB+9gaquxKPLuXN0KeJiLkaSJ+6FkXo9p5lvvx2y46i+jUXPw9sgXa1Sp+rAZCytv78orKjPKhqoN+X4RUHlN3hWH/7dcAAGtjIS7O6ASxBuPiDd94DSFPExHY2h0/9qmHR7EZ6PvnJeTLFehWzx5/DG4MwZubfgfCXmPyzjA4mRvgwrcdweWWXccC8n7yzExknT+PrLPnkHX+PBSZmap1HLEYRq1bw6RTRxh36AC+dfkNZ6EJxhhkCYmQRr5CfmSU8jHAyEhIIyOR/+oVFNnZxW4rdHODYWtfGLXyhVHLFuC9edrpfTTNh+hWMiGEkFKTyhU4fDdW9fOW0AgkZkoAAK1rVMwXcHN3S0Snvsb1iFRqlCKEEEKIzikUDOefKh/zneZfG/2bOmvUIAUAo9t5IuRpInZdj8KULrWwJuQF8uUKtKtlrdYgBQAB9exhIuLjdVouvg+6jyldasHOlBqky4s0JgaZZ88h6+wZZF+7DshkqnU8S0sYd+wAk86dYeTrC66Bge4CfQeHw4HAzhYCO1sYNm+utq6gl1V+xCtIoyKVPatevUJ+eDjyHj9WjWOVtmMnwOFAXK8ejHxbwcjXFwZNmmjU06s41ChFCCGk1C48S0RKdj6sjITIlcrxKlk5YKOntRHq2JtUSAzN3C2w//ZrXA+ncaUIIYQQontP4jORnJ0PQyEPY/1qQMjXfDiDNjWt4O1gioexGZh3+BGOvLn5N6NbHbUGKQAQC3j4oq0HVpx5hh3XInEtPBknp/qBRz2myowiJwcpW/9GxskTkDx8pLZO6OkJk86dYNyxEwwa+oDD026G2MqAw+GAb2kJvqUl0KSx2jp5RgZyrl9H9uVQZF+5gvwXL5B3/z7y7t9H8l/rwREKYdCkCYxatYJRa1+I69XTqg6oUYoQQkipHbqjTJT6NnIChwNsuBgOX08rLB/UqMK6kLf0UM66F/oyGYuOP8bXXb0oGSOEEEKIzlx8lgRAmaNo0yAFKBsJxnWogUk7bmPvrWgAykHS6zsVPbHBlC610MLDEuO23cSLxGxceJaIDl62pTsBAgDIuXkTMbNmQfoqUrmAy4VB48Yw6dQJxp06QuThodsAyxnP1BQmnTvDpHNnAIA0PgE5V0KRHXoF2aGhkMXHI+fKFeRcuYLE5cvBNTWFYYvmkDdsqNH+qVGKEEJIqbzdNb1rPTs0d7fEgGYuqGlrXKGNQjVtTTCuQw2sDn6B1cEvkJgpwa+f+JTphA2EEEIIIZq6+FzZKNWm5ocNZdDLxwHJWRL8fOQRZAqGL9sXP0Ynh8NBm5rW6NfEGZsvR2DntShqlColRV4eEpevQMqWLQBj4NvZwWbSRBh36qTsUVRNCexsYda3L8z69gVjDPnhEci+Eoqc0FBkX70GRUYGsk6fQdaJkxrtjxqlCCGElMrD2AwkZ+fDSMhDE1cL8LgceFXQI3vvmtGtDrzsTDBtdxj23IyGlZEQM3vU1UkshBBCCKm+JDI5rr0ZUqBtrQ9rlOJwOAhs4wHfGtaISctFxzolNzJ91sIVmy9H4PSjeCRmSmBjIgJjjG7SaSn37l3EfDcT+S9fAgDMPv4YdjO/A0+PJjCpCBwOByJPD4g8PWA5eDCYXI68hw+RfTkU8vMhwPNnJe6jfOfoJoQQUuVdeNM13beGldZd08vDR42dsKi/DwBg7fmXCHnTi4sQQgghpKLcjkxDrlQOa2MhvOxKd7POy95EowapgrKNXc0hUzBsu/IK269GwufHkwh9kVyqGKoLRX4+Epb9hohBnyH/5UvwbKzhvHoVHBfMpwYpDXB4PBg0aADrMV/CdfVqjbbR/V8PhBBC9NqFZ8pGn8o0492nzVwwoo07AGDm3rvIzJPqNiBCCCGEVCuX3np0r6J7KY1sqxzjaOOlcMzafw+ZEhk2XAyv0Bj0Ue6DB4jo/wmS160DFAqY9uqFGocOwaRjR12HVqVRoxQhhJAPlpMvw42IVABAuw/sml5evgnwgqulIWLS8zD/6GNdh0MIIYSQaqS040mVRvf6Dqhpa4zMPJlqWQbdoCsWy89H4u9/IGLAQEiePQPP0hJOf/wOpyW/gmduruvwqjxqlCKEEPLBzj9NQr5cASdzA3hYG+k6HDWGQr7qMb4d1yJVM+AQQgghhJSnjDwp7kSlAdBNoxSPy8GkTjXVlj2LzwRjrMJjqezynjxB+MBBSFq1CpDLYdKtGzwPH4Kpv7+uQ6s2qFGKEELIBzt0NwYA0NPHoVIOoOlbwwpDW7kBAL7bdxdSuULHERFCCCGkqrvyIhkKBnhaG8HJ3EAnMfTyccQYP098280LXA6QmiNFYpZEJ7FURkwmQ9KaNQj/5FNIHj0Cz9wcTsuWwnn5b9V6Zj1doEapKiwhIQFjxoyBq6srRCIR7O3tERAQgNDQUADA7du30atXL9ja2kIsFsPd3R0DBw5EUpKyN0FERAQ4HI7qZWFhgfbt2yMkJER1jPPnz6N3795wdHQEh8NBUFBQoTj27duHgIAAWFsrn6cOCwsrVObFixf4+OOPYWNjA1NTUwwYMADx8fHlUi+EkLKRLZHhzCPl+7S3j6OOoyned93rwNJIiOjUXFymQT4JqZYoJyKEVKRLOnx0rwCPy8HM7nUxvkNNuFspe7M/jcvSWTyVieT5c0QM+gyJy1cAUimMO3dW9o7q0UPXoVVL1ChVhfXv3x937tzBli1b8PTpUxw8eBAdOnRASkoKEhIS0KVLF1hbW+PEiRN49OgRNm7cCAcHB+Tk5Kjt5/Tp04iNjUVISAhMTU3Ro0cPhIcrB8rLzs5Gw4YN8eeffxYbR3Z2Ntq0aYOFCxcWu75r167gcDg4e/YsLl26hPz8fPTu3RsKBfVqIKSyOvM4AXlSBdysDFHfqfLORmIk4qNHA3sAwOE7MTqOhhCiC5QTEUIq0o1XyvE2W3la6TgSpdpvZv97Ep+p40h0i8lkSF6/HuEf90Pe/fvgmprCcfEiOP/5B/jWlWts1OqEr+sASPlIS0vDxYsXERwcDD8/PwCAm5sbWrRoAQAICgpCRkYG1q9fDz5feRl4eHigU6dOhfZlZWUFe3t72NvbY+3atXB2dsbJkycxZswYdO/eHd27d39vLEOHDgWgvMtYlEuXLiEiIgK3b9+G6ZtpNjdt2gRLS0ucPXsWXbp0+aA6IISUr+P3YwEoe0lVxkf33tbLxxHbrkTixIM4/PxxfYj4PF2HRAipIJQTEUIqUm6+HI/jlI0/jV3NdRvMG7XtTXD8QRyexlXfRqmsi5eQsGghJM+eAwCM/NrD4ad5ENjZ6jgyQj2ltMUYkJ+tm5cWA9MZGxvD2NgYQUFBkEgKPztsb28PmUyG/fv3azXgnaGhIQBAKi272RskEgk4HA5EIpFqmVgsBpfLxcWLF8vsOISQsnUnKh2Abruma6q5uyVsTUTIyJNh5r57OHI3VtchEaL/KCcCQDkRIUTdvdfpkCsY7ExFcDAT6zocAIBXNe4pJXnxApFjxiBq1ChInj0H18wMDr/8DJc1a6hBqpKgnlLakuYA83U0dsqsGECo2exWfD4fmzdvxujRo7FmzRo0adIEfn5+GDRoEHx8fNCqVSvMmjULgwcPxtixY9GiRQt06tQJw4YNg52dXZH7zM7OxsyZM8Hj8VR3GstCq1atYGRkhBkzZmD+/PlgjGHGjBlQKBSIjaU/HAmpjNJzpXidlgsA8HaovI/uFeBxOejl44iNl8Kx79Zr7Lv1Gj7OHeFiaajr0AjRX5QTUU5ECCkkLEr56F4jF/NK05Pcy94YgHIGPoWCgcutHHGVJ1lqKpL++BOpu3YBcjnA58NyyGBYjxsHnrm5rsMjb6GeUlVY//79ERMTg4MHDyIgIADBwcFo0qQJNm/eDAD45ZdfEBcXhzVr1sDb2xtr1qxBnTp1cO/ePbX9tG7dGsbGxjAxMcGhQ4ewefNmNGjQoMzitLGxwb///otDhw7B2NgYZmZmSE9PR5MmTcDj0SM2hFRGj2IzAABO5gYwMxToOBrNfNW5JiZ3rgXXNw1RBYOQEkKqPsqJCCEVJSwqDQDQyMVCt4G8xc3KCEIeF9n5crxOy8WWyxHYdClc12GVC5afj+RNm/GiawBSt28H5HIYd+6MGocPwW7mTGqQqoSop5S2BIbKu3O6OraWxGIx/P394e/vj9mzZ2PUqFGYM2cOAgMDASjHRvj000/x6aefYsGCBWjcuDGWLFmCLVu2qPaxa9cueHt7w9zcHFZW5TNYX9euXfHixQskJSWBz+fD3Nwc9vb28PDwKJfjEUJK52GMslHK27Hy95IqYG4oxFT/2mCM4fezzxH6MhmDWrjqOixC9BflRGV1NmooJyJEv92OTANQecaTAgABjwtPGyM8jsvEpedJmHPwAQCgT0NHWBmLSthaPzDGkHn6NBKWLIH0VSQAQFSnDuy+mwGjVq10HB15H2qU0haHo3F38crI29u7yCmKAUAoFKJGjRrIzs5WW+7i4oIaNWpUQHSA9ZtZD86ePYuEhAT06dOnQo5LCNFOQU+punrw6N67fGtY4/ezz3H5RTIYY5Wmaz0heodyonJFOREh+udZfCZi0/PA5QANnMx0HY4aL3sTPI7LxJ6b0aplEck5RTZKpedKYSLi681jfnkPHyJ+4SLkXLsGAODZWMN28mSYffwxONTLtNKjRqkqKjk5GZ9++im++OIL+Pj4wMTEBDdu3MDixYvRt29fHD58GDt37sSgQYNQu7ay58ChQ4dw9OhRbNq0SePjZGVl4fnz56qfw8PDERYWBktLS7i6KnsgpKSkIDIyEjExyrupT548AQDV7DWAcmaZunXrwsbGBqGhoZg8eTKmTp0KLy+vsqoSQkgZevimUUofxpN6V2NXcwj5XCRmSvAiMQs1bU10HRIhpBxRTkQIqQhJWRKM2noDANC6hjWMRJXrT+3abwY7v/EqVbUsMiUbTd3UHzM89TAeY/6+gZFtPfB9T+8KjVFb0vgEJK5YgfT9+wHGwBGJYDkiEFajRoNnrL83TaqbyvVOIWXG2NgYLVu2xG+//YYXL15AKpXCxcUFo0ePxqxZsxAbGwtDQ0NMnz4dUVFREIlEqFWrFtavX6+arlgTN27cQMeOHVU/T5s2DQAwfPhw1TgNBw8exIgRI1RlBg0aBACYM2cOfvzxRwDKpGzmzJlISUmBu7s7vv/+e0ydOrWUtUAIKQ9SuQLP4rMAAPX06PG9AmIBD01dLRD6MhmhL5KpUYqQKo5yIkJIRVh07DFeJefAxdIAywY21HU4hRTMwPe2V8k5aj/nSeWYe+gBFAzYdCkCw3zdK+WkMIrcXCRv2oTk9RvAcpTnYNqzJ2ynT4PAUUcTcJAPxmHazH1bRWVkZKgGkjQ1Vf8DKy8vD+Hh4fDw8IBYXDmm9CT0eyFElx7FZqD7igswEfFx98euevn42+9nnmHZqafo09ARv3/WWNfhkCrmfXlFZUb5UNVBvy9CKt7Hqy7hdmQaVg5ugp4+DroOp5ColBy0W3xObVm/xk5YNrCR6uc1IS+w8Nhj1c8Dm7lg0Sc+FRWiRrIuXEDs/2ZDFhcHADBo2BB2M7+DQaNGug2MFKJpPkSz7xFCCNHK3eg0AMpBzvWxQQr477HDp/GZOo6EEEIIIVVBeo4UAGBtLNRxJEVzMjeAoVB9fKVXKf/1lDrzKB7LTj4FAHzeSvnI8Z5b0Xgcl1FxQZYg++o1RI+fAFlcHPiODnBcugRuO3dQg5Seo0YpQgghWvlvVpnKM9WxtrzslV3YXyZmQyZX6DgaQgghhOi7tFxlo5S5YeVslOJyOapxpQwEysapgsf3bkSkYOy2m8iXK9Ctnj1+6lMfXb3tIFcwTNx+Gzn5Mp3FXSDvyRNET5gAJpXCuEtn1Dh6FGY9e+rtDVLyH2qUIoQQopWwqDQAlWuqY205mRvAQMBDvlyBiHfGUyCEEEII0YZCwZCWkw8AMDcU6Dia4hWMK9Wpri0A5eDs2RIZVp57Dqmcwd/bDn8Mbgwul4MF/RrA1kSE5wlZ+OnQQ12Gjfzo14gcNQqKrCwYNGsKp6VLwaVHk6sMapQihBCisSyJDE/ePPLW2MVct8GUgvJuoTEAeoSPEEIIIaWTlS+D4s1IzWYGlbdR6ks/T/T0ccC3AV6qxrNLz5MQ/DQRADCrR10IeMomAitjEZYPbAQOB9h5PQqH7sToJGZZaiqiRo2CPDEJolq14LJqFbgikU5iIeWDGqUIIYRo7G50GhhT9jSyNdXvO1S13twtpEYpQgghhJRGwXhSYgEXYgGvhNK6U8PGGCsHN4GblRHc3syqt/D4YzAGtKtlDQ9rI7XyrWtaY2LHmgCAWfvuITlLUqHxKnJyEDVmLPIjIsB3dIDL+r/A06MJRIhmqFGKEEKIxgrGk2qkx4/uFSjowv4sPkvHkRBCCCFEn6W9aZQyN6ic40kVxdVK2QD1MjEbAPB5K7ciy03uXAvuVobIlMhw581kNxWBSaWInjIFeXfvgmduDtf16yGws6uw45OKQ41ShBBCNKYa5FyPH90rUOvN43tPqKcUqYIWLFgADoeDKVOm6DoUQgip8tJyK/94Uu+q82bSFwDoXt8enevYFlmOz+PC00aZMyVkVExPKcYYYn/4H7LPXwBHLIbLmtUQeXpWyLFJxdNpo9SCBQvQvHlzmJiYwNbWFh999BGePHmiVoYxhh9//BGOjo4wMDBAhw4d8ODBA7UyEokEkyZNgrW1NYyMjNCnTx9ER0dX5KkQQki18ChWOS1wAyczHUdSegUz8EUkZSNfRjPwkarj+vXrWLduHXx8fHQdCiGEVAsFPaUq83hS7/qijQfmf9wAR75qi9WfNwWfV3zTgI2xcgynxMyKaZRKXLoU6QcOADwenJb/BoNGjSrkuEQ3dNooFRISggkTJuDKlSs4deoUZDIZunbtiuzsbFWZxYsXY9myZfjzzz9x/fp12Nvbw9/fH5mZ/93ZnjJlCvbv34+dO3fi4sWLyMrKQq9evSCXy3VxWoQQUiVl5EnxOi0XAFDHXv+f57c3FcPMQACZguFqeLKuwyGkTGRlZWHIkCH466+/YGFhoetwCCGkWkjLffP4nh71lDIQ8jC4pSvqOZZ8o9HWVNkolVABjVIpW7Ygef0GAIDDvHkw6dCh3I9JdEunjVLHjx9HYGAg6tWrh4YNG2LTpk2IjIzEzZs3ASh7SS1fvhzff/89+vXrh/r162PLli3IycnB9u3bAQDp6enYsGEDli5dii5duqBx48bYtm0b7t27h9OnT+vy9AghpEp5Gqe8GeBgJoaZHiVdxeFwOPiokSMAYPOlCN0GQ0gZmTBhAnr27IkuXbqUWFYikSAjI0PtRQghRHvpOW8e39OjMaW0YWNS0CiVV67HST9yBPELFiqPOXUqzPt9XK7HI5VDpRpTKj09HQBgaWkJAAgPD0dcXBy6du2qKiMSieDn54fLly8DAG7evAmpVKpWxtHREfXr11eVeVd1ScISEhIwZswYuLq6QiQSwd7eHgEBAQgNDQUA3L59G7169YKtrS3EYjHc3d0xcOBAJCUlAQAiIiLA4XBULwsLC7Rv3x4hISGqY2jyCObbxowZAw6Hg+XLl6st79Chg9qxOBwOBg0aVPaVQgj5YI/fNEp5vTUGgb4b3todAHD2SQIikrLfX5iQSm7nzp24desWFixYoFH5BQsWwMzMTPVycXEp5wh1h3IiQkh5Ug10XgVu2hXF1qT8H9/LunQJMd/NBABYfP45rL4cXW7HIpVLpWmUYoxh2rRpaNu2LerXrw8AiIuLAwDYvTPKvp2dnWpdXFwchEJhoS7qb5d5V3VJwvr37487d+5gy5YtePr0KQ4ePIgOHTogJSUFCQkJ6NKlC6ytrXHixAk8evQIGzduhIODA3JyctT2c/r0acTGxiIkJASmpqbo0aMHwsPDAWj2CGaBoKAgXL16FY6OjkXGO3r0aMTGxqpea9euLftKIYR8sMdxygb8qtQo5WljjE51bMEY8Nvpp2CM6TokQj5IVFQUJk+ejG3btkEsFmu0zcyZM5Genq56RUVFlXOUukM5ESGkPBU8vlcVepIX5b+eUuXTKJV7/wFeT/oKkEph0r0b7GbNBIfDKZdjkcqHr+sACkycOBF3797FxYsXC61794JkjJV4kb6vzMyZMzFt2jTVzxkZGVWuYSotLQ0XL15EcHAw/Pz8AABubm5o0aIFAGUylJGRgfXr14PPV14GHh4e6NSpU6F9WVlZwd7eHvb29li7di2cnZ1x8uRJjBkzBsePH1cru2nTJtja2uLmzZto3769avnr168xceJEnDhxAj179iwyZkNDQ9jb25fJ+RNCyt6TNz2l6laB8aTeNr5DDQQ/ScCBsBjUtjPBhI41dR0SIVq7efMmEhIS0LRpU9UyuVyO8+fP488//4REIgGPx1PbRiQSQSQSVXSoFY5yIkJIeVP1lKqij+/ZmihvdiRmSgr9nZ0lkeHz9VfRzM0CP/Ty1nrf+a9eIerLL6HIyYFhq1ZwXLQIHG6l6TtDKkCl+G1PmjQJBw8exLlz5+Ds7KxaXvBl/G6Pp4SEBFXvKXt7e+Tn5yM1NbXYMu8SiUQwNTVVe2mKMYYcaY5OXtrcwTc2NoaxsTGCgoIgkRRu0ba3t4dMJsP+/fu12q+hoSEAQCqVFrn+3UcwAUChUGDo0KH45ptvUK9evWL3/c8//8Da2hr16tXD119/rTaYPSFEtxhjVfLxPQBo5m6JuX2Un02/nniChzFV85FuUrV17twZ9+7dQ1hYmOrVrFkzDBkyBGFhYYUapMoC5USUExFClNJzlWNKWVTxnlISmQIZeTK1dRefJSIsKg2bLkcg7c3YWpqSJSUhcvSXkKekQORdF85//gGusGo27JHi6bSnFGMMkyZNwv79+xEcHAwPDw+19R4eHrC3t8epU6fQuHFjAEB+fj5CQkKwaNEiAEDTpk0hEAhw6tQpDBgwAAAQGxuL+/fvY/HixWUec64sFy23tyzz/Wri6uCrMBQYalSWz+dj8+bNGD16NNasWYMmTZrAz88PgwYNgo+PD1q1aoVZs2Zh8ODBGDt2LFq0aIFOnTph2LBhxTbmZWdnY+bMmeDxeKo7jW8r6hFMAFi0aBH4fD6++uqrYuMdMmSI6vd9//59zJw5E3fu3MGpU6c0Ol9CSPmKTc9DZp4MfC4HNWyMdR1OmRvq645Lz5Nx/EEcdt+Iwo99iv9jkZDKyMTERO27FwCMjIxgZWVVaHlZoZyIciJCiFJBT6mq+vieWMCDiZiPzDwZEjMlMDP47zzvRisb4OUKhuAnifiosZNG+5RnZSPqyzGQRkZC4OwM17VrwTOuejkmKZlOe0pNmDAB27Ztw/bt22FiYoK4uDjExcUhN1c55TiHw8GUKVMwf/587N+/H/fv30dgYCAMDQ0xePBgAICZmRlGjhyJ6dOn48yZM7h9+zY+//xzNGjQQKOZZ6qy/v37IyYmBgcPHkRAQACCg4PRpEkTbN68GQDwyy+/IC4uDmvWrIG3tzfWrFmDOnXq4N69e2r7ad26NYyNjWFiYoJDhw5h8+bNaNCgQaHjFTyCuWPHDtWymzdvYsWKFdi8efN7H7kcPXo0unTpgvr162PQoEHYs2cPTp8+jVu3bpVNZRBCSuVudBoAwNPGCEJ+pehkW+YGtVA+xh0U9hoSmVzH0RBCyhLlRISQ8lQwplRVfXwPKH4Gvnuv01X/P/UwXqN9sfx8vP5qEvIePgTP0hKuG9aDb2NTdsESvcJhOhzVtbgv5E2bNiEwMBCA8k7T3LlzsXbtWqSmpqJly5ZYuXKl2l2nvLw8fPPNN9i+fTtyc3PRuXNnrFq1SuNxojIyMmBmZob09PRCj/Ll5eUhPDwcHh4eEIvFYIwhV5b7YSdcSgZ8g1IP+DZq1CicOnUKr169KrQuPz8fjRs3RrNmzbBlyxZERETAw8MDBw8ehLe3N8zNzWFlZVXkfidNmoSgoCCcP39ercfb8uXLMW3aNHDfei5YLpeDy+XCxcUFERERRe6PMQaRSIS///4bO7i01wAAY/5JREFUAwcOLLT+3d8LIaR8Tdsdhn23XmNkWw/87wPGC9AHcgVDm4VnEZeRh1VDmqBHAwddh0T01PvyispMm3wIAOVElSQnKgrlSYRUHMYYvH44jny5Ape/6wRHcwNdh1QuBq0LxZWXKVgxqBH6NlL2hmKModFPp5D+plHOWMTHzf91gYj//kfGX3/7LTIOHgLH0BBuW7bAoEH59OgluqVpPqTzx/dKwuFw8OOPP+LHH38stoxYLMYff/yBP/74owyjKz4eTbuLV0be3t4ICgoqcp1QKESNGjUKzRLj4uKCGjVqFLlNSY9gDh06tFCPtYCAAAwdOhQjRowoNs4HDx5AKpXCwYH+KCRE1/JlCpx+c+croF7VHXiXx+WgXxMnrAp+gRWnn6FtLWuYiqtmN3xCygLlROooJyKkepHKFVh3/iWuhqcgX64AAJhX0cf3AMDmrcHOC0Sl5CI9VwohjwtTAwGSsiS4+jIF7WsX3+sp+8oVZBw8BPD5cP79d2qQIto3SkkkEly7dg0RERHIycmBjY0NGjduXOiLl+hWcnIyPv30U3zxxRfw8fGBiYkJbty4gcWLF6Nv3744fPgwdu7ciUGDBqF27dpgjOHQoUM4evQoNm3apPFxJkyYgO3bt+PAgQOqRzAB5WOVBgYGsLKyKnQnUSAQwN7eHl5eXgCAFy9e4J9//kGPHj1gbW2Nhw8fYvr06WjcuDHatGlTdpVCCPkgV14mIyNPBmtjIZq6Weg6nHI1vLU7/r0ZjSfxmRi95Qb+Htmyyj6uSEh1QTkRIaSsZeRJMXT9VdyJ/u/RNT6XAwNB2U8qUVnYvnl8b/u1SESn5uLbbl64+zoNAFDXwQTOloY4cjcWT+Mzi22UYowh8bflAACLgQNh3JY+14gWjVKXL1/GH3/8gaCgIOTn58Pc3BwGBgZISUmBRCKBp6cnvvzyS4wdOxYmJlVrZiZ9ZGxsjJYtW+K3337DixcvIJVK4eLigtGjR2PWrFmIjY2FoaEhpk+fjqioKIhEItSqVQvr16/H0KFDNT7O6tWrAQAdOnRQW/72I5glEQqFOHPmDFasWIGsrCy4uLigZ8+emDNnTrnMFkQI0c7xB8o/rPy97cHjlu5xmcrOzlSMLSNaYODaUFwNT8H+29EY2NxV12ERQkqBciJCSFn7O/QV7kSnw8xAoHp0TaZgpX6suDIraJR6mZiNl4nZsDQSIluinImvgbMZBDzlTbzErMKznBbIOheM3Dt3wBGLYT12TPkHTfSCRo1Sffv2xfXr1zF48GCcOHECzZo1U02DCwAvX77EhQsXsGPHDixbtgxbt26Fv79/uQVNSiYSibBgwQIsWLCgyPWenp5Yt27de/fh7u5e4iOWHzIk2btjJri4uCAkJETr/RBCyh9jDGcfJQAAAuoVPQtVVePtaIqvOtfCL0cfYcPFcAxo5lKlk0xCqjrKiQghZUmuYNh+NRIAMLuXN2LScrH01FM0cTXXbWDlrGCg8wIbLoareob5OJkjKVvZGJWUmV/k9kyhQOLy5QAAy6Gf08DmREWjRqmuXbvi33//hVBY9GwCnp6e8PT0xPDhw/HgwQPExMSUaZCEEEJ043lCFuIy8iDkc9HKs+hBfauigS1csPz0UzyNz8KFZ0nvHRuBEEIIIdXHuccJeJ2WCwtDAXr6OEDE58Lb0RQ1bIx1HVq5aulpBRsTETp62eDmq1S8SMxGeq4UnjZG6OHjgKP3YgEAScX0lMo4egySp0/BNTGB1ciRFRk6qeQ0GihjwoQJxTZIvatevXrUS4oQQqqIC8+SAAAtPSwhrsLjJLzLVCzAgObKGVznHX6ImDTdzDBGCCGEkMpl0+VwAMCA5i4QC3jgcDjoXNcO7tZGOo6sfDmZG+DarM5Y/ElDfNW5FgDARMzH+mHNYCziw8ZY2ZPq7YHQCzCpFIl//A4AsBr5BXjm5hUWN6n8tB7oPDc3F6dOncLTp0/B4XBQq1Yt+Pv7w8Cgak59SQgh1dmFZ4kAgLY1rXUcScX7sr0nDt2JxbOELHy08hKOTm4Ha2NRyRsSQgghpEoKeZqIS8+TIeBx8HlLN12HU+EKhjPo09ARjAF1HEzg+aaHWEGOVFRPqbT9+yF9FQmepSUstRirj1QPWjVKHTx4EKNGjUJSUpLacmtra2zYsAG9e/cu0+AIIYToTr5MgavhKQCAtrWqX6OUg5kBgia0xpD1V/EqOQdH78VimK+7rsMihBBCiA7IFQzzjzwCAAzzdYeLpWEJW1RdHA4HHzV2UltWMOZUcnY+FAoG7pvJcRQSCZJWrgIAWI8dA65R1e5RRrSn8TzXly9fxieffIL27dvj0qVLSElJQUpKCi5evIh27drhk08+QWhoaHnGSgghpALdeJWCnHw5rI2FqGtvqutwdMLZwhADmikf47vyMlnH0RBCCCFEV9adf4kn8ZkwMxBgUqeaug6n0rEyVg73I1cwpL2ZkRAAUnfsgCw+Hnx7e5gPHKir8EglpnGj1M8//4wRI0Zgz5498PX1hbm5OczNzdG6dWvs3bsXgYGBmDdvXnnGSgghpALtuRkNAOjoZau621UdtfK0BABceZnyQbNrEUIIIUS/3YhIwZKTTwAAM7vXgbmhZuMtVycCHhfmhgIA/40rJc/KRvJa5eym1uPHgSuiYRBIYRo3SoWGhmLixInFrp8wYQL1lCKEkCoiLScfh+8qZ1H5rKWrjqPRrQZO5jAQ8JCSnY9nCVm6DocQQgghFUShYNhwMRxDN1yDXMHQp6EjBr6ZCIUUZvPOuFKpf2+FPDUVQjc3mPfrp8vQSCWmcaNUXl4eTE2Lf3zDzMwMEknR0z8SQgjRL3tvvUa+TIG6DqZo7GKu63B0Ssjnopm7BQB6hI8QQgipTpaeeoJ5hx8iVypHSw9LzO/XQDXYNyns7cHO5WlpSN6wEQBgM/krcPhaz7FGqgmNG6Vq166Ns2fPFrv+zJkzqFmTnq0lhBB9xxjDzmuRAIAhLV0p+QLQytMKAPDbqacYtC4U0ak5Oo6IEEIIIeXp5IM4rDz3AgDwQ8+62DG6FYxF1LDyPtZvBjtPzJQgecMGKLKyIKpTBybduuk4MlKZadwoFRgYiK+//hpHjx4ttO7IkSP49ttvMWLEiDINjhBCSMV7EJOBZwlZEPG56NPIUdfhVAodvWzB4QCpOVJceZmCqbvCIFfQ+FKEEEJIVfQyMQvTd98BAAS2dseodp7VenxNTRU8vpceHYWkLZuUy6ZMBoercbMDqYY0vjomT56MTp06oVevXqhbty769euHfv36oU6dOujTpw/8/PwwefLk8oyVaCkhIQFjxoyBq6srRCIR7O3tERAQoBr76/bt2+jVqxdsbW0hFovh7u6OgQMHIikpCQAQEREBDoejellYWKB9+/YICQlRHWP16tXw8fGBqakpTE1N4evri2PHjqnF8fY+3n79+uuvqjISiQSTJk2CtbU1jIyM0KdPH0RHR1dALRFC3rX/9msAgL+3HUzFAh1HUzl4O5ri6FftsObzpjAS8nA9IhX/O3Afz2mMKUL0AuVEhBBN5eTLMHbbTWRKZGjuboHve9bVdUh6w9pECIDB+sAEcPLlyPGwgLGfn67DIpWcxo1SXC4X//77L3bs2AEvLy88fvwYjx8/Rp06dfDPP/9g79694FILaKXSv39/3LlzB1u2bMHTp09x8OBBdOjQASkpKUhISECXLl1gbW2NEydO4NGjR9i4cSMcHByQk6P+WMrp06cRGxuLkJAQmJqaokePHggPDwcAODs7Y+HChbhx4wZu3LiBTp06oW/fvnjw4IFq+9jYWLXXxo0bweFw0L9/f1WZKVOmYP/+/di5cycuXryIrKws9OrVC3K5vGIqixACAJDJFTh4JwYA8HFjJx1HU7nUdTBFt/r2mNOnHgBg+9VIBCw/jzOP4nUcGSGkJJQTEUI09dupp3ganwUbExFWDm4CAY/+xtWUckwpDoQcc8i4wI7mqUBWoq7DIpUdIyw9PZ0BYOnp6YXW5ebmsocPH7Lc3FwdRPbhUlNTGQAWHBxc5Pr9+/czPp/PpFJpsfsIDw9nANjt27dVy6KjoxkAtmbNmmK3s7CwYOvXry92fd++fdn/27vv8KiqrYHDv+npCSGNkELoNfTelaaoIHhFQcRrRcErH2LBcm3XXlGvol7FggIWQEQEQgfpgdBDTUJLI71nyvn+mDAQSEiGlMkk632eeTJz2qzZOUlW1tl7nxtuuMH2OjMzU9HpdMrChQtty86dO6eo1Wpl5cqVZR7DWb8vQtR1G4+mKOHPLFe6vLJKKTaZHR1OnWSxWJSle88q4z/7Wwl/Zrky7P0NislscXRYog65Vl5Rl9XHfEhR6n9OVBZn/n4J4UinUnOVls/9qYQ/s1xZF5vs6HCczrojyUr4M8uVUR8tV278pIPS8duOys5FExwdlnCQyuZDUva1k6IoWPLzHfJQlMrPX+Lh4YGHhwdLly4t866IQUFBmEwmlixZYtdx3dzcADAajVetM5vNLFy4kLy8PPr27Vvm/snJyfz555888MADtmXR0dEYjUZGjBhhWxYcHEzHjh3ZunVrpWMTQlTd0pKhe7d2DpYrg+VQqVSM6dKUb/7ZEy8XLcdTclm+/3yl9jVnZaFIbwdRT0hOJDmREPXNmyuOYDQrDGnjz9A2AY4Ox+n4l0x0npZrYFDboQDMv7AL4jY7MixRx1X69gFqtbrCOzCpVCpMJlOVg6rLlIICjnbr7pD3brMnGlVJAlQRrVbLt99+y0MPPcTcuXPp1q0bgwcP5q677iIyMpI+ffrw3HPPMXHiRKZOnUqvXr244YYbuPfeewkMDCzzmHl5ecyePRuNRsPgy8YGHzhwgL59+1JYWIiHhwdLliyhffv2ZR7ju+++w9PTk3HjxtmWJSUlodfradSoUaltAwMDSUpKqtTnFUJUXX6xiZWHrD9zY2XoXoW8XHQ8NLA570cdY86a44zu1ARtOYU804ULJL3yCjlRa9D4++E16ia8br4J1y5d5O6GwmlJTiQ5kRD1ydGkHFYfTkatst5tT9jP39NAsLcLQd4uTOz+BL+c28B6N1fOrvg/Qh7ZClq9o0MUdVClL4MvWbKExYsXl/mYNWsWBoMBnU4mxK1Lxo8fz/nz51m2bBkjR45kw4YNdOvWjW+//RaA119/naSkJObOnUv79u2ZO3cubdu25cCBA6WO069fPzw8PPD09OSPP/7g22+/pVOnTrb1bdq0ISYmhu3bt/Poo48yZcoUDh8+XGZM33zzDZMmTcLFxaXC+BVFkX/WhKhFqw8lk19sJryxG11DfRwdjlO4r38zfNx0nLqQZ5uL60rZK1dy6tbbyIlaA4A59QIZP/xAwt0TOXnjMFLef5/CI0fs6qEhhLCP5ERCiIp8veUUAKM6BtEywNPB0TinQC8Xts6+kcWP9adlo5b0C+yJolKxwJwKWz92dHiijlIpVciCY2NjmT17Nn/88QeTJk3itddeIywsrDrjqxXZ2dl4e3uTlZWFl5dXqXWFhYXExcURERGBi4sLiqKgFBQ4JE6Vq2uVE5IHH3yQqKgoEhISrlpXXFxM165d6dGjB9999x3x8fFERESwbNky2rdvj4+PD40bN67wPYYNG0aLFi344osvSi3fvHkzgwYNIiYmhs6dO9uWr1u3jhtvvJH09PRSVwY7d+7M2LFjeeWVV656jyu/L0KIqpvyzU42HkvliRtb8X/DWzs6HKfx2YYTvLPyKM0au7Fm5mBbbylTRgbJr71G9grr3bcMbdvS5LXXMF1IJfuvv8hdsxbLZZMo65s3x+vmm/G6+WYMzSMc8llE9bhWXlGX2ZMPAZIT1ZGcqCySJwlhn9ScIvq/vY5ik4XfHu1H9/BGFe8kKrTp7CamrZ2Gh8XCmvNpuD+6DXwlx2koKpsPVXr43uXOnz/PSy+9xHfffcfIkSOJiYmhY8eO1x2sM1GpVJXuLl4XtW/fnqVLl5a5Tq/X06JFC/Ly8kotDw0NpUWLFpV+D0VRypyz4euvv6Z79+6lki+A7t27o9PpiIqK4s477wSsd6c5ePAg77zzTqXfVwhx/c5nFrD5uPXuKDJ0zz5T+jbjf5vjiE/LZ8nec/yjRyg5a9aQ+NLLmNPSQKPB75GH8Zs6FZXe2m3dc+hQLAUF5G7cSPafK8jduJHiU6e48OmnXPj0Uwzt2+F988143XQTuqbX9/1QiosxpaVhunABU2oqlvwCUFn/jqFWU/ICVEDJbekvLS9ZplaDSoXa1RVDmzZoPOXKsbhEcqKKSU4khHNYtu88xSYLXUJ9pCBVjQY0HUAzr3DisxP43UXDxBVPwaRfrPmHECXsKkplZWXxxhtv8Mknn9ClSxfWrl3LwIEDayo2UQVpaWn84x//4P777ycyMhJPT092797NO++8w5gxY1i+fDkLFy7krrvuonXr1iiKwh9//MGKFSuYN29epd/nueee46abbiI0NJScnBwWLlzIhg0bWLlyZantsrOz+eWXX3j//fevOoa3tzcPPPAATz75JI0bN8bX15dZs2bRqVMnhg0bVuW2EEJU7OfdZ7Ao0Ke5LxF+7o4Ox6m4G7Q8Mqg5n6w7ger03xz9YQOWVRsB0LdsQfCbb+Ha6eoLN2pXV7xGjcJr1CjMubnkrFlD9ooV5G3dRtHhI6QcPkLKe+/j2qULXqNH4zVqJJrGjTFnZWFKTcWUmor5woWSolPJ1wsXMF1IxZx6AXNWVrV/Vn3z5rh26ohLx064duqIoV071AZDtb+PENVJciIhREWSswsB6BXh6+BI6he1Ss3EdpN4Y8cb/OTtxV0nolAfWQbtxzg6NFGHVLoo9c477/D2228TFBTEggULGDNGTqS6zMPDg969e/Phhx9y8uRJjEYjoaGhPPTQQzz33HMkJibi5ubGk08+yZkzZzAYDLRq1Yr//e9/TJ48udLvk5yczOTJk0lMTMTb25vIyEhWrlzJ8OHDS223cOFCFEXh7rvvLvM4H374IVqtljvvvJOCggJuvPFGvv32WzQaTZXaQQhRMZPZwqJdZwC4u5fzDcGuC+7t24wuuZuw/PsdLHmAWkXjBx7A7/HHUesrntRT4+GBz9ix+Iwdiykjg5xVq8lesYL8XbsoiImhICaG5DfftPZksueGIlotWj8/tP7+qN3dQVGsD4sFBQUUwGKxLgMUxWJddsV25sxMTOcTKT51iuJTp8j6fZnt+C6tW+MS2QnXTp1w6dgJQ8sWqOR3t6hDJCcSQlQku8B6F01Pw3UNJBLXMKbFGD7Z8wkJ5LDF1YVBfz0LLW4Ag/S+FlaVnlNKrVbj6urKsGHDrvlHcfHixdUWXG2xdw4F4XjyfRGi+vx1IJFHf9xDIzcd22bfiItO/vG5Hukxf3L8/lnkuEDOoAJuv3ka9P8/0Fx/gmtMTiFn5V9kr/iLgn37bMs1Pj5o/f3R+DVG6++P1s8fbePGaAP8rUUoPz80fn5ovL2tQ/CqgSktjcKDBynYf4CCgwcoPHAQc3r6Vdup3Nxwad8O146dcI3shEunTuhCQhrUJM0NZU4pUXfJ90sI+0z7cQ9/Hkjklds6MKVfM0eHU++8u+tdvj/8Pf2M8MXZ09BnGox6w9FhiRpW7XNK3XvvvQ0qoRRCiIYgLbeIF38/BFh7SUlB6vr5dhlN8isHeTn5B1zU7gzZ8AaNjkfB7XPBt/l1HVMXGIDvlCn4TpmCMSUFLBa0vr62ualqk7ZxYzwGD8Zj8GDAOleO6fx5Cg4coOCAtUhVePAglvx8CnZHU7A72ravxs8Pt27dcOveDddu3XFp2waV3LFXCCFEHZFdaO0p5eUqPaVqwt1t72b+kfls1Vk4qdPSYsdc6HwXNIl0dGiiDqj0T93FW+YKIYSoH8wWhad+3c+F3CJaBXjwrxtbOTokpzd69Cy+X76LoxlH+bSxPy+e2QGfD4BRb0K3e6s0sacuIMCu7RVFITY9ltUJq1l7ei1Gs5EhoUMY0WwEnf07o1ZVrQeVSqVC17QpuqZN8Ro1yvqeZjPFcXEU7D9A4cEDFBw4SGFsLOYLF8hZvZqc1aut+7q54do5Ereu3XDt3g3Xzl3QeMhcZkIIIRzj4vA9Lxe5YFITQjxDGBIyhHVn1vFjeCT/PrEH/pwJD0TJpOfi+u6+J4QQwrlZLAqzF+9nXWwKeo2aj+7qIr2kqoFGreHZXs/yz1X/5FcPV+507UGb07vhj3/BsZVw68fg4V9j768oCofTD7M6fjVRCVGcyTlTav38I/OZf2Q+Aa4B3Bh+IyPCR9A1oCsadfV871UaDYaWLTG0bAnjbgfAUlRE4YED5O/ZS0F0NPl792LJziZ/23byt2237qhW49K2La7du1t7U3Xthi7QviKcEEIIcb2yC63zNXpKUarG3NP+HtadWccf5PCE3hXvs7sg9SgEtHV0aMLBKlWUmjp1Ks8//zyhoaEVbrto0SJMJhOTJk2qcnBCCCFqxo87Evh591nUKvj47i50CPZ2dEj1Ro+gHoxsNpJV8at4s0ko81rfimrdf+DoCji7Cyb+DE27Vdv7KYrC4bTDrEpYRVR8FGdzz9rWGTQGBjYdyIhmIzBoDEQlRLHhzAZSClJYELuABbELaOzSmGHhwxgePpzugd3Rqqv3epXaYMCtRw/cevQAHkKxWCg6cYKCPXvIj95DwZ49GM+do/DwYQoPHybjhx8A0IWGWof89eqFe7++6Jo0qda4hBBCiItyZPhejesR2IPWjVpzLOMYvzZtzQNx+yB+sxSlROWKUv7+/nTs2JF+/fpx22230aNHD4KDg3FxcSEjI4PDhw+zZcsWFi5cSNOmTfnyyy9rOm4hhBDXyWJR+ObveACevaktozrKP/vV7cnuT7LxzEaiU6JZ1e4uRj28HhY/DCmHYc3LMGVZlY6vKAqH0g6xOn41qxNWcy73nG2di8aFgSEDGRE+gkEhg3DTudnW3RB2A8XmYrYnbmd1/GrWn1lPWmEai44uYtHRRTQyNOKGsBsYET6Cnk16olNX/xVjlVptvWNf69Y0uusuAIxJSeRHR1OwZy/5e/ZQFBuL8cwZss6cIev33wHQN2uGe79+uPfvh1vv3mg8PKo9NiGEEA2PoihkF1h7SsnwvZqjUqm4p909/Hvrv1moKWIKoI3bBL0ecnRowsEqffe9lJQUvv76axYuXMjBgwdLrfP09GTYsGE8/PDDjBgxokYCrUmVudtMs2bNcHV1dVCE4koFBQXEx8fLXWWEuA6bj6cy+eudeBq0bH/uRtzl9sc14vOYz/ls32cEuQexbOwyXHNT4aNOgApm7AefMLuOpygKBy8cZHXCalbHr+Z83nnbOletq61H1MCmA0sVoq7FaDGyM3EnqxNWs+70OjKLMm3rvPReDA0dyohmI+jbpC86Te0l6uacHApiYsiPjiZv2zYKDxwEi+XSBhoNrpGR1iJVv764RkbWqYnT6/Pd9yQfcg6SJwlReYVGM21fXAnAgZdHyBC+GlRkLmLEryNIL0znveRURiqu8NRJqKY7BYu6pbL5UKWLUpfLzMwkISGBgoIC/Pz8aNGihVPfme9ajWU2mzl27BgBAQE0btzYQRGKK2VlZXH+/HlatmyJrg79IyKEM3jo+91EHU7mvn7NePm2Do4Op94qMBUwZukYEvMSebTzozzW5TH47laI2wRDX4DBT1V4DItiYV/qPqISoliTsIbEvETbOletK4NDBjOi2Qj6B/evdCGqPCaLid3Ju1kdb50YPb0w3baukaER7w1+j15NelXpPa6XOTubvB07yN+2jby/t1KckFBqvdrd3TrMr29f3Pv3Q9+8uUPzkvpYlJJ8yLlIniRE5aXkFNLr9bWoVXDi9ZtRq533/1pn8MneT/hy/5d0LDbyv/NJuD+yBYI6OjosUQNqtChV31TUWImJiWRmZhIQEICbm5tTF+DqA4vFwvnz59HpdISFhcn3Qwg7LNh5mtmLDwCwZuZgWgbIEKiatCp+FbM2zsKgMbBs7DKCT26CJY9Aowj4194y7zhjtpjZk7KHNQlrWJOwhpSCFNs6N63bpUJU0/64amumx8rFGC4WqFILUjFoDMwZOof+TfvXyHvaw3juHLlbt5K3dSv527ZjzswstV4bGIh7v3649eqFa8cO1iKVpvYm8q+PRSmQfMhZSJ4khH1OpOQy7IONeLvq2PeS8436cTap+amM/G0kRosRX7OZx5oMZfzIOdU+p6VwvBorSu3fv7/sA6lUuLi4EBYWhsFgsC9aB6uosRRFISkpicwrkl7hOGq1moiICPR6vaNDEcIpWCwK87bG8/qfh7EoMG1oC54aKRNL1jRFUbh/1f3sTt7NiPARvN/vVXivNRTnwj//gvB+gLWX0q6kXUQlRF3VS8lD58Hg0MGMCB9Bv+B+uGhrdyhOkbmIJzc8ycazG9GpdXww5AOGhA6p1RiuRbFYKIqNJe9ikWp3NEpxcaltVK6uuLRrh0uHDrh0aI9rh5otVNXXopTkQ85D8iQhKm/P6QzGfbaVkEaubHnmBkeH0yBsPbeVNzY+RYIxG4AI7whmdp/J4JDBUkivR2qsKKVWq695ouh0OiZMmMAXX3zhNGPYK9tYZrMZo9FYi5GJ8uj1etQy9liISjFbFP757S42HUsF4O5eobxxeyf5o19LjqYf5c7ld2JRLHwz8ht67vgW9s7H2GUS23vcTVRCFOvPrC93Pqc+Tfqg1zj2H0uj2cgzm58hKiEKrUrL24PeZkSzunk12VJYaJ2LautWCvbto/DwEZT8/Ku2sxWqOnbAtUMHXDp0QB8RUS2FqvpalLpI8qG6T/IkISpvw9EU7pu3i/ZNvFjxxEBHh9NgGE9v55dfxjO3kQ8ZGuvvqx6BPZjVYxYd/GR6ifqgxopSv//+O8888wxPPfUUvXr1QlEUdu3axfvvv89LL72EyWTi2WefZcKECbz33ntV/iC1wVmTRyGEqIz1R1P457xduOjUvDC6PRN7hcl8CbXsP9v/w6Kji2jdqDXTmw5jzbZ3WO/uRs5l/zTWxp3vqsJkMfH8ludZEbcCjUrD6wNeZ3Tz0Y4Oq0KK2UxxfDyFhw5RcPAghYcOU3iknEKVmxsu7dtZi1QdO+LapQu6kBC7C7jOmlc4a9xCCFEVf+w7z+ML9tKnuS8LH+7r6HAaDrMJ3m5GjjGXr4c+xg8Jqyi2WHs63xRxE090e4KmHk0dHKSoisrmFXYP3Hz99deZM2cOI0eOtC2LjIwkJCSEF198kZ07d+Lu7s6TTz7pNEUpIYSoz37cfhqAib3CuadPuIOjaZimd5nOX3F/cSzjGP/KOAae1rm8/LTu3NjiFoaHD6d7YPc6PZ+CVq3ljQFvoFPr+P3k78zePJticzG3t7rd0aFdk0qjwdCiBYYWLfC+7TagpFAVF3epSHXokK1QVbA7moLd0bb9Nf5+uHXpimvXrrh27YJLhw6oZUiUEELUG9mF1p6fXnLXvdql0UJ4XzyPr2aGNpgJty/nk72fsPzUcv6K+4s1CWu4p909PBj5IF56uVBSn9md/R44cIDw8Kv/qQkPD+fAAevkuV26dCExMfGqbYQQQtSuxKwC1sUmAzCxd6iDo2m4fFx8mNVjFv/e+m8C3QIZpmnEsGMb6RrUE02fFxwdXqVp1Bpe7f8qeo2eX479wr+3/hujxcidbe50dGh2UWk0GFq2xNCyJYwdC5QUqk6douDQIQoPHaZgv3Xonzn1AjlRUeRERVn31emsvai6dcWta1dcu3RB6+fnwE8jhBCiKrILTAB4SlGq9jUbCMdXQ/xmmvSbzhsD32By+8m8v/t9diTtYN6heSw+sZipkVOZ0GYCOo18j+oju4tSbdu25a233uLLL7+0TZ5oNBp56623aNvWOmnuuXPnCAwMrN5IhRBC2O2X3WexKNA7wpeWAZ6ODqdBu73V7QwNHYqXwQt11lnY3wnit0DmafAJc3R4laZWqXmxz4sYNAbmH5nPa9tfo8hcxOT2kx0dWpWoNBoMrVphaNXKVqiyFBVRePAg+Xv2ULA3hoKYGMzp6RTs3UvB3r1cnI5eFxaGW9cuJb2puqEE+DvscwghhLCPraeUa93trVxvRZTM4ZWw1TqcT6OlXeN2fDXiKzaf28wHuz/gZNZJ3t71Nj/F/sSMbjMYHj5c5kWtZ+z+yfvvf//LbbfdRkhICJGRkahUKvbv34/ZbGb58uUAnDp1iscee6zagxVCCGGftbEpAIzvFuLgSARYe0xZn4RBxCCI2wT7FsHgpxwal71UKhVP93wavUbPNwe/4Z1d71BkLuLBTg86OrRqpTYYcOveHbfu3QHr3eeMCQnk740pKUztoejESYynT5N1+jRZvy8DIN/V1ZFhCyGEsEOODN9znKBIMHhDURYk7YOm1r+3KpWKQSGD6Bfcj6UnlvLfmP9yJucMT258ks7+nXmsy2OEe4XjofPAQ+eBRl0zd9MVtcPuolS/fv2Ij49n/vz5HDt2DEVRuOOOO5g4cSKentar8JMnO/fVUiGEqA8y8orZfzYTgEGtpedGndNlkrUoFfMjDJoFTnbVT6VSMaPbDAwaA5/v+5w5e+ZQbC7m0c6P1tsrmCqVCn2zZuibNcPn9rEAmLOzKdi3n4K9e8jfu5fCffux5OQ4NlAhhBCVdmn4nvSUqnVqDTTrD0dXQNxmW1HqIq1ayx2t7+DmiJv59tC3fHvoW/al7uORqEdKbeeh88BT71nq4aX3KrXcS++Fp96TRi6NiPSPrHM3lGnIKv2Td//99zNnzhw8PT3x8PBg6tSpNRmXEEKIKvr75AUUBdoEehLk7eLocMSV2t0Kfz4JGXFwehuE93N0RHZTqVQ81uUx9Bo9c/bM4fN9n1NsLuaJbk/U28LUlTReXngMHIDHwAEAKCYTqXv3Qq9eDo5MCCFEZVwavidFCodoNtBalIrfDANmlLmJm86Nx7o8xh2t7+CzmM/YdHYT2cXZFJmLAMg15pJrzCUxr3LzWod4hDC181RGNx9dp28y01BU+jvw3Xff8dZbb9l6QwkhhKjbNh+7AMDAVjIJc52kd4cOY2HvfIj5ySmLUhc92OlB9Go97+5+l68Pfk2RuYinez7dYApTl1Nptbi0aePoMIQQQlRSTqG1p5QM33MQ27xS28BshGtMZh7gFsDL/V62vS42F5NdnE1OcQ65xbnkFOeQbcwmtzjXtjynOKfUNvHZ8ZzNPcsLf7/A/w78j0c7P8rIZiNlCKADVboopShKTcYhhBCiGimKwqbjqYAM3avTukyyFqUOLYWb3rYWqpzUvR3uxaAx8J8d/2H+kfkUm4t5vs/zqFVqR4cmhBBClCu74OKcUtJjxiECOoCrLxSkw/m9EFr5nsZ6jR4/Vz/8XCt/ATbfmM/CowuZd3Ae8dnxPLP5Gb468BWPdn6UYeHDJG9xALtavLqveG7atIlbb72V4OBgVCoVS5cuLbVeURRefvllgoODcXV1ZciQIRw6dKjUNkVFRTz++OP4+fnh7u7ObbfdxtmzZ6s1TiGEcDbvrz5GYlYhrjoNvSJ8HR2OKE9YX2jUDIpz4MhyR0dTZRPaTuDVfq+iQsXPx37mpa0vYbaYHR1Wg/Hmm2/Ss2dPPD09CQgIYOzYsRw9etTRYQkhRJ0mw/ccTK22zisF1rk2a5ibzo37O97PyvErebzr43jqPTmReYInNz7JhOUTWH96vXTIqWV2FaVat26Nr6/vNR/2yMvLo3Pnznz66adlrn/nnXf44IMP+PTTT9m1axdBQUEMHz6cnMsmEJ0xYwZLlixh4cKFbNmyhdzcXG655RbMZkmChRAN04Kdp/l0/QkA/n1re1x00h25zlKprL2lAGLmOzaWanJ7q9t5Y+AbaFQalp5YynNbnsNkMTk6rAZh48aNTJs2je3btxMVFYXJZGLEiBHk5eU5OjQhhKizLk50LsP3HKjZIOvX+M219pbuOncejnyYleNXMrXzVNx17sSmx/Kv9f9i4p8T2XJuixSnaolKqWRLq9VqPvroI7y9va+53ZQpU64vEJWKJUuWMHbsWMDaSyo4OJgZM2bwzDPPANZeUYGBgbz99ts88sgjZGVl4e/vzw8//MCECRMAOH/+PKGhoaxYsYKRI0dW6r2zs7Px9vYmKysLLy+v64pfCCHqgrTcIoa8t4GcQhP/N6w1Twxr5eiQREUyT8NHnQAVzNgPPmGOjqharI5fzTObnsGkmBjYdCDvDX4PN52bo8OqFXUlr0hNTSUgIICNGzcyaNCgCrevK3ELIURtWXkwianzo1GpYN9LI6Qw5SgpR+CzPqB1hWcTQGuo9RAyCzP59tC3/BT7EwWmAgC6+Hdhetfp9G7Su9bjqQ8qm1fYNXD2rrvuIiAgoMrBVUZcXBxJSUmMGDHCtsxgMDB48GC2bt3KI488QnR0NEajsdQ2wcHBdOzYka1bt1a6KCWEEPXFe6uPkVNookOwF9NvaOnocERl+IRBxCBrl/V9C2Hw046OqFqMaDYCvUbPrI2z2HxuM1NWTuHTGz4l0D3Q0aE1GFlZWQDl9mQvKiqiqKjI9jo7O7tW4hJCiLpg7ZFkZizaC8C9fcKlIOVI/m3B3R/yUuFctENu/uLj4sOM7jOY3H4y8w7OY+HRhcSkxvDg6gfpGdSTaV2m0T2we63H1RBUevhebd9BJykpCYDAwNLJa2BgoG1dUlISer2eRo0albtNWYqKisjOzi71EEIIZxedkMHCXacBeOnWDmjUDe/OZ06r80Tr15gfoR51FR8SOoRvRn6Dr4svsemxTFwxkaPpMsdRbVAUhZkzZzJgwAA6duxY5jZvvvkm3t7etkdoaGgtRymEELXPYlGY9cs+HvhuN4VGC0Pb+PPiLe0dHVbDplJBswHW53G1N4SvLI1dGzOr5yz+GvcXk9pNQqfWsStpF/etvI+HVz9MbHqsQ+OrjypdlHLUeMori2GKolRYIKtoG0nChBD1TUGxmVm/7ENRYFy3pjK5ubNpfxvoPSAjHhK2OjqaahXpH8mPN/9Ic+/mpOSncO9f97L5rGMTzoZg+vTp7N+/nwULFpS7zezZs8nKyrI9zpw5U4sRCiGEY/y25yy/Rp9FrYKHBkbw+T3d0WrkjmsO12yg9Wstzit1Lf5u/jzb61lWjFvBP1r/A61Ky7bEbUz8cyI/HflJ5puqRpX+6bNYLLU2dA8gKCgI4KoeTykpKbbeU0FBQRQXF5ORkVHuNmWRJEwIUd/MWXucuAt5BHm58NItHRwdjrCX3h3aj7U+3/eTQ0OpCSGeIfxw8w/0DupNvimf6eumsyh2kaPDqrcef/xxli1bxvr16wkJCSl3O4PBgJeXV6mHEELUZ1n5Rt76y9rT5elRbXl+tNwQps64WJQ6sxOMhY6N5TJB7kH8u++/WT5uOUNDh2K0GHlz55s8ufFJcopzKj6AqFCdLQlHREQQFBREVFSUbVlxcTEbN26kXz/rGNPu3buj0+lKbZOYmMjBgwdt25RFkjAhRH2SX2zixx0JALwypgPebjInglPqWnIXvkNLobj+3S3NS+/F58M+Z2zLsVgUC//Z8R/e3fUuZovcLbe6KIrC9OnTWbx4MevWrSMiIsLRIQkhRJ0yZ+1x0vKKaRngwf395XdkneLXCjyCwFwEZ3c5OpqrNPVoypyhc3im5zNo1VqiEqK48487OZR2yNGhOT2HFqVyc3OJiYkhJiYGsE5uHhMTw+nTp1GpVMyYMYM33niDJUuWcPDgQe677z7c3NyYONE694a3tzcPPPAATz75JGvXrmXv3r3cc889dOrUiWHDhjnwkwkhRO35Y995cgpNhDd2Y3g7mUTaaYX1hUbNoDgXjvzh6GhqhE6j49V+r/J418cB+P7w98zcMJN8Y76DI6sfpk2bxvz58/npp5/w9PQkKSmJpKQkCgoKHB2aEEI4XGJWAfNLLuK9eEt79No62z+jYbp8Xqk6MoTvSiqVinva38P3o76nqUdTzuaeZfKKyTKcr4oc+pO4e/duunbtSteuXQGYOXMmXbt25d///jcATz/9NDNmzOCxxx6jR48enDt3jtWrV+Pp6Wk7xocffsjYsWO588476d+/P25ubvzxxx9oNNINUwjRMMzfbp3cfGKvMNQyubnzUqmgS0lvqZgfHRtLDVKpVDwc+TBvD3wbnVrHujPruH/V/VwouODo0Jze559/TlZWFkOGDKFJkya2x6JFMlRSCCH+u/4ExSYLvZr5MqiVn6PDEWWJKBnC5+DJzivSyb8Ti25ZxA2hN8hwvms4nHa4UtupFCnpkZ2djbe3N1lZWTKUTwjhVI4kZnPTnM3otWq2z74RX3e9o0MSVZF5Gj7qBKhgxn7wCXN0RDVqT/Ienlj/BJlFmTRxb8J/b/wvrRq1cnRYVeaseYWzxi2EqJjZovDx2uOE+boxvvulueYKjWb+b1EMGfnF3BIZzD96hGDQ1r+L+4lZBQx6Zz1Gs8LCh/vQp3ljR4ckypJ2Ej7pBmodPHsa9G6OjuiaFEXhxyM/8n70+5gsJkI8QnhvyHt0aNyw53fdn7qfz/d9zsYTGzny6JEK8wrpsyiEEE5sy3Fr75J+LRpLQao+8AmDiEGAAvvqf++WboHd+PHmHwn3CicxL5F7/7qXrefr190HhRCiLlh1KIk5a4/z7OL9ZBcaAes/1C8sPchfB5PYfiqdF5Ye5LP1Jx0cac34ZkscRrNC7whfKUjVZb7NwaspWIxwZoejo6nQ5cP5gt2DbcP5FsQuaJDD+fal7mPqmqlMWjGJLee2oFFVrsAtRSkhhHBi206lAdC/hXRDrzcuH8LXABKaMK8w5t80n24B3cg15jJtzTQWH1/s6LCEEKLeUBSFLzadAsBoVthwNBWAX6LP8mv0WdQqGNbOepf1PaczyjzGseQcNh9PrZ2Aq1lWgZGfdlinOpg6pIWDoxHXpFJdugtfHZ1Xqiyd/Dvx860/24bzvbHjjQY1nG9vyl4eiXqEe1bcw9/n/kaj0jCmxRgWjl5Yqf2lKCWEEE7GZLbwQdQx1sUmszMuHYC+LeSqX73R7lbQe0BGHJze5uhoaoWPiw9fjfiK0c1HY1JMvLT1JT6K/giLYnF0aEII4fR2xWew70ym7fWqQ0kUGs28t+ooAE+OaMPjN1iHTh86n82JlBzunLuN7SUXvhRF4Z/zdjH5652sj02p9fir6vMNJ8krNtMm0JMhrf0dHY6oiJPMK3Ulb4M3Hw39iKd7Pt1g7s63J3kPD61+yNbTXavScnvL2/lj7B/8Z8B/CPUKrdRxpCglhBBO5veY83y89jgPfreb3CIT3q462jWR+V/qDb07dBhrfR7zk0NDqU16jZ43B7zJ1M5TAfj64Nc8tfEpCk2FDo5MCCGcl8ls4e2VsQB0DvUBYENsCl9viSMlp4imPq48ODCCNkGeaNQq0vOKeXX5EXbGp/O/zdbeVWczCjiXab2L56vLD5ORV0xBsRmwTiPw0ZpjFBSbWbznLA9+t5v0vOLa/6Dl+GZLHHM3WockPn5jS1QquSFMnXfxDnzn90BRrmNjsZNKpWJy+8n1fjjfrqRdPLDqAaasnML2xO1oVVrGtxrPH7f/wav9X610MeoiKUoJIYSTWbz3LACWkr9tvSN80chd9+qXi0P4Di2B4jzHxlKLVCoV07pM440Bb6BVa1mdsJqJKyayJ3mPo0MTQog6KyvfyMPf7+bX6LOllmcXGvl47XGiEzLwMGj59O6uBHoZyCs2895qay+pJ25shUGrwUWnoYW/OwCbjlmH6e0/mwXA3st6WcVdyKPra1F0fmU1Ly49yJR5O/lozXEe+G4XT/+6nzVHkvl6y6la+NTXll1oZNYv+3h1ufXuX0/c2IpbIoMdHJWolEbNrHNsWkxwerujo7kuF4fzDQ0dWq+G8+1K2sU/V/6T+1fdz86knWjVWu5ofQfLxy3n5X4vE+IZUvFByiBFKSGEcCLnMwvYetLand5Nb508UIbu1UNhfa1JWXEuHPnD0dHUultb3MqXw7/Ex+DD8YzjTFk5hee3PM+FgguODk0IIeqcH3cmsPpwMq/+cYhCoxmLRWH24gNEvryaj9edAODVMR0I9XVjbNemgHXKwo5NvRjXrantOB2CvUsdNyWniOTsQvaWzDPV3M/dtq7YbOGH7QmYS66QbT2Zhqnk+aJdZyg2Vd/wa7NFISOvmEKjuVLbfrTmGP3fWsev0WdRqWDm8NbMGOb8d3ZtUJoNsn6N3+TYOKrA2+DNnKFzeKrHU2hV1uF8Y5eOZd7BeWQXZzs6vEpTFIXtidu5b+V93L/qfnYn70ar1nJn6ztZcfsKXur7Ek09mlZ8oGvQVlOsQgghasHSmHMoirV31PQbWrJ8XyL/6GFfF1nhBFQqa2+p9a/D3vnQ+S5HR1Tregb1ZNnYZczZM4ffjv/GspPLWH96PdO7TufONneiVUsKI4QQiqKwdO85ALILTaw+nMzOuDQW7LRO7O3pouWePuHcXlKMmjWiDbdGBuPtqiPYx7VUT+sOwV4sKTnWRfvOZLL3dCYATwxrRcem3ni56Phz/3neXnmUYe0D6RDsxVt/xdLUxxWj2UJKThErDyVxW+fr75l0PDmHDUdT2XgslZ3x6RSbLHi5aFk3awh+HoZy95uz5pitENcywIM3bu9Erwjf645DOEjEQIiZ73TzSl1JpVJxb4d76RLQhac3Pc253HN8EP0Bc/fNZVyrcdzT/p4qF3RqyoWCC6xNWMsfp/5gX+o+AHRqHeNbjeeBTg8Q5B5Ube+lUurT4MbrlJ2djbe3N1lZWXh5ybwsQoi6yWi2cMP7GziTXsDb4zsxoWeYo0MSNSnzNHzUyfp8xgFrV/YGan/qfv6z/T8cST8CQFvftjzf+3m6BHRxbGDlcNa8wlnjFqIhO3w+m5s/vvSPu6eLlpxCEyoVfDShC2O6VP4f3q0nLzDxqx0A6DVqis0WHhnUnHl/x1NstrDxqSGEN77UW8pktqDVqFEUhV3xGbQK8ODbrfHMWXucPs19WfhwX7s/z6HzWby5IpYtJ8ruGfvfid0YHdmkzHVrjyTzwHe7AXhtTAcm9Q5HLdMbOKesc/Bhe1Cp4Zl4cPGucJe6rshcxIpTK/j+8PecyLQWTtUqNcPDhzOl/RQ6+XdycISQlJfEmoQ1RCVEsTdlLwrWUpFerWd86/Hc3/F+u4pRlc0rZPieEEI4id+iz3ImvQA/DwO3da6bV1VENfIJg4iS7uv7KndL3foq0j+SBaMX8Hzv5/HUexKbHsvkvybz4t8vklaQ5ujwhBDCYRbvsc4j1TnE+k97TqEJgNfHdrKrIAXQocmlf/z/0cM6N8yCnacpNlvwddcT5utWanutxvqvpEqloleEL43c9dzZ09p7e0dcOik59t2oIqfQyN1fbmfLiQto1SoGtfbn37e0Z83MQdxVctz95zJt2yuKwl8HEnl7ZSy749OZsSgGgCl9w5nct5kUpJyZd1PwbQ6KBRLqx52IDRoDt7e6ncW3LWbusLn0bdIXi2JhVfwqJq6YyJS/prA2YS1mS8XDVKvT2ZyzfHvwWyb9OYnhvw7n7V1vsydlDwoKkX6RPNn9SVaOX8lzvZ+r1t5Rl5O+70II4QQKjWY+KemOPnVwc1xL5pMS9VyXSRC3yXoXvkFPWYf1NVAatYa72t7FiGYj+Cj6I5acWMLSE0tZe3otT3R9gjta34FGLT8XQoiGQVEU5qw9zv+2xAHw2NCW/LTjNBuPpTL7prZM7G1/71pvNx0v3tKe3EITQ9r48+OO02SXFLm6hflU6s51TX1c6Rzqw74zmUQdTmZS7/Byty00mtl2Ko0BLf3QadT8Fn2W7EITzf3c+e7+XoReVgTrEurDwl1nOFAy+XpOoZHpP+1lY8mk7J9vOGmL8/nR7e3+7KIOajYQ0k9B/GZoM8rR0VQblUpF/6b96d+0P0fTj/L94e9ZEbeCPSl72JOyh1DPUCa3n8yYFmNw07lVfMDrkJCdQFRCFKvjV9t6oQOoUNE1oCvDw4czLHxYjRWhriRFKSGEqKMURWHbqTROpOTy7dZ4zmUW4O9p4J4+5Sd4op5pdyv8+SRkxMHpbRDez9EROZyviy+v9n+Vca3G8fqO14lNj+U/O/7Db8d/44U+LxDpH+noEIUQosYt3HWGj9YcB6w9g0a0D6R/Sz/OZxbQOtDzuo/7wIAIAIpMZvRaNcUmCwGeBmaNbFPpY4zqEMS+M5msPJhUblGqoNjMlHk72RmXzv39I3hhdDu+35YAwD8HRJQqSAF0KukJduBcFoqi8PbKWDYeS0WvVRPm68aJlFz8PPR8Nqk7eq0MBqoXmg2EPd9ZL87VU2182/D6gNd5otsTLIhdwM9Hf+ZMzhne2PEGn+79lAltJnB327vxd/Ov8nudzDzJ6oTVRCVEcTzjuG25WqWmR2APhoUPY1jYsGp5L3vJnFLIHApCiLrprwOJPPrjHttrf08Dc+7qQr8Wfg6MStS636dZJzvvOhnGfOroaOoUs8XMoqOL+HTvp+QYrbdZHt9qPE90e4JGLo0cFpez5hXOGrcQDU1ekYnB727gQm4RTw5vzeM31syd5X6LPkt8Wh6PDG6Bh6HyfRlOpeZyw/sb0apVRL8wHG83Xan1JrOF+7/bzaaSXk46jYqnRrbhjRWxeBi0bH/uxqvez2i20OGlVRSbLHw4oTMzf96HosBPD/amV4Qva46k0CHY66pilnBiOUnwfhtABc/Egavj/q7XlnxjPktPLOWHwz9wNtc6NFen1nFzxM2MaTkGrVpLgamAQlOh7Wuh+bLnF5ebS69PyU8hITvB9j5alZZeTXoxLHwYN4bdiK9LzdwMoLJ5hRSlkCRMCFE33fvNTjYdSyUyxJtBrfx5aGDzqxI70QAkbIV5N4HeE2YdBb17xfs0MBcKLvBh9IcsO7kMsN6G+V9d/8X4VuMdMqTPWfMKZ41biIbiREou037cQ7HZQtyFPMIbuxH1f4PrZM+gER9u5FhyLh/c2Zlx3UJKrfsw6hhz1h7HTa8hws+dQ+ezbeseGBDBi7eUPfxuzH//Zt+ZTNvrO7qH8N4/OtdI/KKO+KQHpB2Hu36CtqMdHU2tMVvMrD+znu8Pf8/elL3VckydWkff4L4MDx/O0NCheBtqfvL4yuYVMnxPCCHqoOTsQrYct15B/PiurjTzk0JEgxXWFxo1g4x4OLIcOk9wdER1jp+rH68PeJ3xrcbz+o7XOZZxjNe2v8Zvx39jZveZ9G7S29EhCiFElX224QRHk3Nsr58Z1bZOFqTAOoTvWPIJVh5MshWl0nKLWLL3HJ+ssw4denNcJ1oFeDL6k80oCoztEsxT1xgm2DHYy1aUaurjynM3t6vxzyEcLGKgtSgVt7lBFaU0ao11OF34MPan7uf7w98TkxKDXqPHVeuKi8YFV60rrlpXDFpDqdcuWhfb14vL3XXudAnogqf++of21iQpSgkhRB20ZO85LAr0CG8kBamGTqWyTni+/nXY/D6E9gLfCEdHVSd1C+zGolsW2Yb0HU47zIOrH6R/cH9mdJ9BW9+2jg5RCCGuS2Z+Mcv3JwLw1Mg2hDd246aOtTMJ8fUY2TGIj9edYOOxVPKLTZxOz+cfc7fZ7g44vluI7e6A8+7rSaHRwsgOgdecTL1Hs0b8uOM0AN/d3wtfd33NfxDhWM0Gwu5vrJOdN1CR/pG8N/g9R4dRo6QoJYQQdcTBc1mk5BTSs5kv87dbx32P7x5SwV6iQeg6GbZ/DheOwheD4LaPocPtjo6qTtKqtUxqN4lRzUbx5f4v+fnoz/x9/m/+Pv83o5uPZnqX6YR4ys+VEMK5/Bp9lmKThQ7BXjw2pEWl7oTnSO2beBHq68qZ9AIW7znHF5tOklNoomWAB5N6h5WaAH1Im4BKHfOWyGCy8o0MbO1PC3+Pmgpd1CXNBlq/Jh+EvDRwb+zYeESNqJv9PYUQooGZvz2BMf/9m/u/3c3wDzZxNqOAYG8Xbols4ujQRF3g1QQe2QShvaEoG365D/6YAcYCR0dWZzV2bczs3rNZNnYZNzW7CYA/T/3JrUtv5e2db5NemO7gCIUQonI2HUtl7saTAEzqHV7nC1Jgve39qA7WnlwvLD3ImfQCwnzd+OWRvvyzf8R1DTvUadTc1z9CClINiYc/+JcM00zY4thYRI2RopQQQjjYgp2neWHpQcwW630nkrIL0WlUfHZPdzxdZGJzUcInFO77EwbMBFQQPQ++uhFSYh0dWZ0W6hXKO4PfYdEti+jbpC8mi4n5R+Zz8+KbmbtvLvnGfEeHKIQQ5Zq78ST3frOTC7nFtA70YEyXYEeHVGk3d7p0Ya2FvztfT+lBIxlyJ+wVUdJbKq7hDuGr7+Tue8jdZoQQjnM6LZ9RczaRX2xm2tAW9G/px3/Xn+DuXmHcEuk8iaeoZSfXweJHIC8FdG5w87vWeaec4Oq5o207v40Poz/kSPoRABq7NObRzo8yrvU4dOrqKQI7a17hrHELUR8pisKHa47z8VrrpOD39AnjuZvb4aZ3rtlXVh5MQqdRMbRNAGq1/I0S1+Hw7/DzveDfFqbtcHQ0wg6VzSukKIUkYUKI2mOxKDy/9CD5xSZmjWjDEwv3sud0Jr0jfFnwUB9J2ETl5STDkofh1Abr6053wi0fgKFu3lmlLrEoFlbFr+KTvZ9wJucMAGGeYTze7XFGho+s8tAYZ80rnDVuIeobo9nCc4sP8Ev0WcA6sfm0oS0dHJUQDpKXBu82tz6fdcI6pE84hcrmFTJ8TwghatHqw8ks2Hma32POM/jd9ew5nYmHQcu7d3SWgpSwj2cg3LMEbngRVBo48LN1EvTzMY6OrM5Tq9TcFHETv4/5ned6P4eviy+nc07z1ManuPvPu9mRKFdihRCO82HUMX6JPotaBa+N7SgFKdGwuTeGwI7W5w34Lnz1mRSlhBCiliiKYuuGr1WrsCjg52FgwUN9CGvs5uDohFNSq2HQLPjnCvAKgfRT8PVw2D4XpCN0hXQaHXe3vZsV41bwaOdHcdO6cSjtEA+ufpCHVj/E0hNLSStIc3SYQogGJCEtj/9tjgPgo7u6MrlPeAV7CNEAXLwLnxSl6iXnGpQshBBObPXhZA4nZuOu17B0Wn82Hb/ATR2DCPZxdXRowtmF9YGpm+H36XD0T1j5DMRtgjGfgpuvo6Or89x17jzW5TEmtJnAF/u/4Jdjv7A9cTvbE7ejQkWkfyRDQocwOGQwLX1aOsWdr4QQzsdiUXht+WGKzRYGtvLjVrkDrxBWEQNhx+cy2Xk9JXNKIXMoCCGq5tD5LAK9XPDzMJS7TU6hkZEfbuJ8ViGPDWnB06Pa1mKEosFQFNj5Jax+AczF1t5Td3xtLVqJSjuTc4ZlJ5ex8cxG24ToFzX1aMrgkMEMDh1Mz8Ce6DRXT47urHmFs8YtRH1gtig8+9t+fok+i0atYuUTA2kVKHMECgFAQQa8HQEoMDMWvKRg6wxkonM7SBImhLheqw4l8cgP0TT1ceXPfw3Ax63sWx3PXryfBTvPEObrxsoZA53u7jnCySTug1/+CeknrfNNDZ0NA2aCWuPoyJxOcl4yG89uZMOZDexI3EGxpdi2zl3nTr/gfgwOGcygkEE0cmkEOG9e4axxC+HMjifncDgxm7kbT3EkMRuNWsX7/+jM2K5NHR2aEHXLF4Os+c24ryDyTkdHIypBilJ2kCRMCHE9zmbkc8snW8jMNwIwrF0AX93b46qhPV9uOskbK2IBWPhwH/o0b1zrsYoGqCgH/nwS9i+yvo4YBLd9Co1kfpLrlW/MZ3vidjad3cTGsxu5UHDBtk6tUtPZvzODQgbRw7sHXcO7Ol1eIfmQELXrjRVH+HLTKdtrT4OWd/8RyaiO0gtEiKuseh62fQpdJ1unJxB1nhSl7CBJmBDCHqk5RTy+YA874tJRFGgZ4MHptHyKzRZu79qUN8d1wkWnYXd8Ot9tS+CPfecBuaWzcABFgZgfYcVTYMwHnTsMewl6PmSdJF1cN4ti4dCFQ2w8u5GNZzcSmx5rW2cuMHPk0SNOl1dIPiREzbJYFPKNZopNFjYdS2XGohgAuoT60Lu5L48MaoGve9k9roVo8I6tgp/uhEbN4Il9jo5GVIIUpewgSZgQorIURWHq/GhWHUoGoF0TL+be043ohAye+nU/ZotCj/BGTOoTxsyf99lugPb4DS15ckQbB0YuGrQLJ2DZ43B6q/V1aB/rVUa/Vo6Nqx5JzE20Fai2ntrK/kf2O11eIfmQEDXDZLawYNcZ5qw5zoXcolLrHhncnNk3tXNQZEI4kcJseLsZKGb4v0PgHeLoiEQFpChlB0nChBAVMZktbDiayq74dL7YdAqtWsWvj/ajS6iPbZutJy4wdX402YUm27KRHQKZNrQlkSE+Vx9UiNpkscDur2HNy1CcCxqDda6pvo+DRuY4q05JaUk08WvidHmF5ENCVL/UnCIe+zGaXfEZpZZr1SpGdQziwwld0Gmk56oQlfLVDXAuGsbOhS53OzoaUYHK5hWShQohRDlOpOTy+IK9NHLTkZxdyMnUPNu6x4a2LFWQAujX0o8FD/fhnv/tICPfyICWfnw6sZskm6JuUKuh10PQeiT88QScXGctUB1aCmP+C0EdHR1hveGmc3N0CEKIOiAtt4gxn27hfFYhngYtT41qwx3dQ3DRalCrVRUfQAhRWrOB1qJU/GYpStUjUpQSQogyKIrCS8sOciQx27askZuOga38iQzxZkq/ZmXu1yHYm6XT+rM+NoXx3UOkICXqHp8wuGcx7FsAK5+FxBj4crD17nyDZoHW4OgIhRCiXpi78STnswoJb+zGN/f1pIW/h6NDEsK5RQyEvz+yFqVEvSFFKSGEKMOGY6n8fSINvUbN06PaoNeqGdu1KV4uugr3DW/szn39I2ohSiGuk0oFXSZCixvhz5kQuxw2vQNHlll7TYX0cHSEQgjh1FJyCvlhewIAL9/WQQpSQlSH0D6g1kLmaTizE0J7OToiUQ3kEr4QQlzhQm4RLy87BMB9/Zvx4MDm3Nu3WaUKUkI4Fc9AmDAf/vEtuPtDaix8Pdx62+XifEdHJ4QQTsdotvDf9Se45387KDRa6BLqw5DW/o4OS4j6weABzQZYn389An59wHozF+HUpCglhBAllu8/z/NLDjDxq+0kpOXT1MeVaUNaOjosIWqWSgUdbodpOyFyAigW2PYpfN4P4qR7vBBC2OPrLXG8u+oox5Jz0WvVPHtTW1QqmT9KiGoz5jNr3oICB3+F//aEpY9BRoKjIxPXSe6+h9xtRggBe09nMP7zrVhKfiP6eej5+ZG+NJfu9qKhObYKlv8fZJ+zvu7+Txj+KrjI38fKcta8wlnjFqKuSMkuZOh7G8grNvOvG1oyoVcYTX1cHR2WEPVT4n5Y/wYc+8v6Wq2D7lNg4CzwauLY2ARQ+bxCilJIEiZEQ1VQbOZocg5puUW89Vcsx1Ny6du8MT0jfBnfrSnhjd0dHaIQjlGYDVH/huh51teeTaDbFOg8AXybOzY2J+CseYWzxi1EXVBkMvPY/D2sjU2hc6gPSx7tJ3fYE6I2nN0N616DUxusr7Uu0PNBGPB/4O7n0NAaOilK2UGSMCEaloS0PD5Zd4Kle89hslz6FejnYSDq/wbRyF3vwOiEqEPiNsOy6ZARf2lZSC/ofBd0HAeujRwWWl3mrHmFs8YthKMlZRXyr4V72RmXjk6j4tep/egc6uPosIRoWOI2W4tTZ3ZYX+s9oPdU6Pc4uPo4NLSGSopSdpAkTIj6KzGrgA1HU/H3MGA0W1h/NIXf9pzDXFKM8vMw0NTHBZ1Gzf8Nb03/lnJFRYhSjAVw5A/Yt8B6FVKxWJdr9NB6JHS+G1oOB60Ucy9y1rzCWeMWwhEUReHQ+WxWH0rim7/jyS0y4WnQMndyd8klhHAURYETa6zFqcR91mUu3tDvX9YClUGm5ahNUpSygyRhQtQvBcVmYpOy2RGXzqfrTpBbZLpqm8Gt/ZkxrBVdw6SnhxCVlpMEB36BfQsh+eCl5a6+1p5TkXdBSA/r5OkNmLPmFc4atxC1Ka/IxJebTvFr9FnOZRbYlncJ9eHdOyJpFejpwOiEEIC1OBW7HNa9DqlHrMvc/KxD+no+ADqZ6602SFHKDpKECeGcsvKNHDiXhY+bjuwCI9EJGaw4mMTRpGwuG5VH2yBPVCoVOo2KNoGe3NUrjO7hUowSokqSDlp7Tx34BXKTLy33bWEd3hd5JzRq5rDwHMlZ8wpnjVuI2mCxKCzZe453VsWSnF0EgItOzaBW/tzcqQm3dg5GI3NICVG3WMxwcDFseAPST1mXeQRZ58hsM9p6IU2tcWyM9ZgUpewgSZgQzqOg2MzJ1Fxik3J4Y8UR0vOKy9zO39NA+yZeDG8fyN29wiRRFKKmWMzWYX37FlqvShrzL60L62ctTjXtBj7hDWZOB2fNK5w1biFqUmZ+MV9tPsWKA0nEXcgDINTXlVkj2jCifRCuevmHVog6z2yCfT/Bxncg68yl5e7+1qkI2oyG5kNA7+awEOsjKUrZQZIwIequQqOZ9bEp7IrP4HhKDjvj0ikyWWzr/T0NKIqCl4uOFgEejGgfyOA2/gR4ujgwaiEaqKLcS/NPxW0CrkgxXHysvadsj/BLz71DQaOr5YBrhrPmFc4atxA1wWS2sPn4BZ5bcoDErEIAPAxapt/Qkn/2b4ZBK8UoIZyOqch6AS12BRyPgqKsS+u0rtbCVNubofUo8AhwWJj1hRSl7CBJmBB1g6IonM0oYO+ZTA6czeTAuSwOnM0ir9hcajtfdz1+HnpGdWzCtKEtJDEUoi7KOmcd2nd0BaSdhPwL195epQbvEGuByueyYpWrD2gMoC15aAzWSdU1Buttny8uV2vrzFxWzppXOGvcQtjLaLZwNCkHs0XB3aDl4Lks4tPySM4uIjWnkJScIhLS8skqMAIQ4efOjGGtuKFtAJ4u9aN4LkSDZyqGhL/h6F/WR9bpy1aqIKSntUDVZjT4t3ZYmM5MilJ2kCRMiNqjKAqn0/OJu5BHSk4RKdnW5O9cRgH7zmZyIffq4XjB3i6M6BBEq0APeoT70jrQA1Ud+edTCFFJRbmQmQAZ8ZBx8WvJIzMBTIVVfAPVFYWrkqKV3g107iVf3UDvbv2qc730XO9+2euL27par5rqXKzbaEu+anQVFr+cNa9w1riFuBaLRSGzwMj5zAIOJ2YTdTiZLccvUGA0V7ivj5uOMZ2DeWpUWzwM2lqIVgjhEIpivYFL7ArrxbTEmNLrG7eENjdBm5uhaQ+543AlNbii1Geffca7775LYmIiHTp04KOPPmLgwIGV2leSMCGqj9FsYWdcOttOpnE0OYfM/GKKTRaKTBaKTRYyC4zlzgMFoNOoaN/Ei8gQHzqFeNOpqTdtAj1Ry5xQQtRfimKdLN1WqEqAjDjIPA1F2dbu9qYiMBdf9rwILFffWbPGqdSXilVaV2vxyvbcWrjKNmrwvm+Bw/KK682JJB8SzqjQaCYhLZ/4tDwS0vKIT8snIS2P1Jwi0vOKSc8rLnXzk4u8XXW46jRkFhTTrokXbQI9CfByIdDLQICnC0FeLrRr4olWo679DyWEcKysc9bi1LGV1ukIzJf976JSW3t0N24JjVuU/uoVAmr5nXFRZfOKelHyX7RoETNmzOCzzz6jf//+fPHFF9x0000cPnyYsLAwR4cnRL1gtijkFZvIK7I+cgpNJGcXkZhVwLmMAo4kZXM8OZf0vGJMZWV/l9Fr1DT3dyfQy4UATwOBJUlg+2BvOgR74aKT4XhCNCgqFXgGWR9hfSq/n8V8qUBVVuHKVADF+dbJ1435UJx3xdfLlxeUXnfxtbHQehylZC47xQLGPOujPEWOu94nOZGob4pMZhIzCzmfWcDZzALOlzxOp+eTkJZvm++pIr7ueloHetCzmS+jOgbRLshLLngJIcrm3RR6PWR9FOXAiTXWIX7HV0NBhvXCWUYcnIgqvZ/WBRpFXFasanmpaOXuX2emGahr6kVPqd69e9OtWzc+//xz27J27doxduxY3nzzzQr3lyuDwtkoioLJomAyKxgtFkxmBZPZgtFS8tWsYLJYeyZdfBSZLRhNFswWBaNFodhkodBoptBopshkochoprBkWV6RmTPp+aTkFJJbZCavyFSpbu4X+XnoGdw6gE5NvQj0ckGvVWPQatBr1bjpNbQM8JDCkxDCeSiKtdhlLLA+TAWXilW2r5eeZ2dm4H3jDIfkFVXJiSQfEtdLURQUBSyKgqXk66XXl/IVo/lSnmI0Wygwmksudlm/ZhcaScwq5FxGAecyrY/UnKIK39/ToKWZn7v10diNMF83mni74uuup7GHnkZuevRa6b0ghKiiiz27006UPE5e+poRV7pH1ZUMXuAVDHoPMHiUfPW0ftW7W5+Xeu0Bes9L2+rcQF3y/5NKXfJQXXqOqpzXjiuENZieUsXFxURHR/Pss8+WWj5ixAi2bt1a5j5FRUUUFV36A5ednQ3AU7/sQ+/mYVteXr2uzKXllPaUclaUdejyyoN2HaPsQ5R77LL2KD+O8o5dxjHsjKOsxfbWS8tuj8q3XbUdo9ILrcc2WRTMJQUmi3LZa4sFs1mxFZpKFaAq6IlUk7RqFe4GLR4GLX6eBpr6uNDE25VWAR60a+JFgJeBQE8XufoohKg/VJfNV+XqU/H22dnAjBoO6mr25kQV5UNX/h2+6i+PcuXLK7ZXyn5e0bZlvdfVf3OVctddve+1P8e19q8oF7Hnc1W1Dcpqb4tSUhAC6xC1kqKQwsWi0KXPcLFQpJQ857LnSsk+lpIOgRbFmotcLDBZnytYLKWLTuaSolNNX+J20akJ9nGl6eWPRq4lRSh3GrnpZK5JIUTNu7xnd7MBpddZzNZpB9JOQvpJuHDcWrBKPwmZZ6zTEaRmOyjui0WqaxSyShW1VFdvz5XrVFdvd+U+hZbyY7qM0xelLly4gNlsJjAwsNTywMBAkpKSytznzTff5JVXXrlq+V8Hk1Ab3GokTiFqmloFWo0anVpl/apRodeo0WsvPXQaNVq1Cq3a+tpFZ+3B5KJT46LTWB9aNS56DU19XGni7YpHSQHK3aDB3aDFoFVL4ieEEHWQvTmR5EOitulL8pOLeYqLTlOSY2hx02vwdNES5GUtODX1caGpjxvBPi74uusl9xBC1G1qDfhGWB8MK73OWGjtSZWbAsW51qkCinKsj+Jc681ginNKludeWlaUfem5ueJeo+WyTUFQ+ZEv1aKS0xk4fVHqoiv/UCmKUu4fr9mzZzNz5kzb6+zsbEJDQ3n2pja4unuWPm4l3+/S8nK2L+c45e1Q/vuWtW31xFL+9vYdyJ42szsWO2O0N3+plhjtjEWrVqHVqNCorQUjjVp12Vc1ajW2YpJOo0arKSkqXXyuUaFTq6VnkhBCCKDyOVF5+dAzoy7lQ1fuduVRLj9uRdtevsHVx7ly38of91r7XrnxNeOv6LilDqu65rblvUel3seuz65CpQK1yrrXxeeUsUxVcoBLy1WobSM7Lj63rtOorcfVqFWoVdaH9bl1f/Vlzy8eX626dAz1ZctUKmx5jRSWhBANks4FAtpZH9dLUazFJdtXC9Yur5YyllN6OUo5+125Trls/ZXbX76OcpZf8Z7ZufDWrRV+NKcvSvn5+aHRaK66ApiSknLVlcKLDAYDBoPhquX39GkmcygIIYQQwinZmxOVlw9N7iv5kBBCCFGnqFSgcrI5ebMrN1zR6Wf80+v1dO/enaio0jPfR0VF0a9fPwdFJYQQQghRuyQnEkIIIYSzcfqeUgAzZ85k8uTJ9OjRg759+/Lll19y+vRppk6d6ujQhBBCCCFqjeREQgghhHAm9aIoNWHCBNLS0nj11VdJTEykY8eOrFixgvDwcEeHJoQQQghRayQnEkIIIYQzUSkV3eu2AcjOzsbb25usrCyZQ0EIIYQQVeKseYWzxi2EEEKIuqeyeUW96ClVVRfrctmVnIhLCCGEEKI8F/MJZ7vuJ/mQEEIIIapLZfMhKUoBOTk5AISGhjo4EiGEEELUFzk5OXh7ezs6jEqTfEgIIYQQ1a2ifEiG7wEWi4XWrVsTHR2NSqWye/+ePXuya9cuu/fLzs4mNDSUM2fOXHc3+et9b2fdt6pt5oyfuSr7O2t7Oeq9HdleVd3fGdurKu/trPs668+k/A6zj6IodO/enWPHjqFWO8+NjquaD0HD+1476r3l75V95O+V/Zz1Z1L+XtXu/s7YXlXd3xnbqyrvXZV9K5sPSU8pQK1Wo9frr/tqpkajqdLcC15eXte9f1Xe2xn3veh628xZP7OjzjFn/czO2F5V3d8Z26uq7+2M+17kbD+T8jvMfnq93qkKUlD1fAga5vfaGX//Outnlr9XtbfvRc72Myl/r2p3f2dsr6ru74ztVdX3rsq+lcmHnCtbqkHTpk1zyL5V5ai4pb1qb9/q2N8R7+vIz+yM7VXV/Z2xvar63s64b1U562d2xp9JZ/3MVeWsn9tZv9fO2F5V3d8Z26uq7+2M+1aVs35mZ/yZdNaf56pw1s8sP5Nlk+F7DiR3ubGftJl9pL3sI+1lH2kv+0mb2Ufaq+GQ77V9pL3sI+1lP2kz+0h72Ufayz71vb2kp5QDGQwGXnrpJQwGg6NDcRrSZvaR9rKPtJd9pL3sJ21mH2mvhkO+1/aR9rKPtJf9pM3sI+1lH2kv+9T39pKeUkIIIYQQQgghhBCi1klPKSGEEEIIIYQQQghR66QoJYQQQgghhBBCCCFqnRSlhBBCCCGEEEIIIUStk6KUEEIIIYQQQgghhKh1UpSqok2bNnHrrbcSHByMSqVi6dKlpdarVKoyH++++y4A8fHx5W7zyy+/2I6TkZHB5MmT8fb2xtvbm8mTJ5OZmVmLn7R6VNReubm5TJ8+nZCQEFxdXWnXrh2ff/65bX16ejqPP/44bdq0wc3NjbCwMP71r3+RlZVV6jj1pb2g6m0m59jSUuuTk5O57777CA4Oxs3NjVGjRnH8+HHb+oZ2jlW1vRra+fXmm2/Ss2dPPD09CQgIYOzYsRw9erTUNoqi8PLLLxMcHIyrqytDhgzh0KFDtvUN6RyrjvZqaOeYM5OcyD6SE9lH8iH7SD5kP8mJKk/yIftJTnQNiqiSFStWKM8//7zy22+/KYCyZMmSUusTExNLPb755htFpVIpJ0+eVBRFUUwm01XbvPLKK4q7u7uSk5NjO86oUaOUjh07Klu3blW2bt2qdOzYUbnllltq86NWi4ra68EHH1RatGihrF+/XomLi1O++OILRaPRKEuXLlUURVEOHDigjBs3Tlm2bJly4sQJZe3atUqrVq2U8ePHlzpOfWkvRal6m8k5tsS2zmKxKH369FEGDhyo7Ny5U4mNjVUefvhhJSwsTMnNzVUUpeGdY1Vtr4Z2fo0cOVKZN2+ecvDgQSUmJkYZPXp0qfZQFEV56623FE9PT+W3335TDhw4oEyYMEFp0qSJkp2drShKwzrHqqO9Gto55swkJ7KP5ET2kXzIPpIP2U9yosqTfMh+khOVT4pS1aisP5BXGjNmjHLDDTdcc5suXboo999/v+314cOHFUDZvn27bdm2bdsUQImNja1SzI5UVnt16NBBefXVV0st69atm/LCCy+Ue5yff/5Z0ev1itFoVBSl/raXolRfmzXUc+zo0aMKoBw8eNC2zGQyKb6+vspXX31V7nEayjlWXe3VUM4vRVGUlJQUBVA2btyoKIo1aQ0KClLeeust2zaFhYWKt7e3Mnfu3HKP01DOsepqr4Z0jjkryYnsIzmRfSQfso/kQ/aTnMg+kg/ZT3KiS2T4Xi1KTk7mzz//5IEHHih3m+joaGJiYkpts23bNry9vendu7dtWZ8+ffD29mbr1q01GnNtGzBgAMuWLePcuXMoisL69es5duwYI0eOLHefrKwsvLy80Gq1QMNqL7C/zRryOVZUVASAi4uLbZlGo0Gv17Nly5Zy92uo59j1tFdDO78udjH39fUFIC4ujqSkJEaMGGHbxmAwMHjw4Gt+1oZyjlVHezW0c6y+kpyoYpIT2UfyocqTfMh+khNdm+RD9pOc6BIpStWi7777Dk9PT8aNG1fuNl9//TXt2rWjX79+tmVJSUkEBARctW1AQABJSUk1EqujfPzxx7Rv356QkBD0ej2jRo3is88+Y8CAAWVun5aWxmuvvcYjjzxiW9aQ2gvsb7OGfI61bduW8PBwZs+eTUZGBsXFxbz11lskJSWRmJhY5j4N+Ry7nvZqSOeXoijMnDmTAQMG0LFjRwDb5wkMDCy1bWBgYLmftaGcY9XVXg3pHKvPJCeqmORE9pF8qPIkH7Kf5ETlk3zIfpITlSZFqVr0zTffMGnSpFIV9ssVFBTw008/lXnVUKVSXbVMUZQylzuzjz/+mO3bt7Ns2TKio6N5//33eeyxx1izZs1V22ZnZzN69Gjat2/PSy+9VGpdQ2kvsK/NGvo5ptPp+O233zh27Bi+vr64ubmxYcMGbrrpJjQazVXbN/RzzN72amjn1/Tp09m/fz8LFiy4at2Vn6u8z9qQzrHqaK+Gdo7VZ5ITVUxyIvtIPlR5kg/ZT3Ki8kk+ZD/JiUrTOjqAhmLz5s0cPXqURYsWlbvNr7/+Sn5+Pvfee2+p5UFBQSQnJ1+1fWpq6lWVVGdWUFDAc889x5IlSxg9ejQAkZGRxMTE8N577zFs2DDbtjk5OYwaNQoPDw+WLFmCTqezrWso7QX2tRnIOQbQvXt3YmJiyMrKori4GH9/f3r37k2PHj1KbSfnmFVl2wsa1vn1+OOPs2zZMjZt2kRISIhteVBQEGC9StWkSRPb8pSUlKs+a0M6x6qjvaBhnWP1meREFZOcyD6SD9lP8iH7SU50NcmH7Cc50dWkp1Qt+frrr+nevTudO3e+5ja33XYb/v7+pZb37duXrKwsdu7caVu2Y8cOsrKySnXVc3ZGoxGj0YhaXfq01Gg0WCwW2+vs7GxGjBiBXq9n2bJlV11lbSjtBZVvs4sa+jl2OW9vb/z9/Tl+/Di7d+9mzJgxtnVyjl3tWu11UUM4vxRFYfr06SxevJh169YRERFRan1ERARBQUFERUXZlhUXF7Nx48ZSn7WhnGPV1V4XNYRzrCGQnKhikhPZR/Kh6yf5kP0kJ5J86HpITnQNtTGben2Wk5Oj7N27V9m7d68CKB988IGyd+9eJSEhwbZNVlaW4ubmpnz++eflHuf48eOKSqVS/vrrrzLXjxo1SomMjFS2bdumbNu2TenUqVOdvq1jeSpqr8GDBysdOnRQ1q9fr5w6dUqZN2+e4uLionz22WeKoihKdna20rt3b6VTp07KiRMnSt0O02Qy2d6nvrSXolS9zS6Sc8zaXj///LOyfv165eTJk8rSpUuV8PBwZdy4cbb9G9o5VtX2uqihnF+PPvqo4u3trWzYsKHUuZGfn2/b5q233lK8vb2VxYsXKwcOHFDuvvvuUrfzbUjnWHW010UN5RxzZpIT2UdyIvtIPmQfyYfsJzlR5Uk+ZD/JiconRakqWr9+vQJc9ZgyZYptmy+++EJxdXVVMjMzyz3O7NmzlZCQEMVsNpe5Pi0tTZk0aZLi6empeHp6KpMmTVIyMjKq+dPUvIraKzExUbnvvvuU4OBgxcXFRWnTpo3y/vvvKxaL5Zr7A0pcXJztfepLeylK1dvsIjnHpiiKoihz5sxRQkJCFJ1Op4SFhSkvvPCCUlRUVOH+9fUcq2p7XdRQzq/yzo158+bZtrFYLMpLL72kBAUFKQaDQRk0aJBy4MAB2/qGdI5VR3td1FDOMWcmOZF9JCeyj+RD9pF8yH6SE1We5EP2k5yofCpFURSEEEIIIYQQQgghhKhFMqeUEEIIIYQQQgghhKh1UpQSQgghhBBCCCGEELVOilJCCCGEEEIIIYQQotZJUUoIIYQQQgghhBBC1DopSgkhhBBCCCGEEEKIWidFKSGEEEIIIYQQQghR66QoJYQQQgghhBBCCCFqnRSlhBBCCCGEEEIIIUStk6KUEEIIIYQQQgghhKh1UpQSQgghhBBCCCGEELVOilJCCCGEEEIIIYQQotZJUUoIIYQQQgghhBBC1Lr/B+xWG7b/IuNxAAAAAElFTkSuQmCC",
       "text/plain": [
        "<Figure size 1200x480 with 4 Axes>"
       ]
@@ -826,16 +845,13 @@
     "fig4, axs4 = plt.subplots(2,2)\n",
     "fig4.set_figwidth(12)\n",
     "\n",
-    "N = 265\n",
-    "dates = pd.date_range(\"1/1/1750\", periods=265, freq='Y')\n",
-    "\n",
-    "axs4[0,0].plot(dates, NOx_hist_road_yearly_global_weighted_averages)\n",
+    "NOx_hist_emissions.plot(ax= axs4[0,0])\n",
     "emissions_NOx_road.plot(title = 'Yearly total road emissions of NOx across scenarios', ax= axs4[0,0])\n",
-    "axs4[0,1].plot(dates, NH3_hist_road_yearly_global_weighted_averages)\n",
+    "NH3_hist_emissions.plot(ax= axs4[0,1])\n",
     "emissions_NH3_road.plot(title = 'Yearly total road emissions of NH3 across scenarios', ax= axs4[0,1])\n",
-    "axs4[1,0].plot(dates, CO_hist_road_yearly_global_weighted_averages)\n",
+    "CO_hist_emissions.plot(ax= axs4[1,0])\n",
     "emissions_CO_road.plot(title = 'Yearly total road emissions of CO across scenarios', ax= axs4[1,0])\n",
-    "axs4[1,1].plot(dates, SO2_hist_road_yearly_global_weighted_averages)\n",
+    "SO2_hist_emissions.plot(ax= axs4[1,1])\n",
     "emissions_SO2_road.plot(title = 'Yearly total road emissions of SO2 across scenarios', ax= axs4[1,1])\n",
     "\n",
     "axs4[0,0].set_ylabel('Tg(NO)')\n",
@@ -855,7 +871,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 38,
+   "execution_count": 144,
    "id": "d1e371ac-88ca-4c21-8da3-e7e7bfe76952",
    "metadata": {
     "tags": []
@@ -863,7 +879,295 @@
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAHWCAYAAACmMzqDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3jT5drA8W9m994TShll7yVLlCE4wOMClKWiuFEcgAcF9RUB5/HIUBRwAXIUBEQEQRBlb9mbAl200L3S5Hn/CA0NbaFAIU25P9eVq+lv3kl/Se/ceYZGKaUQQgghhBBCCCGEEOIG0jo6ACGEEEIIIYQQQghx85GilBBCCCGEEEIIIYS44aQoJYQQQgghhBBCCCFuOClKCSGEEEIIIYQQQogbTopSQgghhBBCCCGEEOKGk6KUEEIIIYQQQgghhLjhpCglhBBCCCGEEEIIIW44KUoJIYQQQgghhBBCiBtOilJCCCGEEEIIIYQQ4oaTolQ1dtddd+Hr68vJkydLrTt79ixhYWF06NABi8Vy3WM5fvw4Go2GWbNmVcrx9u7dy7hx4zh+/PhVH2Pp0qWMGzfumuIYMmQINWvWvKZj3Cg1a9ZkyJAhjg7DZty4cWg0mko/7urVq9FoNKxevbrSj30jFRYWMnz4cMLCwtDpdDRr1qzcbYcMGYJGo6Fhw4aYzeZS6zUaDc8++2yp5SdPnuTZZ58lNjYWV1dX/Pz8uPXWW/nuu+9QSlXmwxHVxPV63QpxPUk+dGmSDzmW5EOXdj3zoeLX4/vvv1/m8d5//300Go3d62vOnDl07tyZkJAQXFxcCA8P5+6772bdunVX/RiF86kur6+qQopS1diMGTPQ6/U8/vjjpdY9++yzZGVlMXv2bLRa57sM9u7dy/jx4685CRs/fnzlBSWuyOOPP8769esr/bgtWrRg/fr1tGjRotKPfSNNnTqV6dOn8/rrr/PXX3/xzTffXHafvXv3VviDzt9//02TJk34+eefeeGFF1i2bBmzZs0iIiKCRx55hP79+9+QD2jCuVyv160Q15PkQ5cm+ZBjST50adc7H7pSaWlpdOjQgSlTprB8+XI+/PBDkpOT6dy5M2vWrLku5xRVT3V5fVUVekcHIK6f0NBQpkyZwkMPPcT06dN58sknAViwYAFz5sxhypQp1K5d+7rGYDabKSoquq7ncFa5ubm4u7s7OgyHiYyMJDIystKP6+3tTbt27Sr9uDfa7t27cXNzK7OFU1k8PDxo0aIFb775JgMGDMDNza3cbdPT0/nXv/6Fj48PGzduJCQkxLauT58+NGnShFGjRtGsWTNGjRp1zY/lRrjZX0/XW/Hze71et0JcT5IPVW03+/u35EOXdj3zoatRVhy9evUiKCiIL7/8ki5dulTq+a7Uzf56ut5MJhMajabavL6qCuf7SkhckQcffJB+/frx8ssvc/z4cdLS0hg+fDjdu3fnqaeeYsuWLdxzzz34+/vj6upK8+bN+eGHH+yOcebMGZ5++mkaNGiAp6cnwcHB3Hbbbaxdu9Zuu+ImsJMmTeKdd94hJiYGFxcX/vjjj1JxrV27Fo1Gw5w5c0qt+/rrr9FoNGzevLnMxzRr1iweeOABALp27YpGoynVFP6rr76iadOmuLq64u/vz7333su+ffts64cMGcJnn30GYNu/ZPPczz77jM6dOxMcHIyHhweNGzdm0qRJmEymyz/pZbj11ltp1KgRf/75J7fccgvu7u48+uijAMTHx/PII48QHByMi4sL9evX54MPPijVSmX8+PG0bdsWf39/vL29adGiBV9++WWpblYmk4lXX32V0NBQ3N3d6dixI5s2bapwrIWFhbzzzjvExcXh4uJCUFAQQ4cO5cyZM3bb1axZk7vuuoslS5bQvHlz3NzcqF+/PkuWLAGsf6f69evj4eFBmzZt2LJli93+ZTVXX7VqFbfeeisBAQG4ubkRHR3NfffdR25urm2bqVOn0rRpUzw9PfHy8iIuLo4xY8bY1pfXnHbRokW0b98ed3d3vLy86N69e6lvJotj2rNnD/3798fHx4eQkBAeffRRMjIy7LadP38+bdu2xcfHB3d3d2rVqmX7m15Kfn4+o0ePJiYmBqPRSEREBM888wzp6em2bTQaDTNmzCAvL6/M67s8EydO5PTp03zyySeX3G7GjBmkpKTw3nvv2RWkir366qvExcUxefJk2zU/fPhwXF1d2bp1q207i8XC7bffTkhICImJiZc8Z0WvX4Dvv/+e9u3b4+npiaenJ82aNePLL7+0ra+M19PlrqPc3FxefvllYmJibO8jrVq1KvM9q6SK7rdx40buvvtuAgICcHV1JTY2lhEjRthtc+jQIQYMGGD3WIrft4oVX+9z5szh9ddfJzw8HG9vb7p168aBAwfstl2xYgV9+vQhMjISV1dXateuzZNPPklqaqrddsWvg23btnH//ffj5+dHbGys3bqSLBYLkyZNsr1nBAcHM2jQIE6dOmW33fbt27nrrrtsjyc8PJw777yz1HZCXA+SD0k+JPmQleRDlc/LywtXV1f0+su395g3bx49evQgLCzMdq2MGjWKnJycUtteLle41P/rijy/UDnXWnkqst/p06d54okniIqKwmg0Eh4ezv33309ycrJtm8zMTFtuVfxYRowYUeo5K+6e+c0331C/fn3c3d1p2rSp7bVY7PDhwwwdOpQ6derg7u5OREQEd999N//884/ddsWvoW+++YaRI0cSERGBi4sLhw8fvqbX15kzZ2yPufi9pUOHDvz++++XfU6rLSWqvbS0NBUWFqa6du2qHnzwQeXr66tOnjypVq1apYxGo+rUqZOaN2+eWrZsmRoyZIgC1MyZM23779+/Xz311FNq7ty5avXq1WrJkiXqscceU1qtVv3xxx+27Y4dO6YAFRERobp27ar+97//qeXLl6tjx47Z1pU8bvPmzVWHDh1Kxdu6dWvVunXrch9PSkqKevfddxWgPvvsM7V+/Xq1fv16lZKSopRStnX9+/dXv/zyi/r6669VrVq1lI+Pjzp48KBSSqnDhw+r+++/XwG2/devX6/y8/OVUkq9+OKLaurUqWrZsmVq1apV6qOPPlKBgYFq6NChdrEMHjxY1ahR47J/gy5duih/f38VFRWlPv30U/XHH3+oNWvWqJSUFBUREaGCgoLUtGnT1LJly9Szzz6rAPXUU0/ZHWPIkCHqyy+/VCtWrFArVqxQb7/9tnJzc1Pjx48vFZNGo1GvvPKKWr58ufrwww9VRESE8vb2VoMHD75knGazWd1xxx3Kw8NDjR8/Xq1YsULNmDFDRUREqAYNGqjc3FzbtjVq1FCRkZGqUaNGas6cOWrp0qWqbdu2ymAwqDfeeEN16NBB/fTTT2rBggWqbt26KiQkxG7/N998U5V8Czp27JhydXVV3bt3VwsXLlSrV69W3333nRo4cKA6d+6cUkqpOXPmKEA999xzavny5er3339X06ZNU88//7ztOH/88YcC7K7N7777TgGqR48eauHChWrevHmqZcuWymg0qrVr15aKqV69euqNN95QK1asUB9++KFycXGx+9uvW7dOaTQa1a9fP7V06VK1atUqNXPmTDVw4MBLPr8Wi0X17NlT6fV6NXbsWLV8+XL1/vvvKw8PD9W8eXPb9bd+/XrVu3dv5ebmVur6LsvgwYOVh4eHUkqpe++9V/n6+qq0tDTbekA988wztt979OihdDqdys7OLveYr776qu31oZRSeXl5qlmzZqpWrVq2v8cbb7yhtFqtWr58+SUft1IVv37Hjh2rAPWvf/1LzZ8/33YNjx071rbNtb6eKnIdPfnkk8rd3V19+OGH6o8//lBLlixR7733nvr0008v+Tgrst+yZcuUwWBQTZo0UbNmzVKrVq1SX331lerXr59tmz179igfHx/VuHFj9fXXX6vly5erkSNHKq1Wq8aNG2fbrvh6r1mzpnr44YfVL7/8oubMmaOio6NVnTp1VFFRkW3bqVOnqgkTJqhFixapNWvWqNmzZ6umTZuqevXqqcLCQtt2xa+DGjVqqNdee02tWLFCLVy40G5dSU888YQC1LPPPquWLVumpk2bpoKCglRUVJQ6c+aMUkqp7OxsFRAQoFq1aqV++OEHtWbNGjVv3jw1fPhwtXfv3ks+p0JUFsmHJB+SfEjyoZL5UPHrceLEicpkMpW6TZw4UQHq2LFjpc5VVFSkCgsL1bFjx9QTTzyhPD091ZYtWy75uJVS6u2331YfffSR+uWXX9Tq1avVtGnTVExMjOratavddhXJFcr7f13R57eyrrWyVGS/U6dOqbCwMBUYGKg+/PBD9fvvv6t58+apRx99VO3bt08ppVROTo5q1qyZ3TaffPKJ8vHxUbfddpuyWCx2f9+aNWuqNm3aqB9++EEtXbpU3XrrrUqv16sjR47YtluzZo0aOXKk+t///qfWrFmjFixYoPr27avc3NzU/v37bdsVv4YiIiLU/fffrxYtWqSWLFmi0tLSrun11bNnTxUUFKQ+//xztXr1arVw4UL1xhtvqLlz517u8qm2pCh1k1i6dKkCFKC++eYbpZRScXFxqnnz5spkMtlte9ddd6mwsDBlNpvLPFZRUZEymUzq9ttvV/fee69tefEbe2xsrN0HnJLrSiZhM2fOVIDavn27bdmmTZsUoGbPnn3JxzN//vxSbwRKKXXu3Dnl5uamevfubbc8Pj5eubi4qAEDBtiWPfPMM6U+XJXFbDYrk8mkvv76a6XT6dTZs2dt664kCQPUypUr7ZaPGjVKAWrjxo12y5966iml0WjUgQMHLhnTW2+9pQICAmxvyPv27VOAevHFF+22L36TvFwSVvwP5Mcff7RbvnnzZgWoKVOm2JbVqFFDubm5qVOnTtmW7dixQwEqLCxM5eTk2JYvXLhQAWrRokW2ZRcnYf/73/8UoHbs2FFufM8++6zy9fW95GO4+J+E2WxW4eHhqnHjxnbXdFZWlgoODla33HJLqZgmTZpkd8ynn35aubq62p7n999/XwEqPT39krFcbNmyZWUef968eQpQn3/+uW1ZycTqckpuu3//fqXT6dTIkSNt6y9OwuLi4lRoaOgljzl16lQFqHnz5tmWHTp0SHl7e6u+ffuq33//XWm1WvXvf/+7QjGWVN71e/ToUaXT6dTDDz98yf2v9fVUkeuoUaNGqm/fvlf60Cq0X2xsrIqNjVV5eXnlbtOzZ08VGRmpMjIy7JY/++yzytXV1fY+VHy9X/ye98MPP9gVFS9msViUyWRSJ06cUID6+eefbeuKXwdvvPFGqf0uft0Wv+c8/fTTdttt3LhRAWrMmDFKKaW2bNmiAFtxSwhHkXxI8iHJhyQfKlb8erzcrayiVL169Wzrw8LC1F9//XUlT4FS6sL/4jVr1ihA7dy507auIrlCef+vK/r8Vta1drX7Pfroo8pgMFzyy6kJEyYorVarNm/ebLe8OPalS5falgEqJCREZWZm2pYlJSUprVarJkyYUO45iguMderUsXvPKH4Nde7cudQ+1/L68vT0VCNGjCg3npuRdN+7SfTq1Yt27dpRp04dHnnkEQ4fPsz+/ft5+OGHASgqKrLdevfuTWJiol3Xj2nTptGiRQtb01SDwcDKlSvtmoAXu+eeezAYDJeNqX///gQHB9t1R/n0008JCgrioYceuqrHuX79evLy8krNqhIVFcVtt93GypUrK3Sc7du3c8899xAQEIBOp8NgMDBo0CDMZjMHDx68qtj8/Py47bbb7JatWrWKBg0a0KZNG7vlQ4YMQSnFqlWr7Lbt1q0bPj4+tpjeeOMN0tLSSElJAbB1DSj+uxZ78MEHK9SkeMmSJfj6+nL33XfbXRPNmjUjNDS0VBPVZs2aERERYfu9fv36gLV5fsn+7MXLT5w4Ue65mzVrhtFo5IknnmD27NkcPXq01DZt2rQhPT2d/v378/PPP5fqdlSWAwcOkJCQwMCBA+0GsfX09OS+++5jw4YNdk2UwXoNl9SkSRPy8/Ntz3Pr1q0B6/P6ww8/cPr06cvGAdj+nhdfnw888AAeHh4Vvj4vpV69ejz22GP897//JT4+/qqPo853gyjZpaB27dp88cUXLFy4kLvuuotOnTpVeMamily/K1aswGw288wzz1z2eNfyeqrIddSmTRt+/fVXRo0axerVq8nLy6vQ47zcfgcPHuTIkSM89thjuLq6lnmM/Px8Vq5cyb333ou7u3up9+f8/Hw2bNhgt09Z1yzYv+ZSUlIYPnw4UVFRtvfxGjVqAJT5Xn7fffdd9vEWv+dcfE23adOG+vXr267p2rVr4+fnx2uvvca0adPYu3fvZY8txPUg+ZDkQ5IPST50sRdeeIHNmzeXur3wwgvl7vPjjz+yceNG5s+fT4MGDejVq1eFZmI7evQoAwYMIDQ01Hb9Fo9DVfw+UpFcoaSL/19X9Pm9XtdaRff79ddf6dq1q+11UZYlS5bQqFEjmjVrZvda7NmzZ5nd57p27YqXl5ft95CQEIKDg+1ec0VFRbz77rs0aNAAo9GIXq/HaDRy6NChq86HruT11aZNG2bNmsU777zDhg0brro7dHUiRambiIuLC0ajEcDWT/fll1/GYDDY3Z5++mkA25vHhx9+yFNPPUXbtm358ccf2bBhA5s3b+aOO+4o84NaWFhYheN58skn+f7770lPT+fMmTP88MMPPP7447i4uFzVY0xLSys3hvDwcNv6S4mPj6dTp062vuhr165l8+bNtmSxoh9OL1ZWTGlpaeXGWrweYNOmTfTo0QOAL774gr///pvNmzfz+uuv28VUvH1oaKjd8fR6PQEBAZeNMTk5mfT0dIxGY6nrIikpqdQ/FH9/f7vfi6+v8pbn5+eXe+7Y2Fh+//13goODeeaZZ4iNjSU2NtZuPICBAwfy1VdfceLECe677z6Cg4Np27YtK1asKPe4l7smLBYL586ds1t+8XNVfD0WP8+dO3dm4cKFFBUVMWjQICIjI2nUqNFlxxtKS0tDr9cTFBRkt1yj0RAaGlqh67Mixo0bh06nY+zYsWWuj46O5syZM2WOX1CseDyRqKgou+V33nknISEh5Ofn89JLL6HT6S4bT0Wv3+JxOioy4Ou1vJ4qch395z//4bXXXmPhwoV07doVf39/+vbty6FDhy4Z1+X2q8hjTEtLo6ioiE8//bTU67B3794ApV6Ll7tmLRYLPXr04KeffuLVV19l5cqVbNq0yVbcutr38oq+5/r4+LBmzRqaNWvGmDFjaNiwIeHh4bz55puSjIkbTvIhyYcuR/Ihq+qeDxWLjIykVatWpW6X+l/dsGFD2rRpw/3338+yZcuoUaPGJYtYANnZ2XTq1ImNGzfyzjvvsHr1ajZv3sxPP/0EXF0+BKX/phV9fq/XtVbR/c6cOXPZx5icnMyuXbtKvQ69vLxQSl02HwLrdVvy/eqll15i7Nix9O3bl8WLF7Nx40Y2b95M06ZNr1s+VPL1NW/ePAYPHsyMGTNo3749/v7+DBo0iKSkpMuep7qS2fduUoGBgQCMHj2af/3rX2VuU69ePQC+/fZbbr31VqZOnWq3Pisrq8z9Lh6s8VKeeuop3nvvPb766ivy8/MpKipi+PDhFd7/YsVvRGUNupyQkGB73JeycOFCcnJy+Omnn2ytCAB27Nhx1XFB2c9LQEBAubHChb/T3LlzMRgMLFmyxO4bk4ULF5Y6HkBSUpLdN3ZFRUUV+gcfGBhIQEAAy5YtK3N9yW8erodOnTrRqVMnzGYzW7Zs4dNPP2XEiBGEhITQr18/AIYOHcrQoUPJycnhzz//5M033+Suu+7i4MGDdn+vYpe7JrRaLX5+flcca58+fejTpw8FBQVs2LCBCRMmMGDAAGrWrEn79u3L3CcgIICioiLOnDljlygopUhKSrJ943itwsLCGDFiBO+99x4jR44stb579+4sX76cxYsX257XkpRSLFq0CH9/f1q2bGm3bvjw4WRlZdGwYUOef/55OnXqdNnnr6LXb/FzcurUqVLFsItdy+sJLn8deXh4MH78eMaPH09ycrKt9dPdd9/N/v37y43rcvuVfIzl8fPzQ6fTMXDgwHJbjcXExJS7f1l2797Nzp07mTVrFoMHD7YtP3z4cLn7VOS9vOTr6+LE8uL33MaNGzN37lyUUuzatYtZs2bx1ltv4ebm5jSzPIrqR/Kh8kk+JPlQRThzPlRZ9Ho9LVq0KDU5wsVWrVpFQkICq1evtpul7+LBxyuSK5R08WvqSp7f63GtFbvcfkFBQZd9jIGBgbi5ufHVV1+Vu/5KffvttwwaNIh3333Xbnlqaiq+vr6ltr/SfOhiF7++AgMD+fjjj/n444+Jj49n0aJFjBo1ipSUlHLfc6o7aSl1k6pXrx516tRh586dZX4z0KpVK9s/XI1GU+qbul27dpWaSeBqhIWF8cADDzBlyhSmTZvG3XffTXR09GX3u/ibmmLt27fHzc2Nb7/91m75qVOnWLVqFbfffvtlj1H8xlPyMSul+OKLL67gkVXM7bffzt69e9m2bZvd8uIZd7p27WqLSa/X27VKycvL45tvvrHb79ZbbwXgu+++s1v+ww8/VGgq6rvuuou0tDTMZnOZ10RxYn696XQ62rZta/s29uLnB6wf/nv16sXrr79OYWEhe/bsKfNY9erVIyIigu+//95uZp6cnBx+/PFH2wwZV8vFxYUuXbowceJEwNrVoTzF19/F1+ePP/5ITk6O3fV5rV577TX8/f3L/LD/+OOPExwczOjRo21N8EuaNGkS+/fv59VXX7XrejJjxgy+/fZb/vvf/7Jo0SLS09MZOnToZWOp6PXbo0cPdDpdqQ98FVXR11NJFbmOQkJCGDJkCP379+fAgQOlujeUp6z96tatS2xsLF999RUFBQVl7ufu7k7Xrl3Zvn07TZo0KfO1WJFv+ksq630NYPr06Vd0nIsVd8G5+JrevHkz+/btK/Oa1mg0NG3alI8++ghfX98yX99C3CiSD0k+VBbJh66cM+ZDlaW4W33t2rUvuV1F/xdXJFe4lKt5fivzWqvofr169eKPP/4oNVtwSXfddRdHjhwhICCgzNdizZo1KxRDSWW9l//yyy8V7n5alqt9fUVHR/Pss8/SvXv3mzofkpZSN7Hp06fTq1cvevbsyZAhQ4iIiODs2bPs27ePbdu2MX/+fMD6ZvD222/z5ptv0qVLFw4cOMBbb71FTExMhf6xX84LL7xA27ZtAZg5c2aF9mnUqBEAn3/+uW0a1piYGAICAhg7dixjxoxh0KBB9O/fn7S0NMaPH4+rqytvvvmm7RiNGzcGrNPG9urVC51OR5MmTejevTtGo5H+/fvz6quvkp+fz9SpU0s1aa4ML774Il9//TV33nknb731FjVq1OCXX35hypQpPPXUU9StWxewdpn68MMPGTBgAE888QRpaWm8//77pd5Q69evzyOPPMLHH3+MwWCgW7du7N69m/fffx9vb+/LxtOvXz++++47evfuzQsvvECbNm0wGAycOnWKP/74gz59+nDvvfdW+vMA1nE6Vq1axZ133kl0dDT5+fm2b0W6desGwLBhw3Bzc6NDhw6EhYWRlJTEhAkT8PHxKfdbNa1Wy6RJk3j44Ye56667ePLJJykoKGDy5Mmkp6fz3nvvXXGsb7zxBqdOneL2228nMjKS9PR0PvnkE7txAcrSvXt3evbsyWuvvUZmZiYdOnRg165dvPnmmzRv3pyBAwdecSzl8fb25vXXX+fFF18stc7X15effvqJu+66i5YtW/LKK6/QtGlTMjMzmTdvHt999x0PPfQQr7zyim2ff/75h+eff57BgwfbClFffvkl999/Px9//LHdFMUXq+j1W7NmTcaMGcPbb79NXl6ebRrqvXv3kpqayvjx4y/5mCv6eqrIddS2bVvuuusumjRpgp+fH/v27eObb765bNJekf0+++wz7r77btq1a8eLL75IdHQ08fHx/Pbbb7YPUJ988gkdO3akU6dOPPXUU9SsWZOsrCwOHz7M4sWL7cZXqYi4uDhiY2MZNWoUSin8/f1ZvHjxZZvfX069evV44okn+PTTT9FqtfTq1Yvjx48zduxYoqKibNffkiVLmDJlCn379qVWrVoopfjpp59IT0+ne/fu1xSDENdK8iHJhy4m+VDFOHs+dDVuueUW7rnnHurXr4+Pjw/Hjx9n6tSpHDlyhAULFlx2Xz8/P4YPH86bb76JwWDgu+++Y+fOnaW2rUiuUJ6KPr/X61qr6H5vvfUWv/76K507d2bMmDE0btyY9PR0li1bxksvvURcXBwjRozgxx9/pHPnzrz44os0adIEi8VCfHw8y5cvZ+TIkbb3zYq66667mDVrFnFxcTRp0oStW7cyefLkCneXLEtFX18ZGRl07dqVAQMGEBcXh5eXF5s3b2bZsmXltta9KdzwodWFw3Tp0kU1bNjQbtnOnTvVgw8+qIKDg5XBYFChoaHqtttuU9OmTbNtU1BQoF5++WUVERGhXF1dVYsWLdTChQtLzbRSPIPF5MmTS527rNlmSqpZs6aqX7/+FT2ejz/+WMXExCidTlfq2DNmzFBNmjRRRqNR+fj4qD59+qg9e/bY7V9QUKAef/xxFRQUpDQajd3sGosXL1ZNmzZVrq6uKiIiQr3yyivq119/LTXDzZXMNnPxc1/sxIkTasCAASogIEAZDAZVr149NXny5FKz/Xz11VeqXr16ysXFRdWqVUtNmDBBffnll6VmBSkoKFAjR45UwcHBytXVVbVr106tX79e1ahR47KzzSillMlkUu+//77t8Xt6eqq4uDj15JNPqkOHDtm2q1GjhrrzzjtL7c9FM5soVfa1cfFsM+vXr1f33nuvqlGjhnJxcVEBAQGqS5cudjPUzJ49W3Xt2lWFhIQoo9GowsPD1YMPPqh27dpl26asKVqVss5407ZtW+Xq6qo8PDzU7bffrv7++2+7bYpjKp7GvljxzEjFz/OSJUtUr169VEREhDIajSo4OFj17t3bbrrX8uTl5anXXntN1ahRQxkMBhUWFqaeeuop29S7xa52tpmSCgoKVExMTJl/E6WsszA988wzqlatWrbXSufOndW3335rN8Vudna2iouLUw0aNLCbRUgp66xNBoOh1IxJF6vo9auUUl9//bVq3bq17fpr3ry53ev7Wl9PFbmORo0apVq1aqX8/PxsMb/44osqNTX1ko+zovutX79e9erVS/n4+CgXFxcVGxtbapaoY8eOqUcffVRFREQog8GggoKC1C233KLeeecd2zbF1/v8+fNL7Xvx++LevXtV9+7dlZeXl/Lz81MPPPCAio+PV4B68803bduV9zooua4ks9msJk6cqOrWrasMBoMKDAxUjzzyiDp58qRtm/3796v+/fur2NhY5ebmpnx8fFSbNm3UrFmzLvl8CnE9SD4k+ZDkQ5IPKXXp16pSSk2ePLnUdTVy5EjVtGlT5ePjo/R6vQoNDVX33ntvqeewPOvWrVPt27dX7u7uKigoSD3++ONq27ZtZb4vXC5XuNT/64o8v5V1rZWlovudPHlSPfrooyo0NFQZDAbbdsnJybZtsrOz1b///W9Vr14923tZ48aN1YsvvqiSkpJs25WX7178mj937px67LHHVHBwsHJ3d1cdO3ZUa9euVV26dFFdunSxbVdejlVy3ZW+vvLz89Xw4cNVkyZNlLe3t3Jzc1P16tVTb775Zqkc+2aiUapE+zIhHGDXrl00bdqUzz77zDaoqBBCCCHEzUTyISGEEDcjKUoJhzly5AgnTpxgzJgxxMfHc/jw4Wvqyy6EEEII4WwkHxJCCHEzk4HOhcO8/fbbdO/enezsbObPny8JmBBCCCFuOpIPCSGEuJlJSykhhBBCCCGEEEIIccNJSykhhBBCCCGEEEIIccNJUUoIIYQQQgghhBBC3HBSlBJCCCGEEEIIIYQQN5ze0QFUBRaLhYSEBLy8vNBoNI4ORwghhBBOTClFVlYW4eHhaLVX//3flClTmDx5MomJiTRs2JCPP/6YTp06lbt9QUEBb731Ft9++y1JSUlERkby+uuv8+ijj1bofJIPCSGEEKKyVDQfkqIUkJCQQFRUlKPDEEIIIUQ1cvLkSSIjI69q33nz5jFixAimTJlChw4dmD59Or169WLv3r1ER0eXuc+DDz5IcnIyX375JbVr1yYlJYWioqIKn1PyISGEEEJUtsvlQzL7HpCRkYGvry8nT57E29vb0eEIIYQQwollZmYSFRVFeno6Pj4+V3WMtm3b0qJFC6ZOnWpbVr9+ffr27cuECRNKbb9s2TL69evH0aNH8ff3v6pzSj4khBBCiMpS0XxIWkqBrYm6t7e3JGFCCCGEqBRX2wWusLCQrVu3MmrUKLvlPXr0YN26dWXus2jRIlq1asWkSZP45ptv8PDw4J577uHtt9/Gzc3tiuKVfEgIIYQQleVy+ZAUpYQQQgghqpDU1FTMZjMhISF2y0NCQkhKSipzn6NHj/LXX3/h6urKggULSE1N5emnn+bs2bN89dVXZe5TUFBAQUGB7ffMzMzKexBCCCGEEBUgs+8JIYQQQlRBF3+zqJQq99tGi8WCRqPhu+++o02bNvTu3ZsPP/yQWbNmkZeXV+Y+EyZMwMfHx3aT8aSEEEIIcaNJUUoIIYQQogoJDAxEp9OVahWVkpJSqvVUsbCwMCIiIuzGbKhfvz5KKU6dOlXmPqNHjyYjI8N2O3nyZOU9CCGEEEKICpDue1fAbDZjMpkcHYYAjEbjNU2zLcTNTpnNFKWmUZSchCk5maKkZIpSU9F6eKAPDsIQHIz+/E0r08MLcUMZjUZatmzJihUruPfee23LV6xYQZ8+fcrcp0OHDsyfP5/s7Gw8PT0BOHjwIFqtttwZb1xcXHBxcbni+CQfqjoMBgM6nc7RYQjhNFRREZacHCzZ2Zizs7Gcv5mzs7FkZWPJsd7XaDQYIqMw1ojGEBWFPihIciEhrhMpSlWAUoqkpCTS09MdHYo4T6vVEhMTg9FodHQoQlQ5lsJCilJSKEpOxpSUZC04pSRjSkq2LktOpiglBczmCh1P4+qKPjjYrlB14XahgKV1d7/Oj0yIm8dLL73EwIEDadWqFe3bt+fzzz8nPj6e4cOHA9ZWTqdPn+brr78GYMCAAbz99tsMHTqU8ePHk5qayiuvvMKjjz5a4YHOL0fyoarJ19eX0NBQ+cAsqjVVVHS+eJSDJadEMSnr/P2c4iJTDpasrFK/m3Os91U53ZkvR+PmhjGquEgVjTE6GmN0FIboGhjCQtFIcViIqyZFqQooTsCCg4Nxd3eXf/oOZrFYSEhIIDExkejoaPl7iJuKJScHU3KKXQsnU3ISRckpFCVZl5nT0ip2MJ0OfWAghtBQ9CEh6IOCsOTkWAtaZ1IwJadgycxE5edjio/HFB9/ycNpvbxKFar0QdbfrctD0AcHoZVishCX9dBDD5GWlsZbb71FYmIijRo1YunSpdSoUQOAxMRE4ku8Jj09PVmxYgXPPfccrVq1IiAggAcffJB33nmn0mKSfKhqUUqRm5tLSkoKYO3CKYQzMSWnkL16NabEBGvxqGRx6Xyx6VqLSeXRuLig9fJC5+GB1tPTevPyROdhva9MJgpPxmOKP4kpMRGVl0fBwYMUHDxY+mAGA8aICAzRURija2CMjj5/PxpDZKTkPUJchkYppRwdhKNlZmbi4+NDRkZGqSmQzWYzBw8eJDg4mICAAAdFKC6WkZFBQkICtWvXxmAwODocIa6ZUgpLRoa10FSihZMp2b6lkyUrq0LH0xiN6ENDrcWh0FD0IcEYQqzFJ0NYKPqQUPSBAZf9Zs+Sn0/RmTMXWl6lpFCUcoai5GTbclNKCio3t8KPVefray2CBV8oWJVqhRUQgEYv35sI53SpvKIqk3zIOaWlpZGSkkLdunWlK5+o8kwJCWStWEHmb8vJ274drvCjaKlikpcXWk8PWzFJ6+WJrrjIdH4bnZeX/e8eHmiuoFBkKSzEdPo0pvh4CuNP2opVhfHxmE6eRF2qO7NGgz4s1FqsKtnSqkY0xqgotB4eV/T4hXAmFc2HJOO/jOIxE9ylW0qVUtxtz2w2S1FKOAWlFObUVAqPH6fg+HHrN2/JSXYtnVR+foWOpfXwsBacQkKsxZ2QYAyhYecLTyHow8LQ+fpWSisGraurNYm6zKxc5uxsa+Hq/M1kK1rZF7BUYSHm9HTM6ekUHDhwiRNr0QcEWAtUISHW1lyhoRjCQq33w8IwBAdfUVIphLh6kg9VXcV/E5PJJEUpUSUVnjpF1m/LyVz+G/k7d9mtc2vWDNeGDe2LSZ7nC03FhSQvL9t9jQPyfq3RiEtMDC4xMaXWKbOZouRka7Eq/sSFwtX5FuaW3FyKEhIpSkgkd8OGUvvrAgOteVZ0NIYa0RjPF6wMUVGVlssJUdVJUaqC5A2hapG/h6iqzNnZFB4/QeHx4xdux45RePw4lpycy+6v8/OzFmFCQqxFmNAQa7e30BBbNzvd+UGMqxKdpzWZdKlVq9xtlFKY09PPF67OlOgmWKKAlZJC0ZkzYDZbl505A3v2lH/e890PDWGh6EPDLrpvbY0lLa6EqDzy/7fqkb+JqIoKjx8nc/kKsn77jfyS/8c1GtxatsC7R0+8enTHEBrquCArgUanwxAejiE8HI92be3WKaUwp6VRGH8S08l4Ck/EUxgfb21pdSLe+iVdaip5qanWVmMX0Xp7lxrHyqVePVzq1EZ7FZNUCFFVSaYuhBBXSBUWUnjq1PmC03G7AlTRmTPl76jVYoiIwFizpvUbsfAw9CGhGEKCz7d4CqnWSYZGo0Hv54fezw/q1St3O2U2Yz571tpVMDnF2nUxMck6ZlZSEqakRIoSk6ytrlJTMaemkr97d9kH02rRBwVdaF1VsmgVZm19pQ8MRCOzeQohhBDXpODIETJ/+42s35bbt4bWanFv0wbvnj3w6tYNfVCQ44K8gTQaDfrAQPSBgdCiean15qwsCk/E2xWsTPHxFJ48SVFyMpbMTPL37LEv6gHodLjUisElrj6ucXG4xNXDtX599P7+N+iRCVG5pCglhBBlUBaLtTn28eMUnG/pZL2dwHTqFFgs5e6rCwzEWLMGxho1cImJsRahatTAUKOGDHZZARqdDn1QkDVpbdiwzG2UUpjPncOUmGgtViUmUZSUiCkxydodMjEJU0oKmEzW7oPJybBzZ9kn1OutY1qVLFqF2BevdP7+0hpBCCGEKEEpRcHBQ2T99huZy3+j8PCRCyt1OjzatcOruBAlBZNSdF5euDVqiFuj0rmOJS+PwpMnMZ08aesaWHj8OAX79luHQDh0mIJDh8lcvNi2jz442FqgiquPa/04XOLiMEZHy8yAosqTolQ1lpKSwtixY/n1119JTk7Gz8+Ppk2bMm7cONq3b8/27dsZO3YsmzZtIjMzk9DQUNq2bctnn31GYGAgx48fJ6ZE32lfX18aN27M22+/TZcuXQD4888/mTx5Mlu3biUxMZEFCxbQt29fuzh++uknpk+fztatW0lLS2P79u00a9bMbpsjR47w8ssv89dff1FQUMAdd9zBp59+SkhIyPV+msRNzpyefr7wZN/iqfDEiUuO8aRxdz9fdKqJsWYMxpia1uJTzZrovLxu4CO4OWk0GvT+/tYkt7zClcVCUWqqdYD2EsWr4pZWpqQkilJSoKgIU0ICpoQEypvbxzZwfGiotStlWDjG4pl1oqPRBwVJayshqjDJiYSoHEop8vfuJeu35WT99huFJ05cWGkw4HFLe7x79MDzttusLaPFVdG6ueFaty6udevaLVdKUZSSQv6+fRTs30/+/gMU7NtHYXy8bVzPnD/X2rbXnD+OS1wcrvXjrC2r6tZFK+MDiipEilLV2H333YfJZGL27NnUqlWL5ORkVq5cydmzZ0lJSaFbt27cfffd/Pbbb/j6+nLs2DEWLVpE7kWzaP3+++80bNiQlJQUxowZQ+/evdm9ezcxMTHk5OTQtGlThg4dyn333VdmHDk5OXTo0IEHHniAYcOGlbm+R48eNG3alFWrVgEwduxY7r77bjZs2IBWPuiJa2TJz7c2i75ojKfC48cxp6eXv6NejzEyEmNxa6eaNW3FJ31QkLScqeI0Wi2G8zP7uTVuXOY2qqiIojNnLrS0Skq2K1qZkhIxp6ahCgsxnW9WX+a5XF0xRkXaxnywTQtdIxpDWJiMayWEg0lOJMTVU0qR/88/tq55plOnbOs0RiMenTrh3aM7nl27onOiGUedkUajwXB+7FGvW2+1Lbfk5JB/8KC1ULVvP/n791Nw8CAqL4+8nTvJK9laXKOxfrFaP+5Cq6p6ceiDJbcVjqFR6grn4ayGLjVVYX5+PseOHSMmJgZXV1cHRXjl0tPT8fPzY/Xq1bZv8EpauHAhDzzwAHl5eejL+bBU/K1gyW/xTp8+TWRkJNOmTePJJ5+0216j0ZT5reCljgewfPlyevXqxblz52zP/7lz5/D392fFihV069at1LGc9e8iro6yWLDk5GDJzMSclYUlK+vCz8wszFmZWIp/ZmWX+D3Lus+lCk+APjT0fNGpBsaaNW1d7gwREVJMENaCVEqKXUsrU0LChemgExLAbC7/AHo9hohw64w60VEYoq2FK2N0NIbISLTyHlbtVHQK5KqmOuZDIDmREFdDWSzkbd9O1vLlZC5fQVFiom2dxtUVz86d8erZA88ut6Lz9HBgpKI8ymym8MSJ84WqfdZWVfv3lzv+qc7Pz1agKu7+5xIT45AZD0X1UNF8SD5tXSmlwJR7+e2uB4M7VLB67enpiaenJwsXLqRdu3a4XDR4cmhoKEVFRSxYsID777+/wlXxktMOV5aCggI0Go1djK6urmi1Wv76668yEzDhXFRRkV0RyZKVaf2ZXeL3rGxrASk7+0Lxqfhndrb1tXcNtN7eGGNq4lKzpn3Lp+hoacIsLkljNFpbzEVGlrlemUyYEhJKTwd9Mh5T/ElrUeuEdaadsuZf1IeGYoyKKjUVtDE6WrqCiqpNciJAciJRfSizmdwtW8n67TeyVqywK15o3d3x7NoVrx498OzUUXInJ6DR6XCpVQuXWrXw7t3btrwoNfV8gcpaqMrft4/CY8cwnztHzrr15Kxbf+EYBgMudepYW1WVKFZJfiIqU5UuSk2dOpWpU6dy/PhxABo2bMgbb7xBr169AGtT0vHjx/P5559z7tw5W9//huWML1IpTLnwbvj1O/6ljEkAY8W+idDr9cyaNYthw4Yxbdo0WrRoQZcuXejXrx9NmjShXbt2jBkzhgEDBjB8+HDatGnDbbfdxqBBg8odsyAnJ4fRo0ej0+nK/KbxarVr1w4PDw9ee+013n33XZRSvPbaa1gsFhJLfCsjqrbCU6c5+9VXFJ4+hSUr21Z4MmdloXIr50OLxmBA6+ODztMTrbc3Oi8vtN5e6Dy90Pl4o/U8/7uXFzpvb7Re5+8HBqLz9ZUmyeK60BgMGGtYB7aHjnbrlMVCUUrKhRl1iltXxVtn2bFkZ1OUZJ1ZkM2bSx1b5+d3oStgyWmha0TL4OvC8SQnkpxIOD1lMpG7eTOZvy0n6/ffMael2dZpPT3xuv02vHr2xKNDh2o9Q/DNRB8YiGfHQDw7drAts+TnU3DokLXbX3GrqgMHrN0C9+4lf+9eMkocwxAZaStQuTVpgluzZlKoEletShelIiMjee+996hduzYAs2fPpk+fPmzfvp2GDRsyadIkPvzwQ2bNmkXdunV555136N69OwcOHMBLXhTcd9993Hnnnaxdu5b169ezbNkyJk2axIwZMxgyZAj/93//x0svvcSqVavYsGED06ZN49133+XPP/+kcYnxV2655Ra0Wi25ubmEhYUxa9Ysu/XXKigoiPnz5/PUU0/xn//8B61WS//+/WnRogU6mS2iyrMUFJD25ZekTf8cVVBwyW01bm7ovL3ReXuVKCBd+F3n7YW2rN+9PNF6eUk3J+F0NFqtdUa/0FBo08ZunW0GwfPTP9umhT5fuDKnpWE+dw7zuXPk79xV6thaDw9rV0BbsSoKfWAQen8/dH7Wm9bLSwpXQiA5kRAlqcJCcjZsIPO338j+fSXmjAvlBq2PD1633453zx64t28vswbfJLSurrg1bmw3BqeyWDCdOkX+vv0UHLgwVlVRYiKmU6cwnTpF1orfrRtrNLjUq4d7ixa4tWyBe8uW1txHiApwujGl/P39mTx5Mo8++ijh4eGMGDGC1157DbA2eQ4JCWHixIml+vZfyhWNoeAkTdXL8/jjj7NixQpOlJwp47zCwkKaN29Oq1atmD17tm28g0WLFtGgQQN8fX0JCAgo99hXO35CSampqej1enx9fQkNDWXkyJG88sorpbaT8ROqhqzVq0l+d4Jt8Gf31q3x6XOPtRWTt3eJwpIXOk9P6ZMuxBUwZ+eUKFKdsI5hdeIEhSdPWltWVeTft16Pzs8Xve+FQpXOzxednx962+/+1m38/ND5+0vxtxLcNGNKSU5U7rElJxJVjSoqIvvPtdaueatWYcnKsq3T+fnh1a0bXj164NGureRr4pLM6enWbn/791Gwbx+523eUORGMITwct5YtcW/ZArcWLXCpXVtmKr7JVLsxpcxmM/PnzycnJ4f27dtz7NgxkpKS6NGjh20bFxcXunTpwrp1666oKHVFNJoKNxeviho0aMDChQvLXGc0GomNjSUnx37Uk6ioKGJjY29AdBAYGAjAqlWrSElJ4Z577rkh5xVXpvDUKZL/712y//gDAH1wMMGvvYp3797SKkOISqLz9EBXvz6u9euXWmcpKMB06pS1K+DJk7YxrMxnrS2rzGfPYsnNhaIizGdSMZ9JrfB5NW5uZRSy/C60wPL1Q+dfoqjl4yMfYG5WkhNdV5ITicqglCJ7zRrOfPABBYcO25brggLx6tYN75534N6qpUzsIipM5+uLR7u2eLRra1tmSkkhb9t2crduJW/bNvL37bNOCpOQQObixYC1FZ57s2bWQlWrlrg2aiQt8QTgBEWpf/75h/bt25Ofn4+npycLFiygQYMGrFu3DqBUX/+QkJAyv/EqqaCggIIS3YwyMzMrP3AHS0tL44EHHuDRRx+lSZMmeHl5sWXLFiZNmkSfPn1YsmQJc+fOpV+/ftStWxelFIsXL2bp0qXMnDmzwufJzs7m8OEL/+COHTvGjh078Pf3Jzo6GoCzZ88SHx9PQkICAAcOHACsA4uGnm/WOXPmTOrXr09QUBDr16/nhRde4MUXX6RevXqV9ZSISmApKCBtxgzSPv/C2lVPr8d/0CACn35aZl4R4gbSurjgEhuLyyU+HFsKCjCnp2M+exbzuXMUnT1n/f3cOcznzlJ07hzmc+m2IlZRejqYTKi8PIry8ihKqPj4NVpv79KFrPOFK31QEIbwcPRh4RhCQ+SDj7jhJCcSN6u8f3aTMnkyuZs2AdaigE+fe/Du0QO35s3RSJdQUUkMwcEY7uiJ9x09AWtr7/xdO8ndspXc7dvI27ETS0YG2WvWkL1mDWCdSMa1ceMLXf5atEDnRK2LReWp8plhvXr12LFjB+np6fz4448MHjyYNecvZKBUqwyl1GVbakyYMIHx48dfl3irCk9PT9q2bctHH33EkSNHMJlMREVFMWzYMMaMGUNiYiLu7u6MHDmSkydP4uLiQp06dZgxYwYDBw6s8Hm2bNlC165dbb+/9NJLAAwePJhZs2YBsGjRIoYOHWrbpl+/fgC8+eabjBs3DrAmZaNHj+bs2bPUrFmT119/nRdffPEanwVRmbJWryb5/97FdPIkAO7t2hH679dxOT/mmxCiatG6uKANCcFQzkDNF1NKYcnJsRWpzOnp1sJVceur9HMXfi8udmVkgFJYMjOxZGZiOlG6+b59UFr0ISEYwsOtt7Aw68+IC/dlRidR2SQnEjebwpMnOfPRx2QuXQpYP/z7DxpIwLBh6Hx8HByduBnoPD3wuOUWPG65BbAOqJ+/f7+1JdXWbeRu24Y5LY28rVvJ27oVvsA6LlWdOucLVNZuf4ZwB02mIW4opxtTqlu3bsTGxvLaa68RGxvLtm3baN68uW19nz598PX1Zfbs2eUeo6yWUlFRURUfQ0E4nPxdbpyyuuqFjHoNr169pKueEDc5ZTZjzsiwtcAqOnv2QtHqfIssU3IKpsQEihISUSbTZY+p8/VFHx52oXBlu0VgCA9D5+dX5d97bpoxpUSVIH8bUazo3DnSpk3j7PdzwGQCjQafe+4m6IUX5MO9qFKUUhQeP27t8rdtK3lbtlJYRm8nfViY3eDpLrVrSws/J1LtxpQqppSioKCAmJgYQkNDWbFiha0oVVhYyJo1a5g4ceIlj+Hi4oKLTGkqxCVZ8vNJm/ElaV+U6Ko3eBCBT0lXPSGElUanQ+/vj97f/7LbKouFotRUihISMCUmWseaOJ1gG3PClJCAJTvbWtBKT6dg776yz+nmdqGFVXg4hosKWPrgYOkiKIS4qVjy8zn7zTekff6FbQBzj1tuIfiVl8scl1AIR9NoNLjExOASE4Pvff8CoCg1ldzt260tqbZuJX/fPooSE8n85Rcyf/kFAK2XF27Nm+HeshXuLVvg2rgxWvlc7/SqdNY2ZswYevXqRVRUFFlZWcydO5fVq1ezbNkyNBoNI0aM4N1336VOnTrUqVOHd999F3d3dwYMGODo0IVwall//GHtqnfqFHC+q97Yf19y/BohhLgUjVZrHXMiOBi3cmYbM2dllVmsMiVaf5rPpKLy8ig8epTCo0fLPpFOhyEkpIzWVhG2IpbMMCiEqA6U2UzGosWc+eQT66ysgEu9egS/8gqeHTs4ODohrow+MBDv7t3x7t4dAEtuLnm7dp3v8reV3B07sWRlkfPnWnL+XAuAxmDAtVGj8zP8tcSteTP0fn6OfBjiKlTpolRycjIDBw4kMTERHx8fmjRpwrJly+h+/kJ99dVXycvL4+mnn+bcuXO0bduW5cuX4+Xl5eDIhXBOhSdPWrvqrV4NgD4kxNpV7447qnx3GSGE89N5eaGrVw/XcgZ0thQUUJSYWHZLq8RETElJYDLZluWxtezz+PsTOn6cLfEVQghnopQi56+/SJn8PgUHDwLWbk7BI17A++670Wi1Do5QiGundXfHo107PNq1A0AVFZG//wB527baBlA3n0klb/t28rZvB74EwFg7FrcmTXGpFYMx5vwtKkpmCq7CqnRR6ssvv7zkeo1Gw7hx42wDQwohro4lP5+0z78gbcYMVGEh6PUEDBlM4FNPofWQrnpCiKpB6+KCsWZNjDVrlrlemc0UpaZai1WJ9q2tihKshSxLTg7ms2fRusmA6kII55O/dy/JkyeTu34DYJ39NPDJJ/F75GHpxiSqNY1ej1ujhrg1aoj/oEEopTCdPEnu1m3kbt1C3rbt1pbUh49QePiI/c46HcbISIy1ap0vVNXE5XzBSufvL1++O1iVLkoJIa4vpRR/fvAwXj/txe2sdfB/9/btCP23dNUTQjgfzfmue9YZB5uXWq/OzxRoSkjAEBV14wMUQoirZDp9mpRPPiFz0WLA2m3J7+GHCRz+JDpfX8cGJ4QDaDQajNHRGKOj8b23LwBFZ8+St20b+fv2U3jsGAXHj1F47Li16/+JE9bB1M9P3lRM6+ODsWYNXGLsC1aGGjXQGo0OeGQ3HylKCXETO7pxIYFfbkeroMBTQ63nh+E1cIR8WyCEqJY0Gg06Hx+ZEl0I4TTMGRmkTv+cc998Y5vB1PvOOwl6cQTGyEgHRydE1aL398erWze8unWzLVMWC0XJydYi1TFrkarw2DEKjx3DlJiIJSOD/J27yN+5y/5gWi2GiIgSraouFK30QUHyeakSSVFKiJtYbOu7WNn5MzYWJvDTLVqeSfuAoT9sgx5vg19NR4cnhBBCCHFTshQUcO6770mdPh1LRgYA7m3bEvzKK7g1aujg6IRwHhqt1jprb1gYHrfcYrfOkp9vbUF1vkhVsmhlyc7GdPIkppMnbQOrF9N6elqHE7ioK6CxZk2ZTOUqSFFKiJuZzsDt03/n8JaPKNjzFR/6+6E//QcD/9sGbnkWOr4ELp6OjlIIIYQQ4qagLBYyf/mFMx99jCkhAQCXOnUIfuVlPDp1ktYZQlQirasrrmVMsKKUwpyaeqFIdfSorSug6dQpLNnZ5O/eTf7u3fYH1GgwhIVdGGC9RMFKHxoqr99ySFFKCMGTrV6kSG9k2s5pTArwQ6/O0n/tB7D9O+g2Dpo8BDKTixBCCCHEdZOzfj3JkydTsHcfYJ0FOej55/Hp2weNTufg6IS4eWg0GvRBQeiDgvBo08ZunaWwEFN8vLVgdfTYhVZWx49jyciwTbCS8/ff9sd0d8e1Th1cGtTHNa4+rvXjcKlTB62b2418aFWSFKWEEAA83fRpTGYTX+7+kncD/TG4B3B/8glYOBw2fwF3TISo1o4OUwghhBCiWsk/cICU9z8gZ621i5DW05OAYcPwHzRQPrAKUcVojUZcatfGpXZtu+VKKcznzpXZFbDw5ElUbi55O3eSt3NniYNpMdasiWtcHC7142zFKn1g4A1+VI4lTR+qsZSUFJ588kmio6NxcXEhNDSUnj17sn79egC2b9/OXXfdRXBwMK6urtSsWZOHHnqI1NRUAI4fP45Go7Hd/Pz86Ny5M2vWrLGdY8KECbRu3RovLy+Cg4Pp27cvBw4cKDemJ598Eo1Gw8cff2y3/NZbb7U7l0ajoV+/fpX/pIhyaTQaXmjxAoMaDALgLXdY2OZhMHrC6a3wZTf46QnITHBwpEIIIcSVkZxIVEWmxEQSRo3mWN97rQUpgwG/QQOJXbGcwCefkIKUEE5Eo9Gg9/fHvWVLfO+/n5BXXiFqymfE/rqUuO3bqPXLEsI/eJ+AYY/j0aEDuoAAsFgoPHqUzKVLOfPBh5wcNoxDHTtxsFMn4oc9QcoHH5Lxyy8UHD2KMpsd/RCvG2kpVY3dd999mEwmZs+eTa1atUhOTmblypWcPXuWlJQUunXrxt13381vv/2Gr68vx44dY9GiReTm5tod5/fff6dhw4akpKQwZswYevfuze7du4mJiWHNmjU888wztG7dmqKiIl5//XV69OjB3r178fDwsDvOwoUL2bhxI+Hh4WXGO2zYMN566y3b727yj/iG02g0vNzqZUwWE3P2z+GNM3+h7zOZuw79DTu+g13zYN9i61hTtzwLBvkbCSGEqPokJxJViTkzk7QvvuDs19+gCgoA8O7di6ARIzBGRzs4OiFEZdMYDLjExuISGwt33mlbXnTmDPn795O/bz8F+/eTv28fhcePYz6TSs6ZtbbWkwAaV1dc6tW1taZyjYvDpW5dtO7ujnhIlUqKUtVUeno6f/31F6tXr6ZLly4A1KhRgzbn+8QuXLiQzMxMZsyYgV5vvQxiYmK47bbbSh0rICCA0NBQQkNDmT59OpGRkSxfvpwnn3ySZcuW2W07c+ZMgoOD2bp1K507d7YtP336NM8++yy//fYbd5Z4IZbk7u5OaGhopTx+cfU0Gg2j24ymyFLE/IPzeX3rRPSdJ3JH68dg2Sg4uRH+eAe2fW2dpa9BH5BB+4QQQlRRkhOJqsJSWEj63LmkTpmKOT0dAPdWrQh+9RXcmjRxbHBCiBtOHxSEZ1AQnp062ZZZcnMpOHiQ/P0HyN+/j4J9+8k/cACVn0/+zl3k79x14QAajbX7X/04XEoUq/RBQQ54NFdPilJXSClFXlGeQ87tpner8Ij9np6eeHp6snDhQtq1a4eLi4vd+tDQUIqKiliwYAH3339/hY/rfr4SazKZylyfcX7KWn9/f9syi8XCwIEDeeWVV2jYsPwpbL/77ju+/fZbQkJC6NWrF2+++SZeXl4ViktULo1Gw7/b/ZsiSxELDi9g1J+jMHT5gNsf/Q12/wgr3oCMeJg/GGp0hDsmQJgkU0IIcTORnEhyIlExymIh89dfrTPqnToFgDE2luCXR+J5vrumEEIAaN3dcWvWDLdmzWzLlNlM4Yl4CvbvI3/ffvIP7Kdg336KzpyxjWHF0l9t2+sCAnCNi7MrVhlr1qyyEyZIUeoK5RXl0fb7tg4598YBG3E3VKx5nl6vZ9asWQwbNoxp06bRokULunTpQr9+/WjSpAnt2rVjzJgxDBgwgOHDh9OmTRtuu+02Bg0aREhISJnHzMnJYfTo0eh0Ots3jSUppXjppZfo2LEjjRo1si2fOHEier2e559/vtx4H374YWJiYggNDWX37t2MHj2anTt3smLFigo9XlH5tBotb7Z/E5PFxJKjS3j5z5f5+NaP6dL4fqjXG/7+BP7+GE78BdM7Q4tBcNtY8HSuyrwQQoirIzmR5ETi8nI2biJl8mTb1PH6oCACn3sW33/9C41ePooJIS5Po9PhUisGl1oxePfubVtelJpq7fp3wNoFMH//fgqPHcOclkbO33/bzQCocXXFpW7dEsWqOFzr1kV7UfdyR9AopZSjg3C0zMxMfHx8yMjIwNvb225dfn4+x44dIyYmBldXV3JNuU6RgBXLz89n7dq1rF+/nmXLlrFp0yZmzJjBkCFDAEhLS2PVqlVs2LCBhQsXcvbsWf78808aN27M8ePHiYmJwc3NDa1WS25uLmFhYUycOJFHHnmk1LmeeeYZfvnlF/766y8iIyMB2Lp1K3feeSfbtm2zjZtQs2ZNRowYwYgRI8qNe+vWrbRq1YqtW7fSokWLMh9Xyb+LuH6KLEWMXjuaZceXYdAa+PS2T+kQ0cG6Mv0k/P6mtfUUgIs33P0JNPqX4wIWQggHu1ReUZVdST4ESE4kOZG4hIJDh0j54EOyV68GrK0fAoY9jv/gwdViDBghRNVkycuj4NCh80WqfRTs3Uf+oUOoi8ZIBECjwa15c2p+/911iaWi+ZAUpbiyJMxZmqqX5/HHH2fFihWcOHGi1LrCwkKaN29Oq1atmD17ti0BW7RoEQ0aNMDX15eAgIAyj/vcc8+xcOFC/vzzT2JiYmzLP/74Y1566SW02gsTPZrNZrRaLVFRURw/frzM4ymlcHFx4ZtvvuGhhx4qtV4SsBvLZDHx6ppX+T3+d1x0Lnx2+2e0DSvxQeTEeut4U4k7rLP1Pb9DWkwJIW5aN0tRSnIiyYlEaZbCQlLef59z334HFgvo9fg9+CCBTz91003zLoSoGpTFgik+nvx9++zGqipKScGjQweiv5xxXc5b0XxI2oxeIY1Gc8XfzFUlDRo0YOHChWWuMxqNxMbGkpOTY7c8KiqK2NjYMvdRSvHcc8+xYMECVq9ebZd8AQwcOJBu3brZLevZsycDBw5k6NCh5ca5Z88eTCYTYWFhFXhU4nozaA1M6jyJl1a/xOpTq3lu1XNMuX0KrUJbWTeo0R6G/QEzboOE7fDnJOg92bFBCyGEuK4kJ7InOZEoPHWa0y++SP4//wDg1b07QS+9iMtF14IQQtxIGq0WY82aGGvWxLtXL9vyorQ0LNnZDozMSopS1VRaWhoPPPAAjz76KE2aNMHLy4stW7YwadIk+vTpw5IlS5g7dy79+vWjbt26KKVYvHgxS5cuZebMmRU+zzPPPMP333/Pzz//jJeXF0lJSQD4+Pjg5uZGQEBAqW8SDQYDoaGh1KtXD4AjR47w3Xff0bt3bwIDA9m7dy8jR46kefPmdOjQofKeFHFNDDoDH9z6Ac//8Tx/n/6bp1c+zefdP6dZcDPrBlotdH8LZt8NW76CtsMhoOzEXQghhLhRJCcSN0LWH3+QMGo0lowMtD4+hE98D69bb3V0WEIIUS59QACU0+r3hsbh6ADE9eHp6Unbtm356KOPOHLkCCaTiaioKIYNG8aYMWNITEzE3d2dkSNHcvLkSVxcXKhTpw4zZsxg4MCBFT7P1KlTAbj1on+6M2fOtI3RcDlGo5GVK1fyySefkJ2dTVRUFHfeeSdvvvkmuio6Q8DNyqgz8vGtH/PcqufYkLiBp35/is+7f07joMbWDWI6Q50ecGg5rBwPD37t2ICFEELc9CQnEteTKirizCf/Ie2LLwBwbdKEyI8+xBAR4eDIhBDCOciYUlz5GArC8eTv4lh5RXk8/fvTbEnegpfRixk9ZtAgoIF1ZfJemNYBlAUe+x2iWjs2WCGEuMFuljGlRNUgfxvHMaWkkDDyZXI3bwbA7+GHCXntVTRGo4MjE0IIx6toPqQtd40QQpTDTe/GZ7d/RvPg5mQVZvHEiic4cPaAdWVIA2g2wHp/xViQurcQQgghqpmcjZs49q/7yN28Ga27OxEffUjo2H9LQUoIIa6QFKWEEFfF3eDOlNun0CSwCRkFGQxbPoxD5w5ZV946BvRuEL8eDix1bKBCCCGEEJVEWSykTv+c+KFDMaem4lKnDjX/9z+7wYOFEEJUnBSlhBBXzdPoydTuU2kY0JBzBed4fPnjrDixggPmbDLaPo4C+H0cmIscHKkQQjifKVOm2LpktWzZkrVr11Zov7///hu9Xk+zZs2ub4BC3GTM6emceuppznz0EVgs+PTtS80f5uFSS2bXE0KIqyUDnQshrom30Zvp3afz+PLH2X92Py+tfsm2zq1GFKFFWYQu6EtoWAtCPULtb+6hTj2duBBCXC/z5s1jxIgRTJkyhQ4dOjB9+nR69erF3r17iY6OLne/jIwMBg0axO23305ycvINjFiI6i3vn92cfuEFTAkJaIxGQt8Yi89996HRaBwdmhBCODUpSgkhrpmPiw9fdP+CD7d+yIFzB0jKSeJs/lnytBqOGQ0cyzkBh0+Uu2+oeyhhHmGEeITYClZhHmGEeoQS7B6MQWu4wY/o2iilyCvKI7Mwk4yCDDILM623gkyyCrPILMzErMy0CG5B69DWuOplYFohhL0PP/yQxx57jMcffxyAjz/+mN9++42pU6cyYcKEcvd78sknGTBgADqdjoULF96gaIWovpRSnJszh5QJ76FMJgzR0UR+/BGuDRo4OjQhhKgWpCglhKgUvq6+vNXhLdvvBeYCkjNPkfT9vSTmpZJU5zYSg2qTlJtEck4yiTmJ5JhyyCjIIKMggwPnDpR5XA0agtyCSrWyKi5ahXqE4u/qj1ZTub2RlVJkm7JtxaTMwgsFpeLfL75fcn2RqliXRRedC61CW9EpohMdIzoS7RUt37oKcZMrLCxk69atjBo1ym55jx49WLduXbn7zZw5kyNHjvDtt9/yzjvvXO8whaj2LDk5JI59g8yl1vExPbvdTvi776Jzolk1hRCiqpOilBDiunDRuRDtF0t0l3Hwv6Gw5w94/kPwDLZtk1WYRVJOEok5iSTlJF245SaRmJ1Icm4yJouJlLwUUvJS2JW6q8xzGbQGQtxLt7Iqvrnp3C4UkcooJpVswVSywGRRlmt6DvQaPd4u3ngbvfEyeuFttN73dvGm0FzIuoR1JOcm8/fpv/n79N8ARHpG0jGiI50iO9E6tDVuerdrikEI4XxSU1Mxm82EhITYLQ8JCSEpKanMfQ4dOsSoUaNYu3Yten3F0ruCggIKCgpsv2dmZl590EJUMwWHDnHqhREUHj0KOh3BL7+M/5DB8sWREEJUMilKCSGur4b3wrpPIWEbrJkId35gW+Vl9MLL6EUdvzpl7mpRFs7mn7UrWNkKWLnW38/knsFkMXEq+xSnsk9VevhGrdFWWCouKF18/+KCU/F9N73bJZNXpRRH0o/w1+m/+Ov0X2xN2cqp7FPMPTCXuQfmYtQaaRXaig7hHegY2ZEY7xhJhoW4iVz8eldKlfkeYDabGTBgAOPHj6du3boVPv6ECRMYP378NccpRHWT8fPPJI4bj8rLQx8SQsRHH+LeooWjwxJCiGpJo5RSjg7C0TIzM/Hx8SEjIwPvi5rj5ufnc+zYMdvsN6JqkL+Lkzn+F8y6EzQ6eGYTBNautEObLCZSclNKFa6Sc5KtLa5yEik0F5ZbOCqv0FR830XnUmmxXk6OKYdNiZtsRaqEnAS79RGeEdYCVURH2oa1lUHihaiiLpVXVERhYSHu7u7Mnz+fe++917b8hRdeYMeOHaxZs8Zu+/T0dPz8/NDpdLZlFosFpRQ6nY7ly5dz2223lTpPWS2loqKiJB9yMvK3qTzm/HxS/u9d0ufPB8DjlvaET56MPiDAwZEJIYTzqWg+JC2lhBDXX82OUPcOOLgMVo6Dh76ttEMbtAYiPCOI8IyotGM6iofBg67RXeka3RWlFMcyjrH29FprK6rkrZzOPs0PB3/gh4M/oNfqaRncko4RHekY0ZFY31hpRSVENWE0GmnZsiUrVqywK0qtWLGCPn36lNre29ubf/75x27ZlClTWLVqFf/73/+IiSl7unoXFxdcXG5c4V2IquzU8s84+H9TCUs2gwYCb48hsJs7mr/HXWIv+b9brUgeJSqkml0nvtHQ6aXLb3cdXZeiVEFBAZs2beL48ePk5uYSFBRE8+bNy02KxPWRkpLC2LFj+fXXX0lOTsbPz4+mTZsybtw42rdvz/bt2xk7diybNm0iMzOT0NBQ2rZty2effUZgYCDHjx+3+5v5+vrSuHFj3n77bbp06QLA1KlTmTp1KsePHwegYcOGvPHGG/Tq1cu2X3kflCdNmsQrr7wCWK+Zl19+mTlz5pCXl8ftt9/OlClTiIyMvE7Pjrjhuo2DQ8th32I4uQmi2jg6oipNo9FQy7cWtXxrMbjhYHJNuWxJ3sLaU9Yi1ansU2xM2sjGpI18sPUDwjzC6BDRgY7h1lZUnkZPRz8EIcQ1eOmllxg4cCCtWrWiffv2fP7558THxzN8+HAARo8ezenTp/n666/RarU0atTIbv/g4GBcXV1LLb9ZSU4kLmf7FzOpnWwmyw00HTOpH/A37Pjb0WEJIcT1FdGyehWl1q1bx6effsrChQspLCzE19cXNzc3zp49S0FBAbVq1eKJJ55g+PDheHl5VeapRRnuu+8+TCYTs2fPplatWiQnJ7Ny5UrOnj1LSkoK3bp14+677+a3337D19eXY8eOsWjRInJzc+2O8/vvv9OwYUNSUlIYM2YMvXv3Zvfu3cTExBAZGcl7771H7drW7lizZ8+mT58+bN++nYYNGwKQmJhod7xff/2Vxx57jPvuu8+2bMSIESxevJi5c+cSEBDAyJEjueuuu9i6datddwThxILrQ7OHYfs3sHwsPLpMvpG6Au4GdzpHdqZzZGeUUpzIPGHr5rcleQuJOYn87+D/+N/B/6HX6Gke0tzWiqqObx1pRSWEk3nooYdIS0vjrbfeIjExkUaNGrF06VJq1KgBWP+3xsfHOzhK5yE5kbicjqPH8se74/mkSyGZ3gGMC7ybPl6xjg7LcW76AV5E1SIX5HXjFeroCCpvTKk+ffqwefNmBgwYwD333EOrVq1wd78w3snRo0dZu3Ytc+bMYefOnXz99dd07969Mk59zarjmFLF40usXr3a9g1eSQsXLuSBBx4gLy+v3Fl6ir8V3L59O82aNQPg9OnTREZGMm3aNJ588sky9/P392fy5Mk89thjZa7v27cvWVlZrFy5EoCMjAyCgoL45ptveOihhwBISEggKiqKpUuX0rNnz1LHcNa/y00vMwH+0wKK8uCh76D+XY6OqFrIK8pjS9IWW5EqPsv+g2qwezAdIzrSIbwD7cLb4W2UqayFuJ6udUwpR6mO+RBITiQqrtBcyL//+je/Hv8VgGeaPcOTTZ6UL3aEEOIq3PAxpXr06MH8+fMxGo1lrq9Vqxa1atVi8ODB7Nmzh4SEhDK3q+qUUqi8PIecW+N26Zm8SvL09MTT05OFCxfSrl27UmNGhIaGUlRUxIIFC7j//vsrfNziQqPJZCq1zmw2M3/+fHJycmjfvn2Z+ycnJ/PLL78we/Zs27KtW7diMpno0aOHbVl4eDiNGjVi3bp1ZSZgwkl5h0P7Z2Dt+/D7OOs4UzoZ2u5auend6BTZiU6RnQCIz4y3Fag2J20mJTeFnw79xE+HfkKn0dE0qCmdIjvRIbwDcf5xkmwLIa6K5ESSE1U3Rp2R9zq/R5hnGF/t/orPdnxGYk4i/273bwxag6PDE0KIaqnSPg0+88wzFd62YcOGtmbMzkbl5XGgRUuHnLvetq1o3Cs225Zer2fWrFkMGzaMadOm0aJFC7p06UK/fv1o0qQJ7dq1Y8yYMQwYMIDhw4fTpk0bbrvtNgYNGkRISEiZx8zJyWH06NHodDq7bxr/+ecf2rdvT35+Pp6enixYsIAGDRqUeYzZs2fj5eXFv/71L9uypKQkjEYjfn5+dtuGhISQlJRUoccrnEiHF2DrTEg7BNu/hlaPOjqiaifaO5oB3gMYUH8A+UX5bEveZhsw/XjmcbalbGNbyjY+2fYJgW6B1hn9IjvSPqw9Pi4+jg5fCOEkJCeSnKg60mq0vNjyRcI9wnl307v8dOgnknOT+bDLhzLrrRBCXAfa63HQvLw8Fi1axPvvv88HH3zAokWLyLuKb9ImTJhA69at8fLyIjg4mL59+3LgwAG7bZRSjBs3jvDwcNzc3Lj11lvZs2dPZT0Up3bfffeRkJDAokWL6NmzJ6tXr6ZFixbMmjULgP/7v/8jKSmJadOm0aBBA6ZNm0ZcXFypGXxuueUWPD098fLyYvHixcyaNYvGjRvb1terV48dO3awYcMGnnrqKQYPHszevXvLjOmrr77i4YcfrlDzcqWUtOCojly9octr1vt/TICCbMfGU8256l25JeIWXmvzGovvXcyv//qVf7f9N7dG3oqb3o3UvFR+PvIzr6x5hc7zOvPsymdZl7COSurZLYQQVYLkROJKPRT3EB/f+jGuOlf+Pv03Q5YNITUv1dFhCSFEtVNpY0oVW7RoEY8//jipqfZv2oGBgXz55ZfcfffdFT7WHXfcQb9+/WjdujVFRUW8/vrr/PPPP+zduxcPDw8AJk6cyP/93/8xa9Ys6tatyzvvvMOff/7JgQMHKjyY+pWMoeAsTdXL8/jjj7NixQpOnDhRal1hYSHNmzenVatWzJ492zZ+wqJFi2jQoAG+vr4EBARc9hzdunUjNjaW6dOn2y1fu3YtnTt3ZseOHTRt2tS2fNWqVdx+++2cPXvW7pvBpk2b0rdvX8aPH1/qHDJ+gpMrKoTP2sC5Y3DraLh1lKMjuikVmgvZmrzV1tXvaMZR27oYnxgGxA3gnth75JthIa7QzTKmlOREkhPdDP458w/PrnqWs/lnCfcIZ2q3qdTyreXosCpMKcWR9CNsStrEnrQ9mJUZnUaHBg1ajRatRotGo0GL9adOo7NbZruv0Za5T/HvtuXntyneR6fRlXus4nNFeUUR5x+HTisD+QtRndzwMaXAOvve/fffzz333MPIkSOpX78+AHv37uWDDz7g/vvvZ/Xq1eX2rb/YsmXL7H6fOXMmwcHBbN26lc6drTNQffzxx7z++uu2ps+zZ88mJCSE77//vtxBJ6+FRqOpcHPxqqhBgwYsXLiwzHVGo5HY2FhycnLslkdFRREbW/HZR5RSFBQUlFr+5Zdf0rJlS7vkC6Bly5YYDAZWrFjBgw8+CFhnp9m9ezeTJk2q8HmFE9EbodubMH8I/P0faDkUvMruIiGuH6POSPvw9rQPb88rrV/hWMYx5u6fy89HfuZYxjH+b+P/8cm2T+hbuy/94/oT7R3t6JCFEFWI5ESXJzmR82sc1Jhve33LUyuf4kTmCQb+OpD/3PYfWoY4puvq5SilOJ55nM1Jm9mUtInNSZs5m3/W0WFdlpfRizahbWgb1pa2YW2J8Y6R1oFC3CQqtSj1zjvvMHTo0FLfBt1yyy3ccsstPPnkk7z99tssXbr0qo6fkZEBWGcyATh27BhJSUl2g0G6uLjQpUsX1q1bd12KUs4iLS2NBx54gEcffZQmTZrg5eXFli1bmDRpEn369GHJkiXMnTuXfv36UbduXZRSLF68mKVLlzJz5swKn2fMmDH06tWLqKgosrKymDt3LqtXry5VUMzMzGT+/Pl88MEHpY7h4+PDY489xsiRIwkICMDf35+XX36Zxo0b061bt2t+LkQV1aAvRLSE01th9QS4+2NHR3TTi/GJYXTb0TzX/Dl+PvIzc/bP4UTmCb7d9y3f7fuOTpGdGBA3gPbh7dFqrkvvbyGEqHSSE4lrFeUdxTe9vuG5Vc+x88xOhi0fxrud3uWOmnc4OjSUUpzMOmkrQG1O2syZvDN227joXGgW3IyWwS1xN7ijlMKCBYuyWO8r6/2Sy8zKjELZ7pfcVnF+/fnfzcoMcOE457cpvm9WZlBgofT5iixFHDh7gKzCLFbGr2RlvHUmymD3YNqFtbMWqULbEuIhX14KUV1ValFq/fr1TJw4sdz1zzzzTJlT8VaEUoqXXnqJjh070qhRIwDbgI8XD0IZEhJSZlPsYgUFBXbfWmVmZl5VTFWZp6cnbdu25aOPPuLIkSOYTCaioqIYNmwYY8aMITExEXd3d0aOHMnJkydxcXGhTp06zJgxg4EDB1b4PMnJyQwcOJDExER8fHxo0qQJy5Yto3v37nbbzZ07F6UU/fv3L/M4H330EXq9ngcffJC8vDxuv/12Zs2ahU4nzXirLY0GerwDM3vBtq+h3VMQVM/RUQnA0+jJw/Ufpn9cf9YlrOP7fd+z9vRa/jz1J3+e+pOa3jUZUN/atc/D4OHocIUQ4pIkJxKVwc/Vjxk9ZjBq7ShWxq/klTWvkJyTzKAGg25oix6lFKezT9sKUJuSNpGcm2y3jVFrpGlwU1qHtqZNaBsaBzbGqCt7hvSqoMhSxN60vWxM3MjGxI1sT9lOSm4Ki44sYtGRRQDU9K5J27C2tAtrR+vQ1jIxixDVSKWOKeXm5sb+/fupUaNGmetPnDhB/fr1yc3NveJjP/PMM/zyyy/89ddfREZGAtbugh06dCAhIYGwsDDbtsOGDePkyZOlvpkqNm7cuDL75Fd0DAXhePJ3qUbmDIADv0C9O6H/946ORpTjROYJ5u6fy4LDC8gxWbuzeBo8pWufEGW4WcaUElWD/G1uLLPFzKTNk/h+vzVnGRA3gFdbv3pdx0NKzE5kU9ImNiVtYkvSFhJyEuzW67V6mgQ2oU1YG1qHtKZpcFNcdC7XLZ7rLb8on+0p29mYuJENiRvYm7YXxYWPrBo0NAhoYOvq1zy4OW56NwdGLIQoi0PGlKpbty6rVq1i6NChZa5fuXIltWvXvuLjPvfccyxatIg///zTVpACCA0NBawtpkoWpVJSUsqdwhdg9OjRvPTSS7bfMzMziYqKuuK4hBCVoNs4OLjMWpg6sQ5q3OLoiEQZanjX4LU2r/Fs82f5+bC1a9/xzON8u+9bvt33LZ0iOvFw/Yela58QQohqTafVMarNKMI9w3l/y/t8v/97knOTea/Te7jqK6comJyTzObk8y2hEjdxKvuU3Xq9Rk+jwEa0Dm1N69DWNAtuVq2KMq56V9uYlwAZBRlsSd5ia0l1NOMoe9L2sCdtD1/t/gqD1kCz4Ga0DbUWqRoFNkKvrdSPuUKI66hSX61Dhgzh5ZdfJiQkhN69e9ut++WXX3j11Vd5/fXXK3w8pRTPPfccCxYsYPXq1cTExNitj4mJITQ0lBUrVtC8eXPAOlvKmjVrLtmN0MXFBRcX5/32QIhqJagutBgEW2fC8rHw+O/Wrn2iSvIweDCg/gD6xfVjfcJ6vt//PX+e+pO1p9ey9vRa6donhBCi2tNoNAxuOJgQ9xDG/DWGlfEreWz5Y/z3tv/i5+p3+QNcJDUv1W5g8hOZ9sOQ6DQ6GgY0tHXHaxbc7KaaGdfHxYfbo2/n9ujbAUjJTbEVqDYmbSQpJ8nWnfG/O/6Lh8GDViGtbC2p6vjWkUHThajCKrX7nsVi4aGHHuLHH3+kXr16drPvHTp0iL59+zJ//ny02op9i/7000/z/fff8/PPP1Ov3oWxZnx8fHBzs34bMHHiRCZMmMDMmTOpU6cO7777LqtXr+bAgQN4eXlV6DzSXN35yN+lmslKhv80B1MOPDAbGvZ1dETiCsRnxjNn/xwWHl5ItikbsHbt61O7D/3j+lPDu+wu3UJUV9J9T9xI8rdxrC1JW3j+j+fJKswi2iuaqd2mXrZL+9n8s3ZjQh3LOGa3XqvREucfR5vQNrQObU2L4BZ4Gj2v58NwWkop4rPi2ZCwgY1JG9mUtImMggy7bQJcA2gT1sY2cHqEZ4SDohXi5lLRfKhSi1LF5s2bx5w5czh48CBg7dbXr18/+vXrd0XHKa+iPXPmTIYMGQJY34jGjx/P9OnTOXfuHG3btuWzzz6zDYZeEZKEOR/5u1RDf0yANe+Bfy14ZhPoDI6OSFyhHFOOXde+Yh0jOvJw/Ye5JfwW6donbgpSlBI3kvxtHO9o+lGe+v0pEnIS8HPx47+3/5cmQU1s69Pz09mSvMXWEupw+mG7/TVoqOdfz9YSqkVIC7yNzvPeUZVYlIX9Z/fbWlJtTd5KvjnfbptIz0jboOltwtrg7+rvoGiFqN4cWpRyNhVJwmrWrGlrnSUcLy8vj+PHj0sCVp0UZFlbS+Wcgd7vQ5thjo5IXCWLsrA+YT3f7fuOtafX2pbX8K5B/7j+9IntI9/4imqtOhelJB+qeiQnqhpS81J5+ven2Xd2H646V55t/ixJOUlsStrEwXMHS21fx6+OrSVUq5BWMpvcdVJoLmTnmZ22ItU/qf9gVma7ber61bW1omoV0uqm6hopxPUkRakrcKkny2w2c/DgQYKDgwkICHBQhOJiGRkZJCQkULt2bQwGaVFTbWyeAb+MBPdAeH47uDrPhzlRtrK69nkYPGyz9knXPlEdVceilORDVVdaWhopKSnUrVsXne76zQAnLi/XlMvLa162+0KmWKxPrLUlVFgbWoa0lNY5DpJjymFr8lY2JG5gY+LGUgVDvUZP46DGdIzoyL217yXIPchBkQrh/BxSlNJqtZcdRE6j0VBUVFRZp6wUl3uyEhMTSU9PJzg4GHd3dxkoz8EsFgsJCQkYDAaio6Pl71GdmE0wpR2kHYbOr8Bt/3Z0RKKS5JhyWHRkEd/v+1669olqrzoWpUDyoapGKUVubi4pKSn4+vrazUQtHKfIUsQHWz5gU9ImmgU1s7aECm1FoFugo0MTZUjLS2NT0iY2Jm5kQ+IGTmeftq3Ta/R0r9GdAfUH0DSoqbznCXGFHFKU+vnnn8tdt27dOj799FOUUuTl5VXWKSvF5Z4spRRJSUmkp6ff+OBEmbRaLTExMRiNRkeHIirb3kXww0AwuMNz28BbkuzqpLhr3/f7v2ftqbUorP+CanrXtHbtq91HZu0TTq+6FqUkH6qafH19CQ0NlQ/MQlSCU1mn2JC4gcVHFrMtZZtteX3/+gyoP4BeMb1w0cks7kJURJXpvrd//35Gjx7N4sWLefjhh3n77beJjr70jBQ3WkWfLLPZjMlkuoGRifIYjcYKz+IonIxS8GUPOLUJWgyGe/7j6IjEdSJd+0R1VV2LUsUkH6o6DAaDdNkT4jrZl7aP7/d/z9KjSym0FALg6+LLfXXuo19cP0I9Qh0coRBVm8OLUgkJCbz55pvMnj2bnj17MmHChCuaEe9GctbkUYhqK34DfNUTNFp4aj0Exzk6InEd5ZhyWHxkMd/v/95uWuyOER0ZEDeADhEdpGufcCrOmlc4a9xCCHE9ncs/x0+HfmLegXkk5iQCoNVouT36dvrH9adVSCtpqShEGRxWlMrIyODdd9/l008/pVmzZkycOJFOnTpV5ikqnSRhQlRBcx+G/UugXm/oP8fR0YgbQCll69r356k/7br2Pdb4Me6sdScGrUxsIKo+Z80rnDVuIYS4EYosRaw5uYbv93/PpqRNtuV1/OowIG4Ad9a6Eze9zE4qRDGHFKUmTZrExIkTCQ0N5d1336VPnz6VdejrSpIwIaqg1EPwWVtQZhiyFGp2cHRE4gY6mXmSOQfmsODQAlvXvjCPMIY2Gsq9te/FVS/Tnouqy1nzCmeNWwghbrRD5w4xZ/8clhxdQl6RdbxkL6MX/6r9L/rF9SPSK9LBEQrheA6bfc/NzY1u3bpdsn/7Tz/9VFmnrBSShAlRRS15EbZ8BREt4fGVIE2jbzo5phx+OPADs/fMJi0/DYAA1wAGNxzMg/UelEHRRZXkrHmFs8YthBCOklGQwcLDC5m7fy6nsk8BoEFDl8gu9K/fn/Zh7aVrn7hpOaQoNWTIkAq96GbOnFlZp6wUkoQJUUVlJcN/moMpBx6YBQ3vdXREwkHyi/JZcHgBM3fPtI3n4G305uH6D/Nw/YfxcfFxcIRCXOCseYWzxi2EEI5mtpj56/RffL//e9YlrLMtj/GJoX9cf+6JvUe+SBM3HYcPdO5MJAkTogpb/R6sngB+MfDMJtAbHR2RcCCTxcQvR3/hy3++5HjmcQDc9e48VO8hBjUcRKBboGMDFALnzSucNW4hhKhKjmYcZe7+ufx8+Gdyi3IB8DR40qd2H/rV60dNn5qODVCIG0SKUldAkjAhqrCCbGtrqZwU6DUZ2j7h6IhEFWC2mFkRv4IZu2Zw4NwBAIxaI/fWuZdHGz1KuGe4gyMUNzNnzSucNW4hhKiKsguz+fnIz8zdP9f2RRpAh/AODKg/gI4RHWV2YVGt3fCi1PDhw3n99deJioq67Lbz5s2jqKiIhx9+uDJOfc0kCROiitvylXV8KfcAeH4HuMrrVFgppVh7ei2f7/qcnWd2AqDX6OldqzePNX6MWj61HByhuBk5a17hrHELIURVZlEW1iesZ87+OXazC0d5RdE/rj99a/fFy+jl4CiFqHw3vCg1duxY/vOf/3DLLbdwzz330KpVK8LDw3F1deXcuXPs3buXv/76i7lz5xIREcHnn39O48aNK+PU10ySMCGqOHMRTGkHaYeg08tw+1hHRySqGKUUm5M288U/X7AhcQNgHWi0W41uDGs8jPoB9R0cobiZOGte4axxCyGEsziZeZK5B+ay4NACskxZALjp3bgn9h76x/Un1jfWwREKUXkc0n0vJSWFL7/8krlz57J79267dV5eXnTr1o0nnniCHj16VNYpK4UkYUI4gX1LYN7DoHeD57eBt3TPEmX758w/zPhnBqtOrrIt6xjRkSeaPEHz4OYOjEzcLJw1r3DWuIUQwtnkmnJZcnQJc/bP4XD6YdvytmFtGRA3gC6RXdBpy5/NXghn4PAxpdLT0zlx4gR5eXkEBgYSGxtbZafDlCRMCCegFHx1B5zcAM0HQp//OjoiUcUdOneIGf/MYNnxZViUBYBWIa0Y1ngY7cNlimZx/ThrXuGscQshhLMqbun9/f7v+ePkH7Z8JcIzgofqPcS/6vxLZhgWTsvhRSlnIkmYEE7i5Cb4sjtotPDUOgiWLlni8uIz4/lq91f8fORniixFADQKaMTjTR6na1RXGWRUVDpnzSucNW4hhKgOErITmHdgHj8e+pGMggwAXHWu3FnrTvrH9aeefz0HRyjElXFoUWrXrl1ln0yjwdXVlejoaFxcXCr7tFdNkjAhnMi8R2DfYqjTEx7+wdHRCCeSlJPErD2z+PHgj+Sb8wGo7Vubxxs/Ts+aPdFr9Q6OUFQXzppXOGvcQghRneQX5fPrsV/5bt93thmGAVoEt6BTZCeaBTWjYWBD3PRuDoxSiMtzaFFKq9VesluEwWDgoYceYvr06bi6ulb26a+YJGFCOJHUw/BZG1BmGLwEYjo5OiLhZNLy0vh237fM3T+XbFM2YJ0B59FGj3JP7D0YdUYHRyicnbPmFc4atxBCVEdKKbanbOf7/d/z+4nfMSuzbZ1eoyfOP45mwc1oFtyM5sHNCXYPdmC0QpTm0KLUzz//zGuvvcYrr7xCmzZtrH1lN2/mgw8+4M0336SoqIhRo0bx0EMP8f7771f26a+YJGFCOJlfRsLmGRDeHB5fBVrpfiWuXGZhJnP2zeHbfd+SXpAOQLB7MEMbDuVfdf6Fu8HdsQEKp+WseYWzxi2EENVdck4yvx3/jR1ndrAjZQdn8s6U2ibcI5ymwU1pHtycZkHNqONXR1qBC4dyaFGqTZs2vP322/Ts2dNu+W+//cbYsWPZtGkTCxcuZOTIkRw5cqSyT3/FJAkTwslkp8B/mkNhNtz3JTS+39ERCSeWa8rlfwf/x+w9s0nJSwHAz8WPRxo8Qr+4fngb5f+CuDLOmlc4a9xCCHEzUUqRkJPAjhRrgWrHmR0cPHfQNkh6MTe9G00Cm9A0uCnNgprRJKiJDJoubiiHFqXc3NzYvn07cXFxdsv3799P8+bNycvL4/jx4zRo0IDc3NzKPv0VkyRMCCe0ZjL88Q741oBnN4O+6oxTJ5xTobmQn4/8zFf/fMWp7FMAeBo86R/Xn0caPIK/q7+DIxTOwlnzCmeNWwghbnY5phz+Sf3HVqjaeWanbYiCkmJ9Ym1d/poFNaOGdw2ZjVhcNw4tSjVv3pymTZvy+eefYzRax+YwmUwMGzaMnTt3sn37dv7++28eeeQRjh07Vtmnv2KShAnhhApz4D8tIDsJek6A9k87OiJRTRRZivj12K98+c+XHMmwtuZ11blyf937GdxwMKEeoQ6OUFR1zppXOGvcQggh7FmUhSPpR2zd/Xak7CA+K77Udn4ufjQNamorVDUMaIir3vFjPovqwaFFqXXr1nHPPfeg1Wpp0qQJGo2GXbt2YTabWbJkCe3ateObb74hKSmJV155pbJPf8UkCRPCSW2dDYufBzc/eH4HuPk6OiJRjViUhT9O/sEXu75gT9oeAPRaPX1i+zCk4RD5dlGUy1nzCmeNWwghxOWdzT9r15Jqd+puCi2FdtvotXoa+DewdflrFtysSgygXmguJKMgw3orzLhw/+Lfz98vshThYfDAy+iFl8ELT6MnnkZPvI3eeBpK3/cyeOFl9MLd4I5WI2PVVhaHFqUAsrOz+fbbbzl48CBKKeLi4hgwYABeXl7X43TXRJIwIZyUuQimdYAz+6HDC9D9LUdHJKohpRTrE9fzxa4v2JK8xbbcy+BFlHcUUV5RRHtFW396RxPtFU2gW6AUrG5izppXOGvcQgghrpzJbGLf2X1sT9nOzjM72Z6yndS81FLbVeYA6oXmQjILM0nPTy9VXEovuLAssyDT7ve8orxrfbgVokFzoVBl9MLTcP6n0fPC/fM/y7vvpneTHPA8hxSlHn30UT755JMqWXi6FEnChHBiB5bBnIdA5wLPbQXfKEdHJKqx7Snb+XzX5/x9+m8U5f/7dNO7EekVaStWlSxYhbiHoNPqbmDU4kZz1rzCWeMWQghx7ZRSnM4+bStS7Tyz85IDqDcLbkbToKa4G9xJL0gnsyCzzOJSRuH5ZddYXNJqtHgbvfFx8bH99HXxLfN3vVZPdmE2WYVZZBVmkW3Ktv3MLswmy5RFdmG2bXlWYRYmi+lan0IAdBqdXRGruGDl6+JLXb+6NApsRD3/erjp3SrlfFWZQ4pSOp2OxMREgoMd38TvSkgSJoQTUwpm3Qkn/oamA+DeqY6OSNwE8ovyOZV1ipNZJ4nPirf+zLT+TMhJKJXAlWTQGoj0iizVwirKK4pwz3AMWsMNfCTieqisvGLKlClMnjyZxMREGjZsyMcff0ynTp3K3Pann35i6tSp7Nixg4KCAho2bMi4ceNKzYR8I+IWQghRPeSYcth1Zhc7zuxgZ8rOcgdQvxLFxSVvo7etiGR3M1647+vii4/RB28Xb7yMXte1a12BueBCEet84ar4fsniVVn3i4tdZmWu8HMQ6xtLw4CGNAxoSKPARtT1q4tRZ7xuj88RHFKU0mq1JCUlSVFKCHFjndoKM24DNDD8Lwht5OiIxE3MZDaRkJNgK1KVLFqdyj5FkaWo3H11Gh1hHmG2IlVx4SraO5pIr0hcdDLLpDOojLxi3rx5DBw4kClTptChQwemT5/OjBkz2Lt3L9HR0aW2HzFiBOHh4XTt2hVfX19mzpzJ+++/z8aNG2nevPkNi1sIIUT1dfEA6rvO7ALA28XbVkzydfEt9XtxselGFJccRSlFXlGerUCVWZhpdz8tL429aXvZnba7zG6Seq2eOr51aBTYyFaoquVby6m/rHRYUSo5OZmgoKDKOuQNIUmYENXA/CGwZwHU7gaP/OjoaIQok9liJik3ya5lla1wlXmSfHN+uftq0BDiEWLXwqpkKysPg8cNfCTiUiojr2jbti0tWrRg6tQLrT/r169P3759mTBhQoWO0bBhQx566CHeeOONGxa3EEIIIcqnlCI5N5m9aXvZk7bHekvdQ3pBeqltXXQuxPnHWVtUBTakUUAjavrUdJqiXkXziqsboewS6tate9mBvc6ePVvZpxVC3OxuGwv7FsPh3+HIHxDb1dERCVGKTqsjwjOCCM8I2oW1s1unlCIlN8VWqLq4lVW2KZuknCSScpLYnLS51LEDXAOo5VuLWJ9Y6vjVobZvbWJ9Y/Fx8blRD09UksLCQrZu3cqoUaPslvfo0YN169ZV6BgWi4WsrCz8/f2vR4hCCCGEuAoajYZQj1BCPUK5Lfo2wJoDJuQksCf1QpFqT9oesk3ZtvG9irnr3WkQ0MCuUBXpFenUg6tXelFq/Pjx+PhIAiyEuMECYqHVY7BpOqx4A2LWgNY5vkUQAqxJSohHCCEeIbQKbWW3TilFekE6JzJPlCpYncw8ybmCc6Tlp5GWlFaqYBXsHkwdX2uRqrZfbWr71qaWTy3cDe438uGJK5CamorZbCYkJMRueUhICElJSRU6xgcffEBOTg4PPvhgudsUFBRQUFBg+z0zM/PqAhZCCCHEVdNoNLYvLXvU7AFYu0rGZ8azO203e1L3sDdtL/vO7iO3KJctyVvsZ4Q2etnGpyouVIV6hDpNoarSi1L9+vVzujGlhBDVRJdXYcf3kLQLdv8PmpT/YUwIZ6LRaPBz9cPP1Y9mwc1Krc8qzCI+M54jGUc4fO4wh9IPcejcIZJzk0nJTSElN4W/E/6+cDysyU9tv9rU8a1DrG8stX1rE+MTU+0G2XRmFyeTSqkKJZhz5sxh3Lhx/Pzzz5fMySZMmMD48eOvOU4hhBBCVC6tRktNn5rU9KnJXbXuAqDIUsTRjKPWsalSd7M3bS/7z+4nqzCLDYkb2JC4wba/v6u/XZGqYWBDAt0CHfVwLklm30PGUBCiWvlzMqx6B3yi4bktoJeBocXNK6swiyPpRzh47iBH0o9wJP0Ih9IPcTa/7G70Oo2OGt41iPWNtbauOt+yKsorCr220r/HqrauNa8oLCzE3d2d+fPnc++999qWv/DCC+zYsYM1a9aUu++8efMYOnQo8+fP584777zkecpqKRUVFSX5kBBCCOEkTGYTh9IP2XX7O3zuMEWq9MQ6Ie4hdoWqBgEN8HX1vW6xVZvZ9/78808mT57M1q1bSUxMZMGCBfTt29e2XinF+PHj+fzzzzl37hxt27bls88+o2HDhhU+hxSlhKhGCnPh0xaQlQg9/g9uedbREQlR5ZzNP2stUJ07xOH0wxw6d4gj6UfIMmWVub1Ra6SWby3bOFXFBaswjzCnGWzzRqqsgc5btmzJlClTbMsaNGhAnz59yh3ofM6cOTz66KPMmTPHLle6kXELIYQQwrHyi/I5eO4ge9L2sDvV2v3vaMZRFKVLP00Cm/Ddnd9dlzgcMtC5xWKpzMMBkJOTQ9OmTRk6dCj33XdfqfWTJk3iww8/ZNasWdStW5d33nmH7t27c+DAAby8vCo9HiFEFWd0h65jYNFz1lZTzR8GNz9HRyVEleLv6o9/qD+tQ1vblhXPBlOyWHU4/TBH0o+Qb85n/9n97D+73+447np3W6GqeMyqOr51CHQLdJpxDKqql156iYEDB9KqVSvat2/P559/Tnx8PMOHDwdg9OjRnD59mq+//hqwFqQGDRrEJ598Qrt27WxjT7m5uclYn0IIIcRNxFXvSpOgJjQJamJblmvKvTDj3/kWVfFZ8Xi7OP5LqEptKXW9aTQau5ZSSinCw8MZMWIEr732GmBtih4SEsLEiRN58sknK3Rc+WZQiGrGXATTOsKZfdDhBej+lqMjEsJpWZSF01mnbUWqQ+cOcTjjMMcyjlFkKd00HMDb6E1t39rU8atDnH8czYObE+MTc9O0qqqsvGLKlClMmjSJxMREGjVqxEcffUTnzp0BGDJkCMePH2f16tUA3HrrrWV26xs8eDCzZs26oXELIYQQourLKMggszCTKK+o63J8h3Tfu94uLkodPXqU2NhYtm3bRvPmzW3b9enTB19fX2bPnl3mcWQMBSFuAgeWwZyHQOcCz20F3+vzZivEzcpkMXEy8yQH063jVR0+Zy1axWfFY1GlW057G71pGtSU5sHNaRbcjEaBjXDTuzkg8uvPWYs7zhq3EEIIIaoeh3Tfu9GKm6aXNWXyiRMnyt1PZpsR4iZQtyfU6Agn/oKV4+Hez0F7c7TSEOJGMGgN1PKtRS3fWnbLC8wFHMs4xqFzhziUfojdqbv558w/ZBZmsvb0WtaeXguAXqMnzj+OZsHNaBbcjObBzQl2d66JUoQQQgghxLVx6qJUsSudMnn06NG89NJLtt+LW0oJIaoRjcbabW/GbfDPfEjZB51fgfr3SHFKiOvIRedCnH8ccf5xtmUmi4kDZw+wPWU7O1J2sCNlByl5KexO283utN18u+9bACI8I2ytqZoHN6e2b210Wp2jHooQQgghhLjOnLooFRoaClhbTIWFhdmWp6SklGo9VZKLiwsuLjJNvBDVXmRLuGMirHoHknfD/MEQFGctTjW8F+TDrhA3hEFroFFgIxoFNmJgg4EopUjMSbxQpDqzg4PnDnI6+zSns0+z9NhSADwMHjQJbGLr8tckqAkeBg8HPxohhBBCCFFZnLooFRMTQ2hoKCtWrLCNKVVYWMiaNWuYOHGig6MTQlQJ7YZD04dgwzTYMBXO7IcfH4PVE6DTy9D4AdA59VuhEE5Ho9EQ7hlOuGc4d9a6E4Dswmx2pe5iZ8pOtqdsZ1fqLnJMOaxPXM/6xPUAaDVa6vnVs2tNFeYZdqlTCSGEEEKIKqzKD3SenZ3N4cOHAWjevDkffvghXbt2xd/fn+joaCZOnMiECROYOXMmderU4d1332X16tUcOHAALy+vCp1DBvYU4iaRnwEbP4cNn0HeOesyv5rQaSQ06Qd6o0PDE0JcYLaYOZR+iB0pO2wtqhJyEkptF+IeYhuTqllwM+r51UOvdWyh2VnzCmeNWwghhBBVT7WZfW/16tV07dq11PLiKY6VUowfP57p06dz7tw52rZty2effUajRo0qfA5JwoS4yRRkweYZsO6/kJtqXeYTDZ1ehGYPg1669wpRFSXnJLP9zHZba6r9Z/djVma7bdz0bjQObGwrVDUJaoK38cb+b3fWvMJZ4xZCCCFE1VNtilI3giRhQtykCnNgy1fw938gJ8W6zDsCOoyAFoPA4OrQ8IQQl5ZrymV36m5rS6ozO9h5ZidZhVl222jQEOsba2tJ1TyoOZFekZecEOVaOWte4axxCyGEEKLqkaLUFZAkTIibnCkPts6Gvz+GrETrMs9Q6PACtBwCRndHRieEqCCLsnA0/Sjbz2y3dfs7mXWy1HYBrgGMaTuGHjV7XJc4nDWvcNa4hRBCCFH1SFHqCkgSJoQAwJQPO76FtR9B5inrMo8guOU5aPUYuHg6Nj4hxBVLzUu1dffbfmY7e9P2UmQp4queX9E6tPV1Oaez5hXOGrcQQgghqh4pSl0BScKEEHaKCmHn97D2Q0g/YV3m5g/tn4E2T4CrvE8I4azyi/LZm7aXBgENcNVfny66zppXOGvcQgghhKh6KppXaG9gTEII4Rz0Rmu3vee2Qp8p4F8L8s7Cqrfh48aweiLkpTs6SiHEVXDVu9IipMV1K0gJIYQQQoiKk6KUEEKUR2eA5g/DM5vhX19AQB3IT4fV71qLUyvfhtyzjo5SCCGEEEIIIZySFKWEEOJydHpo8iA8sxHu/wqCG0BBJqx931qc+n0c5KQ6OkohhBBCCCGEcCpSlBJCiIrS6qDRfTD8b3jwGwhtDIXZ8NdH1uLUb69DVrKjoxRCCCGEEEIIpyBFKSGEuFJaLTS4B55cC/3nQnhzMOXC+v/CJ03g11GQmejoKIUQQgghhBCiSpOilBBCXC2NBur1gmF/wMP/g4hWUJQPG6fCJ03hl5ch45SjoxRCCCGEEEKIKkmKUkIIca00GqjTHR7/HQYugOj2YC6AzV/AJ81g8Qtw7oSjoxRCCCGEEEKIKkWKUkIIUVk0Goi9DYb+CoMXQ81OYDHB1lnwaQtY+AykHXF0lEIIIYQQQghRJUhRSgghKptGAzGdYcgSa4GqVlewFMGOb+G/reCnJ+DMQUdHKYQQQgghhBAOJUUpIYS4nmrcAoMWwmO/Q50eoCywax581hq+7AkbpkFmgqOjFEIIIYQQQogbTopSQghxI0S1hofnWwdFr3enddnJDbDsNfiwAXx1B2ycLrP2CSGEEEIIIW4aekcHIIQQN5WIFtD/e2vrqL0/w54FcHIjxK+33n59zdq6quG9UP8e8ApxdMRCCCGEEEIIcV1olFLK0UE4WmZmJj4+PmRkZODt7e3ocIQQN5uMUxcKVKc2l1ihgZodoWFfa4HKM9hREQohroCz5hXOGrcQQgghqp6K5hVSlEKSMCFEFZJ+EvYuhD0L4fSWC8s1WqjR4UILKs8gR0UohLgMZ80rnDVuIYQQQlQ9UpS6ApKECSGqpPR4awuq3T9BwrYLyzXa8y2ozheoPAIdF6MQohRnzSucNW4hhBBCVD1SlLoCkoQJIaq8c8cvFKgSd1xYrtFBTCdrgSrubvAIcFSEQojznDWvcNa4hRBCCFH1SFHqCkgSJoRwKmePXejid3GBqlaX8wWqu8Dd30EBCnFzc9a8wlnjFkIIIUTVI0WpKyBJmBDCaZ09ai1O7VkASbsuLNfqodat0KAvxN0pBSohbiBnzSucNW4hhBBCVD1SlLoCkoQJIaqFtCPW4tTehZD0z4XlxQWqhvdaC1Rufo6KUIibgrPmFc4atxBCCCGqHilKXQFJwoQQ1U7qYdi7AHYvgJQ9F5ZrDRDb1Vqgqtcb3HwdFqIQ1ZWz5hXOGrcQQgghqp6K5hX6GxiTEEKIGyWwNnR+xXo7c/D8GFQLIGUvHFpuvWkNUPv28wWqXuDq4+iohRBCCCGEEDcRKUoJIUR1F1QXurxqvZ05cGEMqjP74OAy601nhNrdoEYHCGkAwQ3BMxg0GkdHL4QQQgghhKimpCglhBA3k6B6cOtr1lvKfmsLqt0/QeoBOLDUeivmHgDBDay3kPM/g+uDi5fDwhdCCCGEEEJUH1KUEkKIm1VwHASPgi6vQco+OPALJO6ydvE7exRy0+D4WuutJN9oa0uq4PoQ0tBarAqsAzqDYx6HEEIIIYQQwilJUUoIIW52Go21JVRIgwvLTHlwZr+1WJW8x1qoStkHWYmQHm+9Hfz1wvZaAwTWvdCiqrhY5RMpXQCFEEIIIYQQZZKilBBCiNIMbhDe3HorKfestUBVXKhKPl+sKsyyzvJXcqY/ABdva4uq4PoQ0uhCV0A3vxv3WIQQQgghhBBVkhSlhBBCVJy7P9TsaL0VU8racipln7UolbzXWrBKPQgFmXByo/VWklf4+ULV+UHVQxpAYD0wuN7YxyOEEEIIIYRwGClKCSGEuDYaDfjVsN7q3XFheVEhpB26UKQqblmVEQ9ZCdbbkZUljqMF/1j7QlVwA/CtATr5dyWEEEIIIUR1U22y/ClTpjB58mQSExNp2LAhH3/8MZ06dXJ0WEIIcfPSG61jS4U0tF+en3m+VVWJQlXKHsg7Zy1ipR2CvT9fdCw366x/Lp5g9Dx/3+v8/fO/G0uu97R2HSxrvd7lxj0HQlyDK81t1qxZw0svvcSePXsIDw/n1VdfZfjw4TcwYiGEEEKIK1MtilLz5s1jxIgRTJkyhQ4dOjB9+nR69erF3r17iY6OdnR4QgghSnL1hui21lsxpSAryb77X8peOHMAivKhKM96y0m59vNrDSUKXF5lF7tKFryMZaw3uINWZ23dVXyz/X7Rco1GBnsXV+xKc5tjx47Ru3dvhg0bxrfffsvff//N008/TVBQEPfdd58DHoEQQgghxOVplFLK0UFcq7Zt29KiRQumTp1qW1a/fn369u3LhAkTLrt/ZmYmPj4+ZGRk4O3tfT1DFUIIcSUsZshLtw6kXpANBVlQeNHPguwy1mdbx7Oy3c+yFrUcxa5IpStRxNLYF7HsCl2XWldOIazkMbW6Ej/Pr9PqL1qnLX/byy3X6iu+bXGM2oueg1KPQXPR49RR6rGXVfy7+LgXH/MGFwUrI6+40tzmtddeY9GiRezbt8+2bPjw4ezcuZP169ffsLiFEEKI/2fvvsOaOr84gH+z2XvLEFDBxXKiVdzWvaqi1lGrdbZabWu1ddW2VttaW61V6662tP5U3HvXLcW9EREFRED2Csn5/RGJRkCuCoRxPs/DA7kr575Jbg7nvve9jAHC84oK31MqNzcXYWFh+Pzzz3Wmd+jQASdPntRTVM8QEbKUKn2HwVgBhjIJRNx7g5V3YglgbK35eVOqvGfFq/xiVW7as8JWTloh858Wt7R/P52vzAToFY7tpNb8MP0orGDVZwXg1UnfkRXqdXKbU6dOoUOHDjrTOnbsiJUrV0KpVEImk5VavEJxTsTKK86JGGNMfyp8USohIQEqlQr29vY60+3t7REXF1foOjk5OcjJydE+Tk1NLbX4spQq1Jmxt9S2z9jruvZVRxjJK/whgDHhJFLA0FLzU1KINMUmtepp4Uml+Rv0dBpppuUXpXSWVRcy/fl5VMiyzz1WvzBNu/7T9dR5z+Ih1dPln3/8kunPx6Kz/POP8wqZ9uKyeYXsHxXSFqqC+6Qz78W2eK6dBb1OzxUFVc9NK6deJ7eJi4srdPm8vDwkJCTA0dGxwDplmQ8BnBOx8otzIsYY059Kc/R98ewGERV5xmPu3LmYPXt2WYTFGGOsMnv+UjmmH0UWsooq3D19bGyn78iL9Sq5TVHLFzY9H+dDjDHGGNO3Cl+UsrGxgUQiKXDmMD4+vsAZw3xTp07FpEmTtI9TU1Ph4uJSKvEZyiS49lXHUtk2Y2/CUMb/RDPGKgGxGIAYlSCl0Xqd3MbBwaHQ5aVSKaytC7/8tSzzIYBzIlZ+cU7EGGP6U+EzOLlcjgYNGmD//v3o1auXdvr+/fvRo0ePQtdRKBRQKMrmluAikYi7AzPGGGNMsNfJbQIDA7F9+3adafv27UPDhg2LHE+qLPMhgHMixhhjjBUk1ncAJWHSpElYsWIFVq1ahevXr+Pjjz/G/fv3MXr0aH2HxhhjjDH2yorLbaZOnYohQ4Zolx89ejSioqIwadIkXL9+HatWrcLKlSvxySef6GsXGGOMMcaKVSlOV/Xv3x+JiYn46quvEBsbi3r16mHXrl1wc3PTd2iMMcYYY6+suNwmNjYW9+/f1y7v7u6OXbt24eOPP8avv/4KJycn/PLLL+jTp4++doExxhhjrFgiyh8FswpLTU2Fubk5UlJSYGZmpu9wGGOMMVaBVdS8oqLGzRhjjLHyR2heUSl6Sr2p/Lpcad8KmTHGGGOVX34+UdHO+3E+xBhjjLGSIjQf4qIUgLS0NAAo1TvOMMYYY6xqSUtLg7m5ub7DEIzzIcYYY4yVtOLyIb58D4BarUZMTAxMTU0hEon0HU6pyb/Vc3R0NHfLfwluJ+G4rYTjthKG20k4bivhyrqtiAhpaWlwcnKCWFxx7inD+RB7EbeVMNxOwnFbCcdtJQy3k3DlNR/inlIAxGIxnJ2d9R1GmTEzM+MPrADcTsJxWwnHbSUMt5Nw3FbClWVbVaQeUvk4H2JF4bYShttJOG4r4bithOF2Eq685UMV5/QdY4wxxhhjjDHGGKs0uCjFGGOMMcYYY4wxxsocF6WqEIVCgZkzZ0KhUOg7lHKN20k4bivhuK2E4XYSjttKOG4r9jx+PwjHbSUMt5Nw3FbCcVsJw+0kXHltKx7onDHGGGOMMcYYY4yVOe4pxRhjjDHGGGOMMcbKHBelGGOMMcYYY4wxxliZ46IUY4wxxhhjjDHGGCtzXJRijDHGGGOMMcYYY2WOi1KsyuGx/YXjthKG20k4bivhuK2E4XZi7PXx50cYbifhuK2E47YShttJuIraVlyUqoQq6puxLMTHxyMtLU37mNuqaNxWwnA7CcdtJRy3lTDcTqw4/J4oGn9+hOF2Eo7bSjhuK2G4nYSryG3FRakKLjc3F/PmzcPixYtx9OhRAIBIJNJzVOVPXl4e3n//fTRu3Bjt2rXDoEGDkJCQwG1VCG4rYbidhOO2Eo7bShhuJ1YYzomE4c+PMNxOwnFbCcdtJQy3k3CVoa24KFWB7d69G05OTggNDcXq1avRq1cvfPnll8jOztZ3aOVKXl4ehg0bhmvXrmHt2rUYMGAALl26hN69e+P69ev6Dq9c4bYShttJOG4r4bithOF2YoXhnEgY/vwIw+0kHLeVcNxWwnA7CVdp2opYhdW3b18aNWoUERElJSXRxo0bSaFQ0E8//USZmZl6jq78uH//PtWsWZP++OMP7bTY2FiqVq0affjhhxQXF6fH6MoXbqviqdVqbieBuK2E47YSjtuJFYZzImH48yMMt5Mw/N0lHLeVMNxOr6aytBX3lKqg7t69i5MnT6JFixYAAEtLS7zzzjv44IMPsH79evz77796jrD8SExMxIMHD9C0aVMAQE5ODhwcHDB16lTs27cPx44d03OE5Qe3VeEyMzOhVCoBaC4F4XYq2qNHj7RnZritXi43N1f7t0gkQkJCAreVAPyeYi/inEg4/vwIw+1UNM6JhOOcSBjOh15fZXlPcVGqgti3bx8uXrwIlUoFAHB3d4dSqURqaioAICsrCwAwc+ZMZGRkYPfu3UhPT9dbvPry7bffYubMmQgJCdFOq127Nuzs7LB+/XoAgFiseduPGzcOpqam2L17N3JycvQSrz4tX74cv//+u87BqmbNmnBwcOC2wrPBAefOnYtGjRrh/Pnz2nm1atXidirExx9/jHr16uH333/XHqu8vLy4rQrxxRdfYNCgQRg9ejSuX78OtVqNunXrwt7entvqOXxMZ4XhnEgY/vwIw/lQ8TgnenWcEwnD+ZBwlfqYru+uWuzlVq9eTQ4ODlS/fn0yNTWlsWPH0sOHD4mIaNSoUeTj46NdNjc3l4iIvvvuO3JxcaEnT57oI2S9OHPmDLm6ulJAQAB16tSJTE1NqU+fPhQREUFERJ988gnVqlWLHj16REREWVlZRES0du1asrCw0D6uCv7880+ys7OjwMBA8vPzI1tbW/rmm2+IiCglJYU+++wzbqunVCoVNWzYkEQiEU2YMIGSk5OJiCg9PZ3b6TmpqanUuXNn8vPzo6NHj1JsbCzl5eUREVFGRga31XOOHj1KHh4eFBgYSN988w25ublRy5YtKSYmhjIzM7mtnuJjOisM50TC8OdHGM6HXg3nRMJwTiQM50PCVYVjOhelyrEVK1ZQjRo16K+//qLHjx/Thg0byNjYmC5cuEBERJs2bSJvb29auHAhERFlZ2cTEdHjx4/J0NCQjh8/rrfYy9qkSZOoS5cuRKT50rx8+TK5ubnR6NGjKTk5mU6fPk0BAQE0duxYItJcr0xEdPjwYbKzs6OLFy/qLfaytGHDBvL19aWlS5cSEdHDhw9p8eLFZGxsTCkpKUREtH//fmrUqFGVbysioujoaBo1ahT99ttvJBKJaM+ePdrEYt++fdS4cWNuJ9K0RaNGjSg+Pp6IiO7du0eJiYnaL8FDhw5RgwYNuK2IaPjw4TR06FDt45s3b5JIJKK7d+8SEX/+8vExnb2IcyLh+PNTPM6HXh3nRMJwTiQM50PCVYVjOl++Vw4REVQqFQ4dOoTAwEAEBwfDxsYGAwcORLVq1aBWqwEAzZs3R4cOHfDjjz8iJiYGCoUCABAeHg5bW1uYmprqczfKBBEhJSUFZ8+eRe3atbXT69WrhylTpuDMmTMICQlBkyZNMHjwYKxZswZbtmzRXgt/4sQJ1KlTB/Xr19fXLpQJetrtWqlUokmTJhgyZAgAwMnJCX5+fqhWrRquXbsGAHjrrbcwcOBArF27tkq21fPkcjn27t2L0aNHo0WLFvjuu+/w5MkTAECLFi0wYMCAKvueAp69r65fvw5ra2sYGRlh+PDhaN26NYKCgtClSxdcvHgRrVu3xrvvvlul2woAoqOjceTIEfj5+WmnPXz4EP369YNcLgegeV8NHDiwSrcVH9PZ8zgnEo5zouJxPvT6OCd6Oc6JhON8SLgqc0zXXz2MFcfPz49GjBihHTX/ww8/JC8vL5o1axadPHmSiIgiIiK03Y7Xr19Pt2/fpuDgYGrXrh1lZGToM/xSExYWpu0ynK9hw4bau+7knx3Nzc2l3r17U/fu3enhw4eUm5tLn376KZmamlJQUBD17duXDA0N6ddffyWiZ1XlyiQsLEznkoXk5GTtWa18Fy5cIAcHB0pKStJOS01Npc8++6zKtFVh7ykizRmGtm3bEhHRpUuXSCQS0dq1a2nu3LkUFhZGRFQl31MvttXYsWOpT58+NG/ePOrSpQsdO3aMduzYQU2aNKF27drRlStXiIho8uTJVb6t3nrrLWrUqBEtX76cvvjiC5JKpVS3bl2ytLSkSZMm0Z07d4ioarXVi8ckIqJGjRrxMZ3p4JyocJwTCcP5kHCcEwnHOZEwnA8JV1VzIi5KlQP//PMPjRgxghYuXEiXLl3STg8JCSE3Nzfq0KEDWVtbk7e3N3311VfUunVr8vHxoe+++46IiOLi4ujtt9+m2rVrU7Vq1ah58+YUGRmpp70pPf/73//I2dmZPD09ydXVlWbMmEEPHjwgIqKff/6ZTExMtElnTk4OEWm68zs7O9OJEye029m4cSPNnDmTRo8eTdevXy/7HSkDL7bV9OnTdW4JqlKptH8vWLCAmjdvTkTP2i1fZW+rwt5Tz7fT4cOHqV27dtrHrVu3JolEQp6ennT+/Hnt9MreTkQv//zt27ePRCIROTg4UGhoqHadY8eOUfPmzbVjdBBV3baKjo4mIqIbN27Q7NmzqWfPnlStWjXavn07xcXF0R9//EGBgYH0ySefaLdT2dtq06ZNVKtWLdq+fbt2Wn4ytmjRIj6mV1GcEwnDOZEwnA8JxzmRcJwTCcP5kHBVPSfiopQeJSQk0DvvvEMODg40evRoeuutt8jJyYlWr16tXSY+Pp6+//57CgoKotTUVO30kSNHUq9evXQGNIuNjaXLly+X9W6UiXPnzmnHirh48SItWbKEbG1tacyYMZScnExRUVHk6emprSLnD3BKRGRtbU0rV67UV+hl7mVtlZiYSESaJEypVBIRUa9evWjcuHH6DFkvhLTTTz/9RJMnT6YHDx5Qo0aNyNzcnBQKBX322Wfa9qsKXtZWCQkJpFarqUuXLiSVSunYsWM667Zs2ZI++ugjPUVe9l7WVo8fP9YuN3z4cPr888911u3bty/17t2bMjMzyzrsMpWZmUlz586lGjVqkI2NDQUGBlJaWprOMteuXaNatWrxMb0K4ZxIOM6JhOF8SDjOiYTjnEgYzoeE4ZxIg4tSerRx40Zq3LixtrJORNSjRw9yd3enzZs3ExGRUqmk4OBg+vrrr4noWWV00qRJ5OnpSenp6URU/rvkva78/frtt9/I2dlZO/gkEdHixYupcePGNHfuXCIi+vXXX0kikdDRo0e1y0RERJCnpydt2rSpbAPXg+LaqmnTpjRnzhztNJVKRWq1mjw9PWnHjh1EpBlkMDg4mO7fv1+2wZchIe00e/ZsItIMrCsSiUgsFtPgwYMpJyeHFi1aRMbGxlVi0Nzi2qpJkybaY9Pu3btJKpXSl19+qT2To1arqUOHDjRz5swyj72sCXlfffXVV0SkSUBq1aqlPYOav26fPn3ovffeK+PIy15MTAxNnTqVFi9eTBcvXiRDQ0NavHixzjI5OTn022+/kVQqrbLH9KqGc6LicU4kDOdDwnFOJBznRMJwPvRqOCfS4IHO9ejPP/+Es7MzqlWrhvT0dABAr169cO/ePfz666+Ij4+HVCpFYmIizp8/D0AzyOCjR49w69YtBAcHw9jYGAAgEon0th+lKX+/IiMjUatWLUilUu28YcOGoVGjRti6dStu3bqFMWPGIDg4GP3798dXX32FCxcuYP78+TAyMkLTpk31tQtlpri2atCgAXbv3o2rV68CAMRiMc6dOwcjIyMEBARg4sSJ8PHxQWJiIuzs7PSyD2VBSDvt2bMHkZGR8Pb2xsSJE3H8+HGsW7cOcrkc48ePh4WFBe7cuaOvXSgzxbVVw4YNsXPnTly7dg1vv/02Jk+ejOXLl2PUqFE4cuQIJk6ciIiICPTu3Vtfu1BmhL6vLl++DENDQ/j6+mLq1KnYsWMH7ty5g4kTJ+Ls2bMYOHCgvnahzDg6OuLdd9/FBx98AB8fH3zyySeYM2cOHj58qF1GLpdjwIABGDhwYJU9plc1nBMVj3MiYTgfEo5zIuE4JxKG86FXwznRU/quilUVR48epT179uh0b/3ss8/Iy8tLZ7nPP/+c2rZtS82bN6dly5YRkebWoTKZjJo1a0ZjxowhZ2dnatmyJUVFRZXpPpSFffv20YcffkgLFy6kM2fOaKdv3bqVDAwMKCIigohI5xa0zZo1owULFmiX/fDDD8nPz49q1KhBAQEBOmNSVCav01bNmzfXaauZM2eSSCQiU1NTqlOnjs6YAJXF67RTYGAg/fLLL0SkO95E/uc3/2x8ZfO6n78ff/xRu+zixYspKCiIGjRoQE2bNqXw8PAy3Yey8qbHqtjYWPLz8yMPDw/y8PCotG1VVDvlU6vVlJqaSi4uLjRhwoRCt1FVjulVCedEwnBOJAznQ8JxTiQc50TCcD4kHOdEReOiVCl7/PgxDRkyhEQiEfn6+uoMthkREUG2trYUFBRE8+bNo8DAQHJ3d6eDBw+Sr68vffnll9plt2zZQlOmTKGBAwfSP//8o4c9KV0xMTHUtWtXsrOzo0GDBlH9+vXJ3Nxc+4HNysoib29v+uCDD4hI90uxRYsWNGbMGO1jlUpFGRkZdOPGjbLdiTLypm01duxY7eOvv/6abG1tK0W3zxeV1Hvq+emVVUm+p/Ln5w9kWdmU5LEqKSmJbt++XSn/+Smqnc6ePVvo8n/88QfJ5XLtHZyInv3Do1QqK/UxvSrhnEgYzomE4XxIOM6JhOOcSBjOh4TjnKh4XJQqRUqlkpYsWUIdO3akkJAQMjIyorlz52pv5UhE9O+//9LIkSMpICCAxo8frx34bfDgwdSnTx99hV6mMjIyaOjQodS/f3+6e/eudnqjRo1o2LBhRKSprq9bt47EYrHOHQaIiAYNGkStW7fWPq6sY0kQlUxbtWrVSvs4Pj6+bAIvYyX9nqrMuK2E47YS5mXtlD9GRGH/2Lz11lvUuXNnUiqVFB4eThs3bqwS/wBVFZwTCcM5kTCcDwnH313CcVsJw+0kHOdEwvCYUqVIKpUiICAA48ePR//+/TFlyhQsWLAA169f1y7TvHlzLF++HKdOncKiRYtgY2OD+Ph4hIeHw9/fHwCgVqv1tQtlwsjICAqFAsOGDYO7uzvy8vIAAF27dtW2lUQiQb9+/dCjRw+MGDECR48eBREhLi4Ot2/fxqBBg7Tbq6xjSQAl01bvvvuudnu2trZ62Y/SVtLvqcqM20o4bithhLSTWFww/ViwYAH279+PDh06ICAgAGFhYZX++68q4ZxIGM6JhOF8SDj+7hKO20oYbifhOCcSSF/VsKrixTNUTk5O9MEHH2hvZfz8/KysLMrNzaUlS5aQv79/pblGVIjnb22Z3ybvvvsujRw5UmdaVlYWtWrViuzs7KhDhw7k5ORETZs2rfR3R3ket5Uw3E7CcVsJx20ljNB2ypeWlkY//fQTiUQiCgwM1Lm7DKs8OCcSho8zwnA7CcdtJRy3lTDcTsJxTlQ8afFlK/Ym8s9Q5ebmQi6XY+HChRg4cCDeeecdtG/fXjv/4cOH2LZtG1atWoW7d+9i8eLFqF+/vj5DL1MymUz7d36bREVFYfjw4drpKpUKBgYGCAkJwaVLl3Du3DkMHTq0ytydIR+3lTDcTsJxWwnHbSWMkHbKl5ubi2XLlmHatGn47bffMGrUqDKLk5UtzomE4eOMMNxOwnFbCcdtJQy3k3CcEwmg76pYVRQYGEjt2rWjR48eEdGz69j//PNP+uGHH/QZWrkRERFB9vb2OgPe5eTk6DGi8ovbShhuJ+G4rYTjthKmsHZ6/sxh/t15WNXDOVHx+DgjDLeTcNxWwnFbCcPtJBznRAXxmFJlKP8a0t9//x2HDx9GSEgIJkyYgLfffhtXrlzBgAEDMHnyZD1HqV9EBAD4999/YWJiggYNGgAAZs+ejQkTJiA+Pl6f4ZUr3FbCcDsJx20lHLeVMC9rp48++giPHj0CAHh4eOgtRqYfnBMVj48zwnA7CcdtJRy3lTDcTsJxTlQ0vnyvDEmlmuauW7cuAgICMHHiRLi6umLZsmWoV6+enqMrH/K7NJ49exZ9+vTB/v378cEHHyAzMxN//PEH7Ozs9Bxh+cFtJQy3k3DcVsJxWwlTXDvZ29vrOUKmL5wTFY+PM8JwOwnHbSUct5Uw3E7CcU70EvrpoFV13blzh+rVq0dGRka0YsUKfYdTLmVlZVGNGjVIJBKRQqGg7777Tt8hlVvcVsJwOwnHbSUct5Uw3E6sKJwTFY8/P8JwOwnHbSUct5Uw3E7CcVsVjntKlTGJRII+ffpgypQpMDQ01Hc45ZKBgQGqV6+O9u3bY8GCBTAwMNB3SOUWt5Uw3E7CcVsJx20lDLcTKwrnRMXjz48w3E7CcVsJx20lDLeTcNxWhRMRPb24kbFyRKVSQSKR6DuMCoHbShhuJ+G4rYTjthKG24mx18efH2G4nYTjthKO20oYbifhuK0K4qIUY4wxxhhjjDHGGCtzfPc9xhhjjDHGGGOMMVbmuCjFGGOMMcYYY4wxxsocF6UYY4wxxhhjjDHGWJnjohRjjDHGGGOMMcYYK3NclGKMMcYYY4wxxhhjZY6LUowxxhhjjDHGGGOszHFRijHGGGOMMcYYY4yVOS5KMcYYY4wxxhhjjLEyx0UpxhhjjDHGGGOMMVbmuCjFGGOMMcYYY4wxxsocF6UYY4wxxhhjjDHGWJnjohRjjDHGGGOMMcYYK3NclGKMMcYYY4wxxhhjZY6LUowxxhhjjDHGGGOszHFRijHGGGOMMcYYY4yVOS5KMcYYY4wxxhhjjLEyx0WpKqZr166wsLBAdHR0gXlJSUlwdHRE8+bNoVarSz2We/fuQSQSYc2aNSWyvWvXrmHWrFm4d+/ea29j165dmDVr1hvFMWzYMFSvXv2NtlFWqlevjmHDhuk7DK1Zs2ZBJBKV+HaPHDkCkUiEI0eOlPi2y1Jubi5Gjx4NR0dHSCQS+Pn5FbvO9u3b0a1bN9jb20Mul8PKygpt27bFhg0boFQqdZZNTEzE1KlTUadOHRgZGcHMzAxNmzbFr7/+WmBZVrlVls8MY/k4/3k5zn/0i/Ofl3uV/IeIEBISghYtWsDOzg4GBgZwdnZGx44dsWLFigLLv0ruExsbiy+//BKBgYGwsbGBmZkZGjRogOXLl0OlUpX0brNyrCId7yoCLkpVMStWrIBUKsWIESMKzBs/fjzS0tKwdu1aiMUV761x7do1zJ49+42TstmzZ5dcUOyVjBgxAqdOnSrx7QYEBODUqVMICAgo8W2Xpd9++w3Lli3DF198gX///Rd//PFHkcsSEd577z10794darUaCxYswIEDB7B27Vr4+vpi7NixWLJkiXb5GzduwN/fH8uWLcOgQYOwc+dOhISEICAgABMmTED79u2RmZlZFrvJyoHK8plhLB/nPy/H+Y9+cf7zcq+S/0ydOhUDBgxA7dq1sWLFCuzevRtff/017O3tsXXrVp1lXzX3CQsLw7p169C2bVusW7cOmzZtQlBQEMaMGYORI0eW2v6z8mf69OnYsmWLvsOoPIhVOX///TcBoKVLl2qnbd68mQDQkiVLSv358/LyKDs7myIjIwkArV69ukS2u3HjRgJAhw8ffu1tjBs3jt70YzF06FByc3N7rXUzMjLe6LlflZubGw0dOrRMn5O9vhEjRpChoaGgZefNm0cAaPbs2YXOj42NpePHjxOR5jNZp04dMjc3p5s3bxZYNiQkhADQqFGjXj/4ElLWn5GqJjc3l5RKpb7DYKxUcP5TNM5/WHkmNP/JzMwkhUJBQ4YMKXS+SqXS/v06uU9SUhLl5uYWWDb/83P//n0hu1OqMjMz9R1CpcZ5aOngolQVFRwcTCYmJhQZGUkJCQlkZ2dH7du3JyKic+fOUbdu3cjS0pIUCgX5+fnR33//rbN+fHw8jRkzhmrXrk3GxsZka2tLrVu3pmPHjuksl594zZs3j+bMmUPVq1cniURCu3fvLpCUHTt2jADQn3/+WSDetWvXEgA6e/ZsofuzevVqAlDg5/mEb+XKleTj40MKhYIsLS2pZ8+edO3aNe38oUOHFrqNyMhIIiJavHgxtWjRgmxtbcnIyIjq1atH8+bNK/DlJDQpCwoKorp169LRo0cpMDCQDA0NqX///kREFBUVRYMGDSJbW1uSy+Xk7e1NP/zwg86XKRHRrFmzqHHjxmRpaUmmpqbk7+9PK1asILVarbNcbm4uffrpp2Rvb0+GhobUvHlzOnPmjOCkLCcnh+bMmUNeXl4kl8vJxsaGhg0bRvHx8TrLubm5UZcuXWj79u3k5+dHBgYG5O3tTdu3bycizevk7e1NRkZG1KhRIzp37pzO+jNnziyQFB88eJCCgoLIysqKDAwMyMXFhXr37q3zpbBkyRLy8fEhY2NjMjExIS8vL5o6dap2/uHDhwtN2Ldu3UpNmzYlQ0NDMjExoXbt2tHJkycLjenKlSsUHBxMZmZmZGdnR++99x4lJyfrLPvPP/9Q48aNyczMjAwNDcnd3Z3ee++9Yts3KyuLPv/8c6pevTrJZDJycnKisWPH0pMnT7TLFPf+fl5ubi5ZWVmRt7d3gfdCYfL/oZk7d26Ry3To0IGkUinFxsa+dFshISHUvn17cnBw0L7+U6ZMofT09ALLnj59mrp27UpWVlakUCjIw8ODJkyYoJ2f3/ZhYWHUp08fsrCwIAcHByIS1mZEJfP+KYqQ9R48eEAjR44kZ2dnkslk5OjoSH369KG4uDjtMikpKTR58mSdfZkwYUKBNgNA48aNo3Xr1pG3tzcZGhqSj4+P9vOV7/bt2zRs2DCqUaMGGRoakpOTE3Xt2pUuXbqks1z+52LdunU0adIkcnJyIpFIRNevX3+jz0x8fLx2n/OPF82aNaP9+/cX26aMlTbOfzj/4fyn8uY/jx8/JgA0ZcqUYp+7JHOf/M/pi234oqysLJo0aRL5+vqSmZkZWVpaUtOmTSk0NLTAsiqVin755Rfy9fUlAwMDMjc3pyZNmtDWrVu1y+S/7zZt2kR+fn6kUCi0+3758mXq3r07WVhYkEKhIF9fX1qzZk2B55gzZw7VqlVL+xz169enhQsXapd53e90oevt3r2b2rRpo33veHt707fffquzjJBjc/6x8NChQzR69GiytrYmKysr6tWrFz18+FBnWaG56tChQ8nY2JguXbpE7du3JxMTE2ratKl23ovHu5LMTasaLkpVUYmJieTo6EitW7emfv36kYWFBUVHR9OhQ4dILpdTixYt6O+//6Y9e/bQsGHDCnwB3Lhxg8aMGUMhISF05MgR2rFjB73//vskFot1vvjyE69q1apR69at6X//+x/t27ePIiMjCz1T6O/vT82bNy8Qb6NGjahRo0ZF7k98fDx9++23BIB+/fVXOnXqFJ06dUqbNOTPGzBgAO3cuZPWrVtHHh4eZG5uTrdu3SIiojt37tA777xDALTrnzp1irKzs4mI6OOPP6bffvuN9uzZQ4cOHaKffvqJbGxsCnzpvkpSZmVlRS4uLrRo0SI6fPgwHT16lOLj46latWpka2tLS5cupT179tD48eMJAI0ZM0ZnG8OGDaOVK1fS/v37af/+/TRnzhwyNDQs0Dtm6NChJBKJ6NNPP6V9+/bRggULqFq1amRmZlZsUqZSqejtt98mY2Njmj17Nu3fv59WrFhB1apVozp16uickXFzcyNnZ2eqV68e/fXXX7Rr1y5q0qQJyWQymjFjBjVv3pw2b95MW7ZsoVq1apG9vb3O+i8mZZGRkWRgYEDt27en0NBQOnLkCG3YsIEGDx6sPcD/9ddfBIA+/PBD2rdvHx04cICWLl1KH330kXY7hSVlGzZsIADUoUMHCg0Npb///psaNGhAcrlc24Po+Zi8vLxoxowZtH//flqwYAEpFAqd1/7kyZMkEokoODiYdu3aRYcOHaLVq1fT4MGDX9q+arWaOnbsSFKplKZPn0779u2jH374gYyNjcnf31/7/jt16hR17tyZDA0NC7y/X3Ty5EnBSRkR0QcffEAA6Pr160Uus2TJEgJAf/3110u3NWfOHPrpp59o586ddOTIEVq6dCm5u7tT69atdZbbs2cPyWQy8vHxoTVr1tChQ4do1apVFBwcrF0mv+3d3NxoypQptH//fgoNDRXcZiX1/imMkPUePHhAjo6OZGNjQwsWLKADBw7Q33//TcOHD9e2dUZGBvn5+eks8/PPP5O5uTm1adNG5x8sAFS9enVq3Lgx/fPPP7Rr1y5q1aoVSaVSioiI0C539OhRmjx5Mv3vf/+jo0eP0pYtW6hnz55kaGhIN27c0C6X/7moVq0avfPOO7Rt2zbasWMHJSYmvtFnpmPHjmRra0vLly+nI0eOUGhoKM2YMYNCQkJe2qaMlQXOfzj/4fyn8uY/REQ1atQgU1NT+vHHH+n69etFnpwrydxn6NChJJVKKSEh4aXLJScn07Bhw+iPP/6gQ4cO0Z49e+iTTz4hsVhMa9eu1Vl28ODBJBKJaMSIEbR161bavXs3ffPNN/Tzzz9rl3FzcyNHR0fy8PCgVatW0eHDh+ns2bN048YNMjU1JU9PT1q3bh3t3LmTBgwYoC2U55s7dy5JJBKaOXMmHTx4kPbs2UMLFy6kWbNmaZd53e90IeutWLGCRCIRtWrViv788086cOAALVmyhMaOHatdRuixOb8o5eHhQR9++CHt3buXVqxYQZaWlgVyUKG56tChQ0kmk1H16tVp7ty5dPDgQdq7d6923vPHu5LMTasiLkpVYbt27dKecfjjjz+IiMjb25v8/f0LXL7RtWtXcnR0LHCmKl9eXh4plUpq27Yt9erVSzs9P/Hy9PQscEatsKQs/4ASHh6unXb27FkCUOBg/aKiuq8/efKEDA0NqXPnzjrT79+/TwqFggYOHKidJrT7ukqlIqVSSevWrSOJREJJSUnaea+SlAGggwcP6kz//PPPCQCdOXNGZ/qYMWNIJBIV2sX4+Zi++uorsra21n4JX79+nQDQxx9/rLN8flJSXFKWn/Rs2rRJZ/q5c+cKXPLg5uZGhoaG9ODBA+20CxcuEABydHTUOQMQGhpKAGjbtm3aaS8mZf/73/8IAF24cKHI+MaPH08WFhYv3YcXkzKVSkVOTk5Uv359nfd0Wloa2dnZUbNmzQrENH/+fJ1tjh07lgwMDLTt/MMPPxCAAmcPi7Nnz55Ct59/mcny5cu10/LP2BQnv8v585eovMzbb79NALRfmIXZvXt3gWSmOGq1mpRKJR09epQA0MWLF7XzPD09ydPTk7KysopcP7/tZ8yYoTNdaJuV1PvnddcbPnw4yWQynR4JL5o7dy6JxeICZ83zY9+1a5d2GgCyt7en1NRU7bS4uDgSi8UvPdObl5dHubm5VLNmTZ3jQP7nomXLlgXWeZPPjImJCU2cOLHIeBjTN85/OP/h/Kdy5j9Ems+Nq6ur9jNuampKXbt2pXXr1ukUqEoq99m7dy+JxeIC7zMh8o8f77//Pvn7+2un5/ee/OKLL166vpubG0kkkgKfjeDgYFIoFAUuJ+zUqRMZGRlpX6uuXbuSn5/fS5/jdb/Ti1svLS2NzMzM6K233nppr36hx+b8Y+jzBS0iovnz5xOAInu7vSxXze9FumrVqgLrvXi8K8nctCqqeKM5shLTqVMnNG3aFDVr1sS7776LO3fu4MaNGxg0aBAAIC8vT/vTuXNnxMbG4ubNm9r1ly5dioCAABgYGEAqlUImk+HgwYO4fv16gefq3r07ZDJZsTENGDAAdnZ2+PXXX7XTFi1aBFtbW/Tv3/+19vPUqVPIysoqcJcVFxcXtGnTBgcPHhS0nfDwcHTv3h3W1taQSCSQyWQYMmQIVCoVbt269VqxWVpaok2bNjrTDh06hDp16qBx48Y604cNGwYiwqFDh3SWbdeuHczNzbUxzZgxA4mJiYiPjwcAHD58GAC0r2u+fv36QSqVFhvjjh07YGFhgW7duum8J/z8/ODg4FDgji5+fn6oVq2a9nHt2rUBAK1atYKRkVGB6VFRUUU+t5+fH+RyOT744AOsXbsWd+/eLbBM48aNkZycjAEDBmDr1q1ISEgodp9u3ryJmJgYDB48WGdQWxMTE/Tp0wenT58uMKh39+7ddR77+PggOztb286NGjUCoGnXf/75Bw8fPiw2DgDa1/PF92ffvn1hbGws+P1Z2ogIAIq9O9Ddu3cxcOBAODg4aN+TQUFBAKA9Nty6dQsRERF4//33YWBgUOxz9+nTR+ex0DYrrfeP0PV2796N1q1ba9/rhdmxYwfq1asHPz8/nc9Xx44dC71jUuvWrWFqaqp9bG9vDzs7O53PUV5eHr799lvUqVMHcrkcUqkUcrkct2/fLvT4/GL7FuZVPjONGzfGmjVr8PXXX+P06dN850ZW7nD+w/kP5z+VN/9p1KgR7ty5gz179mDatGkIDAzEwYMHMWTIEHTv3l2bzwhRXO7z33//oV+/fmjatCnmzp0raJsbN25E8+bNYWJioj1+rFy5Uuf4sXv3bgDAuHHjit2ej48PatWqpTPt0KFDaNu2LVxcXHSmDxs2DJmZmdpB9Rs3boyLFy9i7Nix2Lt3L1JTUwts/3W/04tb7+TJk0hNTcXYsWOLbN9XPTYDhb9fAd3Pm5Bc9XlC8qSSzE2rIi5KVXEKhQJyuRwA8OjRIwDAJ598AplMpvMzduxYANB+4S1YsABjxoxBkyZNsGnTJpw+fRrnzp3D22+/jaysrALP4+joKDieUaNG4c8//0RycjIeP36Mf/75ByNGjIBCoXitfUxMTCwyBicnJ+38l7l//z5atGiBhw8f4ueff8bx48dx7tw5bfJY2D4LUVhMiYmJRcaaPx8Azp49iw4dOgAAfv/9d5w4cQLnzp3DF198oRNT/vIODg4625NKpbC2ti42xkePHiE5ORlyubzA+yIuLq5AEmRlZaXzOP/9VdT07OzsIp/b09MTBw4cgJ2dHcaNGwdPT094enri559/1i4zePBgrFq1ClFRUejTpw/s7OzQpEkT7N+/v8jtFveeUKvVePLkic70F9sq//2Y384tW7ZEaGgo8vLyMGTIEDg7O6NevXr466+/iowjPxapVApbW1ud6SKRCA4ODoLeny9ydXUFAERGRpbY8vl3dXoxwXleeno6WrRogTNnzuDrr7/GkSNHcO7cOWzevBnAs7Z6/PgxAMDZ2VlQfC++TkLbrLTeP0LXe/z4cbH7+OjRI1y6dKnAZ8vU1BREVODzVdhnVqFQ6ByDJk2ahOnTp6Nnz57Yvn07zpw5g3PnzsHX1/e1j8+v8pn5+++/MXToUKxYsQKBgYGwsrLCkCFDEBcXV+zzMFZWOP/h/Kc4nP9oVKT8J59MJkPHjh3xzTffYO/evYiOjkarVq2wY8cObcHnTXOf8PBwtG/fHjVr1sSuXbsEfU43b96Mfv36oVq1ali/fj1OnTqFc+fOYfjw4Trvh8ePH0MikRR47xbmTT5LU6dOxQ8//IDTp0+jU6dOsLa2Rtu2bXH+/HntOq/7nV7cekJywVc5Nucr7v0qNFfNZ2RkBDMzs5fuK1CyuWlVVPxpAlZl2NjYANAcoHr37l3oMl5eXgCA9evXo1WrVvjtt9905qelpRW6XnG9K543ZswYfPfdd1i1ahWys7ORl5eH0aNHC17/RfkHp9jY2ALzYmJitPv9MqGhocjIyMDmzZvh5uamnX7hwoXXjgsovF2sra2LjBV49jqFhIRAJpNhx44dOr1NQkNDC2wPAOLi4nTO4OXl5Qn6wrexsYG1tTX27NlT6Pzne22UhhYtWqBFixZQqVQ4f/48Fi1ahIkTJ8Le3h7BwcEAgPfeew/vvfceMjIycOzYMcycORNdu3bFrVu3dF6vfMW9J8RiMSwtLV851h49eqBHjx7IycnB6dOnMXfuXAwcOBDVq1dHYGBgoetYW1sjLy8Pjx8/1vkiIyLExcVpz0C+ioYNG8LKygpbt27F3Llzi/38tW/fHsuXL0doaCg+//zzQpcJDQ2FVCpFq1atitzOoUOHEBMTgyNHjmjPOAFAcnKyznL5+/ngwQNB+/Ni/K/SZqXx/slX3Hq2trbF7qONjQ0MDQ2xatWqIue/qvXr12PIkCH49ttvdaYnJCTAwsKiwPJCjs+v8pmxsbHBwoULsXDhQty/fx/btm3D559/jvj4+CKPI4zpE+c/ReP8h/MfIcpL/lMUa2trTJw4EUeOHMGVK1fQuXPnN8p9wsPD0a5dO7i5uWHfvn0wNzcXFMf69evh7u6Ov//+W+czkJOTo7Ocra0tVCoV4uLiii1sv8lnSSqVYtKkSZg0aRKSk5Nx4MABTJs2DR07dkR0dDSMjIxe+zu9uPWE5IKvcmwWSmiumk/oMbykc9OqhntKMS0vLy/UrFkTFy9eRMOGDQv9yf8CFolEBc4IXLp0Sdsd9E04Ojqib9++WLJkCZYuXYpu3bppz2a8zIuV8HyBgYEwNDTE+vXrdaY/ePBA2721uG3kH5Ce32ciwu+///4KeyZM27Ztce3aNfz3338609etWweRSITWrVtrY5JKpZBIJNplsrKy8Mcff+isl/9FumHDBp3p//zzD/Ly8oqNp2vXrkhMTIRKpSr0PfGqXwavSyKRoEmTJtqzsy+2DwAYGxujU6dO+OKLL5Cbm4urV68Wui0vLy9Uq1YNf/75p0437oyMDGzatAmBgYE6Xe1flUKhQFBQEObNmwdAk7wUJf/99+L7c9OmTcjIyNB5fwolk8kwZcoU3LhxA3PmzCl0mfj4eJw4cQIA0KtXL9SpUwffffddoZdi/P3339i3bx9GjBjx0rN2hX1OAGDZsmU6j2vVqgVPT0+sWrWqQCImxOu0WUm+f4Su16lTJxw+fLhA1/Lnde3aFREREbC2ti7081W9enVBMTyvsOPzzp07BV9SUZjX/cy4urpi/PjxaN++faFtzlh5wPkP5z+F4fzn1ek7/1EqlUUWHPMvy8rvLfS6uc+FCxfQrl07ODs7Y//+/a9UxBOJRJDL5TqFjri4OGzdulVnuU6dOgFAgeK3UG3bttUWX563bt06GBkZoWnTpgXWsbCwwDvvvINx48YhKSlJ20vsea/7nV7Yes2aNYO5uTmWLl1a5CWVr3JsFkporvqqSis3rSq4pxTTsWzZMnTq1AkdO3bEsGHDUK1aNSQlJeH69ev477//sHHjRgCaL+o5c+Zg5syZCAoKws2bN/HVV1/B3d1d0Bd9cSZMmIAmTZoAAFavXi1onXr16gEAli9fDlNTUxgYGMDd3R3W1taYPn06pk2bhiFDhmDAgAFITEzE7NmzYWBggJkzZ2q3Ub9+fQDAvHnz0KlTJ0gkEvj4+KB9+/aQy+UYMGAAPvvsM2RnZ+O3334r0MW5JHz88cdYt24dunTpgq+++gpubm7YuXMnlixZgjFjxmivG+/SpQsWLFiAgQMH4oMPPkBiYiJ++OGHAgfZ2rVr491338XChQshk8nQrl07XLlyBT/88IOg7qjBwcHYsGEDOnfujAkTJqBx48aQyWR48OABDh8+jB49eqBXr14l3g6AZtyOQ4cOoUuXLnB1dUV2dra2R0m7du0AACNHjoShoSGaN28OR0dHxMXFYe7cuTA3Ny/yLJtYLMb8+fMxaNAgdO3aFaNGjUJOTg6+//57JCcn47vvvnvlWGfMmIEHDx6gbdu2cHZ2RnJyMn7++Wed69QL0759e3Ts2BFTpkxBamoqmjdvjkuXLmHmzJnw9/fH4MGDXzkWAPj0009x/fp1zJw5E2fPnsXAgQPh4uKClJQUHDt2DMuXL8fs2bPRvHlzSCQSbNq0Ce3bt0dgYCAmT56MwMBA5OTkYPv27Vi+fDmCgoLw448/vvQ5mzVrBktLS4wePRozZ86ETCbDhg0bcPHixQLL/vrrr+jWrRuaNm2Kjz/+GK6urrh//z727t1b4B+I122z0nr/CF3vq6++wu7du9GyZUtMmzYN9evXR3JyMvbs2YNJkybB29sbEydOxKZNm9CyZUt8/PHH8PHxgVqtxv3797Fv3z5MnjxZeywUqmvXrlizZg28vb3h4+ODsLAwfP/994IvlyyM0M9MSkoKWrdujYEDB8Lb2xumpqY4d+4c9uzZU+RZTsbKA85/OP95Eec/wpSn/CclJQXVq1dH37590a5dO7i4uCA9PR1HjhzBzz//jNq1a2u/i14n97l586a2/b/55hvcvn0bt2/f1s739PQscPnW87p27YrNmzdj7NixeOeddxAdHY05c+bA0dFRZzstWrTA4MGD8fXXX+PRo0fo2rUrFAoFwsPDYWRkhA8//PCl7TBz5kzs2LEDrVu3xowZM2BlZYUNGzZg586dmD9/vrZnV7du3VCvXj00bNgQtra2iIqKwsKFC+Hm5oaaNWu+9ne6kPVMTEzw448/YsSIEWjXrh1GjhwJe3t73LlzBxcvXsTixYsBCD82C/UqueqrKMnctEoq+7HVWXkSFBREdevW1Zl28eJF6tevH9nZ2ZFMJiMHBwdq06aNzp28cnJy6JNPPqFq1aqRgYEBBQQEUGhoaIE7EeTfYeb7778v8NyF3X3medWrV6fatWu/0v4sXLiQ3N3dSSKRFNj2ihUryMfHh+RyOZmbm1OPHj3o6tWrOuvn5OTQiBEjyNbWlkQiEQGgyMhIIiLavn07+fr6koGBAVWrVo0+/fRT7V05nr/jzavcfebFts8XFRVFAwcOJGtra5LJZOTl5UXff/99gbv/rFq1iry8vEihUJCHhwfNnTuXVq5cqRN3/n5NnjyZ7OzsyMDAgJo2bUqnTp0iNze3Yu8+Q0SkVCrphx9+0O6/iYkJeXt706hRo+j27dva5dzc3KhLly4F1gdA48aN05lW2HvjxbvPnDp1inr16kVubm6kUCjI2tqagoKCdO5Ys3btWmrdujXZ29uTXC4nJycn6tevH126dEm7TGG3RCbS3AGnSZMmZGBgQMbGxtS2bVs6ceKEzjL5MT1+/Fhnev5dPvLbeceOHdSpUyeqVq0ayeVysrOzo86dO+vcXrkoWVlZNGXKFHJzcyOZTEaOjo40ZsyYAreGfZW7z+TbunUrdenShWxtbUkqlWpvjbt06VLKycnRWTYhIYE+//xz8vb21r7OjRs3psWLFxe4e1RRTp48SYGBgWRkZES2trY0YsQI+u+//wr9rJ86dYo6depE5ubmpFAoyNPTU+fuNUW1PZGwNiup909hhK4XHR1Nw4cPJwcHB5LJZNrlHj16pF0mPT2dvvzyS/Ly8tIen+rXr08ff/wxxcXFaZcr7HNERAU+x0+ePKH333+f7OzsyMjIiN566y06fvw4BQUFUVBQkHa5/M/Fxo0bC2zzdT8z2dnZNHr0aPLx8SEzMzMyNDQkLy8vmjlzps7dpxjTN85/OP/h/Kfy5T85OTn0ww8/UKdOncjV1ZUUCgUZGBhQ7dq16bPPPqPExMQC67xK7pO/70X9FPWZft53331H1atXJ4VCQbVr16bff/+9wOtPpLlT4k8//UT16tXTfnYDAwNp+/bt2mWKet8REV2+fJm6detG5ubmJJfLydfXt0B8P/74IzVr1oxsbGxILpeTq6srvf/++3Tv3j0iev3v9FdZb9euXRQUFETGxsZkZGREderUKXC3QyHH5vzX5sW7GRf2GRCaq77sfVfY8a6kctOqSET0CrcgYKyMXLp0Cb6+vvj111+1A9kxxhhjjFVmnP8wxhirargoxcqViIgIREVFYdq0abh//z7u3LnzRte2M8YYY4yVd5z/MMYYq6p4oHNWrsyZMwft27dHeno6Nm7cyAkZY4wxxio9zn8YY4xVVdxTijHGGGOMMcYYY4yVOe4pxRhjjDHGGGOMMcbKHBelGGOMMcYYY4wxxliZ46IUY4wxxhhjjDHGGCtzUn0HUB6o1WrExMTA1NQUIpFI3+EwxhhjrAIjIqSlpcHJyQliccU5/8f5EGOMMcZKitB8iItSAGJiYuDi4qLvMBhjjDFWiURHR8PZ2VnfYQjG+RBjjDHGSlpx+RAXpQCYmpoC0DSWmZmZnqNhjDHGWEWWmpoKFxcXbX5RUXA+xBhjjLGSIjQf4qIUoO2ibmZmxkkYY4wxxkpERbsEjvMhxhhjjJW04vKhijPQAWOMMcYYY4wxxhirNLgoxRhjjDHGGGOMMcbKHBelGGMlhohARPoOgzHGGGOMMVaKiAjqnBxQXp6+Q2EVHI8p9QpUKhWUSqW+w2AA5HJ5hbrNdmWX++ABklatRnJoKCQmJjBq2ACGDRrAqGFDKGrWhIhfK8YYqzQ4Hyo/ZDIZJBKJvsNgjFUg6txcqDMyoE5P1/mt0j5+blpGuuZx/nLa6ZppeFqQEsnlEBsZQWxsrPltZASx8bPHovxpRkYQGxlr5hkZ665jbPTssaEhRFIuVVQVen2ljx07hu+//x5hYWGIjY3Fli1b0LNnT+38YcOGYe3atTrrNGnSBKdPn9Y+zsnJwSeffIK//voLWVlZaNu2LZYsWVKit2AmIsTFxSE5ObnEtsnejFgshru7O+Ryub5DqdKyb9xA4oqVSN29G1CpAAB5mZlI3bUbqbt2AwDEZmYw8veHYcMGMGrQEIb16kLErxtjjFU4nA+VTxYWFnBwcKhwA+szxoQjIqjT0qBOS4Mqv0iUkV54QelpAUmVUbDIpE5PB5XCSQXKzYUqNxeqEvx+ECkUzxW4Xih2PS10SYyNnxW8dJYxhsTEBGJTU4hNTCAxMYFIJiux2FjJ0mtRKiMjA76+vnjvvffQp0+fQpd5++23sXr1au3jF4sQEydOxPbt2xESEgJra2tMnjwZXbt2RVhYWImdOcpPwOzs7GBkZMRf+nqmVqsRExOD2NhYuLq68utRxogIWefPI+H335Fx7Lh2unGzZrB6fzhEMhmywsKQee48Mi9cgDo1FelHjyL96FEAgMjAAIY+PjBq2FDTo8rXF2JjY33tDmOMMYE4HypfiAiZmZmIj48HADg6Ouo5IsbY6yIiqJKSoHz4UPMTE/P07xgoYx4i92EMKDOzRJ9TZGgIsYkxJEbGEJuYPPsxfq6oY2ys6dFkYqJZNn9a/rJGRoBKBXVm5tNCWQbUWVmax/nTMrOezcufnj8vK+vZ9Ke/83tfUU4OVDk5UD15UjL7q1BAbGoKibHxs2KVqQnExvnFK2NITEyf7aupqXY/tQUuY2O+AqQU6LUo1alTJ3Tq1OmlyygUCjg4OBQ6LyUlBStXrsQff/yBdu3aAQDWr18PFxcXHDhwAB07dnzjGFUqlTYBs7a2fuPtsZJha2uLmJgY5OXlQcZV7zJBajXSDx9G4vLfkXXxomaiWAzTjh1gPWIEDOvW1S5r3LgxMAagvDxkX7+BzPPnkRl2Hllh/0H15Akyz55F5tmzmoUlEhjUqQOjBg20l/1JLS31sIeMMcaKwvlQ+WRoaAgAiI+Ph52dHV/Kx1g5RWo18hISnis4xegWn2JiQNnZxW5HpFA8KwoZG2sKLDqFoucKR8bGmoJL/t/5854Wk0ry8jiJhUWJbYtyc59eHpgJynpJASvjhQLX8wWvp5caqjIytMU8bZErIeGN4tO2takJJMYmhRS4TJ61s4mpZrqJCSRmZpDa2vLJ+EKU+ws1jxw5Ajs7O1hYWCAoKAjffPMN7OzsAABhYWFQKpXo0KGDdnknJyfUq1cPJ0+eLJGiVP6YCUZGRm+8LVZy8nvMqVQqLkqVMsrNRcqOnUhcuRK5EREANNeNm/fqBevh70Hu5lbkuiKpFIb168Gwfj1YvzcMRITcu3c1vajCwpAZdh55MbHIvnwZ2ZcvI2nNGgCAvIYnjBpoelIZNWwIGZ/9ZYwxveJ8qPzKf02USiUXpRjTE1KpkPf4cSE9nfJ7O8UUf9mcSASpnR1k1appfpycIKvm9OxvR0eIDQzKZof0SCSXQyqXAyV0kpry8p5d0pie/vQSyKdjZaWnQZWW9uwSx/Snl0empUGVngZ1Wrp2PTx9/fJ7feHRo9eKR2xiAqm9PWT2dpDa2UNqbw+pvR1kDg6Q2mmmS6ytq1SPrHJdlOrUqRP69u0LNzc3REZGYvr06WjTpg3CwsKgUCgQFxcHuVwOyxfesPb29oiLiytyuzk5OcjJydE+Tk1NLTYW7qJevvDrUfrUGRl4snEjktasRd7Tz5PYxASWAwbAashgSG1tX3mbIpEICk9PKDw9YRncHwCgjInRFKjOa4pUuXcitD/Jf/8NAJA5OWnHpDJq1BByd3d+DzDGmB7wsbf84deEsdJHeXlQxj2CMubZJXX5xSblw4dQxsZqLzsrklgMqYM95E5Pi07VnDTFJmdnzW8HBx53tRSIpFJIzM0hMTfH63ZlICJQbq5mXK/0dE3hqtCCVvpzhayn89LSNON7Jadoe3HlpqdrT/YXSiaD1NYGsueLVvb2T4tYT/+2t680RcpyXZTq37+/9u969eqhYcOGcHNzw86dO9G7d+8i1yOil35Bz507F7Nnzy7RWBmrLPKSkvBk/XokbfgT6pQUAIDE1gbWQ4fCon9/SExNS/T5ZE5OMHdygnm3bprnf/JEMybV+TBkhoUh+9o1zRf+thikbtuuicfKCkYNAjR3+GvQEAa1vcvVHTqICJSZCVVqquYnJUXzhZSSCnVaquZ3RoZmYZFI86P9++k/GNpjmOjZMtpJoqfHuBfm5U8vYl3R88/z/Lz8RcViSO3sIHdzg9zNTTNOAGOMMcZYFaFKTUXGmTPIuX5Dt9fTo0fam/oUSSqFzNHxaQ+np72bnJwgc64GmVM1yOzteLDtCkokEmkunVQoABub196OKj0DefGPkPfoEZSPHiHvUTzyHsVB+SgeeY800/MSEgClEnkxsciLiX3p9iTm5k+LVk+LVXb2kDrYa4tWUnt7SCwsyv3Ji/LzX5wAjo6OcHNzw+3btwEADg4OyM3NxZMnT3R6S8XHx6NZs2ZFbmfq1KmYNGmS9nFqaipcXFxKL3A9iY+Px/Tp07F79248evQIlpaW8PX1xaxZsxAYGIjw8HBMnz4dZ8+eRWpqKhwcHNCkSRP8+uuvsLGxwb179+Du7q7dnoWFBerXr485c+YgKCgIQPF3UASAzZs3Y9myZQgLC0NiYiLCw8Ph5+ens0xERAQ++eQT/Pvvv8jJycHbb7+NRYsWwd7evrSbiT2V++AhklavRvKmTdpr2mVurrAe/j7Me/bQHITLgNTSEqbt2sH06Thx6owMZF64oC1UZV28CFVSEtL2H0Da/gMAALGREQz9/J7d4c/X543PHJBKpSkk5ReTUlOgSk2DKjUF6lRNYUmV+qzIpEpN1UxPTYUqLa34s2UVgNTWFnI3N8iqu2kLVXK36pC7uVaaMzOMsaqBcyLGWGEoLw9Zly4j48QJZJw4gazLl4ssPolkMkidNEUneX7vJu1ldtUgtbODiC+hZS8hMTGGxMQDCg+PIpehvDzkPX78tHD1tFgV/+xv5aM45D2KB2VnQ5WSAlVKCnJu3SpyeyKFAlI7u2dFK3t7yByeFq3s7CFzcoSsiDG8y0qFKkolJiYiOjpae3eRBg0aQCaTYf/+/ejXrx8AIDY2FleuXMH8+fOL3I5CoYCijP7B1qc+ffpAqVRi7dq18PDwwKNHj3Dw4EEkJSUhPj4e7dq1Q7du3bB3715YWFggMjIS27ZtQ+YLd3Y4cOAA6tati/j4eEybNg2dO3fGlStX4O7uLugOihkZGWjevDn69u2LkSNHFjq/Q4cO8PX1xaFDhwAA06dPR7du3XD69GmIq9D1tPpw5Z/pSN/1H8zPRWm/hA3q1oX1yJEwbd9O71+uYmNjmDRvDpPmzQEA6txcZF+5qhk4/XwYMv/7D+q0NGScPImMkyc1K8lkMKxXT3uHP5mz89MCUtrTAlKK7t+pqU8LTqlQp6Rofqenv3nwUikkZmaQmJlB/PS3xMwMYnMzSIyNNb2UiABoeleBoHn8dJrmNxWc9/z0/OVeXFe73nPzgCLW10wnVR7yYmKRGxUFVXKy5gvx8WPg/PmCu+bg8Fyhyg1yN1dNAcvVtcwKmIwxJhTnRIwxQJNvKe/fR8bJk0g/cQKZp88UyPnk1avDqFFDyJxdnrvMrhqktjZVapwfph+i/B53jo4wLGIZIoI6NfVZb6v4R1DGaYpV+UWrvEePoHryBJSTA2V0NJTR0cgqZFuKmjXgsX17ae5SsUSk/a+k7KWnp+POnTsAAH9/fyxYsACtW7eGlZUVrKysMGvWLPTp0weOjo64d+8epk2bhvv37+P69eswfXoJ0ZgxY7Bjxw6sWbMGVlZW+OSTT5CYmIiwsDDBgz2mpqbC3NwcKSkpMDMz05mXnZ2NyMhIuLu7w6AC9QxITk6GpaUljhw5oj2D97zQ0FD07dsXWVlZkBZx2VP+WcHnz+I9fPgQzs7OWLp0KUaNGqWzvEgkKvSs4Mu2BwD79u1Dp06d8OTJE237P3nyBFZWVti/f7/2zorPq6ivS3lz9/JhZPUdi/yvV2M/L1h/9BmMAgPLfTfPfKRSIef2be2YVFnnwzSFlBIiMjQsvLCU/7e5GcSmmt/a6ebmkJiaQmRoWGHa8UWqlBTkRkVpfu5FPfs7Kgrql43DJxJB6ujwQs8qN8iru0Hu7MxjJbAq4WV5RXlWGfMhgHMixqo6VXIyMk6f0fSGOnkSyocPdeZLzM1hFBgI4+bNYNKsGWTVqukpUsZKljo3F3nxzy4N1Ol5FaeZpqhVCy6/LSmV5xeaD+m1p9T58+fRunVr7eP8S+qGDh2K3377DZcvX8a6deuQnJwMR0dHtG7dGn///be2IAUAP/30E6RSKfr164esrCy0bdsWa9asKb27jxAByszilysNMqPnxop5ORMTE5iYmCA0NBRNmzYt0DPMwcEBeXl52LJlC9555x3B/zg/f4eXkpKTk6MZAPu5GA0MDCAWi/Hvv/8WmoCxkuHu4YP9XoaIFmdjX2PgG/W/ML6cBFh8Anh3BSrA2SCRRAIDb28YeHvD6t1B2jNg+WNSZYadh+pJcoFiktjMFBIzc0jMTJ9OM9ctLJmZaQpLVbSIIjE3h6GPDwx9fHSmExFUyclQPleker5opU5P114Dn3nqtO5GxWJNl/f8gtVzlwXKqlXjcRYYq2g4JwLAORFj5Q3l5iLzwoWnvehPIfvy5ed6kgOQyWDk7w/jZs1g3Lw5DOrU1vuVAYyVBrFcDrmzM+TOzvoO5aX0WpRq1aoVXtZRa+/evcVuw8DAAIsWLcKiRYtKMrSiKTOBb53K5rleNC0GkBsLWlQqlWLNmjUYOXIkli5dioCAAAQFBSE4OBg+Pj5o2rQppk2bhoEDB2L06NFo3Lgx2rRpgyFDhhQ5ZkFGRgamTp0KiURS6JnG19W0aVMYGxtjypQp+Pbbb0FEmDJlCtRqNWJjXz64G3szImNrtNp4Eh/sG45riZcxPs8Ofz68DKt/BgO23kCLyUDd3oCk4lzpKxKJtIUOiz5F3xCBvR6RSASppSWklpYwfGEcFCKCKimp0N5VuVFRoMxMKB88gPLBA2ScOKG7YYkEMudqur2r8i8JdHIqVwPZM8ae4pyIcyLGygEiQu7du8g4cVLTG+rcOdALl94qatbQFqGMGjbkm7kwVo5wll+J9enTB126dMHx48dx6tQp7NmzB/Pnz8eKFSswbNgwfPPNN5g0aRIOHTqE06dPY+nSpfj2229x7Ngx1K9fX7udZs2aQSwWIzMzE46OjlizZo3O/Ddla2uLjRs3YsyYMfjll18gFosxYMAABAQElF6PN6YllxtgYbslGLhrIKLTojGxph9W3LsD+eMbwOaRwOFvgRaTAJ9gQFo1ew0xYUQiEaTW1pBaW8MoIEBnHhEh7/HjwntY3b8Pys6GMuo+lFH3kYHjutuVySCvXh3yGp5QeHhCUcMTcg9PyN2rQ1xFe7Ixxl4N50SMVS55SUnIOHVKU4g6eRJ5cXE68yXW1jAODIRx8+YwbhYIGd8ogLFyS69jSpUXrzSGQgXpql6UESNGYP/+/YiKiiowLzc3F/7+/mjYsCHWrl2rHe9g27ZtqFOnDiwsLGBtbV3ktl93/ITnJSQkQCqVwsLCAg4ODpg8eTI+/fTTAsvx+Akl727KXby7812kKdPQza0jvhHZQ3R6CZCVpFnAzBloPgEIGAzIihp2jwmhVCvxJPsJbA1tK+yYUyWJ1Grkxcfr9q66H/W0gHUflJtb+IoSiaZLco0aUHh6QuHpAblnDSg83PkMKNOrKjOmFOdERW6bcyLGSpY6JwdZ//2nHaA859p1nfkiuRyGDQJg0rw5jJs3h8LLiwclZ0zPKsSYUhWSSCS4u3h5VKdOHYSGhhY6Ty6Xw9PTExkZGTrTXVxc4OnpWQbRATY2NgCAQ4cOIT4+Ht27dy+T52WAh7kHfmz1I8YcGIPtUXvhETABIz6+ApxfDZxcBKQ+AHZ/Chz7Hmg2Hmg4HFCYFr9hhtTcVFyMv4jw+HBcfHwRlxMuIysvC5YKS/ja+cLfzh9+tn6oY10HBtKq9w+FSCyGzMEBMgcHGDdtojOP1GooY2KQGxGBnDsRyImI0PwdEQF1erq2iJV+8KDOejInJ8g9PaHw9ITc0wMKzxpQeHpAYm5elrvGWOXGOVGp4pyIVWVEhJxbt7Q9oTLPnwdlZ+sso/Dyeu6SvAYQc1GWsQqJi1KVVGJiIvr27Yvhw4fDx8cHpqamOH/+PObPn48ePXpgx44dCAkJQXBwMGrVqgUiwvbt27Fr1y6sXr1a8PM8fwdFAIiMjMSFCxdgZWUFV1dXAEBSUhLu37+PmJgYAMDNmzcBaAYWdXBwAACsXr0atWvXhq2tLU6dOoUJEybg448/hpeXV0k1CRMg0CkQUxtPxddnvsbP//2M6mbV0a7ZeKDRCODCeuDfhUBKNLB/BvDvT0DTsUDjkYChpb5DLzeICA/SHuDC4wsIjw9HeHw4IpIjQCjYKfVJzhMciT6CI9FHAABSsRR1rOvAz9YPfnZ+8LP1g62RbZnGX96IxGLtAI0mz43bQkTIi3+M3Ig7yIm4i5yIO8iNuIuciAiokpKgjImBMiYGGcd1LwWU2NpoLgF8sVhlY8O91hirpDgnYqxiUMbHI/PUKaSfOIGMU6egepygM19qa/u0CNUMxoGBkNpW7RyJscqCi1KVlImJCZo0aYKffvoJERERUCqVcHFxwciRIzFt2jTExsbCyMgIkydPRnR0NBQKBWrWrIkVK1Zg8ODBgp/nZXdQXLNmDQBg27ZteO+997TLBAcHAwBmzpyJWbNmAdAkZVOnTkVSUhKqV6+OL774Ah9//PEbtgJ7Hf29++Nuyl38eeNPTPt3GpxMnFDHuo6mMBUwFLj0D3D8RyApAjj8DXDiF01hKnAcYGyj7/DLnFKlxLWka7gQfwEX4jWFqMTsxALLuZq6agpNdn7wt/WHs6kzbj65WWC9S48v4dLjS1h3bR0AoJpJNW2Bys/ODzUtakIi5nFFRCIRZPZ2kNnbwbhZM515eU+ePO1NdRe5dyOeFq0ikBcbC9XjBGQ+TkDmmTM664jNzAoUqhSenpA6OnL3f8YqOM6JGCufVKmpyLpwARmnTiPjxAnk3LqlM19kYACjRo1g3LwZTJo3h7xGDT6BxFglxGNK4TXGUGB6x69L6cpT52H8wfE4EXMCdkZ2+KvLX7Azsnu2gFoFXN0CHF8AxF/VTJMaAg2GAS0/qdTFqeTsZFx8fFHbE+pKwhXkqHJ0lsnv8eRv6w9/O3/42vnCxvDlbUJEeJj+EOHx4ZpC1eMLuP3kdoEeVkZSI9S3rQ8/Wz/42/nDx9YHpnK+jFIIVXoGciPvIudOhKZYdScCOXcjoLwfrXur6OeIDA2h8PDQKVbJPT0hd3HhOwKyIlWZMaVYucCvDasIiAjKqChkhl9AVng4ssL/Q86dCN3vX5EIBrVrawYnb94chgH+fEMTxiowofkQF6XASVhFxK9L6UvLTcO7u97F3ZS7qGtdF6vfXg1D6QsDnKvVwK3dwLEfgJj/NNMc/YCRh4FK0LuEiHAv9Z62SBQeH47IlMgCy1koLLQ9mfzt/EtsbKj03HRcSriEC/EXcPHxRVx6fAnpynSdZUQQoYZlDZ1L/lxMXfhM4itQZ2cj996958areno5YNR9QKksdB2RTAZFzZpQ1PaGgXdtGHh7QeHtDYkpFwgZF6VY2eLXhpVH6pwcZF+9iqz//tMWolRJSQWWk7m6wqhhw2eX5FlZ6SFaxlhp4KLUK+AkrOLh16VsRKdFY+DOgUjOSUYHtw74Puh7iEWFFJuIgLuHgX+GAjmpQO/fAZ9+ZR/wG8pR5eBa4jXtWFAX4y/iSc6TAsu5m7treyr52fmhuln1MikCqdQqRKRE6Fzy9yD9QYHlrAysnhWp7DQDqCskilKPr7IhpRK50Q+ejlf1XLHqbmSBwVbzyZydofD2eq5QVRuyak5cJKxiuCjFyhK/Nqw8UMbHI0vbCyocWdeuFTixI5LLYVCvHgz9/WAUEABDPz9IX3IXS8ZYxcZFqVfASVjFw69L2Ql7FIYR+0YgT52HUT6jMN5/fNELH/8ROPgVYOEKjD8PSMt3ISQxKxEXHl/QFnmuJl6FUq2bQMnFctSzqaczrpOlQfkZ2D0hKwEX4y9q96OwfZCJZboDqNv5FXs5ISsaqdVQPniA7Bs3kHPjBrKv30D2zRvIi4ktdHmxqSkMvLygqP2sR5WiZk2+JKES46IUK0v82rCyRioVcm7fRuZ//2kLUcoHBU+SSWxsYOTvB0M/fxgG+MOgbl3+7mOsCuGi1CvgJKzi4delbIXeCcX0E9MBAN+1+A5dPLoUvmBuJrAoAEiLBTrOBQLHlmGUL6cmNSJTIrW9oC7EX8D9tPsFlrMysIK/nb+2F1Rtq9qQSypOApWjysH1xOs6lxwmZRfsLu9s4qxTaKthUYMHUH9DquRkZN+8hZwb15F946amaHXnTuGXAEqlUHh4POtVVdsbCm9vSC3LT8GTvT4uSrGyxK8NK22qtDRkXbio6QF1IRxZFy5CnZmpu5BIBIWXl6YXlJ8fDAMCIHN25p7CjFVhQvMhHqWVMVasnjV64m7KXay+shozTsyAs6kzfG19Cy4oNwJaTQW2fwQc+x7wHwQYmJd9wAAylZm4mnhVW5y5EH8BqbmpBZbzNPfUjgXlb+df4cdjUkgU2t5QgGZcrAdpD7RtEP44HHee3MGD9Ad4kP4AO+7uAAAYy4zhY+OD/l790datrR73oOKSWFjAuEljGDdprJ1GubnIuXtXU6C6fgPZN28i5/p1qFJSkHPrFnJu3ULqtu3a5aX29i9c/ucNuasrRBIuGDLGGCt9RARldDSywsORGR6OrP/CkXP7doEbgoiNjWHo6wvDgAAY+vvB0NcXEhMTPUXNGKvIuCjFGBNkYsBE3Eu5h8PRh/HRoY/wV5e/4GTiVHBBv0HAqcVAwi3gxM9A2xllEl9cRpx2nKULjy/gZtJNqEils4yBxKDAnevMFfopmpUVkUgEFzMXuJi5oJtnNwCaQewvP76M8MeacbMuJVxChjIDp2JP4VTsKbxd/W1MazKtXF2mWFGJ5HIYeHvDwNsb6KmZRkTIe/QI2devay7/u3ET2TeuQxl1H3mPHiHv0SNkHD32bBuGhjCoVUt3UPVatSA2MtLPTjHGGKs0NAOSX9P2gsoMvwBVQkKB5WTOzjAM8NeMBeXvD0WNGnzChDFWIvjyPXB39YqIXxf9yFRmYsjuIbj55CZqWdbCuk7rYCwzLrjg9R3A34MAqSHwUThg5liicShVStxIuoGLj5+NpfQo81GB5ewM7bS9hvzt/OFl5QWZWFaisVQGKrUKd5LvYFfkLqy9uhYqUsHKwAozAmegrSv3miorqvQM5Ny6qdur6uZNUE5OwYVFIsirV9e9/M/LG1I72wrd06+y4Mv3WFni14a9iryEBG0PqKzwcGRfvQp6cUBymQwGdepoe0EZ+ftDamurp4gZYxUVX77HGCtxRjIjLGqzCAN2DsCtJ7fw+bHPsbD1woJjEXl3AVyaANFngCNzge6/vNHzPsl+gouPL2rHgrqaeBU5Kt1/1CUiCbysvOBn6wdfW1/42/nDwdiB/0EXQCLWtJ2XlRc6uHXAF/9+gYiUCEw8PBFdPLpgauOplb5HWXkgMTGGUUAAjAICtNMoLw+5UVHIvn5DZ6wqVUICciMjkRsZibTde7TLi42NIXN1hfzpj8zVBXIXV8jdXCG1t4dIXMjdMxljjFVqeU+eIPnvv5G8ZQuUUQXH05RYWWl6QT0dC8qgbl2IFeX7ZjWMscqDe0qBzwxWRPy66Nelx5fw3p73kKvOxbC6wzC54eSCC90/DazqCIjEwNgzgG0tQdtWkxp3k+9qe0BdfHwR91LvFVjOTG6mHajb19YX9WzqwUjGlzOVhFxVLpZcWILVV1dDTWrYGNpgRtMZaO3aWt+hsafyEhI0haqbzy7/y70bCajVRa4jksshc3F5WrBy0S1eOTlBJONehCWFe0qxssSvDStKzt1IJK1bi5TQraDsbM1EkQiKmjVh6O8PQz8/GAX4Q+bqyifxGGMljntKMcZKjY+tD75+62t8duwzrLm6Bu7m7uhds7fuQq5NAa8uwM2dwMHZQPCGQreVoczA5YTL2gHJLz2+hLTctALLuZu7a+6IZ+sHXztfVDerDrGIe32UBrlEjokNJqKNaxt8eeJLRKZE4qPDH6GbRzdMaTyFe02VA1IbG5i0eAsmLd7STlPn5kL54AFyo6KgjI5G7r0o5EZHQ3n/PnIfPgTl5iI3IgK5EREFNyiRQObk9Kx3lasb5G5PC1bOzhDzP7qMMVYhEBEyz55D0urVSD9yRDvdoE4dWA0bCpNWrSCpQMVyxljlx//RVWLx8fEYNWoUXF1doVAo4ODggI4dO+LUqVMAgPDwcHTt2hV2dnYwMDBA9erV0b9/fyQ8Hdzw3r17EIlE2h9LS0u0bNkSR48e1T7H3Llz0ahRI5iamsLOzg49e/bEzZs3i4xp1KhREIlEWLhwoc70Vq1a6TyXSCRCcHBwyTcKKzGd3DthjO8YAMCcU3NwLu5cwYXaztD0lLqxA7h/RnsnuB13d+Dr01+j7/a+aPZXM4zcNxK/XvgVJx6eQFpuGgylhmjk0Agj64/Er21/xb/B/2Jbz22Y3Ww2etXsBQ9zDy5IlQEfWx9s7LYR79V9D2KRGNvvbkfvrb1x7MGx4ldmZU4sl0Ph4QHT1q1hNWQIHGZMh+vvy+G5dw+8L4TDc/8+uKxcAYeZM2A1bBhM2raFomYNiAwMAJUKyuhoZJw4geS/QhA/bx4ejB2Hu1274aafP263ao2oIUMR8+WXSFj+O1L37EH2tWtQpafre7cZE4RzIlbZUW4uUrZtQ2SfPrg/dKimICUSwaR1a7iuW4vqm/4H8+7duSDFGCt3uKdUJdanTx8olUqsXbsWHh4eePToEQ4ePIikpCTEx8ejXbt26NatG/bu3QsLCwtERkZi27ZtyMzM1NnOgQMHULduXcTHx2PatGno3Lkzrly5And3dxw9ehTjxo1Do0aNkJeXhy+++AIdOnTAtWvXYGysOwB2aGgozpw5AyenQu7YBmDkyJH46quvtI8NDQ1LvlFYiRrjOwaRKZHYc28PPj7yMTZ03gA3Mzft/FxrD1yr1xUXow7jwqHxuGBkgoSsgnd0cTJ2gq+tr3ZQ8lqWtSAV8+GpPFBIFJjUcBLauLbB9BPTcS/1HsYdHIeeNXri00afwkzOyW1FIJJKIXdxgdzFBWjeXGceESEvPl7To+p+NHLv30fu/Sgo70cjNyoK6vR05MXFIS8uDjh7tsC2JVZWkLu4QObmqh2/Su7qCpmbGyQWFnxJCCsXOCdilZUqORlP/tmIJ+vXIy8+HgAgMjCAea+esBoyBAp3dz1HyBhjL8f/9VVSycnJ+Pfff3HkyBEEBQUBANzc3NC4cWMAmmQoNTUVK1asgFSqeRu4u7ujTZs2BbZlbW0NBwcHODg4YNmyZXB2dsa+ffswatQo7NmzR2fZ1atXw87ODmFhYWjZsqV2+sOHDzF+/Hjs3bsXXbp0KTRmIyMjODg4lMj+s7IhEokwp/kcPEx/iMsJlzH+4Hh86P8hriRcwYXHF3A14Spy1bmAtSWAbCArG1KxFHWs6sDXzldTiLL1g72xvb53hRXDz84PG7ttxKLwRfjj2h8IvROKkzEnMbvZbLxV7a3iN8DKLZFIBJm9PWT29jBq1EhnHhFBlZz8tGB1H7lRzxWs7t+HKikJqqQkZCUlIevixQLbFpuYQF69OuQe7lB4eEDu7gGFpwfkrq4QyeVltYusiuOciFVGuVFRSFq7DslbtoCysgAAElsbWA0cCIvgYEgtLfUcIWOMCcNFqVdERMjKy9LLcxtKDQWfcTYxMYGJiQlCQ0PRtGlTKF64g4aDgwPy8vKwZcsWvPPOO4K3a2SkGUha+cKtY/OlpKQAAKysrLTT1Go1Bg8ejE8//RR169YtctsbNmzA+vXrYW9vj06dOmHmzJkwNTUVFBfTHwOpAX5p8wsG7ByAe6n3MPmo7qDnVgZW8IUCfjHX4GvggLrDj8BAYaKnaNmbMJAa4NNGn6Kta1tMPzEd99PuY8yBMehTsw8+afgJTOT8ulY2IpEIUktLSC0tYejrW2C+Kj29YA+rqPvIjY5GXlwc1OnpyL5yBdlXruiuKJFA7uwMuacnFB7ukLt7aApXnp58aUkJmTt3LqZNm4YJEyYUuDyspHBOxDkRK1tEhKywMCSuWYP0g4eAp/erUnh5wWrYMJh16QwxF/wZYxUMF6VeUVZeFpr82UQvz31m4BnBdxeTSqVYs2YNRo4ciaVLlyIgIABBQUEIDg6Gj48PmjZtimnTpmHgwIEYPXo0GjdujDZt2mDIkCGwty+810pGRgamTp0KiUSiPdP4PCLCpEmT8NZbb6FevXra6fPmzYNUKsVHH31UZLyDBg2Cu7s7HBwccOXKFUydOhUXL17E/v37Be0v0y8bQxssbrMYEw9PhKHMEH62msvwfG194WrqClF2CvCLH5ByG7i6GQgYou+Q2RsIsA/Axm4b8Uv4L9hwfQM23d6EkzEn8VXzr9DUsam+w2NlSGJiAkmdOjCoU6fAPHV2NpQPHiAnMhK5dyORe/cucu7eRe7du1BnZCA3Kgq5UVFIP/TCNm1sNL2q8ntXeWgKV1IHB4jEPJacEOfOncPy5cvh4+NTqs/DORHnRKxskFKJ1L37kLRmjU6R3zioJayHDoVRYCBfKs0Yq7BERE9L7FXYq9wCOVOZWSESsHzZ2dk4fvw4Tp06hT179uDs2bNYsWIFhg0bBgBITEzEoUOHcPr0aYSGhiIpKQnHjh1D/fr1ce/ePbi7u8PQ0BBisRiZmZlwdHTEvHnz8O677xZ4rnHjxmHnzp34999/4ezsDAAICwtDly5d8N9//2nHTahevTomTpyIiRMnFhl3WFgYGjZsiLCwMAQEBBS6X3z74wrm5GJg3xeAqRPwYRggf7X3MiufzsWdw4wTM/Ag/QEAoL9Xf0xqMOmVj1Ws6tCMYfUYuXcjkBNxF7mRkciNvIuciLvIe/SoyPVEhoaQu1eHwsNT53JAeXU3iF/o+aJvQm+BXBrS09MREBCAJUuW4Ouvv4afn5/gnlKvkg8B4JyIcyJWylSpqUje+D8krV+PvNhYAIBIoYB59+6wGjYUCk9PPUfIGGNFE5oPcVEKr5aEVZSu6kUZMWIE9u/fj6ioqALzcnNz4e/vj4YNG2Lt2rXaBGzbtm2oU6cOLCwsYG1tXeh2P/zwQ4SGhuLYsWNwf25AxYULF2LSpEkQP3d2W6VSQSwWw8XFBffu3St0e0QEhUKBP/74A/379y8wnxOwCkiZDSxuCKREA+1mAW99rO+IWAnJVGZiQdgC/H3zbwBANZNqmNN8Dho5NCpmTcZ0qdIzdIpU2t5VUVFAXl7hK4nFkDk7P+1V5aG5HNDDA3J3d72NqaLPotTQoUNhZWWFn376Ca1atSrVohTnRJwTsdKR++ABktatQ8r/NkH9dLB9ibU1LAcNhGVwMKTPXRLKGGPlldB8iC/fe0UikahC9wCoU6cOQkNDC50nl8vh6emJjIwMnekuLi7wLOJMDBHhww8/xJYtW3DkyBGd5AsABg8ejHbt2ulM69ixIwYPHoz33nuvyDivXr0KpVIJR0dHAXvFKgSZAdDmS2DLKOD4T0DAUMCIk6rKwEhmhC+bfon2bu0x48QMPEx/iOF7h2OA9wBMDJhYoY+ZrGxJTIxhWL8eDOvX05lOSiVyox9oilV37yL3biRy7kYg924k1GlpUN6/D+X9+8CRI7rbs7J62qvKUztmldzdAzInx0p5KWBISAj+++8/nDt3TtDyOTk5yMnJ0T5OTU19pefjnEgX50TsTWWGhyNpzVqk7d8PqNUAAEXNGrAaOhRm3bqVu16hjDFWErgoVUklJiaib9++GD58OHx8fGBqaorz589j/vz56NGjB3bs2IGQkBAEBwejVq1aICJs374du3btwurVqwU/z7hx4/Dnn39i69atMDU1RVxcHADA3NwchoaGsLa2LnAmUSaTwcHBAV5eXgCAiIgIbNiwAZ07d4aNjQ2uXbuGyZMnw9/fH81fuHU5q+Dq99NcxvfoMnD8R6DjN/qOiJWgJo5NsKn7JvwY9iP+d+t/+OvGXzj+4DjmNJ+Dhg4N9R0eq8BEMhkUHu5QeLjDtG1b7XQigioh4ellgHeR89zYVXmxsc/uDHg+THd7BgZw/OZrmBdx57OKKDo6GhMmTMC+ffsE95aZO3cuZs+eXcqR6R/nRKw8o7w8pB04gKTVa3TuYmrcvDmshg2D8VvNebwoxlilxkWpSsrExARNmjTBTz/9hIiICCiVSri4uGDkyJGYNm0aYmNjYWRkhMmTJyM6OhoKhQI1a9bEihUrMHjwYMHP89tvvwEAWrVqpTN99erV2jEaiiOXy3Hw4EH8/PPPSE9Ph4uLC7p06YKZM2dCIpEIjoVVAGKx5tK9DX2As8uBJqMAC1d9R8VKkIncBDMDZ6K9a3vMPDUTD9IfYPje4RhUexA+CvgIhlJDfYfIKhGRSASprS2ktrYwbqo7tpE6IwM59+7p9KrKvXsXuffugbKzIS3i0quKKiwsDPHx8WjQoIF2mkqlwrFjx7B48WLk5OQU+E6dOnUqJk2apH2cmpoKFxeXMou5rHBOxMojVXo6kv/3PzxZ9weUMTEANAV4s+7dYDVkKAy8auk5QsYYKxs8phRefQwFpn/8ulRgRMC67kDkMcAnGOi9TN8RsVKSlpuGH8//iE23NwEAXE1d8fVbX8Pfzl/PkbGqjPLyoHz4EFI7O4gNS6dIqo8xpdLS0gqMjfTee+/B29sbU6ZM0bkDXFE4H6qY+LWpWJQPHyLpj/VI3rgR6qeXh0osLWE5YAAsBw6A1MZGzxEyxljJ4DGlGGPlk0gEtJsN/N4auPQ30Gw84FBf31GxUmAqN8WsZrPQzq0dZp6ciftp9zF091AMrjMYH/p/CAMp//PEyp5IKoXczU3fYZQ4U1PTAoUnY2NjWFtbCypIMcZKV9alS0hcvRpp+/YDKhUAQO7hAathQ2HevTvEXFBkjFVRlW+UT8ZY+VctAKjbGwABB2bpOxpWyt6q9ha29NiCnjV6gkBYd20d+m7vi4uPLxa/MmOMMVZBkUqF1H37cG/gINzr1x9pu/cAKhWMmwXCZdlSeOzYDst+/bggxRir0rinFGNMP9p8CVzfBtw5ANw9CngE6TsiVorM5GaY03wO2ru1x6yTs3Av9R6G7B6CoXWHYpzfOCgkfEchxkrakRfuRsgYKxvqzEwkb9qMpHXroIyO1kyUyWDepQushg2Fgbe3fgNkjLFyhHtKMcb0w9oTaDhc8/eBmdpbH7PKraVzS2zpsQXdPLpBTWqsvrIa/bb3w+XHl/UdGmOMMfbGsq9dw90ePfHom2+gjI6G2Nwc1qNGocbBA3D6bi4XpBhj7AVclGKM6U/LzwC5CRATDlzbou9oWBkxV5jj2xbf4ufWP8PawBp3U+7i3d3v4uf/fkauKlff4THGGGOvJfl//8O94AFQRkdD6uAA+xnTUfPwIdh9PBEyOzt9h8cYY+USF6UYY/pjYgs0+0jz98GvgDwuSFQlbVzbILRHKDq5d4Ka1FhxeQX67+iPq4lX9R0aY4wxJpg6Oxsx075A7JfTQbm5MAkKgkfoFlgNHAixkZG+w2OMsXKNi1KMMf0KHAcY2wFP7gFhq/UdDStjFgYWmN9yPn5q9ROsDKxwJ/kOBu0chMXhi6FUKfUdHmOMMfZSuVFRuBc8ACmbNwNiMWw//hjOvy2BxMJC36ExxliFwEUpxph+KUyAVp9r/j46D8hO1W88TC/aubXDlh5b0MGtA1SkwrJLyxC8Mxg3km7oOzTGGGOsUGkHDiCyzzvIuXEDEmtruK5aCZtRH0Ak5n+xGGNMKL0eMY8dO4Zu3brByckJIpEIoaGhOvOJCLNmzYKTkxMMDQ3RqlUrXL2qe1lHTk4OPvzwQ9jY2MDY2Bjdu3fHgwcPynAvGGNvLGAIYF0DyEwETi7SdzRMT6wMrPBjqx/xQ9APsFRY4taTWxiwYwB+vfArsvOy9R0eY4wxBgCgvDzE//ADHoz/EOr0dBgGBMB98yYYN22q79AYY6zC0WtRKiMjA76+vli8eHGh8+fPn48FCxZg8eLFOHfuHBwcHNC+fXukpaVpl5k4cSK2bNmCkJAQ/Pvvv0hPT0fXrl2hUqnKajcYY29KIgPaztD8fWoxkPZIv/EwvepYvSO29NiC9m7tkUd5WHpxKXpt7YWj0Uf1HRpjjLEqThkfj/vD3kPiipUAAKthw+C2dg1k9vZ6jowxxiqmVy5K5eTk4Pjx4/jjjz+wbNkybN68GZGRka/15J06dcLXX3+N3r17F5hHRFi4cCG++OIL9O7dG/Xq1cPatWuRmZmJP//8EwCQkpKClStX4scff0S7du3g7++P9evX4/Llyzhw4MBrxVSZxMfHY9SoUXB1dYVCoYCDgwM6duyIU6dOAQDCw8PRtWtX2NnZwcDAANWrV0f//v2RkJAAALh37x5EIpH2x9LSEi1btsTRo8/+Mfztt9/g4+MDMzMzmJmZITAwELt379aJ4/ltPP/z/fffa5fhHm8MtbsD1RoCykzg6Hf6jobpmbWhNX4M0vSasjOyw4P0Bxh/aDzGHxyP6NRofYfHGKtgOCdiJSHj7FlE9umDzPPnITY2RrWff4b951Mgksn0HRpjjFVYgotSJ0+exIABA2BhYYFWrVph4sSJmDNnDt59913UqFEDNWvWxPfff6/Ti+lNREZGIi4uDh06dNBOUygUCAoKwsmTJwEAYWFhUCqVOss4OTmhXr162mWqsj59+uDixYtYu3Ytbt26hW3btqFVq1ZISkpCfHw82rVrBxsbG+zduxfXr1/HqlWr4OjoiMzMTJ3tHDhwALGxsTh69CjMzMzQuXNnbSHS2dkZ3333Hc6fP4/z58+jTZs26NGjh85llrGxsTo/q1atgkgkQp8+fbTLcI83BpEIaP+V5u+wtUDCHf3Gw/ROJBKhY/WO2N5zO4bXGw6pWIqjD46i59aeWBy+GFl5WfoOkTFWQXBOxN4EESFx5Urcf284VI8ToKhZE9X/txFmHTsUvzJjjLGXIwG6d+9Ojo6ONHnyZDp69ChlZGTozI+IiKA1a9ZQx44dycHBgfbt2ydkszoA0JYtW7SPT5w4QQDo4cOHOsuNHDmSOnToQEREGzZsILlcXmBb7du3pw8++KDI58rOzqaUlBTtT3R0NAGglJSUAstmZWXRtWvXKCsr65X3SZ+ePHlCAOjIkSOFzt+yZQtJpVJSKpVFbiMyMpIAUHh4uHbagwcPCAAtXbq0yPUsLS1pxYoVRc7v0aMHtWnTRvs4OTmZZDIZhYSEaKc9fPiQxGIx7dmzp9BtVNTXhQmwoR/RTDOikHf1HQkrZ+4m36WRe0dSvTX1qN6aetRhYwc6cO8AqdVqfYfGmI6UlJQi84ry7GVxV+TvXc6J2JvIS0mh+2PH0TUvb7rm5U0PP/uMVC/8L8QYY6wgofmQVEjhqkOHDti4cSPkcnmh8z08PODh4YGhQ4fi6tWriImJeeNiWT6RSKTzmIgKTHtRccvMnTsXs2fPfq14iAiUpZ+z8yJDw2L3PZ+JiQlMTEwQGhqKpk2bQqFQ6Mx3cHBAXl4etmzZgnfeeUfwdo2MjAAASmXBW7WrVCps3LgRGRkZCAwMLHT9R48eYefOnVi7dq12WnE93jp27CgoNlZJtJ0J3N4HXN8GRJ8DXBrpOyJWTribu2NZ+2U4eP8g5p+bj5iMGEw8MhHNnJphauOpqG5eXd8hMlalcE7EOVFll33jBh58NAHK+/chkslg/8UXsOjfT/B7hDHGWPEEFaXGjRsneIN169ZF3bp1XzugfA4ODgCAuLg4ODo6aqfHx8fD/ulAgg4ODsjNzcWTJ09gaWmps0yzZs2K3PbUqVMxadIk7ePU1FS4uLgIiouysnAzoMEr7UtJ8fovDKKnCVBxpFIp1qxZg5EjR2Lp0qUICAhAUFAQgoOD4ePjg6ZNm2LatGkYOHAgRo8ejcaNG6NNmzYYMmSItn1flJGRgalTp0IikSAoKEg7/fLlywgMDER2djZMTEywZcsW1KlTp9BtrF27FqampjrjiMXFxUEul+u8hgBgb2+PuLg4QfvLKhH7OoDvQODCeuDATGDYTs2lfYxBc6KinVs7NK/WHL9f+h1rrq7ByZiT6LWtF4bVHYaR9UfCSCbsOMkYezOcE3FOVJklb96CuNmzQTk5kDk5odrPP8Owfj19h8UYY5XOKw90npWVhW3btuGHH37Ajz/+iG3btiGrFM6Subu7w8HBAfv379dOy83NxdGjR7UFpwYNGkAmk+ksExsbiytXrry0KKVQKLSDUOb/VEZ9+vRBTEwMtm3bho4dO+LIkSMICAjAmjVrAADffPMN4uLisHTpUtSpUwdLly6Ft7c3Ll++rLOdZs2awcTEBKampti+fTvWrFmD+vXra+d7eXnhwoULOH36NMaMGYOhQ4fi2rVrhca0atUqDBo0CAYGBsXGL6RXHKukWk8FpAZA1AlNrynGXmAoNcRHAR9hS48teKvaW8hT52HF5RXoHtode+/tBRHpO0TGWDnCORETSp2djZgvv0TstGmgnBwYt2wB982buCDFGGOlRESvkLlv27YNI0aM0N6JJJ+NjQ1WrlyJbt26vdKTp6en484dzWDG/v7+WLBgAVq3bg0rKyu4urpi3rx5mDt3LlavXo2aNWvi22+/xZEjR3Dz5k2YmpoCAMaMGYMdO3ZgzZo1sLKywieffILExESEhYVBIpEIiiM1NRXm5uZISUkpUKDKzs5GZGQk3N3dYWBgUGG6qhdlxIgR2L9/P6KiogrMy83Nhb+/Pxo2bIi1a9fi3r17cHd3x7Zt21CnTh1YWFjA2tq62Odo164dPD09sWzZMp3px48fR8uWLXHhwgX4+vpqpx86dAht27ZFUlKSzplBX19f9OzZs9BLLV98XVgltH8GcOJnwK4OMPpfQCzs88yqHiLC4ejDmH9uPh6mPwQANHFsgqmNp8LTwlPP0bGq6GV5RXn2KvkQUHEu3ysK50TsRY+vnETa9B+Qc/06IBLB5sPxsBk9GiLxK5/HZ4yxKk9oPvRKd99755130LJlS5w4cQJJSUlISkrCv//+ixYtWuCdd97R3lZXqPPnz8Pf3x/+/v4AgEmTJsHf3x8zZswAAHz22WeYOHEixo4di4YNG+Lhw4fYt2+ftiAFAD/99BN69uyJfv36oXnz5jAyMsL27dsFF6RelUgkgtjISC8/JXGGrE6dOsjIyCh0nlwuh6enZ4H5Li4u8PT0FJR8AZokNScnp8D0lStXokGDBjrJF/D6Pd5YJffWx4CBORB/DbgYou9oWDkmEonQxrUNQnuEYozvGMjFcpyJPYN3tr2DH879gAxl4cc8xtib4ZyoeJwTVRz/Lf8c9we9j5zr1yGxsoLryhWwHTuWC1KMMVbKBI0pBQBff/013nvvvQJnepo1a4ZmzZph1KhRmDNnDnbt2iX4yVu1avXSSyxEIhFmzZqFWbNmFbmMgYEBFi1ahEWLFgl+3qogMTERffv2xfDhw+Hj4wNTU1OcP38e8+fPR48ePbBjxw6EhIQgODgYtWrVAhFh+/bt2LVrF1avXi34eaZNm4ZOnTrBxcUFaWlpCAkJwZEjR7Bnzx6d5VJTU7Fx40b8+OOPBbZhbm6O999/H5MnT4a1tbW2x1v9+vXRrl27N24LVkEZWgItJmt6TB3+BqjXG5AZ6jsqVo4ZSA0w1m8sunl2w/xz83Ek+gjWXluLXZG7MLnhZHR278yXvzBWBXFOxISIOnMI3jnAjWpAXnc1atW00XdIjDFWJQguSp06dQrz5s0rcv64ceN0Bnpk+mViYoImTZrgp59+QkREBJRKJVxcXDBy5EhMmzYNsbGxMDIywuTJkxEdHQ2FQoGaNWtixYoVGDx4sODnefToEQYPHozY2FiYm5vDx8cHe/bsQfv27XWWCwkJARFhwIABhW7np59+glQqRb9+/ZCVlYW2bdtizZo1pdbjjVUQjUcBZ5YDqQ+As8uB5hP0HRGrAFxMXbCozSIcf3Ac3539DvfT7uPz459j462NmNZkGmpZ1tJ3iIyxMsQ5EROi+5Jj2DizO76rFQOVJB0Jf3bEaP9xEDWfCEgE/8vEGGPsFQkeU8rQ0BA3btyAm5tbofOjoqJQu3ZtZGZmlmiAZeFVx1Bg+sevSxUSvgHYOlZzKd+Ei5oeVIwJlKvKxdqra7H80nJkq7IhEUkQ7B2MsX5jYSavOGP9sIqlqowpxcoHfm1KDhFh6dn5WHJjPQBgYEoapihcIO6xBHCoX8zajDHGnlfiY0rVqlULhw4dKnL+wYMHUaNGjVeLkjHGiuMbrBnsPDsFOL5A39GwCkYukWOk7hR+XAAARPNJREFUz0hs67kN7d3aQ0UqbLi+Ad22dMPWO1uhJrW+Q2SMMVZOiEQijGkyBVMbTwUA/Gluii/yHkK5vBVw6Bsgr+D4YIwxxt6M4KLUsGHD8MknnxQ6ZtTOnTvx2Wef4b333ivR4BhjDGIJ0G6W5u8zy4CUB3oNh1VMjiaOWNBqAZa1X4bqZtWRlJ2EL098iaG7h+JG0g19h8cYY6wcGVh7IL5r8R2kIgl2mBjjY1tLZB//HlgWBDwI03d4jDFWqQguSk2YMAFt2rRB165dUbt2bfTu3Ru9e/eGt7c3unfvjqCgIEyYwOO9MMZKQc0OgFtzQJUDHJ6r72hYBdbMqRk2d9+Mjxt8DEOpIS48voD+O/rjm9PfICUnRd/hMcYYKye6eHTBz21+gUKiwFEjQ4x2ckJawg1gZTtg35dAbsUbsoQxxsojwUUpsViMjRs34q+//oKXlxdu3LiBGzduwNvbGxs2bMCmTZsg5lumMsZKg0gEtP9K8/fFP4FH1/QbD6vQZBIZhtcbjm09t+Ht6m9DTWqE3AxBty3dsPn2Zr6kjzHGGACgpXNLLGu/DCYyE4TJJRju4YUEEYCTi4ClzYF7J/QdImOMVXivXEXq378/QkNDce3aNVy7dg2hoaEIDg4ujdgYY+wZ54ZA7e4AqYGDs/UdDasEHIwd8H3Q91jZYSU8zT3xJOcJZp6ciUE7B+FKwhV9h8cYY6wcaGDfAKvfXg0rAyvcUGdimJcfYswdgaS7wJrOwM7JQE6avsNkjLEKi7s2CSTwJoWsjPDrUUW1nQmIJMCtPXx2kpWYxo6NsbH7Rnza8FMYy4xxJfEKBu4ciFknZ+FJ9hN9h8dYucLfv+UPvyalz9vKG+s6rYOTsROishMwuJoTInz7aGaeWwEsCQTuHNRvkIwxVkG90uV7EonkpT9SqbQ0Y9ULmUwGAMjM5OvGy5Pc3FwAgEQi0XMkrEzZ1AAaDNX8vX8GwIk4KyEysQxD6g7B9p7b0c2jGwiETbc3oeuWrvj7xt9QqVX6DpExveJ8qPzKf03yXyNWOtzM3LC201p4mHsgPusxhuXcxpWePwMWrkBKNLC+NxA6DsjikxmMMfYqRCTw9MrWrVuLnHfy5EksWrQIRISsrKwSC66spKamwtzcHCkpKTAzMyswPzY2FsnJybCzs4ORkRFEIpEeomT51Go1YmJiIJPJ4Orqyq9HVZP2CPjFD1BmAv3WAXV66DsiVgn99+g/fHvmW9x8chMAUNuqNqY1mQY/Oz/9BsYqhOLyivKK86GKhYiQmZmJ+Ph4WFhYwNHRUd8hVQlPsp9g7IGxuJJ4BUZSI/zSYh6aXNkFnF0OgAATe6DLAqB2V32HyhhjeiU0HxJclCrMjRs3MHXqVGzfvh2DBg3CnDlz4Orq+rqb05viGouIEBcXh+Tk5LIPjhVKLBbD3d0dcrlc36EwfTj0DXBsPmDlCYw7A0j47DAreXnqPPxz8x8sDl+MNKVmvJCeNXpiYsBEWBta6zk6Vp5V1qIU50Plk4WFBRwcHLhIWIYylBmYcHgCzsSegUwsw/dB36MtjIGt44HE25qF6vUBeiwBZAb6DZYxxvSkVItSMTExmDlzJtauXYuOHTti7ty5qFev3hsFrE9CG0ulUkGpVJZhZKwocrmc7/ZYleWkAT/7AZkJmrORjd7Xd0SsEkvMSsTC/xYi9E4oAMBUZopx/uPQp2YfGEj5nw1WUGUtSuXjfKj8kMlkPJSBnuSqcjHl2BQcuH8AYpEYswJnoVf1TsDR74ATvwCkAlp+CrT5Ut+hMsaYXpRKUSolJQXffvstFi1aBD8/P8ybNw8tWrQokYD1qaImj4xVaWeWA7s/BYztgI/CAYWJviNildyF+Av49sy3uJ50HQBgobBArxq90M+rH5xNnfUcHStPKmpeUVHjZkxf8tR5+OrUV9hyZwsA4JOGn2Bo3aHA1S3AxmGAWAaMPg7Y1dZvoIwxpgdC8wrBXU3mz58PDw8P7NixA3/99RdOnjxZKQpSjLEKqsEwwNIdyIgHTv2q72hYFeBn54e/uvyF6U2nw9HYEck5yVh9dTU6b+6McQfH4diDY1CTWt9hMsYYKyNSsRSzm83GsLrDAAA/nP8BP//3M6h2D6BWJ0CtBLZPANT83cAYY0UR3FNKLBbD0NAQ7dq1e2k34c2bN5dYcGWFzwwyVkFd2QT8bzggNwE+ugCY2Oo7IlZFqNQqHHtwDCE3Q3Ay5qR2urOJM/p79Uevmr1grjDXY4RMnypqXlFR42asPFh5eSUW/rcQANC3Vl984T0EkiXNAGUG0PUnoOFw/QbIGGNlrMQv3xs2bJigARRXr14tPMpygpMwxiootRpY0QaICQcajQS6/KDviFgVdC/lHv6++Te23tmqHRBdIVGgk3snBHsHo651XT1HyMpaRc0rKmrcjJUXG29txJxTc0AgtHJphXfURvA5uRyWMlNg/FnA1EHfITLGWJkpk7vvVRachDFWgUUeA9Z2A8RSYNxZwNpT3xGxKipTmYndkbsRcjMEN5JuaKf72Pigv3d/dKzeEQqJQo8RsrJSUfOKiho3Y+XJ3nt78fnxz5GnztNOc1Mq4WNgD9+GY+Fr54saFjUgFUv1GCVjjJU+Lkq9Ak7CGKvg1vcB7hwA6vYG+la83pqsciEiXHx8EX/d+Av7ovZp/zGxVFiiV03NwOjVTKrpOUpWmipqXlFR42asvLkQfwGbbm/CxccXEZkSWWC+odQQ9W3qw9fWV/tjYWBR9oEyxlgpKtGi1OjRo/HFF1/AxcWl2Cf++++/kZeXh0GDBr1axHrESRhjFVzcZWBpCwAEjDwEVGug74gYAwAkZCVg8+3N+OfmP3iU+QgAIIIIQc5BCPYORqBTIMQiwfccYRVERc0rKmrcjJVnKTkpuLz3E1y8uxcXTcxwydAYGXmZBZZzM3PTFqh8bH24NxVjrMIr0aLU9OnT8csvv6BZs2bo3r07GjZsCCcnJxgYGODJkye4du0a/v33X4SEhKBatWpYvnw56tevX6I7VJo4CWOsEtg8CrgUAlRvAQzdDggYA4+xspKnzsPRB0cRciMEp2NPa6e7mrqiv1d/9KjRgwdGr0Qqal5RUeNmrNzLzQB+bQqk3Ieq6ThENBmGi48v4tLjS0X2pjKSGqG+TX342PrAz84PPjY+3JuKMVahlPjle/Hx8Vi5ciVCQkJw5coVnXmmpqZo164dPvjgA3To0OHNItcDTsIYqwSS7wOLGgCqXGDQJqBmO31HxFih7qbcxT83/8HWO1uRrkwHABhIDNDZozOCvYJR27q2niNkb6qi5hUVNW7GKoTb+4EN7wAiMTDyMODkp52VkpOiLVBdfHwRlxMuI0OZUWAT1c2qw8fWR9ujqoZFDUjERd8VnTHG9KlUx5RKTk5GVFQUsrKyYGNjA09PT0F35iuvOAljrJLY+wVwajFgXw8YdRwQ82VRrPzKVGZix90d+Pvm37j15JZ2uq+tL/p7aQZGl0vkeoyQva6KmldU1LgZqzA2vgdc3Qw4+gEjDgKSwi/PU6lViEiJ0BSp4jWFqnup9wosZywzRj2bes8u++PeVIyxcoQHOn8FnIQxVklkJgE/+wE5KUCvZYBvsL4jYqxYRITw+HCE3AzB/qj92oHRrQys0Ltmb/St1RdOJk56jpK9ioqaV1TUuBmrMNIeAb82ArJTgI5zgcCxgldNyUnR9qS6+PgiLj++jMxCxqbi3lSMsfKi1IpSly5dKnxDIhEMDAzg6uoKhaJi3fKakzDGKpHjC4CDswFzV2D8OUBmoO+IGBMsISsBm25twj+3/kF8ZjwAQCwSawdGb+rYlAdGrwAqal5RUeNmrEIJWwNsnwDIjIFxZwCL4m8kVZhX7U3lY+OD+jb1Ya4wh0wsg1wih0wig0z83I9EBrlYDplYxoUsxtgbK7WilFgsfumlejKZDP3798eyZctgYFAx/hnkJIyxSkSZBfwSAKTFAB2/BQLH6Tsixl5ZnjoPR6KPIORGCM7EndFOr25WHf29+qN7je4wk/P3VXlVUfOKiho3YxWKWg2s6QzcPwXUehsYEFJiN2dJzk7GpYRnY1NdSbhS6NhUQkhEEm2hKr9oJZfIdX4/P18ulj8raklkBebrrP/8MhIZHI0d4W3lDYWkYnVsYIy9XKkVpbZu3YopU6bg008/RePGjUFEOHfuHH788UfMnDkTeXl5+Pzzz9G/f3/88MMPb7wjZYGTMMYqmf/WAds+BAwtgY8uAIYW+o6Isdd2N/kuQm6GYFvENu0/F4ZSQ3Tx6IJgr2B4WXnpOUL2ooqaV1TUuBmrcB7fBH5rDqiVQN+1QN2epfI0KrUKd5LvaItUN5NuIluVjVxVLpRqpfa3Uq3UXjquL1KRFDUta6KuTV3Uta6Lejb14GnhCZlYpte4GGOvr9SKUo0bN8acOXPQsWNHnel79+7F9OnTcfbsWYSGhmLy5MmIiIh4vejLGCdhjFUyqjxgaXPg8Q3grUlAu5n6joixN5Y/MPpfN/7CneQ72un+dv4I9gpGe7f2kEk4eS8PKmpeUVHjZqxCOvQNcGw+YOIAjD8LGJjrNRw1qZGnztMUqVRK5Kpzdf9WKbUFrOfn56pyCxS3Xix6PT8/f/386TmqHNxLvYek7KQCMSkkCnhbeaOeTT3Uta6LujZ1Ud2sOl/GzlgFUWpFKUNDQ4SHh8Pb21tn+o0bN+Dv74+srCzcu3cPderUQWZmwcH3yiNOwhirhG7sAkIGAFJD4KP/ADMeKJpVDkSEsEdhCLkZgoNRB5FHzwZG7+HZA909u6OGZQ09R1m1VdS8oqLGzViFpMzWnEBLvAM0fB/oukDfEekNESE2IxZXE6/iSsIVXE24iquJV5GuTC+wrLHMGHWs66CedT3UsdH8rmZSrULfCZ6xyqrUilL+/v7w9fXF8uXLIZdrblWtVCoxcuRIXLx4EeHh4Thx4gTeffddREZGvtlelBFOwhirhIiA1Z00Yzb4vQv0WFxiYzYwVl7EZ8Zj061N+N+t/yE+K147vZ51PXSv0R2d3TvDXKHfs+9Vkb7yirlz52Lz5s24ceMGDA0N0axZM8ybNw9eXsIu8eR8iLEyFnkcWNtV8/fwfYBrE/3GU46oSY37qfdxJfFZkep64nVkq7ILLGuhsND2pMq/9M/OyE4PUTPGnldqRamTJ0+ie/fuEIvF8PHxgUgkwqVLl6BSqbBjxw40bdoUf/zxB+Li4vDpp5++8Y6UBU7CGKuk7p8BVnXQ/O3aDGjzBVD9Lf3GxFgpUKqVOBZ9DKERofj3wb/a3lMysQytXFqhZ42eaObUDFKxVM+RVg36yivefvttBAcHo1GjRsjLy8MXX3yBy5cv49q1azA2Ni52fc6HGNOD0HHAhfWAbW1g1DFAKtd3ROVWnjoPd1PuaotUVxKu4OaTm4WOh2VnaKdTpKprXRcWBhZlHzRjVVipFaUAID09HevXr8etW7dARPD29sbAgQNhamr6RkHrCydhjFVix38EjswDVDmax+5BQOsv+Gwkq7QSsxKxK3IXtt7ZiptPbmqnWxtYo6tHV3Sv0R21LGvpMcLKr7zkFY8fP4adnR2OHj2Kli1bFrt8eYmbsSolMwlY3AjITADafAm0rBgn9cuL/7d35/FR1Vf/wD+zZCcJSzaygBAIS8JiWEIIEPgVqaIVBa0IWnysAqIIoqK2WgRRoLZIK0tBW0u1lqfUR3FDoUoSEAVF9rAlbCFkIXtIQiaZOb8/bjJZyHKDydxZPu/X674yc++dyZnDzORw7r3fr8lswpnCMziWd0w5qyr/ONKL0mERy3X7hnUKQ0xADGK6xSA6IBoDuw2Ej1vrDXsiujHt3pR6+OGH8ac//clhG08tYRFG5ORKLivNqQOblZluAKDPRGDCb4CwYdrGRtSBThacxLa0bfj83OcNBpEd0HUApvSZgsm9JqOLZxcNI3RO9lJXpKWloW/fvjh69ChiYmKu215ZWYnKykrr/ZKSEkRERGgeN5HLObIV+L9HAIMHMO9boFuk1hE5tPKqcpwsOFnXqMo7joulF6/bTwcdevn3anDpX/+u/eFp9NQgaiLn0+5NKYPBgKysLAQFOd/1ufZSPBJRByu6CKS8Dhz8JyBmZV3UbUpzqvtgbWMj6kBVlip8k/kNtqVtQ9KlJOulDkadEWPDx2JKnykYFzaOs/e1E3uoK0QEU6ZMQWFhIXbv3t3kPi+//DKWLl163XrWQ0Q2JgK8NxVI/xq4aSww6xOOg9nOiiuLkZqfiuP5x5Gan4pjeceQVZZ13X5GnRF9uvTBkMAhGBc+DiNDRrJJRXSD2r0ppdfrkZ2dzaYUETm+grNA8uvAkS1A7endA+5UmlNBA7SNjaiDFV4rxOfnPsfH6R8jNT/Vur6LRxdM7j0ZUyKnoH/X/pzJ6Cewh7ri8ccfx2effYY9e/YgPDy8yX14phSRHSk4B6yPB6orgLs2AENnaB2R08uryLM2qI7lKZf+1T+rGAC8jF6I6x6HCRETMC58HAK8AjSKlsjxdEhTKicnB4GBge0WpL2wh+KRiDSQlwYkrQCOfQBAAOiAmGnA+OeBgL5aR0fU4dIK0/Bx+sf45OwnyKvIs67v26UvpkROwe29b2cBfgO0rivmz5+Pjz76CCkpKejVq5fqx2kdN5HL27MG+O8SwKsL8MQPgA+/f21JRJBdlo1j+cewL2sfkjKSkFOe02CfQQGDMD5iPBLDExHVJYoHcIha0CFNKX9//1Y/eAUFBS1ut0cswohcXE6q0pw68bFyX6cHBk8HEp8FuvbWNjYiG6i2VOPby99iW/o2fH3xa1TVjL1m0BkwJmwM7oy8E+MjxsPdwFmh1NCqrhARzJ8/Hx9++CGSkpLQt2/bmuush4g0Zq4CNk0Aco4qdcjUjVpH5NJEBKcKT2FXxi4kZyTjeP7xBtu7+3RHYngiJkRMwPCQ4fwbSdRIhzSl1qxZA39//xb3mzVrVtsibUFTYx0EBwcjOzsbgPJFsXTpUmzatAmFhYWIi4vDunXrEB0d3abfwyKMiAAAWYeBXSuA09uV+3qjcvr8uMVA5whtYyOykeLKYnx5/ktsS9uGI3lHrOv93P0wuddk3NXnLgzsNpBHh1ugVV0xb948vP/++9i2bRv69etnXe/v7w8vL69WH896iMgOXDoAvP0zAAI8+CEQ+f+0johq5JbnIuVSCpIzkvFd1ne4Zr5m3eZt9EZCWALGR4zH2LCxnESECE4yptTLL7+M//znP/jvf/9rXWcwGKyXEK5atQqvvvoq/v73vyMqKgrLly9HSkoKTp061aZZAlmEEVEDlw4Au14F0r9S7hvcgdhZwNinAb/u2sZGZENni8/i4zTl8r7c8lzr+kj/SNzZ507c0fsOBHk731iTP5VWdUVzjcJ33nkHDz30UKuPZz1EZCc+Xwzs3wh06aXMxufWelOZbKuiusJ6iV/ypeQGl8DrdXoMDRyKxIhEjA8fj17+vXggh+yG2WLGueJzSC1IxfG84wj0DsQjgx7pkN/lFLPvvfzyy/joo49w6NCh67aJCEJDQ7Fw4UI899xzAJQBO4ODg7Fq1SrMmTNH9e9hEUZETbr4HfD1cuB8zcxVRk9g+K+BMQuBTvyPOLkOs8WMfVn7sC19G766+BUqzcrg2HqdHvHd4zGlzxRMiJjAGYpqOGpd4ahxEzmdylJgXRxQkgmMWQRMXKJ1RNQCi1iQmp+KpIwkJGUk4VThqQbbI3wjMD5iPMaHj8fNwTfDTc+Zbsk2GjegUvNTcarwFCqqK6z7RHWJwgd3ftAhv99pzpR6/fXX4e/vDw8PD8TFxeG1115D7969cfbsWURGRuLHH3/EzTffbH3MlClT0LlzZ2zevLnZ5+VsM0TUJudSgK9fBTK+U+67eQMjHwVGLwB8umkbG5GNlZpKseP8DmxL34aDuQet633dfHFrr1txZ+SdGBI4xKWPCjtqc8dR4yZySic/A7bMUIYSmJMCBLdteBLSTtbVLCRdSkJyRjL2Z++3jtMIAL7uvhgTOgbjI8YjISwB/h4tD41DpFa1pVppQOWnWpfGDaha3kZv9O/aHwO7DcTgwMG4rddtHRJTuzeltLB9+3aUl5cjKioKOTk5WL58OU6ePInjx4/j1KlTSEhIQGZmJkJDQ62PmT17Ni5cuIAvv/yy2edtaqwqACzCiKh5IsrlfLteAzIPKOvcOwFxc4HRTygz5RC5mIslF7EtfRs+Sf8EWWVZ1vU3+d2EOyPvxC8if4EQnxANI9SGozZ3HDVuIqe1ZSZw8lMgfATw8A5Ar9c6Imqjsqoy7L28F0kZSdh9aTcKKwut2ww6A2KDYzE+fDzGR4xHD78e2gVKDqXaUo2zxWcbNqAKTjUY56xW/QbUwG4DEd0tGj39esKgN3R4nE7RlGqsrKwMkZGRWLx4MUaNGoWEhARcvnwZ3bvXjfHy6KOPIiMjA1988UWzz8MzpYjohokAp79UxpzKrhkE2sMfiH8cGPUY4MnvEHI9FrHgh+wfsC19G3Ze2Gk9KqeDDoMDB2NQwCBEB0RjUMAg9PDt4fRnUTlqc8dR4yZyWiWXgbUjAVMpMPkPylna5LDMFjOO5h21jkOVVpTWYHtv/95IjFBm8xscMNgmTQOyf7VnQB3PP27XDaimOGVTCgBuueUW9OnTB88+++wNX77XGIswImozEeXo5a7XgNxUZZ1XF2D0k0DcHMDdR9v4iDRSVlWGnRd2YlvaNvyQ88N1233dfRHdLRoxATHK0i0GwT7BGkTacRy1rnDUuImc2r5NwPZnAQ8/4PF9gF9o648hh5BRkoHkS8lIykjCgZwDqJZq67YuHl0wNnwsEsMTkRCWAB831pWuoK1nQA3oNsDagBrYbSB6+mrXgGqKUzalKisrERkZidmzZ+Oll15CaGgonnrqKSxevBgAYDKZEBQUxIHOich2LBYg9UNg1wog/4yyzjsAGPMUMOLXnDGHXNrlq5dxIOcAjucfx9G8oziZfxImi+m6/QK9Ahs0qaIDoh16nA1HrSscNW4ip2YxA3+dBGT+AAz4BXDfe1pHRB2gxFSCvZl7kXQpCSmXUlBqKrVuM+qNGBE8AokRiRgUMAh9OveBt5u3htFSe6i2VCO9KL2uAVWQitMFp1U3oG7yuwl6nX1f0usUTalnnnkGv/jFL9CjRw/k5uZi+fLlSE5OxtGjR9GzZ0+sWrUKK1aswDvvvIO+ffvitddeQ1JSEk6dOgVfX1/Vv4dFGBH9ZOZq4Nh/gKSVQOE5ZV2nEGDs08CwWYDRQ9v4iOxAlaUKaYVpOJp3FMfzj+NY3jGkFaXBIpbr9u3h26OuURUQg/5d+8PL6BhNXketKxw1biKnl30M2JQIWKqB6f8C+k/WOiLqQFWWKhzKPWS9zO9CyYUG23XQoYdfD0R1iULfLn0R1SUKUV2iENYpzO6bFK6qoroCF0suXjcIee1sxvX5uPk0eQmeI/7bOkVTavr06UhJSUFeXh4CAwMxatQovPLKKxg4cCAAQESwdOlSbNy4EYWFhYiLi8O6desQExPTpt/DIoyI2o25Cjj8LyD590BxhrLOLxwY9wxw8wOAgdMAE9VXXlWOkwUncSzvGI7lH8OxvGPIKM24bj+DzoA+nfsgJiDGOj5VZOdIu5xa21HrCkeNm8gl7FwCfLMG8AtTLuPzUH8AnhzbueJzSM5IxrdZ3+J04WnkVeQ1uZ+Pmw/6dlaaVP269rM2rXjpX8eziAW55bm4VHoJl65ewqXSS8i8mmm939K/2YCujS7Bc9AGVFOcoillKyzCiKjdVZuAg/8AUv4AlNbMSta5J5D4HDD4PsBg1DY+IjtWXFmsNKnqNaqaKug8DB7o37W/dSD1mG4x6OHXQ/NizlHrCkeNm8glmMqB9aOAogvKzL+3rdI6ItJIfkU+Theeti5nCs8grSgNVZaqJvcP7xSunE3VNcp6VlWEb4TmfysdTamp1NpkyizNVJpPNbczr2Y2m/9avu6+yhlQXesaUPZQs3QkNqXagEUYEXWYqgrgh3eAPauBsivKuq6RwPjngeipbE4RqSAiyCnPwfG84ziWfwxH844iNS8VpVWl1+1rDwOpO2pd4ahxE7mMtK+A96YC0AGPfgWEDdM6IrITVZYqXCi+gNOFp3Gq8BROFZ7CmcIzyC3PbXJ/L6MX+nbua738r1/XfujbpS/83F33u7/KUoXsq9nIuJpRd5ZTbRPqaiaKK4tbfLxRZ0SITwjCfcMR7huOsE5hiPCNUO53Coefu5/Tzz7cGJtSbcAijIg6nKkM+P5tYM8aoKJAWde5BzDqceWyPo9OmoZH5GgsYsHFkosNxqc6kX+iyYHUg7yCrJf8RQdEI7pbxw6k7qh1haPGTeRSPngEOLoVCBkEPJrEg1vUoqJrRThTdAanCk5Zz6xKK0prciwjAOju0916NlXtmVX2NqPbjRIRFFwraHimU70zn7LLs5sc47K+rp5dEd4pHGG+YQjvFG5tOIX5hiHYOxhGPT+P9bEp1QYswojIZipLgX0bge/WA+X5yjpPf2D4r4G4OYBviLbxETmwtgykvmz0Mtzd9+4OicNR6wpHjZvIpVy9AqwdDlwrAm55BUh4UuuIyMFUW6pxsfSi0qQqOG09qyqrLKvJ/T0MHojsHKmcUdWln7Vp1dmzc4fGKSKolmqYLWaYxYxqS3XdT4u5yW2194srixs2nWrOfKqormjxd3oaPBHaKbSu2dQpzHrmU3incM562EZsSrUBizAisjlTuTIg+rfrgIJ0ZZ3eTRlvKv5xIHigtvEROYkGA6nXjFGVUZqBd297F0ODhnbI73TUusJR4yZyOT/+A/h4PuDmDcz7DujSU+uIyAmUmEpwprDurKozhWdwpuhMs42cIK8g9O3aF35ufg0bRI2bRS00kGrXN7W9tbOWboQOOgR5BzU4wym8U7j1Mrtunt1c7hK7jsSmVBuwCCMizVjMwKnPgb1rgYzv6tb3mQiMng/0SgT4x5GoXRVdK4KPu0+HzdznqHWFo8ZN5HJEgL/fAVzYA/S5BZi5lbUCdQiLWJBRmmG99O9UgXJW1aWrlzSLyaAzQK/Tw6g3wqgzwqg31t3XG2HQGeDj5mM9y6l2bKewTmEI7RQKd4O7ZrG7Gjal2oBFGBHZhYzvgW/fBE58AtQeHQoZBIx+Eoi+GzB0zH+giah9OWpd4ahxE7mkvDPAhtGA2QTc8zcgZprWEZELuWq6irSiNJwuPA2T2QSD3gCDTlmszaGadUadctuoM0Kv11sbSbX7Wrc1aiwZ9AZr46l2m0Fn4JlMDoRNqTZgEUZEdqXgLPDdBuDge0BVubLOL0yZAnrYLGUMKiKyW45aVzhq3EQuK2klkLQC8AkCntgPeHXROiIiIiu1dYXehjEREZEaXXsDk18HnjoO/L8XlWKzJBPY+RKwOhr48rdAUYbWURIREZGWxjwFBEQBZbnAziVaR0NEdEPYlCIislfeXYFxzwILjwJ3rgUC+wOmUuDbtcCfhijTQl8+pHWUREREpAWjB/CLPym3f9wMXNirbTxERDeATSkiInvn5gnEPgg89i0wYyvQaxwgZuDoVmBTojLY6ekdgKX9ZykhIiIiO9ZzNBA7S7n9yQKgulLbeIiI2ohNKSIiR6HXA1GTgFmfAHNSgEG/BPRG4Pxu4P17gQ3xyjTRVde0jpSIiIhs5ZalyqX+eaeBPW9oHQ0RUZuwKUVE5Ii6DwGmvQUsOAyMng+4+wJXTgIfzwfWDAJSXgfKC7SOkoiIiDqaVxfgtpXK7d1/BK6c1jYeIqI2YFOKiMiR+YcDk5YDi44rP/3ClAFPv14OvBENfPaMMpsfEREROa/oqUDfSYDZBHy6kJf0E5HDYFOKiMgZePorZ0wtOAxMfQsIGQRUlQPfvwX8ORb43weAjP1aR0lEREQdQacDJv8BcPMGLnwDHHpP64iIiFRhU4qIyJkY3IDBvwTm7AZ+9THQZyIAAU58Avz1FuDtW4DUjwGLWetIiYiIqD116QlM+I1ye8dLwNVcbeMhIlKBTSkiImek0wG9E4EHPgDmfQfc/ABgcAcu7Qf+/SDw5jBg/1uAqVzrSImIiKi9xD0GhAwGrhUBX7ygdTRERK1iU4qIyNkFDQCmrAMWHgXGPgN4dgYKzwGfP6OMO/X1qzyaSkRE5AwMRuDOPwM6PXDsP8CZ/2odERFRi9iUIiJyFb4hwM9eAhalAre9DnTuCVQUACm/B96IAT5+Ejj/DVBdqXWkREREdKNCb1bOmAKAz57iWdFEZNfYlCIicjXuPkDcbODJg8C9m4Gw4YC5EvhxM/D3ycDKHsDmXwDJrwMXvgWqTVpHTERERG0x4TeAfwRQdBFIXql1NEREzTJqHQAREWlEbwCi7wIGTgEy9gHfvw2cTQbKcoFzKcoCKDP5RMQBN40Beo1TjsAa3DQNnYiIiFrg0UmZje9f9wF71wIx9wDdB2sdFRHRddiUIiJydTod0GOUsogAeaeVhtT53crlfOV5wNldygIA7p2UfW8aA9w0Dug+RBnDgoiIiOxHv1uVA0+p24BPFgCP/Fc5IEVEZEf4vwgiIqqj0wGB/ZRl5KNKkyr3RE2Dajdwfg9QUQik/VdZAMDdF+gZD9w0Fug1Vpn1h0UvERGR9m5dBaTvAi7/qJwRHTdH64iIiBpgU4qIiJqn0wHBA5Ulbg5gsQC5qUqD6txu4MIe4FoxcGaHsgCAhz/Qc7TSoLppDBA8CNBzCEMiIiKb8+sOTFwCfPY08NUyICAKCB+hXN5HRGQHdCIiWgehtZKSEvj7+6O4uBh+fn5ah0NE5DgsZiD7aN1ZVBf2ApUlDffx7Az0TKhpUo0FggaySUVOzVHrCkeNm4haYbEAf/s5cGm/cl+nBwL6AWHDgLCbgdBYIDgGMLprGycRORW1dQWbUmARRkTUbszVQPaRek2qbwFTacN9vLrWjEdVc7lfYH/ljCwiJ+GodYWjxk1EKhRlADt/p0xsUpJ5/XaDOxAySGlQhcUqDatufXkQiYhuGJtSbcAijIiog5irgaxDdZf7XfwOqCpruI9PYL0zqcYBAX3ZpCKH5qh1haPGTURtVJoNZP6ojDNV+7Oi8Pr93H2B0KFKkyq0plHlH86/0USkCptSbcAijIjIRsxVSgFcO3D6xX1AdUXDfTqF1JxJNQboNQ7o2psFMDkUR60rHDVuIvqJRIDCczUNqoNA5gEg6zBQVX79vj6BdQ2q2maVTzfbx0xEdo9NqTZgEUZEpJHqSqX4Pb8HOJcCZOwHzJUN93H3BToFAZ2CgU6Byk+foOtv+wQBbp7avA6iehy1rnDUuImoA5irgbxTyt/ozB+Vn7mpgKX6+n0792h42V/3IYCHr+1jJiK7wqZUG7AIIyKyE1XXgEvfK02q87uV22aT+sd7+Nc0sGqWpppXnYKVI71Gj457HeTSHLWucNS4ichGqiqA7GNKg6r20r/8M03sqAMC+9VrVNUOpM6/u0SuhE2pNmARRkRkp6quAcWXgKs5NUsuUJZb8/NKzboryrq2NK8AwNO/5uyrmiZV7ZlYPvWaWrXbDG4d8/rIKTlqXeGocRORhiqKlLEjrWNUHQRKLl2/n8FdaUzVH58qoC+gN9g6YiKyEbV1hdGGMREREbWNmycQ0EdZWiICXCuqa1DVNrDqN7HqN7As1cC1YmXJO916HF5da868qmleeXdTGlUGN0Bf+9PY8H6z24z11jfe19j887FwJyIie+PVGeg9XllqleY0HEQ980egokC5ffnHuv3cOwHdhwJB/ZVLAP0jgM49gc4Ryt9bjidJ5BLYlCIiIsen0wFeXZQlMKrlfS2WmgZWTr0zrmqaVo1vl11RGlgVBcpy5aRNXk7TdMqR5paaXAZ3wOipXCJh9AAMHnW3m73vCRhrHmd9fO3PJtbV/x1slBERUWO+wUC/25QFqBlI/XxdgyrzR2UgddNV4MIeZWnM6KU0p/wjlIZV/cU/QjlApNfb9GURUcdgU4qIiFyLXg94d1WWoAEt72uxKNNkX82pOeOq5pLBigJlJkFLdc3PKmVQWEuVchlhs9vqrTebWtinqolgRBkEvvFA8FrSG+saVC01wGqbaYaa20b3mnX1lsbrjB51jTZDzW3rc7nXPWfjdWyWERHZF50O6NpLWWKmKessZuDKKWW2v4J0oCgDKLoIFF0ASrOVmXnzTjd/NrPBHfAPr9eoqt+4igB8u/NvAZGDYFOKiIioOXq9MtW1TzcAA233e0WUgr1BI8vUepPLXAVUX1MaV9X1lgb3r9VbZ2rlfr3HmE3KILeoNxSlpVo50m26arvcqKHT1zXArI2rRg2uiS8DvRO1jpSIyDXpDUDwQGVprLoSKMmsaVJdrNewuggUZyjbzCag4KyyNPn8RqVpZb0ksKZZVXumlV+YcqYxEWmOn0QiIiJ7o9MpxbLBCLh5aR1NHZGaBlhNA8tc2+QyNWxcmU31mlk1+5urappdpnrPUVmvoWa6fnvtNut6U73mW2W9/RoNci8W5Sh7dUXzr8XeGmlERKQwegBdeytLU8xVQMnluiaVtXlVs5RkKgdNCs8rC3Zf/xw6A+AX2vCSwAZnWoUq41oSUYdzmqbU+vXr8frrryMrKwvR0dFYs2YNxo4dq3VYREREzkOnqxlbyh2wp5m9rc0yU8OluvZ24+aXCQi9WeuoOwxrIiJyagY3oEtPZWmKxQyUZgGFF2qaVhlA0XnlZ+19S5VyuzgDuPBNM7/HQ5mp19MP8PBr9NO/0bZG+3l2Vm7zbCyiVjnFp+R///d/sXDhQqxfvx4JCQnYuHEjbrvtNqSmpqJHjx5ah0dEREQdqX6zzMWxJiIil6c31Fy6F970dosFuJpdr0l1oeFlgsUZdZfCl9XM4nuj3LyVhlWDplbjRlcLzS0PP46NRU5PJyLS+m72LS4uDrGxsdiwYYN13YABA3DXXXdhxYoVrT6+pKQE/v7+KC4uhp+fX7vGJiKoqDK363MStQcvNwN0nGqXiKjddWRd0ZqfUhN1dNysichesSaiBkSUWXqvlQCVJQ1/XisGKovrrStuer+qsvaLx923rkFlcKs3+27tbLyNZuY1uF8/S6/BvYnbjWfzdWv+drPP56aM4wgoB4iUG+puWx/T3O16j+Hn0yGprSsc/kwpk8mEAwcO4Pnnn2+wftKkSdi7d2+Tj6msrERlZd3sRSUlJR0WX0WVGQN/92WHPT/RjUpd9nN4uzv8VwAREdVoa01ky3oIYE1E9os1ETWg0wFeXZTlRpmr65pWDRpaJY0aWsVNN7euFdfNtmsqVRZktsvLc3xtbGhd95gmtl23XzOPqf+7Wm2wtfYcLf2+VmJvz98XHA3c/RdoyeG/ffPy8mA2mxEcHNxgfXBwMLKzs5t8zIoVK7B06VJbhEdERERkE22tiVgPERF1EIMR8O6qLDeq6hpQWVrTqCoCKq/Wm4W3ZpzE+jPw1t6+bpbe2v3rbTObrt/Put3UxOObeQy0uOiq5nfWv+DL4a/90pDBTesIHL8pVavxKbci0uxpuC+88AIWLVpkvV9SUoKIiIgOicvLzYDUZT/vkOcm+im83Hh9OhGRM1JbE9myHgJYE5H9Yk1EdsnNU1k6BWodSdNElEHlITUNIqnXKGrcOJImbre0TwuPtW5r7naj39FSTA3u1/+9LTxfs8+h5jXXfwxa2Kbmflv2be6xUC4N1ZjDN6UCAgJgMBiuOwKYm5t73ZHCWh4eHvDwsM20QTqdjqcDExERUYdra01ky3oIYE1ERORUdDrOLkjtQq91AD+Vu7s7hg0bhp07dzZYv3PnTowePVqjqIiIiIhsizURERERORqnaG0uWrQIDz74IIYPH474+Hhs2rQJFy9exNy5c7UOjYiIiMhmWBMRERGRI3GKptR9992H/Px8LFu2DFlZWYiJicHnn3+Onj17ah0aERERkc2wJiIiIiJHohNpPLKX6ykuLkbnzp2RkZEBPz/tB/oiIiIix1U7YHhRURH8/f21Dkc11kNERETUXtTWQ05xptRPVVpaCgAdOuMMERERuZbS0lKHakqxHiIiIqL21lo9xDOlAFgsFly+fBm+vr5NTpnsLGo7lTwC2jLmST3mSj3mSh3mST3mSj1b50pEUFpaitDQUOj1jjOnDOshaoy5Uod5Uo+5Uo+5Uod5Us9e6yGeKQVAr9cjPDxc6zBsxs/Pjx9YFZgn9Zgr9ZgrdZgn9Zgr9WyZK0c6Q6oW6yFqDnOlDvOkHnOlHnOlDvOknr3VQ45z+I6IiIiIiIiIiJwGm1JERERERERERGRzbEq5EA8PDyxZsgQeHh5ah2LXmCf1mCv1mCt1mCf1mCv1mCuqj+8H9ZgrdZgn9Zgr9ZgrdZgn9ew1VxzonIiIiIiIiIiIbI5nShERERERERERkc2xKUVERERERERERDbHphQREREREREREdkcm1JERERERERERGRzbEqRy+HY/uoxV+owT+oxV+oxV+owT0Q3jp8fdZgn9Zgr9ZgrdZgn9Rw1V2xKOSFHfTPaQm5uLkpLS633mavmMVfqME/qMVfqMVfqME/UGr4nmsfPjzrMk3rMlXrMlTrMk3qOnCs2pRycyWTCqlWrsHbtWiQnJwMAdDqdxlHZn+rqavz617/GyJEjMXHiRMycORN5eXnMVROYK3WYJ/WYK/WYK3WYJ2oKayJ1+PlRh3lSj7lSj7lSh3lSzxlyxaaUA9u+fTtCQ0Px0Ucf4Z133sHdd9+NF198EdeuXdM6NLtSXV2Nhx56CKmpqdi8eTPuv/9+HDlyBFOnTsWJEye0Ds+uMFfqME/qMVfqMVfqME/UFNZE6vDzow7zpB5zpR5zpQ7zpJ7T5ErIYd17770yZ84cEREpKCiQrVu3ioeHh7zxxhtSXl6ucXT24+LFi9K3b1959913reuysrIkLCxM5s+fL9nZ2RpGZ1+Yq9ZZLBbmSSXmSj3mSj3miZrCmkgdfn7UYZ7U4d8u9ZgrdZintnGWXPFMKQd19uxZ7N27F2PHjgUAdOnSBffccw9mz56N9957D3v27NE4QvuRn5+PS5cuYdSoUQCAyspKhISE4IUXXsCOHTuQkpKicYT2g7lqWnl5OaqqqgAol4IwT83LycmxHplhrlpmMpmst3U6HfLy8pgrFfieosZYE6nHz486zFPzWBOpx5pIHdZDN85Z3lNsSjmIHTt24PDhwzCbzQCAXr16oaqqCiUlJQCAiooKAMCSJUtQVlaG7du34+rVq5rFq5XXXnsNS5YswZYtW6zrBgwYgKCgILz33nsAAL1eeds//vjj8PX1xfbt21FZWalJvFratGkT3nrrrQZfVn379kVISAhzhbrBAVesWIERI0bghx9+sG6Liopinprw1FNPISYmBm+99Zb1u6pfv37MVRN++9vfYubMmZg7dy5OnDgBi8WC6OhoBAcHM1f18DudmsKaSB1+ftRhPdQ61kRtx5pIHdZD6jn1d7rWp2pRy9555x0JCQmRQYMGia+vr8ybN08yMzNFRGTOnDkyePBg674mk0lERFauXCkRERFSWFioRcia2Ldvn/To0UNiY2PltttuE19fX5k2bZqkp6eLiMgzzzwjUVFRkpOTIyIiFRUVIiKyefNm6dy5s/W+K3j//fclKChI4uPjZejQoRIYGCivvvqqiIgUFxfL4sWLmasaZrNZhg8fLjqdThYsWCBFRUUiInL16lXmqZ6SkhKZPHmyDB06VJKTkyUrK0uqq6tFRKSsrIy5qic5OVl69+4t8fHx8uqrr0rPnj1l3LhxcvnyZSkvL2euavA7nZrCmkgdfn7UYT3UNqyJ1GFNpA7rIfVc4TudTSk79vbbb0ufPn3kX//6l1y5ckX++c9/io+Pjxw6dEhERD744APp37+/rFmzRkRErl27JiIiV65cES8vL9m9e7dmsdvaokWL5PbbbxcR5Y/m0aNHpWfPnjJ37lwpKiqS7777TmJjY2XevHkiolyvLCKya9cuCQoKksOHD2sWuy3985//lCFDhshf/vIXERHJzMyUtWvXio+PjxQXF4uIyM6dO2XEiBEunysRkYyMDJkzZ45s2LBBdDqdfPHFF9bCYseOHTJy5EjmSZRcjBgxQnJzc0VE5Pz585Kfn2/9I/j111/LsGHDmCsRefjhh2XWrFnW+6dOnRKdTidnz54VEX7+avE7nRpjTaQePz+tYz3UdqyJ1GFNpA7rIfVc4Tudl+/ZIRGB2WzG119/jfj4eEyfPh0BAQGYMWMGwsLCYLFYAAAJCQmYNGkS/vjHP+Ly5cvw8PAAABw8eBCBgYHw9fXV8mXYhIiguLgY+/fvx4ABA6zrY2Ji8Nxzz2Hfvn3YsmUL4uLi8OCDD+Lvf/87PvzwQ+u18N988w0GDhyIQYMGafUSbEJqTruuqqpCXFwcfvWrXwEAQkNDMXToUISFhSE1NRUAMGbMGMyYMQObN292yVzV5+7uji+//BJz587F2LFjsXLlShQWFgIAxo4di/vvv99l31NA3fvqxIkT6NatG7y9vfHwww9jwoQJSExMxO23347Dhw9jwoQJeOCBB1w6VwCQkZGBpKQkDB061LouMzMTv/zlL+Hu7g5AeV/NmDHDpXPF73SqjzWReqyJWsd66MaxJmoZayL1WA+p5zLf6dr1w6g1Q4cOlUceecQ6av78+fOlX79+8vLLL8vevXtFRCQ9Pd162vF7770nZ86ckenTp8vEiROlrKxMy/A7zIEDB6ynDNcaPny4ddad2qOjJpNJpk6dKnfeeadkZmaKyWSSZ599Vnx9fSUxMVHuvfde8fLyknXr1olIXVfZmRw4cKDBJQtFRUXWo1q1Dh06JCEhIVJQUGBdV1JSIosXL3aZXDX1nhJRjjD87Gc/ExGRI0eOiE6nk82bN8uKFSvkwIEDIiIu+Z5qnKt58+bJtGnTZNWqVXL77bdLSkqKfPrppxIXFycTJ06UY8eOiYjI008/7fK5GjNmjIwYMUI2bdokv/3tb8VoNEp0dLR06dJFFi1aJGlpaSLiWrlq/J0kIjJixAh+p1MDrImaxppIHdZD6rEmUo81kTqsh9Rz1ZqITSk78O9//1seeeQRWbNmjRw5csS6fsuWLdKzZ0+ZNGmSdOvWTfr37y/Lli2TCRMmyODBg2XlypUiIpKdnS233nqrDBgwQMLCwiQhIUHOnTun0avpOP/5z38kPDxcIiMjpUePHvK73/1OLl26JCIif/rTn6RTp07WorOyslJElNP5w8PD5ZtvvrE+z9atW2XJkiUyd+5cOXHihO1fiA00ztVLL73UYEpQs9lsvb169WpJSEgQkbq81XL2XDX1nqqfp127dsnEiROt9ydMmCAGg0EiIyPlhx9+sK539jyJtPz527Fjh+h0OgkJCZGPPvrI+piUlBRJSEiwjtEh4rq5ysjIEBGRkydPytKlS+Wuu+6SsLAw+eSTTyQ7O1veffddiY+Pl2eeecb6PM6eqw8++ECioqLkk08+sa6rLcbefPNNfqe7KNZE6rAmUof1kHqsidRjTaQO6yH1XL0mYlNKQ3l5eXLPPfdISEiIzJ07V8aMGSOhoaHyzjvvWPfJzc2V119/XRITE6WkpMS6/tFHH5W77767wYBmWVlZcvToUVu/DJv4/vvvrWNFHD58WNavXy+BgYHy2GOPSVFRkVy4cEEiIyOtXeTaAU5FRLp16yZ//etftQrd5lrKVX5+vogoRVhVVZWIiNx9993y+OOPaxmyJtTk6Y033pCnn35aLl26JCNGjBB/f3/x8PCQxYsXW/PnClrKVV5enlgsFrn99tvFaDRKSkpKg8eOGzdOnnzySY0it72WcnXlyhXrfg8//LA8//zzDR577733ytSpU6W8vNzWYdtUeXm5rFixQvr06SMBAQESHx8vpaWlDfZJTU2VqKgofqe7ENZE6rEmUof1kHqsidRjTaQO6yF1WBMp2JTS0NatW2XkyJHWzrqIyJQpU6RXr17yf//3fyIiUlVVJdOnT5fly5eLSF1ndNGiRRIZGSlXr14VEfs/Je9G1b6uDRs2SHh4uHXwSRGRtWvXysiRI2XFihUiIrJu3ToxGAySnJxs3Sc9PV0iIyPlgw8+sG3gGmgtV6NGjZJXXnnFus5sNovFYpHIyEj59NNPRUQZZHD69Oly8eJF2wZvQ2rytHTpUhFRBtbV6XSi1+vlwQcflMrKSnnzzTfFx8fHJQbNbS1XcXFx1u+m7du3i9FolBdffNF6JMdiscikSZNkyZIlNo/d1tS8r5YtWyYiSgESFRVlPYJa+9hp06bJ//zP/9g4ctu7fPmyvPDCC7J27Vo5fPiweHl5ydq1axvsU1lZKRs2bBCj0eiy3+muhjVR61gTqcN6SD3WROqxJlKH9VDbsCZScKBzDb3//vsIDw9HWFgYrl69CgC4++67cf78eaxbtw65ubkwGo3Iz8/HDz/8AEAZZDAnJwenT5/G9OnT4ePjAwDQ6XSavY6OVPu6zp07h6ioKBiNRuu2hx56CCNGjMC2bdtw+vRpPPbYY5g+fTruu+8+LFu2DIcOHcLvf/97eHt7Y9SoUVq9BJtpLVfDhg3D9u3bcfz4cQCAXq/H999/D29vb8TGxmLhwoUYPHgw8vPzERQUpMlrsAU1efriiy9w7tw59O/fHwsXLsTu3bvxj3/8A+7u7njiiSfQuXNnpKWlafUSbKa1XA0fPhyfffYZUlNTceutt+Lpp5/Gpk2bMGfOHCQlJWHhwoVIT0/H1KlTtXoJNqP2fXX06FF4eXlhyJAheOGFF/Dpp58iLS0NCxcuxP79+zFjxgytXoLNdO/eHQ888ABmz56NwYMH45lnnsErr7yCzMxM6z7u7u64//77MWPGDJf9Tnc1rIlax5pIHdZD6rEmUo81kTqsh9qGNVENrbtiriI5OVm++OKLBqe3Ll68WPr169dgv+eff15+9rOfSUJCgmzcuFFElKlD3dzcZPTo0fLYY49JeHi4jBs3Ti5cuGDT12ALO3bskPnz58uaNWtk37591vXbtm0TT09PSU9PFxFpMAXt6NGjZfXq1dZ958+fL0OHDpU+ffpIbGxsgzEpnMmN5CohIaFBrpYsWSI6nU58fX1l4MCBDcYEcBY3kqf4+Hj585//LCINx5uo/fzWHo13Njf6+fvjH/9o3Xft2rWSmJgow4YNk1GjRsnBgwdt+hps5ad+V2VlZcnQoUOld+/e0rt3b6fNVXN5qmWxWKSkpEQiIiJkwYIFTT6Hq3ynuxLWROqwJlKH9ZB6rInUY02kDush9VgTNY9NqQ525coV+dWvfiU6nU6GDBnSYLDN9PR0CQwMlMTERFm1apXEx8dLr1695KuvvpIhQ4bIiy++aN33ww8/lOeee05mzJgh//73vzV4JR3r8uXLcscdd0hQUJDMnDlTBg0aJP7+/tYPbEVFhfTv319mz54tIg3/KI4dO1Yee+wx632z2SxlZWVy8uRJ274IG/mpuZo3b571/vLlyyUwMNApTvtsrL3eU/XXO6v2fE/Vbq8dyNLZtOd3VUFBgZw5c8Yp//PTXJ7279/f5P7vvvuuuLu7W2dwEqn7D09VVZVTf6e7EtZE6rAmUof1kHqsidRjTaQO6yH1WBO1jk2pDlRVVSXr16+Xn//857Jlyxbx9vaWFStWWKdyFBHZs2ePPProoxIbGytPPPGEdeC3Bx98UKZNm6ZV6DZVVlYms2bNkvvuu0/Onj1rXT9ixAh56KGHRETprv/jH/8QvV7fYIYBEZGZM2fKhAkTrPeddSwJkfbJ1fjx4633c3NzbRO4jbX3e8qZMVfqMVfqtJSn2jEimvqPzZgxY2Ty5MlSVVUlBw8elK1bt7rEf4BcBWsidVgTqcN6SD3+7VKPuVKHeVKPNZE6HFOqAxmNRsTGxuKJJ57Afffdh+eeew6rV6/GiRMnrPskJCRg06ZN+Pbbb/Hmm28iICAAubm5OHjwIG6++WYAgMVi0eol2IS3tzc8PDzw0EMPoVevXqiurgYA3HHHHdZcGQwG/PKXv8SUKVPwyCOPIDk5GSKC7OxsnDlzBjNnzrQ+n7OOJQG0T64eeOAB6/MFBgZq8jo6Wnu/p5wZc6Uec6WOmjzp9deXH6tXr8bOnTsxadIkxMbG4sCBA07/98+VsCZShzWROqyH1OPfLvWYK3WYJ/VYE6mkVTfMVTQ+QhUaGiqzZ8+2TmVcf3tFRYWYTCZZv3693HzzzU5zjaga9ae2rM3JAw88II8++miDdRUVFTJ+/HgJCgqSSZMmSWhoqIwaNcrpZ0epj7lSh3lSj7lSj7lSR22eapWWlsobb7whOp1O4uPjG8wuQ86DNZE6/J5Rh3lSj7lSj7lSh3lSjzVR64ytt63op6g9QmUymeDu7o41a9ZgxowZuOeee3DLLbdYt2dmZuLjjz/G3/72N5w9exZr167FoEGDtAzdptzc3Ky3a3Ny4cIFPPzww9b1ZrMZnp6e2LJlC44cOYLvv/8es2bNcpnZGWoxV+owT+oxV+oxV+qoyVMtk8mEjRs34je/+Q02bNiAOXPm2CxOsi3WROrwe0Yd5kk95ko95kod5kk91kQqaN0Vc0Xx8fEyceJEycnJEZG669jff/99+cMf/qBlaHYjPT1dgoODGwx4V1lZqWFE9ou5Uod5Uo+5Uo+5UqepPNU/clg7Ow+5HtZEreP3jDrMk3rMlXrMlTrMk3qsia7HMaVsqPYa0rfeegu7du3Cli1bsGDBAtx66604duwY7r//fjz99NMaR6ktEQEA7NmzB506dcKwYcMAAEuXLsWCBQuQm5urZXh2hblSh3lSj7lSj7lSp6U8Pfnkk8jJyQEA9O7dW7MYSRusiVrH7xl1mCf1mCv1mCt1mCf1WBM1j5fv2ZDRqKQ7OjoasbGxWLhwIXr06IGNGzciJiZG4+jsQ+0pjfv378e0adOwc+dOzJ49G+Xl5Xj33XcRFBSkcYT2g7lSh3lSj7lSj7lSp7U8BQcHaxwhaYU1Uev4PaMO86Qec6Uec6UO86Qea6IWaHOClutKS0uTmJgY8fb2lrffflvrcOxSRUWF9OnTR3Q6nXh4eMjKlSu1DsluMVfqME/qMVfqMVfqME/UHNZErePnRx3mST3mSj3mSh3mST3mqmk8U8rGDAYDpk2bhueeew5eXl5ah2OXPD09cdNNN+GWW27B6tWr4enpqXVIdou5Uod5Uo+5Uo+5Uod5ouawJmodPz/qME/qMVfqMVfqME/qMVdN04nUXNxIZEfMZjMMBoPWYTgE5kod5kk95ko95kod5onoxvHzow7zpB5zpR5zpQ7zpB5zdT02pYiIiIiIiIiIyOY4+x4REREREREREdkcm1JERERERERERGRzbEoREREREREREZHNsSlFREREREREREQ2x6YUERERERERERHZHJtSRERERERERERkc2xKERERERERERGRzbEpRURERERERERENsemFBERERERERER2RybUkREREREREREZHNsShERERERERERkc39f9uUIBA+AavqAAAAAElFTkSuQmCC",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABKQAAAHWCAYAAABJ8VG9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3zN1//A8ddd2XtPSQQhIfbeu5Si1NbSamlpq7Q1+lOrpVRbXWi/FC1VVaWoTSm1994iyJK9kzvO748rlytDEBKc5+ORR3I/n/P5fM7n3s/n5tz3Ped9FEIIgSRJkiRJkiRJkiRJkiQ9JsrSroAkSZIkSZIkSZIkSZL0bJEBKUmSJEmSJEmSJEmSJOmxkgEpSZIkSZIkSZIkSZIk6bGSASlJkiRJkiRJkiRJkiTpsZIBKUmSJEmSJEmSJEmSJOmxkgEpSZIkSZIkSZIkSZIk6bGSASlJkiRJkiRJkiRJkiTpsZIBKUmSJEmSJEmSJEmSJOmxkgEpSZIkSZIkSZIkSZIk6bGSAamnVKdOnXBycuLatWv51iUmJuLt7U3jxo0xGAyPvC4REREoFAoWLlxYIvs7ffo0EydOJCIi4oH3sW7dOiZOnPhQ9Rg4cCCBgYEPtY/HJTAwkIEDB5Z2NUwmTpyIQqEo8f1u374dhULB9u3bS3zfj1Nubi5Dhw7F29sblUpFjRo1Ci07cOBAFAoFYWFh6PX6fOsVCgXDhw/Pt/zatWsMHz6c4OBgrKyscHZ2pkWLFixZsgQhREmejvSUeFT3rSQ9arJNVDTZJipdsk1UtEfZJsq7H2fOnFng/mbOnIlCoTC7v5YuXUqzZs3w9PTE0tISHx8fOnfuzO7dux/4HKUnz9Nyf5UFMiD1lJo3bx5qtZrBgwfnWzd8+HDS0tJYtGgRSuWTdwmcPn2aSZMmPXTja9KkSSVXKem+DB48mD179pT4fmvVqsWePXuoVatWie/7cZozZw4//PADH330Ebt27eKXX3655zanT58u9gec//77j/DwcP766y/effddNmzYwMKFC/H19aV///706dPnsXwwk54sj+q+laRHTbaJiibbRKVLtomK9qjbRPcrISGBxo0bM3v2bDZt2sSXX35JbGwszZo1Y8eOHY/kmFLZ87TcX2WBurQrID0aXl5ezJ49m169evHDDz8wZMgQAFauXMnSpUuZPXs2FSpUeKR10Ov16HS6R3qMJ1VmZiY2NjalXY1S4+fnh5+fX4nv18HBgQYNGpT4fh+3kydPYm1tXWDPpoLY2tpSq1YtJkyYQN++fbG2ti60bHJyMi+++CKOjo7s27cPT09P07ouXboQHh7OmDFjqFGjBmPGjHnoc3kcnvX76VHLe34f1X0rSY+abBOVbc/6e7hsExXtUbaJHkRB9ejQoQPu7u7Mnz+f5s2bl+jx7tezfj89alqtFoVC8dTcX2XBk/dVkFRsPXv2pHfv3rz//vtERESQkJDA0KFDadu2LW+++SYHDx7khRdewMXFBSsrK2rWrMnvv/9uto+bN2/y1ltvERoaip2dHR4eHrRq1YqdO3ealcvr8jpjxgw++eQTgoKCsLS05J9//slXr507d6JQKFi6dGm+dT///DMKhYIDBw4UeE4LFy7kpZdeAqBly5YoFIp8Xd9/+uknqlevjpWVFS4uLnTr1o0zZ86Y1g8cOJDvv/8ewLT9nd1xv//+e5o1a4aHhwe2trZUq1aNGTNmoNVq7/2kF6BFixZUrVqVf//9l0aNGmFjY8Orr74KQGRkJP3798fDwwNLS0uqVKnCF198ka93yqRJk6hfvz4uLi44ODhQq1Yt5s+fn29olVar5cMPP8TLywsbGxuaNGnC/v37i13X3NxcPvnkEypXroylpSXu7u4MGjSImzdvmpULDAykU6dOrF27lpo1a2JtbU2VKlVYu3YtYHydqlSpgq2tLfXq1ePgwYNm2xfUPX3btm20aNECV1dXrK2tKVeuHN27dyczM9NUZs6cOVSvXh07Ozvs7e2pXLky48aNM60vrPvs6tWradiwITY2Ntjb29O2bdt830bm1enUqVP06dMHR0dHPD09efXVV0lJSTEru3z5curXr4+joyM2NjaUL1/e9JoWJTs7m7FjxxIUFISFhQW+vr4MGzaM5ORkUxmFQsG8efPIysoq8PouzPTp07lx4wZff/11keXmzZtHXFwcn332mVkwKs+HH35I5cqV+fzzz03X/NChQ7GysuLQoUOmcgaDgdatW+Pp6Ul0dHSRxyzu9Qvw66+/0rBhQ+zs7LCzs6NGjRrMnz/ftL4k7qd7XUeZmZm8//77BAUFmd5H6tSpU+B71p2Ku92+ffvo3Lkzrq6uWFlZERwczIgRI8zKXLhwgb59+5qdS977Vp68633p0qV89NFH+Pj44ODgQJs2bTh37pxZ2c2bN9OlSxf8/PywsrKiQoUKDBkyhPj4eLNyeffB4cOH6dGjB87OzgQHB5utu5PBYGDGjBmm9wwPDw9efvllrl+/blbuyJEjdOrUyXQ+Pj4+PP/88/nKSdKjIttEsk0k20RGsk1U8uzt7bGyskKtvndfj2XLltGuXTu8vb1N18qYMWPIyMjIV/Ze7YWi/mcX5/mFkrnWClOc7W7cuMEbb7yBv78/FhYW+Pj40KNHD2JjY01lUlNTTe2rvHMZMWJEvucsb0jmL7/8QpUqVbCxsaF69eqmezHPxYsXGTRoEBUrVsTGxgZfX186d+7MiRMnzMrl3UO//PILo0aNwtfXF0tLSy5evPhQ99fNmzdN55z33tK4cWO2bNlyz+f0qSSkp1pCQoLw9vYWLVu2FD179hROTk7i2rVrYtu2bcLCwkI0bdpULFu2TGzYsEEMHDhQAGLBggWm7c+ePSvefPNN8dtvv4nt27eLtWvXitdee00olUrxzz//mMpduXJFAMLX11e0bNlS/PHHH2LTpk3iypUrpnV37rdmzZqicePG+epbt25dUbdu3ULPJy4uTkydOlUA4vvvvxd79uwRe/bsEXFxcUIIYVrXp08f8ffff4uff/5ZlC9fXjg6Oorz588LIYS4ePGi6NGjhwBM2+/Zs0dkZ2cLIYR47733xJw5c8SGDRvEtm3bxFdffSXc3NzEoEGDzOryyiuviICAgHu+Bs2bNxcuLi7C399ffPvtt+Kff/4RO3bsEHFxccLX11e4u7uLuXPnig0bNojhw4cLQLz55ptm+xg4cKCYP3++2Lx5s9i8ebOYMmWKsLa2FpMmTcpXJ4VCIT744AOxadMm8eWXXwpfX1/h4OAgXnnllSLrqdfrxXPPPSdsbW3FpEmTxObNm8W8efOEr6+vCA0NFZmZmaayAQEBws/PT1StWlUsXbpUrFu3TtSvX19oNBrx8ccfi8aNG4s///xTrFy5UlSqVEl4enqabT9hwgRx59vPlStXhJWVlWjbtq1YtWqV2L59u1iyZIkYMGCASEpKEkIIsXTpUgGIt99+W2zatEls2bJFzJ07V7zzzjum/fzzzz8CMLs2lyxZIgDRrl07sWrVKrFs2TJRu3ZtYWFhIXbu3JmvTiEhIeLjjz8WmzdvFl9++aWwtLQ0e+13794tFAqF6N27t1i3bp3Ytm2bWLBggRgwYECRz6/BYBDt27cXarVajB8/XmzatEnMnDlT2Nraipo1a5quvz179oiOHTsKa2vrfNd3QV555RVha2srhBCiW7duwsnJSSQkJJjWA2LYsGGmx+3atRMqlUqkp6cXus8PP/zQdH8IIURWVpaoUaOGKF++vOn1+Pjjj4VSqRSbNm0q8ryFKP71O378eAGIF198USxfvtx0DY8fP95U5mHvp+JcR0OGDBE2Njbiyy+/FP/8849Yu3at+Oyzz8S3335b5HkWZ7sNGzYIjUYjwsPDxcKFC8W2bdvETz/9JHr37m0qc+rUKeHo6CiqVasmfv75Z7Fp0yYxatQooVQqxcSJE03l8q73wMBA0a9fP/H333+LpUuXinLlyomKFSsKnU5nKjtnzhwxbdo0sXr1arFjxw6xaNEiUb16dRESEiJyc3NN5fLug4CAADF69GixefNmsWrVKrN1d3rjjTcEIIYPHy42bNgg5s6dK9zd3YW/v7+4efOmEEKI9PR04erqKurUqSN+//13sWPHDrFs2TIxdOhQcfr06SKfU0kqSbJNJNtEsk0k20R3tony7sfp06cLrVab72f69OkCEFeuXMl3LJ1OJ3Jzc8WVK1fEG2+8Iezs7MTBgweLPG8hhJgyZYr46quvxN9//y22b98u5s6dK4KCgkTLli3NyhWnvVDY/+ziPr8lda0VpDjbXb9+XXh7ews3Nzfx5Zdfii1btohly5aJV199VZw5c0YIIURGRoaoUaOGWZmvv/5aODo6ilatWgmDwWD2+gYGBop69eqJ33//Xaxbt060aNFCqNVqcenSJVO5HTt2iFGjRok//vhD7NixQ6xcuVJ07dpVWFtbi7Nnz5rK5d1Dvr6+okePHmL16tVi7dq1IiEh4aHur/bt2wt3d3fx448/iu3bt4tVq1aJjz/+WPz222/3unyeSjIg9QxYt26dAAQgfvnlFyGEEJUrVxY1a9YUWq3WrGynTp2Et7e30Ov1Be5Lp9MJrVYrWrduLbp162ZanveGHhwcbPbh5s51dza+FixYIABx5MgR07L9+/cLQCxatKjI81m+fHm+NwAhhEhKShLW1taiY8eOZssjIyOFpaWl6Nu3r2nZsGHD8n2wKoherxdarVb8/PPPQqVSicTERNO6+2l8AWLr1q1my8eMGSMAsW/fPrPlb775plAoFOLcuXNF1mny5MnC1dXV9EZ85swZAYj33nvPrHzem+O9Gl95/zhWrFhhtvzAgQMCELNnzzYtCwgIENbW1uL69eumZUePHhWA8Pb2FhkZGablq1atEoBYvXq1adndja8//vhDAOLo0aOF1m/48OHCycmpyHO4+5+DXq8XPj4+olq1ambXdFpamvDw8BCNGjXKV6cZM2aY7fOtt94SVlZWpud55syZAhDJyclF1uVuGzZsKHD/y5YtE4D48ccfTcvubFDdy51lz549K1QqlRg1apRp/d2Nr8qVKwsvL68i9zlnzhwBiGXLlpmWXbhwQTg4OIiuXbuKLVu2CKVSKf7v//6vWHW8U2HX7+XLl4VKpRL9+vUrcvuHvZ+Kcx1VrVpVdO3a9X5PrVjbBQcHi+DgYJGVlVVomfbt2ws/Pz+RkpJitnz48OHCysrK9D6Ud73f/Z73+++/mwUU72YwGIRWqxVXr14VgPjrr79M6/Lug48//jjfdnfft3nvOW+99ZZZuX379glAjBs3TgghxMGDBwVgCmxJUmmSbSLZJpJtItkmypN3P97rp6CAVEhIiGm9t7e32LVr1/08BUKI2/+Pd+zYIQBx7Ngx07ritBcK+59d3Oe3pK61B93u1VdfFRqNpsgvp6ZNmyaUSqU4cOCA2fK8uq9bt860DBCenp4iNTXVtCwmJkYolUoxbdq0Qo+RF1ysWLGi2XtG3j3UrFmzfNs8zP1lZ2cnRowYUWh9njVyyN4zoEOHDjRo0ICKFSvSv39/Ll68yNmzZ+nXrx8AOp3O9NOxY0eio6PNhnvMnTuXWrVqmbqiajQatm7datblO88LL7yARqO5Z5369OmDh4eH2RCUb7/9Fnd3d3r16vVA57lnzx6ysrLyzZzi7+9Pq1at2Lp1a7H2c+TIEV544QVcXV1RqVRoNBpefvll9Ho958+ff6C6OTs706pVK7Nl27ZtIzQ0lHr16pktHzhwIEIItm3bZla2TZs2ODo6mur08ccfk5CQQFxcHIBpKEDe65qnZ8+exepCvHbtWpycnOjcubPZNVGjRg28vLzydUmtUaMGvr6+psdVqlQBjN3x7xy7nrf86tWrhR67Ro0aWFhY8MYbb7Bo0SIuX76cr0y9evVITk6mT58+/PXXX/mGGhXk3LlzREVFMWDAALNktXZ2dnTv3p29e/eadUkG4zV8p/DwcLKzs03Pc926dQHj8/r7779z48aNe9YDML2ed1+fL730Era2tsW+PosSEhLCa6+9xnfffUdkZOQD70fcGvZw5xCCChUq8L///Y9Vq1bRqVMnmjZtWuxZmYpz/W7evBm9Xs+wYcPuub+HuZ+Kcx3Vq1eP9evXM2bMGLZv305WVlaxzvNe250/f55Lly7x2muvYWVlVeA+srOz2bp1K926dcPGxibf+3N2djZ79+4126agaxbM77m4uDiGDh2Kv7+/6X08ICAAoMD38u7du9/zfPPec+6+puvVq0eVKlVM13SFChVwdnZm9OjRzJ07l9OnT99z35L0qMg2kWwTyTaRbBPd7d133+XAgQP5ft59991Ct1mxYgX79u1j+fLlhIaG0qFDh2LNuHb58mX69u2Ll5eX6frNyzuV9z5SnPbCne7+n13c5/dRXWvF3W79+vW0bNnSdF8UZO3atVStWpUaNWqY3Yvt27cvcMhcy5Ytsbe3Nz329PTEw8PD7J7T6XRMnTqV0NBQLCwsUKvVWFhYcOHChQduE93P/VWvXj0WLlzIJ598wt69ex94CPTTQgaknhGWlpZYWFgAmMbkvv/++2g0GrOft956C8D0pvHll1/y5ptvUr9+fVasWMHevXs5cOAAzz33XIEf0ry9vYtdnyFDhvDrr7+SnJzMzZs3+f333xk8eDCWlpYPdI4JCQmF1sHHx8e0viiRkZE0bdrUNO58586dHDhwwNRILO4H07sVVKeEhIRC65q3HmD//v20a9cOgP/973/8999/HDhwgI8++sisTnnlvby8zPanVqtxdXW9Zx1jY2NJTk7GwsIi33URExOT7x+Ji4uL2eO866uw5dnZ2YUeOzg4mC1btuDh4cGwYcMIDg4mODjYbOz/gAED+Omnn7h69Srdu3fHw8OD+vXrs3nz5kL3e69rwmAwkJSUZLb87ucq73rMe56bNWvGqlWr0Ol0vPzyy/j5+VG1atV75hdKSEhArVbj7u5utlyhUODl5VWs67M4Jk6ciEqlYvz48QWuL1euHDdv3iwwV0GevNwh/v7+Zsuff/55PD09yc7OZuTIkahUqnvWp7jXb15OjuIkdn2Y+6k419E333zD6NGjWbVqFS1btsTFxYWuXbty4cKFIut1r+2Kc44JCQnodDq+/fbbfPdhx44dAfLdi/e6Zg0GA+3atePPP//kww8/ZOvWrezfv98U2HrQ9/Livuc6OjqyY8cOatSowbhx4wgLC8PHx4cJEyY8840wqXTINpFsE92LbBMZPe1tojx+fn7UqVMn309R/6/DwsKoV68ePXr0YMOGDQQEBBQZwAJIT0+nadOm7Nu3j08++YTt27dz4MAB/vzzT+DB2kSQ/zUt7vP7qK614m538+bNe55jbGwsx48fz3cf2tvbI4S4Z5sIjNftne9XI0eOZPz48XTt2pU1a9awb98+Dhw4QPXq1R9Zm+jO+2vZsmW88sorzJs3j4YNG+Li4sLLL79MTEzMPY/zNJKz7D2D3NzcABg7diwvvvhigWVCQkIAWLx4MS1atGDOnDlm69PS0grc7u6kjEV58803+eyzz/jpp5/Izs5Gp9MxdOjQYm9/t7w3oIISLEdFRZnOuyirVq0iIyODP//809R7AODo0aMPXC8o+HlxdXUttK5w+3X67bff0Gg0rF271uxbklWrVuXbH0BMTIzZt3Q6na5Y/9jd3NxwdXVlw4YNBa6/89uGR6Fp06Y0bdoUvV7PwYMH+fbbbxkxYgSenp707t0bgEGDBjFo0CAyMjL4999/mTBhAp06deL8+fNmr1eee10TSqUSZ2fn+65rly5d6NKlCzk5Oezdu5dp06bRt29fAgMDadiwYYHbuLq6otPpuHnzplkDQQhBTEyM6VvGh+Xt7c2IESP47LPPGDVqVL71bdu2ZdOmTaxZs8b0vN5JCMHq1atxcXGhdu3aZuuGDh1KWloaYWFhvPPOOzRt2vSez19xr9+85+T69ev5AmF3e5j7Ce59Hdna2jJp0iQmTZpEbGysqddT586dOXv2bKH1utd2d55jYZydnVGpVAwYMKDQ3mJBQUGFbl+QkydPcuzYMRYuXMgrr7xiWn7x4sVCtynOe/md99fdDcq733OrVavGb7/9hhCC48ePs3DhQiZPnoy1tfUTM5uj9HSSbaLCyTaRbBMVx5PcJioparWaWrVq5ZsI4W7btm0jKiqK7du3m83Gd3ei8eK0F+509z11P8/vo7jW8txrO3d393ueo5ubG9bW1vz000+Frr9fixcv5uWXX2bq1Klmy+Pj43FycspX/n7bRHe7+/5yc3Nj1qxZzJo1i8jISFavXs2YMWOIi4sr9D3naSZ7SD2DQkJCqFixIseOHSvw24A6deqY/tEqFIp8384dP34832wBD8Lb25uXXnqJ2bNnM3fuXDp37ky5cuXuud3d387kadiwIdbW1ixevNhs+fXr19m2bRutW7e+5z7y3nDuPGchBP/73//u48yKp3Xr1pw+fZrDhw+bLc+bVadly5amOqnVarPeKFlZWfzyyy9m27Vo0QKAJUuWmC3//fffizXVdKdOnUhISECv1xd4TeQ1yB81lUpF/fr1Td/A3v38gPGDf4cOHfjoo4/Izc3l1KlTBe4rJCQEX19ffv31V7PZdzIyMlixYoVpFowHZWlpSfPmzZk+fTpgHNpQmLzr7+7rc8WKFWRkZJhdnw9r9OjRuLi4FPhBf/DgwXh4eDB27FhTl/s7zZgxg7Nnz/Lhhx+aDTWZN28eixcv5rvvvmP16tUkJyczaNCge9aluNdvu3btUKlU+T7oFVdx76c7Fec68vT0ZODAgfTp04dz587lG85QmIK2q1SpEsHBwfz000/k5OQUuJ2NjQ0tW7bkyJEjhIeHF3gvFufb/TsV9L4G8MMPP9zXfu6WN+Tm7mv6wIEDnDlzpsBrWqFQUL16db766iucnJwKvL8l6XGSbSLZJiqIbBPdvyexTVRS8obTV6hQochyxf1/XJz2QlEe5PktyWutuNt16NCBf/75J9/MwHfq1KkTly5dwtXVtcB7MTAwsFh1uFNB7+V///13sYecFuRB769y5coxfPhw2rZt+8y2iWQPqWfUDz/8QIcOHWjfvj0DBw7E19eXxMREzpw5w+HDh1m+fDlgfBOYMmUKEyZMoHnz5pw7d47JkycTFBRUrH/o9/Luu+9Sv359ABYsWFCsbapWrQrAjz/+aJpmNSgoCFdXV8aPH8+4ceN4+eWX6dOnDwkJCUyaNAkrKysmTJhg2ke1atUA47SwHTp0QKVSER4eTtu2bbGwsKBPnz58+OGHZGdnM2fOnHxdmEvCe++9x88//8zzzz/P5MmTCQgI4O+//2b27Nm8+eabVKpUCTAOk/ryyy/p27cvb7zxBgkJCcycOTPfG2mVKlXo378/s2bNQqPR0KZNG06ePMnMmTNxcHC4Z3169+7NkiVL6NixI++++y716tVDo9Fw/fp1/vnnH7p06UK3bt1K/HkAY06Obdu28fzzz1OuXDmys7NN34S0adMGgNdffx1ra2saN26Mt7c3MTExTJs2DUdHx0K/SVMqlcyYMYN+/frRqVMnhgwZQk5ODp9//jnJycl89tln913Xjz/+mOvXr9O6dWv8/PxITk7m66+/NssBUJC2bdvSvn17Ro8eTWpqKo0bN+b48eNMmDCBmjVrMmDAgPuuS2EcHBz46KOPeO+99/Ktc3Jy4s8//6RTp07Url2bDz74gOrVq5OamsqyZctYsmQJvXr14oMPPjBtc+LECd555x1eeeUVUxBq/vz59OjRg1mzZplNQXy34l6/gYGBjBs3jilTppCVlWWaZvr06dPEx8czadKkIs+5uPdTca6j+vXr06lTJ8LDw3F2dubMmTP88ssv92ysF2e777//ns6dO9OgQQPee+89ypUrR2RkJBs3bjR9cPr6669p0qQJTZs25c033yQwMJC0tDQuXrzImjVrzHKpFEflypUJDg5mzJgxCCFwcXFhzZo19+xufy8hISG88cYbfPvttyiVSjp06EBERATjx4/H39/fdP2tXbuW2bNn07VrV8qXL48Qgj///JPk5GTatm37UHWQpJIg20SyTXQ32SYqnie9TfQgGjVqxAsvvECVKlVwdHQkIiKCOXPmcOnSJVauXHnPbZ2dnRk6dCgTJkxAo9GwZMkSjh07lq9scdoLhSnu8/uorrXibjd58mTWr19Ps2bNGDduHNWqVSM5OZkNGzYwcuRIKleuzIgRI1ixYgXNmjXjvffeIzw8HIPBQGRkJJs2bWLUqFGm983i6tSpEwsXLqRy5cqEh4dz6NAhPv/882IPkSxIce+vlJQUWrZsSd++falcuTL29vYcOHCADRs2FNpL96n32NOoS6WiefPmIiwszGzZsWPHRM+ePYWHh4fQaDTCy8tLtGrVSsydO9dUJicnR7z//vvC19dXWFlZiVq1aolVq1blm00lb5aKzz//PN+xC5pR5k6BgYGiSpUq93U+s2bNEkFBQUKlUuXb97x580R4eLiwsLAQjo6OokuXLuLUqVNm2+fk5IjBgwcLd3d3oVAozGbQWLNmjahevbqwsrISvr6+4oMPPhDr16/PN4vN/cwoc/dzn+fq1auib9++wtXVVWg0GhESEiI+//zzfDP6/PTTTyIkJERYWlqK8uXLi2nTpon58+fnm/kjJydHjBo1Snh4eAgrKyvRoEEDsWfPHhEQEHDPGWWEEEKr1YqZM2eazt/Ozk5UrlxZDBkyRFy4cMFULiAgQDz//PP5tueu2UuEKPjauHtGmT179ohu3bqJgIAAYWlpKVxdXUXz5s3NZqFZtGiRaNmypfD09BQWFhbCx8dH9OzZUxw/ftxUpqApWIUwzmpTv359YWVlJWxtbUXr1q3Ff//9Z1Ymr055U9XnyZv9KO95Xrt2rejQoYPw9fUVFhYWwsPDQ3Ts2NFsOtfCZGVlidGjR4uAgACh0WiEt7e3ePPNN01T6+Z50Bll7pSTkyOCgoIKfE2EMM60NGzYMFG+fHnTvdKsWTOxePFisyl009PTReXKlUVoaKjZTEFCGGdm0mg0+WZFultxr18hhPj5559F3bp1TddfzZo1ze7vh72finMdjRkzRtSpU0c4Ozub6vzee++J+Pj4Is+zuNvt2bNHdOjQQTg6OgpLS0sRHBycbyaoK1euiFdffVX4+voKjUYj3N3dRaNGjcQnn3xiKpN3vS9fvjzftne/L54+fVq0bdtW2NvbC2dnZ/HSSy+JyMhIAYgJEyaYyhV2H9y57k56vV5Mnz5dVKpUSWg0GuHm5ib69+8vrl27Zipz9uxZ0adPHxEcHCysra2Fo6OjqFevnli4cGGRz6ckPSqyTSTbRLJNJNtEQhR9rwohxOeff57vuho1apSoXr26cHR0FGq1Wnh5eYlu3brlew4Ls3v3btGwYUNhY2Mj3N3dxeDBg8Xhw4cLfF+4V3uhqP/ZxXl+S+paK0hxt7t27Zp49dVXhZeXl9BoNKZysbGxpjLp6eni//7v/0RISIjpvaxatWrivffeEzExMaZyhbV5777nk5KSxGuvvSY8PDyEjY2NaNKkidi5c6do3ry5aN68ualcYe2sO9fd7/2VnZ0thg4dKsLDw4WDg4OwtrYWISEhYsKECfna2c8KhRB39CmTpMfs+PHjVK9ene+//96UPFSSJEmSJOlZI9tEkiRJ0rNGBqSkUnHp0iWuXr3KuHHjiIyM5OLFiw81bl2SJEmSJOlJJNtEkiRJ0rNKJjWXSsWUKVNo27Yt6enpLF++XDa8JEmSJEl6Jsk2kSRJkvSskj2kJEmSJEmSJEmSJEmSpMdK9pCSJEmSJEmSJEmSJEmSHisZkJIkSZIkSZIkSZIkSZIeKxmQkiRJkiRJKoNmz55NUFAQVlZW1K5dm507dxZZPicnh48++oiAgAAsLS0JDg7mp59+eky1lSRJkiRJuj/q0q5AWWAwGIiKisLe3h6FQlHa1ZEkSZIk6QkkhCAtLQ0fHx+Uyof7zm/ZsmWMGDGC2bNn07hxY3744Qc6dOjA6dOnKVeuXIHb9OzZk9jYWObPn0+FChWIi4tDp9MV+5iyPSRJkiRJUkkobptIJjUHrl+/jr+/f2lXQ5IkSZKkp8C1a9fw8/N7qH3Ur1+fWrVqMWfOHNOyKlWq0LVrV6ZNm5av/IYNG+jduzeXL1/GxcXlgY4p20OSJEmSJJWke7WJZA8pwN7eHjA+WQ4ODqVcG0mSJEmSnkSpqan4+/ub2hUPKjc3l0OHDjFmzBiz5e3atWP37t0FbrN69Wrq1KnDjBkz+OWXX7C1teWFF15gypQpWFtbF+u4sj0kSZIkSVJJKG6bSAakwNQt3cHBQTbAJEmSJEl6KA873C0+Ph69Xo+np6fZck9PT2JiYgrc5vLly+zatQsrKytWrlxJfHw8b731FomJiYXmkcrJySEnJ8f0OC0tDZDtIUmSJEmSSsa92kQyqbkkSZIkSVIZdHcjTghRaMPOYDCgUChYsmQJ9erVo2PHjnz55ZcsXLiQrKysAreZNm0ajo6Oph85XE+SJEmSpMdJBqQkSZIkSZLKEDc3N1QqVb7eUHFxcfl6TeXx9vbG19cXR0dH07IqVaoghOD69esFbjN27FhSUlJMP9euXSu5k5AkSZIkSboHGZCSJEmSJEkqQywsLKhduzabN282W75582YaNWpU4DaNGzcmKiqK9PR007Lz58+jVCoLTSZqaWlpGp4nh+lJkiRJkvS4yRxSkiRJkiRJZczIkSMZMGAAderUoWHDhvz4449ERkYydOhQwNi76caNG/z8888A9O3blylTpjBo0CAmTZpEfHw8H3zwAa+++mqxk5oXl16vR6vVlug+pZKn0WhQqVSlXQ1JkiRJKpQMSEmSJD3DhBDok5LQxcSgjYlFF3vrd0wM2rhY9CkpqF1cUXt6oPbwQOPhgdrTE7W7h3GZqysK+YFHkkpcr169SEhIYPLkyURHR1O1alXWrVtHQEAAANHR0URGRprK29nZsXnzZt5++23q1KmDq6srPXv25JNPPimxOgkhiImJITk5ucT2KT1aTk5OeHl5PXSifUl6GgmdDn1aGvqkZPQpyeiTk9GnpBh/3/G3ISUFfXIKKicnLCtXxqpyCJYhIVgGBaGwsCjt05CkJ5pCCCFKuxKlLTU1FUdHR1JSUmR3dUmSnhpCr0cXn3AryBSDLiYWbaz5b11sLOJhejqoVKhdXY1BKg8PNLcCV2r3W789PFB7uKNycpIfiKSn3pPenrhX/aOjo0lOTsbDwwMbGxt5T5dhQggyMzOJi4vDyckJb2/v0q6SJD0yQggM6em3Akn5A0r5HucFmlJTH+7AGg2W5csbA1SVQrCsHIJVSAhqN7eSOTFJeoIVt00ke0hJkiQ9gURuLrqbN9HGxpr3boqNMz6OjUUXFwd6/b13plCgcnNF4+mF2tMTjacnai8vNF6eKB0c0CckoouLRRsXhy42Dl3crZ/4eNDrTY+LPISFhTE45emJ2sPd2NPKw/PWsls9rzw8UNrYlNAzJElSSdLr9aZglKura2lXRyqGvKGacXFxeHh4yOF7UpknhEBkZRXaU8kUbLp7XUpK8do7hVDa2aFycjL+ODqa/3Yy/lY6OKCLiyPn3Hmyz50l59x5DGlp5Jw7R865c2b7U7m5YRVi7EUle1NJUtFkQEqSJKmMMeTkoIuNNfZqyvt9V+8mfXwCFKeDq0qF2t3dFGRSe3qg8fJG43XrsYcnGg/3B2okmXpg3byJLs4YAMsLhOnibqKLNfbA0qekIHJz0V6/jraQ2b7yKO3tTb2qNKaA1Z1BLA/Ubm6yUSdJj1lezigbGTR+ouS9XlqtVgakpDJHaLWkbdlC0rLfyb18GX1yMiI394H3p7Cyyh9YuvvvvCBT3jIHBxQazf3XXQh0UVFk3wpIZZ81/s69ehV9fDwZ8fFk/Pff7Q1u9aayDKmEVUhl2ZtKkm6RASlJkqTHSAiBPjGR3IgIcq9GmudsutXbSV/c/Cwaza1Ak6exd5PXnb2bjL2d1K6uKNSP5q1eoVKh8TQO04OwQssZcnJuBa3ijEGquLjbva1iY409veLiEJmZGNLSyE1LI/fSpSKPrXJ1NQ9ceXsZA23eXmi8vVF7eaG0sirhM5YkSQ7Te7LI10sqi3SJiST//jtJS39DFxubv4BGg8rJEbWTE8q7eyw55gWU8geYHuf/fYVCgcbXF42vL/atWpmWGzIzybl4keyzZwvtTZXKGlN5lZsbVpUqGXNThRh/y95U0rNEBqQkSZIeAUNWFrmRkeReuWL8iYgg50oEuRERxcpZoLCyMgaXvL2Nvz09jb2bvL2Nw+q8vFA5O6NQKh/D2TwcpaUlFn5+WBQy9XwefXq6KUB1u7fVTVMQSxcXh/bmTdBq0SckoE9IIOfMmUL3p3J2vh2o8vIyC1qpvbzReHo80LeikiRJkiTdv+zTp0n8ZTGpf/9t6gmlcnPDuVcv7Fq2RO1sDDApnuAcdUobG6zDw7EODzcty9eb6tx5cs6eNe9NtXv37Z3I3FTSM0QGpCRJkh6Q0OvRRkUZeztdiSA34nbgSRcdXfiGCgUab28sAgNuBZzy925SOjg8sY2xB6Wys0NlZ4dlcHChZYTBYJwVMC9AFRdnHMYYE40u2pi8XRsdbcxBkZSEPimJnNOFBK0UCtRubqh9vAsNWqnd3Z6IoJ8kSWVfixYtqFGjBrNmzSq0jEKhYOXKlXTt2vWx1UuSHiWh1ZK2dSuJvywm69Ah03KratVweXkA9u3bo3zKewM9TG+qO5l6U92Zm6p8edmbSnqiyYCUJElSEYQQ6JOTb/V0ujPodAXt1cgiZ6hTOjpiGRiIRVAQFoGBxp+gICwCysnhZA9IoVQaZ/VzdYUqVQosI4TAkJJiCk7pYmLQRseYBa10MTEIrdbYG+vmTbKPHS/4gGq1MXeVtzFgZepdlTc00NtbziAoSWXcwIEDWbRoEdOmTWPMmDGm5atWraJbt27kTTi9fft2WrZsSVJSEk5OTmb7CAwMZMSIEYwYMQKAIUOGsGXLFqKiorCzs6NRo0ZMnz6dypUrP1Rdo6OjcXZ2LlZZGbySyjLjsLzlJC1dentYnlqNw3PP4TKgP9bVq5duBcuAontTnSfn3Nl796ZSq425qW71orIOD8cqPBylpWUpnJEk3T8ZkJIkSeLOIXa3gk5XIsiJuEJuxFUMKSmFbqewsMAioBwWgUG3A06BgVgEBaIu5ocKqWQpFApTXgmrQj4cCoMBfWJiAYGqaLRR0ca/4+JAp0MbFYU2Koqswo5naXmrd1X+XlamoJWd3aM7YUmS7snKyorp06czZMiQYgd8ilK7dm369etHuXLlSExMZOLEibRr144rV648VPJwLy+vh66bJJWm7NOnSVy8hNS1a28Py3N1xblXT5x69b6Vd1IqjHlvqpam5YbMTHIuXLg17O/8raF/54y9qc6fJ+f8eVNuKoWFBdbh4djUq4tNnTpY16ghZzGWyiwZkJIk6Zkh9Hq00dG3gk4Rt3I7XSEnIgJdVBFD7AC1j7ext9OdgaegQDTe3ijkzEVPHIVSaRyu5+aGdbWqBZYROp0x4Xr0rUDVnUGrW3/r4+MROTnkXr1K7tWrhR5PaW+PRblyWASUQ1OuHBb+t/9Wu7vLHlaS9Ii1adOGixcvMm3aNGbMmPHQ+3vjjTdMfwcGBvLJJ59QvXp1IiIiCC5i2LHBYODDDz9k3rx5WFhYMHToUCZOnGhaf2evp9zcXEaOHMmKFStISkrCy8uLIUOGMHbsWAIDAwHo1q0bAAEBAURERDz0eUnSgxA6HWlbtpC4eDFZB+8YlhcWZhyW16HDUz8s71FT2thgXb26Wc8yIQS66OhbM/ydJfvMWTIPH0YfH0/mwYNkHjxoLKhWYx0WdjtAVbu2/KJMKjNkQEqSpKeGIScHQ2oq+rR09EmJ5F6NNCUUz424Qu7VyCKnEzYNsTPr6SSH2D2rFGo1Gm9vNN7eQM0Cyxhyc9HFxt4eGhgVbZ7PKiYGQ0oKhrQ0sk+dIvvUqfzHsbbGwt/fGKDyL2cKXFmUK4fay0sGPKUySwhBllZfKse21qjuK5CrUqmYOnUqffv25Z133sHvHpMs3I+MjAwWLFhAUFAQ/v7+RZZdtGgRI0eOZN++fezZs4eBAwfSuHFj2rZtm6/sN998w+rVq/n9998pV64c165d49q1awAcOHAADw8PFixYwHPPPfdQvbIk6UHpkpJuD8uLiTEuVKtxaNcO5/79sa5ZQ37h8ggpFAo0Pj5ofHxMvamEEORGRJB54ACZB4xBKV10NFnHjpF17BgJ/5sHSiVWVapgU6cONvXqYl2rluzVL5UaGZCSJKlMEEIgsrPRp6ZhSEtFn5aGIS3t9uM7fuvTUjGkpqFPTzP+TkvDkJpaZLApj0KjwSIwAE1AAJZBQcYeT0HGIJTK2Vk2nKT7orSwMAaTivgQasjIMCa/v3bNGCSNvIr26lVyI6+hjYpCZGWZutvfTaHRoPHzw6JcOTQB5bAoF4BFOX/jY19fOUugVKqytHpCP95YKsc+Pbk9Nhb314zt1q0bNWrUYMKECcyfP7/QcgUFqzIzM/Mtmz17Nh9++CEZGRlUrlyZzZs3Y3GPXiDh4eFMmDABgIoVK/Ldd9+xdevWAgNSkZGRVKxYkSZNmqBQKAgICDCtc3d3B8DJyUkO85Meu+wzZ0hcvJjUNXcMy3Nxwbl3Lzksr5QpFAosg4KwDArCuWdPhBBob0TdClAdIPPgQbSRkaYvyRIXLQLAslIlU4DKpk4dOaOf9NjIgJQkSSVCCIEhI/N28Cg9DX1qqnlQKS39juDS7UCS/tbfFJEgvNgUCpT29qgcHND4+5kHnYKC5BA76bFT2tpiWbEilhUr5lsncnONwarISHIjr90KVkWSGxmJ9vp1hFZ7K6H+lfw7VqmMszUWFKzy95e9+iSpANOnT6dVq1aMGjWq0DI7d+7E3t7ebFmLFi3ylevXrx9t27YlOjqamTNn0rNnT/777z+sirj3wu9IXgzg7e1NXFxcgWUHDhxI27ZtCQkJ4bnnnqNTp060a9euiLOTpEdH6HSkbd1G0i+/3B4KhnFYnvOA/jh07CiH5ZVBCoUCCz9fLPx8cerWFQBtbKyx99StAFXupUumL8aSfv0VAIugIGOAqm4dbOrWvdVbXJJKngxISZJ0X7KOHiVx8RJ08fGmYJIhNRV9ejroS2DohkqFys7OFFRSOjigsre/47E9Krtbjx1vrXNwMG7j6IjSxgaFUvnw9ZCkx0BhYWGagfFuQq9HFxNjDFbl9ai6Fnmrl1UkIjsb7fXraK9fhztn3LlF7eVlDE6V878VrCqHRTl/NOXKydwRUomw1qg4Pbl9qR37QTRr1oz27dszbtw4Bg4cWGCZoKCgfLPsqdX5m8yOjo44OjpSsWJFGjRogLOzMytXrqRPnz6FHl9zV69GhUKBwWAosGytWrW4cuUK69evZ8uWLfTs2ZM2bdrwxx9/FH2SklSCdElJJP/xB0m/LkUXfSvfZt6wvAH9sa4hh+U9aTSenjh2eh7HTs8DoEtIIPPgIVOAKufcOdOXYcnLlxu38fXFpm7d2wEqf3/5ukslokwHpObMmcOcOXNMSRrDwsL4+OOP6dChA2DskTFp0iR+/PFHkpKSqF+/Pt9//z1hYWGlWGtJejrpkpK4+eWXJC+/R0NYrb4VHHJAZe+AysEepZ0xeKS0d0Blb3f7t4ODMchkb4/qVsBJYWMj/8FJEqBQqUwz7dg2bGi2TghhTLgeeStAdfUqudciTb2rDOnp6GJijDk99u/Pt2+Vq6tZgMqiXAAaX1/ULs6onJ1R2tvLwK50TwqF4r6HzZUFn332GTVq1KBSpUolul8hBDk5OSW6TwcHB3r16kWvXr3o0aMHzz33HImJibi4uKDRaNCXxBdBklSA7HPnSPzlF+OwvFvXtcrFBadePXHu3RuNp2cp11AqKWpXVxzat8OhvbEHpj45mczDR0wBquzTp9HeuEHKjRukrFpl3MbT06wHlUX58rL9Lj2QMt2K8PPz47PPPqNChQqAMRFkly5dOHLkCGFhYcyYMYMvv/yShQsXUqlSJT755BPatm3LuXPn8nW1liTpwQiDgeTlf3Dzyy/Rp6QA4NilC7ZNmhiDTabgkiMqB3sUVlbyH5IkPWIKhQKNhwcaDw9s6tQxWyeEQJ+UZAxW3Zm3KvIauZGR6BMT0SckkJWQQNaRIwUfQKVC5eyM2tkJlZMzKhcXVC7OqJ2djY+dnW8/djauV1paPoYzl6SHV61aNfr168e33377QNtfvnyZZcuW0a5dO9zd3blx4wbTp0/H2tqajh07llg9v/rqK7y9valRowZKpZLly5fj5eVl6r0VGBjI1q1bady4MZaWljjLpMTSQxI6HWnbtpH0y2IyDxwwLbcMrYLLgJdx6NhBvtc/A1ROTti3amlKlK5PzyDryBHjzH0HDpB14gS62FhS//6b1L//Nm7j4mIMUN3KQ2VZqZL8YksqljIdkOrcubPZ408//ZQ5c+awd+9eQkNDmTVrFh999BEvvvgiYAxYeXp68uuvvzJkyJDSqLIkPVWyTpwkZvJksk+cAMAyJASvj8djU7t2KddMkqTCKBQK1C4uqF1csK5RI996fVoauVcjbw//u9WzShsTgz4pCUNGBuj16OPj0cfHF/+4NjaonZyMwStnZ2NvqzuCV8YAl7NpvcrBQeZzk0rNlClT+P333x9oWysrK3bu3MmsWbNISkrC09OTZs2asXv3bjw8Si6Zs52dHdOnT+fChQuoVCrq1q3LunXrUN76kPfFF18wcuRI/ve//+Hr62saUSBJ98s0LG/pUnRRt4blqVTYt2uLy4ABWNesKb9sfIap7Gyxa9oEu6ZNADBkZ5N19NjtANXRo+gTE0nbtIm0TZsAUDo4YFO7tmmYn1WVKigKGPosSQohhCjtShSHXq9n+fLlvPLKKxw5cgQrKyuCg4M5fPgwNWveno67S5cuODk5sejWjAEFycnJMetSnZqair+/PykpKTg4ODzS85CkJ4E+JYW4WbNI/m0ZCIHS1hb3d97GuV8/+c9Ekp5yhpwc9MnJxp5UycnoEhPRJ+U9TkKXlIQ+MQl9YiK65CT0Scmg093/gRQKVI6OtwNUzk6onV3Me1+5uJiCWmoXZxTW1mX6Q1FqaiqOjo5PbHuiqPpnZ2dz5coVgoKCikzaLZUt8nWTipJ97hxJixeTsnrN7WF5zs449eyJc5/eaOQMjlIxGHJzyT550pQoPevwYQx3zUyqtLHBulYtbOrWxbZJY6xCQ8v0/3Pp4RW3TVTmP1meOHGChg0bkp2djZ2dHStXriQ0NJTdtxK4et41ftnT05OrV68Wuc9p06YxadKkR1ZnSXpSCYOBlJWriJs5E31SEgAOnTrh8eEHaErwW19JksoupaUlSk/PYucHEUJgSE83BqySbgWskpLRJ931+I71htRUEMIY+EpOLn7dbGxQ+3ij8fG59eN7+29fH9Tu7nKIgCRJUhFMw/IWLyHzjhyDlqFVcOk/AIfnO8phedJ9UVpYYFOrFja1asGQNxA6HdlnzpC5/4AxD9XhwxhSU8nYtYuMXbu4+dVXqL28sG/VEruWrbCtXw+FnKHxmVXmA1IhISEcPXqU5ORkVqxYwSuvvMKOHTtM6++OrAoh7hltHTt2LCNHjjQ9zushJUnPsuwzZ4iZPMWUU8aiQjBe4z/Gtn69Uq6ZJEllmUKhME5KYG8PAQHF2kZotcbeV3cEr3S3emTdDl4loktONvXGErm5GDIzyb14idyLlwresUaDxsvrjoDV7WCVxscHjZeXbPRKkvRM0icnm2bL00ZFGReqVNi3bYtL/35Y164te6xIJUKhVmNdrRrW1arh+tqrCL2enAsXyDxwkIx9e8nYvQddTAxJvy4l6delKG1tsW3WFPtWrbFr3gzVE9jDWHpwZT4gZWFhYUpqXqdOHQ4cOMDXX3/N6NGjAYiJicHb29tUPi4uLl+vqbtZWlpiKSP/kgQY88nc/OZbkpYsAYMBhY0N7sOG4fLyABR3TU8tSZJUEhQaDWp3d9Tu7sUqL4RAZGaijYtDGxVl+tFFRaG9cetxbCxotWivXUN77VohB1agdnfPH6i640dpa1uCZypJklS6ci5dInHhIlLWrEFkZwPGpNVOvXrJYXnSY6FQqbCqXBmrypVxGdAfQ04OGXv2kL7tH9L+2Yb+Zjxp6zeQtn4DqNXY1K2DfctW2LduhcbXt7SrLz1iZT4gdbe8KXWDgoLw8vJi8+bNphxSubm57Nixg+nTp5dyLSXp0cjK1bPsQCSVvOxpFOz2UPsSQpC6Zg2xMz43JS627/AcnqNHy8aJJEllikKhQGFri2VQEJZBQQWWETodursCVtobN24HrKKjETk56OLi0MXFkXX0aIH7UTk6oi4gUKXx8UXj64PKyUn2IpAkqcwTej0J83/i5jffmPL8WVapgkv//sZheTKnmFRKlJaW2LdogX2LFngZJpB94gRpW7eRtm0ruRcvkblnL5l79hI7dSqWlSsbh/a1ao1VmMw79TQq0wGpcePG0aFDB/z9/UlLS+O3335j+/btbNiwAYVCwYgRI5g6dSoVK1akYsWKTJ06FRsbG/r27VvaVZckE4NBoFQ+/JvnrgvxjFt5gshEY5LAd1pV4N02lVA9wL6zz58ndvIUMg8eBMAiMBCvj8dj26jRQ9dTkiSpNCjUalPwqCBCCPQJCXcEq6LMg1dRURjS0tCnpKBPSSHn9JmCj2Njg6aQPFZaOcxAkqQyQBsTQ9SHo005ouyaN8f19cFyWJ5U5iiUSqyrV8e6enU8Rr5H7tWrpG37h/StW8k8fJics2fJOXuW+NlzbuedatUa23p15RD8p0SZDkjFxsYyYMAAoqOjcXR0JDw8nA0bNtC2bVsAPvzwQ7KysnjrrbdISkqifv36bNq0CXt7+1KuuSTB8evJfL7xHAciEhncpDzDW1XASnP/U5wnZeTyyd9nWHH4OgAOVmpSs3V8s+0ix66n8HXvGjjZFO8NWZ+eQfz335P488+g16OwssLtzTdxGTQQpXxTlyTpKaZQKFC7uaF2c8M6PLzAMvq0tEKDVdqoKPTx8Ygi8lil6/WP+jQkSZKKlLppE9HjP8aQkoLCxgavjz7C8cVuMhAlPREsAgJwHTQQ10ED0SUlkb59B+nbtpK+6z/zvFN2dtg1a4pdy1Yy79QTTiGEEKVdidL2pE/TLJUtF+PS+XLzOdadiDFbXs7FhsldwmgRUvzZ6g5GJDJ08SHi03NRKGBAgwA+aB/CljOxjP3zBNlaA/4u1nzXpxbV/Z0K3Y8QgrT164n9bDq6uDgA7Nu2wXPMGDk2W5IkqZgM2dloo6MLzWOVFBVFvXNnn9j2RFHtoezsbK5cuUJQUBBWcqjPE0O+bs8OQ2YmsdM+I3n5cgCsqlbFd+bnWAQGlm7FJKkEGLKzydi7l/St20j75x9TuhHgdt6pVq2xb9VSfrYpI4obY5EBKWRASioZF+PSmbP9EiuPXMcgQKGAbjV8aRjsypebzxOdYkwk2bGaF5O7VMXNrujE+htOxvDub0fI0Rmo5GnHtBfDqR3gbFp/OiqVoYsPmYbwNa7gyquNg2gZ4mE2RPDkX5+Ss2gbNqeNM6poypXD66Nx2DVvXtJPgSRJ0jMtJTERJ1fXJ7Y9IQNSTx/5uj0bsk6dIur9D8i9cgUUClwHv4b722/LIU3SU0kYDGQfP07atn9MeafuZMw71Qq71q2wCpV5p0qLDEjdBxmQkh7GyRspzN5+kfUnY8i7m9qGevJ+uxBCvIzDR9NzdMzafJ4FuyPQGwQe9pZ817cW9YJcCtznL3uvMuGvkxgEtKniwbd9amFtkX+4X0qmlo9Xn2TNsSgMt44d5GbLKw0DeKmOP/HndpLa+y3UBjCoFXgM7I/r26NQylkmJUmSStyT3p6QAamnj3zdnm7CYCBx4SLivvoKtFrUnp74TJ+ObYP6pV01SXpscq9eNSVFzzp8BAwG0zqZd6r0yIDUfXjSG5DS45OWreXotWTORqdxJiaVM9FpnIlONa1vF+rJWy0rUKOQ4XOno1J597cjXIhLR6VU8EH7EN5oWt7UoyklU8uPOy/x/T/GSH+fev5M6VIVtUpZZL2uJ2Xyy56rLN0fSWq2cSaVraOaU95Wy8ZX2hKfmcnPbRV8qE+jTc0h0GQEWMipzSVJkkpSSbcnZs+ezeeff050dDRhYWHMmjWLpk2bFlh2+/bttGzZMt/yM2fOULly5WIdTwaknj7ydXt6aePiiB4zlozduwFjKgavyZNROzvfY0tJenrdnXdKZGWZ1sm8U49XcdtERX/KlSQJgFydgXk7L9P4s20MmL+fT9ed4c/DNzgTnYpSAV1q+LBxRDN+fLlOocEogFAfB/4a3pgXa/qiNwg+W3+WgQsPMHLZUVrN3E71yZtMwagRbSoytVu1ewajAPycbRjbsQp7xrZmSpcwXm4YQLC7HQobZ9r8spMz77Yg2lnJB64O7DjwDXxXF078ATIeLUmSVCYtW7aMESNG8NFHH3HkyBGaNm1Khw4diIyMLHK7c+fOER0dbfqpWLHiY6px2RYXF8eQIUMoV64clpaWeHl50b59e/bs2QPAkSNH6NSpEx4eHlhZWREYGEivXr2Iv5WnJCIiAoVCYfpxdnamWbNm7Nixw3SMf//9l86dO+Pj44NCoWDVqlX56vHnn3/Svn173NzcUCgUHD16NF+ZS5cu0a1bN9zd3XFwcKBnz57ExsY+kudFejKlbfuHK126krF7NworK7wmTcL3m29kMEp65qmdnXHq1hW/b7+l0p7d+M2dg9NLL6Fyc8OQnk7quvVEffAB5xs15uqgQST+shjtjRulXe1nWpmeZU+SSlpkQiZOthocrDTFKi+EYOOpGKatP8vVBGOuJl8na6r7O1LZy4Eq3g6E+zni6VD8bx1tLNR80bM69YJc+Hj1Kf49f9NsfYCrDcNbVuClOv7FP7FbbC3VDGgYaLZMbWXN5Dbfot05hvURG3jP04PvYuNotOI1ODAPOkwH7+r3fSxJkiTp0fnyyy957bXXGDx4MACzZs1i48aNzJkzh2nTphW6nYeHB05OTo+plk+O7t27o9VqWbRoEeXLlyc2NpatW7eSmJhIXFwcbdq0oXPnzmzcuBEnJyeuXLnC6tWryczMNNvPli1bCAsLIy4ujnHjxtGxY0dOnjxJUFAQGRkZVK9enUGDBtG9e/cC65GRkUHjxo156aWXeP311wtc365dO6pXr862bdsAGD9+PJ07d2bv3r0olfK75GeZITubuBkzSPp1KQCWoVXwnTkTy/LlS7lmklT2KK2ssG/RAvsWLfDKyzu1dRtp27aRe+kSmXv2krlnL7GffirzTpUiOWQPOWTvWfH7gWt8uOI4KqWCmv5ONKvkTrNK7oT5OKC5qxdSbGo2fx+PZtXRGxy/ngKAu70lH7QLoXttP1TKknmTOh2Vyq/7r+JmZ0l1fydq+DnhbPtoxjZrDVo+3PEhWyK3YKVQMTsukbrpKYACar0MrcaDnfsjObYkSdKzoKTaE7m5udjY2LB8+XK6detmWv7uu+9y9OhRs145efKG7AUGBpKdnU1oaCj/93//V+Awvjw5OTnk5OSY1d/f3/+pG7KXnJyMs7Mz27dvp3kBE3qsWrWKl156iaysLNTqgr+rjYiIICgoiCNHjlCjRg0Abty4gZ+fH3PnzmXIkCFm5RUKBStXrqRr167F3h/Apk2b6NChA0lJSabXICkpCRcXFzZv3kybNm3u69yf5NdNMpd97hw3Ro0yJXB2GTQI9/dGoJQ5cSTpvuVGRJC27R/St20j8/Bh87xT3t7Y1K6NVVgYVmGhWIWGorKzK8XaPpmK2yaSPaSkZ8LBiEQ+WnUCAL1BcPBqEgevJvHl5vOolQr8XWwIcrOlnIsNp6NTORCRaBrNZqVR8kbT8gxpHoytZcneMqE+DnzStVqJ7rMwGqWGGc1mMGL7CP69/i/DvDz5QdOAmmc2wuFFcGoVtBgN9d4AVfF6kEmSJEklLz4+Hr1ej6enp9lyT09PYmJiCtzG29ubH3/8kdq1a5OTk8Mvv/xC69at2b59O82aNStwm2nTpjFp0qQHr6gQoM28d7lHQWNjnM62GOzs7LCzs2PVqlU0aNAAy7sm9vDy8kKn07Fy5Up69OhR7G/GbWxsANBqtfdX9yLk5OSgUCjM6mhlZYVSqWTXrl33HZCSnnzCYCDpl1+Im/kFQqtF7e6O92fTsGvcuLSrJklPLIvAQFxfHYTrq4Py5Z3SRUeTunYtqWvXGgsrFFgEBhoDVFXDsA4Lw7JKKCo7mY+3JMiAlPRQDAZBfHoO15OziE7OJiNHR47eQK7OgFZvwEKlxMlGg6O1BicbDT5O1ng5WD3WbpA3krMYuvgQWr2gYzUvxnaows4L8fx7/ib/XYonLVvHlfgMrsRnmG1XO8CZ56t506m6Nx72T8e3ihqVhi9bfMnbW99mT/Qe3lRG8r/uc6i2ey5EH4ON4+DQQnhuGlSQjV5JkqTSdPf/SiFEof8/Q0JCCAkJMT1u2LAh165dY+bMmYUGpMaOHcvIkSNNj/N6SBWbNhOm+hS/fEkaF1XsyTnUajULFy7k9ddfZ+7cudSqVYvmzZvTu3dvwsPDadCgAePGjaNv374MHTqUevXq0apVK15++eV8QcE8GRkZjB07FpVKVWCvqwfVoEEDbG1tGT16NFOnTkUIwejRozEYDERHR5fYcaQngy4+nqix48jYuRMAu5Yt8f70E9QuBc/SLEnS/cvLO+XUrSuG7GwyDxwk+9RJsk6eJPvUaXTR0eReuULulSvmQaqgIFMvKhmkenAyICXdl5RMLbsvxbPzYjx7LydwPTGLXL3h3hvewcFKTYiXPSFe9tQPcqVDVa9iJe5+EJm5Ol5fdJD49FxCvR2Y+VJ1bCzU9K1fjr71y2EwCGLTsrlyM4MrCRlcTcjEw96SDtW88XWyfiR1Km2WKku+bvU1b215i4OxBxly8jt+6v4/Kl89CFsnQ/x5WNwdKnWA9p+Ca3BpV1mSJOmZ4ubmhkqlytcbKi4urtAASUEaNGjA4sWLC11vaWmZr7fQ06p79+48//zz7Ny5kz179rBhwwZmzJjBvHnzGDhwIJ9++ikjR45k27Zt7N27l7lz5zJ16lT+/fdfqlW73ZO5UaNGKJVKMjMz8fb2ZuHChWbrH5a7uzvLly/nzTff5JtvvkGpVNKnTx9q1aqFSqUqseNIZV/a9u1Ej/sIfWIiCktLPMeMxql3b5nbRpIeIaWVFXZNm2DXtIlpmS4hgexTp8g+dYqsU6fIPnkKXUwMuZcvk3v5Mqlr1hgL3h2kqloVqypVUNrKIFVRZA4pZA6p4jgQkci0dWc4ei0Zw11XjFIBXg5W+DhZ42CtwUKlxEKtRKNSkqPTk5KlJSVLS1JmLtHJ2eju2kGQmy1vt6rAC9V9TIGpm2k5/HcxnvOxaWTm6snM1ZGlNaBRKehY1ZsWIe73DGLl6gy8t+wof5+IxtXWgtVvN3lqg0wPIlObyZDNQzh68yhOlk781P4nKlq5w44ZsP8HMOhAqYGGb0GzD8DSvrSrLEmSVKaVZHuifv361K5dm9mzZ5uWhYaG0qVLlyKTmt+pR48eJCYmmpJj30tR9S8wF9ETMmSvMIMHD2bz5s1cvXo137rc3Fxq1qxJnTp1WLRokSnn0+rVqwkNDcXJyQlXV9dC9/2gOaTuFB8fj1qtxsnJCS8vL0aNGsUHH3xwX+coc0g9eQw5OcR9PpOkW8Fky5AQfGd+jqWcMVOSygyzINVJ429dQUPqn+GeVDKHlFQiDAbBjzsv8/nGc+hvBZIqeNjRpIIbTSu6EeJlj5eDVbF7OOXo9FyKy+BcbCqnbqSy4vB1rsRnMPL3Y3y37SJNK7qx70oiZ2PSCt3Hn4dv4OVgxUt1/Hixlh+O1hoMQmAwCFKztey+lMC/52+y51ICGbl6NCoFcwfUlsGou9hobJjdZjZvbHqDkwkneX3T6yx4bgFBz02F2q/AhrFwaSv89zUc+w3aTITw3iBn+JEkSXrkRo4cyYABA6hTpw4NGzbkxx9/JDIykqFDhwLG4XY3btzg559/Boyz8AUGBhIWFkZubi6LFy9mxYoVrFix4tFVUqEo9rC5sig0NJRVq1YVuM7CwoLg4GAyMsyH8/v7+xMc/Hh6Dru5uQGwbds24uLieOGFFx7LcaXSk33+PFGj3ifnwgUAnF8egMeoUSifkZ6MkvSkULu6YtesGXZ3DIl/kJ5U1lXDjMGqZ7gnlQxISYVKyshl1PJjbDsbB0CXGj6Mfq4yPg8R2LFUqwj1cSDUx4FuNeG9tpVYtCeC//17mcvxGVy+I49TmI8Dtco542CtxsZCjZVGRVRyFiuP3CAmNZtvt13k220Xizyem50FEzqHUTdQjrUviL2FPXPbzmXwpsGcTTzL4I2DWfjcQvzdQ6D/Cji/ETaOhcTLsOpNODAPOswAvzqlXXVJkqSnWq9evUhISGDy5MlER0dTtWpV1q1bR0BAAADR0dFERkaayufm5vL+++9z48YNrK2tCQsL4++//6Zjx46ldQplRkJCAi+99BKvvvoq4eHh2Nvbc/DgQWbMmEGXLl1Yu3Ytv/32G71796ZSpUoIIVizZg3r1q1jwYIFxT5Oeno6Fy/ebpdcuXKFo0eP4uLiQrly5QBITEwkMjKSqKgoAM6dOwcYE6t7eXkBsGDBAqpUqYK7uzt79uzh3Xff5b333jPLEfYoFJWjTHq0hBAkLfmVuBkzELm5qFxd8Zk21ezDriRJZVuhQaqTJ40BqlOnTT2pCgxSlS9v6kX1LAWp5JA9yt6QPSEEByKSCHSzKbVk2sevJ/Pm4sPcSM7CQq1kYucw+tTzf2QNlfQcHUv3RXItKZO6gS40CnbF1a7gb4NydHo2n47lt/3X+O9SvGk2PKUCNColNcs50aySO80quhPq7YBSKRtX95KYnchrG1/jYvJFvG29WfjcQnzsbiWq1eXAvrnGoXy56cZl1ftA+6lgIwN9kiRJecpae+J+3feQvSdETk4OEydOZNOmTVy6dAmtVou/vz8vvfQS48aNIzo6ms8++4wdO3Zw7do1LC0tqVixIm+99RYDBw4EijfEbvv27bRs2TLf8ldeeYWFCxcCsHDhQgYNGpSvzIQJE5g4cSIAY8aMYeHChSQmJhIYGMjQoUN57733HqgNVpzXTW8QfLTyBNvP3eTPtxo91BeP0v3TJSQQ/dH/kb59OwC2zZriM3Uq6ls95CRJerro4uNv96I6dZrskyfRxcbmL/iE96QqbptIBqQoWw3IxIxcRq84zubTsdhYqHivTSUGNg5E84iSfhdkw8kYRiw7QrbWQKCrDd/3q0WYj+NjO/790BsECoyjBuS3eg8nPiueQRsGEZEagZ+dHwufW4in7R3Jc9NiYeskOLrE+Djkeejza+lUVpIkqQwqS+2JB/G0BqSeZfd63QwGwQd/HGfF4esAzHypOj1q+z3uaj6z0nfuImrsWPTx8Sg0Gjw++ADnAf1lm1aSnjFmQaq8nFRFBamqhmFTqxY2detiUb58mXzPkAGp+1BWGpC7L8bz3u9HiU3NMVse4mnPlK5VqRdk7I2i1RtIz9bhaK0pdu+f+PQczkSn4mitwdnGAicbDXaWarOLVwjB/3ZeZtr6swgBzSu5813fmthbaUruJKUyLTYjloEbBnI9/TqBDoEseG4BbtZ3fUN3dTcs7ARCD69uhHINSqeykiRJZUxZaU88KBmQevoU9boJIRj/10kW77099PP9dpUY3komz37UDLm53PziSxIXLQLAokIwvl98gdUjHpYpSdKTo7hBKpWrKzZ16mBTty42detgWbEiijKQ81cmNX+C6PQGZm46zw//XkIIKO9uyze9a3I6KpVp689wLjaNnj/swcPekrRsHVlaPQB+ztZ83qM6DYMLn+UlM1fHj/9e5ocdl03b5bHWqKjibU81X0fCfB05EpnE0v3XABjQIIAJnUOLnaxcejp42noyv/18Bm4YSERqBK9vep2f2v+Es5Xz7UIBjaDWADi0EDaNh9c2PfRMR5IkSZIkPT5CCD79+wyL90aiUEC4ryPHrqcQlZJd2lV76uVcusSNUe+Tc/YsAM59++Dx4YcoZaBXkqQ7qN3csGveHLvmzU3LTEGqY8fJPHSIrKNH0SckkLZxI2kbNwKgcnTEuk4dbOoag1RWlSujUKlK6zTuSfaQovS/0Zy4+hQLd0cA0KdeOcZ3qoKNhTFWmJSRy4yN5/jtQCQFvVIKBbzWOIj324dgpbl9oekNghWHrjNz0zni0ow9rnydrDEIQWJGLjk6Q4F1UShg/POhDGocWCa7/kmPR2RqJIM2DCIuK47KLpWZ124ejpZ3DNtMjYZvaoIuC3othiqdS6+ykiRJZURptyceluwh9fQp7HX7/p+LfL7RmFB9Rvdw9EIw9s8TtAxxZ8GgeqVV3aeaEILkZcuI/Ww6IjsblbMz3p9+in2r/HnHJEmSisOQm0v2iRNkHjhA5v4DZB49isjMNCujtLPDunYtbOvWNQaoQkNRaB79CCg5ZO8+lGYDcsWh64xafgyAr3pVp1vNgsftX0vMJCVLi4OVBgdr41C7aevO8NsBY4+mSp52vNwwkMs3Mzgbk8qZ6FSSMrUA+LtYM+a5KnSs5mUKMmXl6rmRnMmpqFROXE/hxI0UMnP1vNu6Im1CPQusg/RsuZxymUEbBpGYnUhV16r8r93/sLOwu11g6xTYORNcK8Jbe0ElO1xKkvRskwEpqawp6HXT6Q3UnLyZtBwdH3cK5dUmQWw/F8fABQeo7GXPhhFyZreSpktKIvr/xpO+dSsAto0a4f3ZNDQeHqVcM0mSniZCqyX79GkyDxwg48ABsg4dxpCeblZGYWODTY0a2NS7FaCqVg2lhUWJ10UGpO5DaTUgT1xPocfc3eToDLzTuiIj21a6731sOR3LmD+PE5+em2+dg5Wat1tV5OVGAViqy243PansOp90nlc3vkpKTgo1PWoyt81cbDQ2xpXZqfB1dchKhE6zoE7+WYMkSZKeJTIgJZU1Bb1uR68l0/X7/3CwUnPk43aolArOx6bR7qt/cbTWcGxCu1Ku9dMlY88eoj4cje7mTdBo8HjvPVwGvlImcrxIkvR0E3o92WfPGntQHThI5sGDGFJSzMooLC2xrlHDlIfKukb1EhlCLHNIlXEJ6TkMXXyIHJ2B1pU9GNH6wRJItgn1ZGO5Zny+8RxXEzIJ8bIn1NuBKt4OVPS0MxvGJ0n3q5JzJX5s+yODNw7mSNwRhm8bzvetv8dabQ1WDtD8Q9gwBrZPg/CeYPFkTEMqSZIkSc+qPZcSAKhf3hXVrclxvByNHz5SsrRk5upMqSOkBydyc4n7+msSf1oAQmBRvjy+Mz/HKjS0tKsmSdIzQqFSYR0WhnVYGK4DByIMBnIuXDAO7zt4kMwDB9AnJpK5bx+Z+/YZt9FosAoPN+agqlMXm5o1UNo+us948r9NKdDpDQz/9Qg3krMIcrPly141ij1bXkFc7Sz5rHt4CdZQkm4LdQ1lbtu5vLH5DQ7EHGDEPyP4ptU3WKosoc6rsHcOJF+FPbOh+QelXV1JkiRJkoqw57IxINWw/O1JcRysjLMvp+foiErOpoKHXWGbS8WQc/kKUR98QPapUwA49eqF55jRKK2tS7lmkiQ9yxRKJVYhIViFhOAyoD9CCHIvX77dg+rAAXRxcWQdOkTWoUMk8AOo1ViFhWJbt64xWXrt2qjs7UusTjIg9Zhp9QZG/X6MPZcTsLVQ8eOA2jhaP/qkYpL0MMLdw5ndejZDtwxld9RuRm0fxccNP8bN2g1l649hxWvw39fGYXu2bqVdXUmSJEmSCqDVGzgYkQiQb5Zmb0crLsSlE5MiA1IPSghB8h9/EDt1GiIrC5WjI96ffoJ9mzalXTVJkqR8FAoFlsHBWAYH49y7N0IItJGRZgEqbVQU2ceOk33sOMybD0olVpUrY1O3rjEPVe3aqJycHrgOMiD1GGVr9QxbcpitZ+NQKxXM6l2Tip4lF12UpEeplmctvm31LcO2DmPH9R20Xt4atVKNp40n3gHl8c5IwWvdYLzC++Jl64W3rTdetl7YW8hrXJIkSZLKguPXk8nM1eNsoyHkrjaot5M1F+LSiUrJKqXaPdn0yclEfzyBtE2bALBp0ACf6Z+h8ZSTBUmS9GRQKBRYBARgERCAU48eAGhv3CDjwAFjkOrgQbRXI8k+fZrs06dJXLQIAMtKlYwBqrp1salTG7Vb8TsoyIDUY5Keo2PwogPsvZyIpVrJ3P61aVlZzqwhPVnqe9fnm1bfMG3fNCLTItEZdNxIv8ENJWBvC5mXYO8Us23sNHZ42XqZBanyfnvZeuFp44mFquRndiirDMJAujad1JxUtAYtAQ4BKBUysakkSZL06OXlj2pQ3jVfughvB2Meqejk7Mderyddxr79RI0ejS4mBtRqPN4bgcugQTJxuSRJTzyNry9Ovr44de0KgDY21tR7KvPgQXIvXSLn/Hlyzp8nackSACzKl0cfXryUQjIg9RgkZeQycMF+jl1Pwc5SzfxX6lC/vOu9N5SkMqiRTyPWdFuDzqAjPiue6IxootOjidk1g+iUCGKc/Ylx9CImI4bknGTStelcTL7IxeSLhe7TzdoNLxsvvO1uBary/r7128XKpUwFbfQGvTGolJtq/MlJLfbf6dp0DMJg2pezpTONfRvTxLcJjXwa4WzlXIpnJkmS9HSKi4tj/PjxrF+/ntjYWJydnalevToTJ06kYcOGHDlyhPHjx7N//35SU1Px8vKifv36fP/997i5uREREUFQUJBpf05OTlSrVo0pU6bQvHlzAKZNm8aff/7J2bNnsba2plGjRkyfPp2QkJAC6zRkyBB+/PFHvvrqK0aMGGFa3qJFC3bs2GFWtlevXvz2228P/TyY8kcF52+HejsZA1IxqbKHVHEJrZab335Hwv/+Z0xcHhCAz8yZWFerWtpVkyRJeiQ0np44dnoex07PA6BLSCDz4KFbw/wOkHP+PLmXL5N+4UKx9icDUo9Yrs7AG78c5Nj1FFxsLVg0qB7V/BxLu1qS9NDUSrWpl1NNj5pg7Qc/NIWEJHjjG/CpSaY2k9jMWKIzoonNMP7O+8l7nKPPIT4rnviseE4mnCzwWBqlBk8bz3y9q+7scWVncX/5LkxBpVuBopTcFPMg0p3BpLsep+emIxAP9fxZqYwN/6ScJNZeXsvay2tRoKCaWzWa+DWhqW9TQl1Dy1QgTpIk6UnVvXt3tFotixYtonz58sTGxrJ161YSExOJi4ujTZs2dO7cmY0bN+Lk5MSVK1dYvXo1mZmZZvvZsmULYWFhxMXFMW7cODp27MjJkycJCgpix44dDBs2jLp166LT6fjoo49o164dp0+fxvauGYpWrVrFvn378PHxKbC+r7/+OpMnTzY9ti6BZNg5Oj0HI5IA84TmeXwcjceIkj2kikWflsa1IUPJOnwYAMce3fEaO/aRzkYlSZJU1qhdXXFo3w6H9u0A4/DlzEOHiP13J0yedO/tH3UFn2VCCMavOsmBiCTsrdT89kYDKsmcUdLTyjscqvWEE7/D5gnw8l/YaGwIcgwiyDGowE2EECTnJBOVEUVMRozpJy9oFZMRQ3xWPFqDluvp17mefr3Qw989NNDN2o0sXZYpmJSWm2YWXErXlkxQycHCAQdLB/Pfd/3taOmYb7mFygKtQcuxuGPsvLGTXTd2cT7pPMfjj3M8/jizj87GxcqFxj63e085WTk9VH0lSZKeRcnJyezatYvt27ebejMFBARQr149wBgcSk1NZd68eajVxqZxUFAQrVq1yrcvV1dXvLy88PLy4ocffsDPz49NmzYxZMgQNmzYYFZ2wYIFeHh4cOjQIZo1a2ZafuPGDYYPH87GjRt5/vnnC6yzjY0NXl5eJXL+eY5GJpOjM+BmZ1lg0vK8HlLRMofUPenT0oh8bTDZx4+jdHDAe/JkHJ5rX9rVkiRJKnUqJyfsW7dG1K0rA1KlbeHuCJYdvIZSAd/2qSmDUdLTr9X/welVcGUHXNoKFYqeVUahUOBs5YyzlTNhrmEFltEatNzMvGkKUOX9vjN4lTcU7l5DAwtirbbOH0yycMDewv52IKmQQNPD5r7SKDXU8apDHa86vFf7PWIyYvjvxn/surGLPdF7SMxOZM3lNay5vAalQkk1t2o09W1KE78mVHGpIntPSZJUqoQQZOlKJ3hhrbZGoVDcuyBgZ2eHnZ0dq1atokGDBlhaWpqt9/LyQqfTsXLlSnr06FHs/drY2ACg1WoLXJ+SkgKAi4uLaZnBYGDAgAF88MEHhIUV/H8PYMmSJSxevBhPT086dOjAhAkTsH/Iabbzhus1KO9S4Dl6O8ocUsVxZzBK5ehIuUULsapcubSrJUmS9ESSAalHZOeFm0xZexqAcR2r0CJEJjCXngHOAVD3ddj7PWyeCOVbwUMm9NQoNfjY+eBjV/CwBoBMbaZZoCo6I5qE7ARs1DZFBpQcLBzQqDQPVb+S5GXrRfdK3eleqTtavZajN4+y88ZOdl7fycXkixy7eYxjN4/x3dHvcLVypbFvY5r6NqWhT0McLeVQYEmSHq8sXRb1f61fKsfe13cfNhqbYpVVq9UsXLiQ119/nblz51KrVi2aN29O7969CQ8Pp0GDBowbN46+ffsydOhQ6tWrR6tWrXj55ZfxLGSGtIyMDMaOHYtKpTL1urqTEIKRI0fSpEkTqla9nU9o+vTpqNVq3nnnnULr269fP4KCgvDy8uLkyZOMHTuWY8eOsXnz5mKdb2HyEpoXlD8KwPvWkL20HB1p2VrsrcrO/8eyQgajJEmSSpYMSD0CRyKTGLbkMAYBPWr78VqTgocrSdJTqdn7cOQXiD0BJ5ZD9V6P/JA2GhuCnYIJdgp+5Md6XDQqDXW96lLXqy4ja48kJiOGXTd2GXtPRe0hITuB1ZdWs/rSapQKJeFu4TTxbUJTv6ZUdqkse09JkiTdoXv37jz//PPs3LmTPXv2sGHDBmbMmMG8efMYOHAgn376KSNHjmTbtm3s3buXuXPnMnXqVP7991+qVatm2k+jRo1QKpVkZmbi7e3NwoULzdbnGT58OMePH2fXrl2mZYcOHeLrr7/m8OHDRfbCev31101/V61alYoVK1KnTh0OHz5MrVq1Huj8c7R6jkQmAwXnjwKwtVTjYKUmNVtHTEq2DEjdRZ+WRuRgGYySJEkqSQohxMMlUXkKpKam4ujoSEpKCg4ODvcsn63VE5WchaO1BkdrDWqVkpRMLX8du8HvB69x8kYqALXKObH0jQZYqlWP+hQkqWzZ+QVsnQyO5WD4AdBYlXaNnipavZbDcYdNAaq7hymaek/5NaWht+w9JUmPy/22J8qaouqfnZ3NlStXCAoKwsrK+J7+pAzZK8zgwYPZvHkzV69ezbcuNzeXmjVrUqdOHRYtWmSaZW/16tWEhobi5OSEq2vBgZ23336bVatW8e+//5rNzDdr1ixGjhyJ8o6ew3q9HqVSib+/PxEREQXuTwiBpaUlv/zyC7163d+XPHmvW7LSiT4LDuPpYMnesa0Lfe6em/UvZ2PSWPRqPZpXcr+vYz3NTMGoYzIYJUmSVBzFbRPJHlL3KTNXx0tz93AqKtW0zN5KTY7WQK7eOJW7RqWgfZgXE18Ik8Eo6dlU/03YPw9SIuHAPGg0vLRr9FTRqDTU965Pfe/6jKoziqj0KHbd2MXOGzvZF73PrPeUSqGiunt1mvo1pYlvE0KcQx76Q5wkSRIY8wAWd9hcWRQaGsqqVasKXGdhYUFwcDAZGRlmy/39/QkOLrg3rhCCt99+m5UrV7J9+3azYBTAgAEDaNPGPLdi+/btGTBgAIMGDSq0nqdOnUKr1eLt7V2MsyrY0WvJgLF3VFH/A7wcrTgbk0Z0skxsnidfMGrhAhmMkiRJKiGPJCCVk5PD/v37iYiIIDMzE3d3d2rWrJnvH/OTRgjB6BUnOBWVikqpQG8wdi5Ly9YBUNnLnl51/elSwxcX24dLdixJTzQLG2g5Fla/DTtnQs3+YO1U2rV6avnY+dAzpCc9Q3qSq8819p66bgxQXU65zOG4wxyOO8zXh7/G3dqdJr5NaOLbhIY+DbG3kJMtSJL0dEtISOCll17i1VdfJTw8HHt7ew4ePMiMGTPo0qULa9eu5bfffqN3795UqlQJIQRr1qxh3bp1LFiwoNjHGTZsGL/++it//fUX9vb2xMTEAODo6Ii1tTWurq75elVpNBq8vLwICQkB4NKlSyxZsoSOHTvi5ubG6dOnGTVqFDVr1qRx48YP/BwcuRWQahTsVmS5vDxS0SkysTkUEoyqUqW0qyVJkvTUKNGA1O7du/n2229ZtWoVubm5ODk5YW1tTWJiIjk5OZQvX5433niDoUOHPvRMIaVh/q4rrDkWhVqpYOkbDajp70RKlpakTC0qpYJAVxvZ80CS8lTvC3u+h5tn4b9Z0GZiadfomWChsqCBdwMaeDfg/brv5+s9dTPrJisvrmTlxZVmvaea+jalknMl+R4mSdJTx87Ojvr16/PVV19x6dIltFot/v7+vP7664wbN47o6GhsbGwYNWoU165dw9LSkooVKzJv3jwGDBhQ7OPMmTMHgBYtWpgtX7BgAQMHDizWPiwsLNi6dStff/016enp+Pv78/zzzzNhwgRUqgfrda8zCM7EGHv2F5bQPI9P3kx7KbKHlAxGSZIkPXollkOqS5cuHDhwgL59+/LCCy9Qp04d03S4AJcvX2bnzp0sXbqUY8eO8fPPP9O2bduSOPRDK874xt2X4hkwfz96g2DSC2G80ijw8VZSkp5E59bD0t6gtoK3D4Ojb2nX6JmWq8/lUOwhdt7Yya4bu7iScsVsvYe1B038jL2nGng3kL2nJOk+PWs5pKSyLzs7m6OnzzNqfRQBHk78+nqDIsv/ceg67y8/RtOKbvzyWunMoFgWyGCUJEnSw3nsOaTatWvH8uXLsbAoeKha+fLlKV++PK+88gqnTp0iKiqqpA79yN1IzmL4r0fQGwQv1vLl5YYBpV0lSXoyVHoOyjWEyD2wfSp0+b60a/RMs1BZ0NCnIQ19GvJh3Q+5lnaN/278x84bO9kfvZ+4rDj+vPAnf174E7VCTXWP6jTza8YLwS/gZl30MA9JkiSp7NEbBBk5xtQSxZn12dvUQ+rZHbKXLxi14CcZjJIkSXpESmxe8GHDhhUajLpbWFhYsXpHTZs2jbp162Jvb4+Hhwddu3bl3LlzZmWEEEycOBEfHx+sra1p0aIFp06deqBzKEhGjo4hvxwkMSOXqr4OTO1WTQ5pkaTiUiig7RTj30d/hbgzpVsfyYy/vT+9K/fm+9bfs6vPLn5o8wP9q/Qn0CEQndBxKPYQXx36inZ/tGPcznGcSii591ZJkiTp0UvN0mIQ4OtsQ8sQj3uWNwWkkrN4FifiLjAYFRpa2tWSJEl6apVYQOpOWVlZrF69mpkzZ/LFF1+wevVqsrLufyz6jh07GDZsGHv37mXz5s3odDratWtnNuPJjBkz+PLLL/nuu+84cOAAXl5etG3blrS0tIc+D63ewLBfD3PyRiouthbM7V8bK42cNU+S7ot/XajSGYQBtkwq7dpIhbBUWdLItxGj641mTbc1rHtxHePqj6O6e3W0Bi1rLq+h99reDFg3gA1XNqA1aEu7ypL01Js9e7ZpiFzt2rXZuXNnsbb777//UKvV1KhR49FWUCrThBAkZ+YC8GJNX5TKe3+hmpfUPCNXT+qtSXtKSlq2Ft2tGanLIhmMkiRJevxKLIdUntWrVzN48GDi4+PNlru5uTF//nw6d+78wPu+efMmHh4e7Nixg2bNmiGEwMfHhxEjRjB69GjAOMOfp6cn06dPZ8iQIcXab0HjG4UQfPjHcZYfuo61RsXSNxpQw9/pgesuSc+0+AvwfX0Qehi0HgIalXaNpPtwMv4kS84sYUPEBnQG4wcUTxtPelfuTfeK3XG2ci7lGkpS2VCSOaSWLVvGgAEDmD17No0bN+aHH35g3rx5nD59mnLlyhW6XUpKCrVq1aJChQrExsZy9OjREqm/zCH15EnN0nIlNon46OvUDKuEi4NdsbarOXkTSZlaNoxoSmWvh8+FlqPTM3f7Zb7/5yKejpZM7VaNphXdH3q/JUmflsa1wa+TdeyYDEZJkiSVgOK2iUq0h9Tu3bvp0aMHzZo147///iMxMZHExER27dpF06ZN6dGjB3v27Hng/aekpADg4uICwJUrV4iJiaFdu3amMpaWljRv3pzdu3cXup+cnBxSU1PNfu725ebzLD90HZVSwff9aspglCQ9DLeKUOtl49+bP4ZncBjAk6yqW1WmNZ3Gpu6bGFp9KC5WLsRmxvL14a9p+0dbJuyewLnEc/fekSRJxfbll1/y2muvMXjwYKpUqcKsWbPw9/c3zeRWmCFDhtC3b18aNmz4mGoqlVXx6TkA2FqqsbEoftpYr1u9pEoij9TBiESe/2YXX205T67ewLXELAbM38/IZUdJzMh96P2XhDuDUUoZjJIkSXqsSjQg9cknnzBo0CD++OMPGjZsiJOTE05OTjRq1IgVK1YwcOBApkyZ8kD7FkIwcuRImjRpQtWqVQGIiYkBwNPT06ysp6enaV1Bpk2bhqOjo+nH39/fbP2SfVf5dttFAD7tWpVWlT0L2o0kSfejxRjQ2MD1A3BmTWnXRnoA7jbuDKsxjM09NjO1yVRCXUPJ0efw54U/6bGmB69ufJWtV7eiN+hLu6qS9ETLzc3l0KFDZl+4gXECmaK+cFuwYAGXLl1iwoQJxTpOcb6gk55MWbl60nN0KFBga3l/cxj5mPJIPXhAKio5i3ErT9Bj7h4uxqXjZmfBlz2rM7BRIAoF/HnkBq2/2M7s7RfZdSGehFvBs8ft7mBUgAxGSZIkPVYlNssewJ49e5g+fXqh64cNG0bz5s0faN/Dhw/n+PHj7Nq1K9+6u5OMCyGKTDw+duxYRo4caXqcmppqCkqdikrh47+MiXtHtKlI73qFd4uXJOk+2HtBw+Hw7wzYOglCOoBKU9q1kh6AhcqCzsGd6VS+E0dvHmXJmSVsubqFAzEHOBBzAF87X3qH9KZbxW44WjqWdnUl6YkTHx+PXq+/ry/cLly4wJgxY9i5cydqdfGad9OmTWPSJJnb72l0u3eUitys+5uMx9spb6a9+8//euxaMvN3XeHvE9HoDcbe0L3q+DO2Y2WcbCx4sZYfXWr4MPbPE5yNSWPGhtu9az3sLakb6MJLdfxoWtEdVTFyXj0MfXq6DEZJkiSVshINSGVnZxc5PtDR0ZGcnPv/BuTtt99m9erV/Pvvv/j5+ZmWe3l5AcaeUt7e3qblcXFx+Rpxd7K0tMTS0jLfcp3ewOgVJ9AbBM+FefFu64r3XVdJkorQ6G04+BMkXITDP0Pd10q7RtJDUCgU1PSoSU2PmsRkxLDs3DKWn1/OjfQbfHHoC2Yfm03n8p3pW6UvwU7BpV1dSXriFPcLN71eT9++fZk0aRKVKlUq9v6L+oJOenIlZuSSnGmceMLZ1oLY5Pvb3vsBhuwduprI9PXn2B+RaFrWsLwr77apSIPyrmZla5ZzZs3bTVi6P5I9lxI4E51KREImcWk5/H0imr9PROPrZE3POv68VMcPHyfr+zuBYtCnp3PttcEyGCVJklTKSjQgValSJbZt28agQYMKXL9161YqVKhQ7P0JIXj77bdZuXIl27dvJygoyGx9UFAQXl5ebN68mZo1awLGbu47duwosqdWYX7eE8HJG6k4WmuY3DWsyF5WkiQ9ACsHaP4hrP8Qtn8G4b3AsnhJVqWyzcvWi3drvcuQ8CGsu7KOxWcWcyHpAr+f/53fz/9OQ++G9A/tTxPfJigVj2SCV0l6ari5uaFSqfL1hirsC7e0tDQOHjzIkSNHGD58OAAGgwEhBGq1mk2bNtGqVat82xX2BZ30ZBJCEJOazc0045e/zjYW2Fjc//utt2Pxe0jFpGTz2fozrDoaBYBaqeCF6j682iSIqr6F95DVqJS83DCQlxsGApCRo+NMdCprj0ez8sgNbiRn8dWW88zaep56gS50qeFLx2peONlY3Pf53E0GoyRJksqOEg1IDRw4kPfffx9PT086duxotu7vv//mww8/5KOPPir2/oYNG8avv/7KX3/9hb29valh5ujoiLW1NQqFghEjRjB16lQqVqxIxYoVmTp1KjY2NvTt2/e+6//dP5dAZcVHz1fBw17OICNJj0TtQbB3DiRdgb2zjQEq6alhpbbixYov0q1CNw7GHmTx6cVsv76dPdF72BO9h3L25ehbpS9dgrtgZyGDkZJUEAsLC2rXrs3mzZvp1q2bafnmzZvp0qVLvvIODg6cOHHCbNns2bPZtm0bf/zxR74v9KSnj8EguJaUSUqWsWeUh4MVnvaWDzQywdRDqogcUtlaPT/9d4Xvtl0kM1ePQgE9a/vzXttKeDnefxva1lJNnUAX6gS6MKZDZTaeiuG3/dfYczmBfVcS2XclkQmrT9Iw2I1wX0dCfRyo4u1AgIsNyvsY2ieDUZIkSWVLiQak3n33XXbv3k2nTp0ICQmhSpUqAJw+fZoLFy7QtWtX3n333WLvL28mmRYtWpgtX7BgAQMHDgTgww8/JCsri7feeoukpCTq16/Ppk2bsLe3v+/65+oMNAtx46XafvcuLEnSg1FbQOvx8Mer8N/XxgCVXdma/ll6eAqFgrpedanrVZfradf57exv/HnhTyLTIvls/2d8e+RbulboSp/KfQhwCCjt6kpSmTNy5EgGDBhAnTp1aNiwIT/++CORkZEMHToUMA63u3HjBj///DNKpdI04UseDw8PrKys8i1/VsXFxTF+/HjWr19PbGwszs7OVK9enYkTJ9KwYUOOHDnC+PHj2b9/P6mpqXh5eVG/fn2+//573NzciIiIMAvsOTk5Ua1aNaZMmWLKjzpnzhzmzJlDREQEAGFhYXz88cd06NDBtF1hve9nzJjBBx98ABiTzb///vssXbqUrKwsWrduzezZs83SVtxJCMGV+AwycnUoFAr8nKxxtn3wnkQ+t3JIRaVk5RsmajAI/jp2g5kbz3Mj2diDqlY5Jya+EEa4n9MDH/NOVhoVXWr40qWGL1HJWaw5FsVfR6M4HZ3Kv+dv8u/5m6aythYqwnwdCfd1pJqfIzX9nSnnalPgflNObuDoe2PxuJaN0saSgHdaYZWwAXZuuL8KyhEUJUQ+j9It8p4qIWXsecwo3rDvEg1IKZVKli9fzrJly1i6dClnz54FoHLlykycOJHevXvf1/5EMaaGVygUTJw4kYkTJz5Ilc1YaZRM7Vat0MaCXq9Hq9U+9HGkR0ej0aBSqUq7GtK9hHYD728g+qgxyXnHz0u7RtIj5Gfvx/t13+etGm+x5tIalpxdwpWUKyw5s4Rfz/xKU7+m9Kvcj4Y+DeVQaUm6pVevXiQkJDB58mSio6OpWrUq69atIyDAGMCNjo4mMjKylGv55OjevTtarZZFixZRvnx5YmNj2bp1K4mJicTFxdGmTRs6d+7Mxo0bcXJy4sqVK6xevZrMzEyz/WzZsoWwsDDi4uIYN24cHTt25OTJkwQFBeHn58dnn31mSk+xaNEiunTpwpEjRwgLCwOMr9ud1q9fz2uvvUb37t1Ny0aMGMGaNWv47bffcHV1ZdSoUXTq1IlDhw4V2MbJyNGRkatDpVAQ4GaL3X3Oqnc3TwdjQCpbayAlS2saJvffxXimrjvDqSjjbIxeDlZ8+FwI3Wr6PrL3bh8na4Y0D2ZI82AuxKax+1bOqTPRqZyNSSMjV8/+K4nsv3I7d1WotwMv1vLlhRo+ZiMedk75mOBr2WRaCQKaXcfqwvdw4ZFUW5IkScq5dywHQCGKE/V5yqWmpuLo6Mg364/y9nPV860XQhATE0NycvLjr5x035ycnPDy8pIfbMu6yzvg5xdAqYZh+8FVJr1+Vggh2BO1h8VnFrPzxk7T8vKO5elbuS+dgztjoyn4G25JKsvy2hMpKSlFTvJSVhVV/+zsbK5cuUJQUBBWVk9WWoPk5GScnZ3Zvn17gbM9r1q1ipdeeomsrKxCZyjM6yF15MgRatSoAcCNGzfw8/Nj7ty5DBkypMDtXFxc+Pzzz3nttYIn8ejatStpaWls3boVgJSUFNzd3fnll1/o1asXAFFRUfj7+7Nu3Trat2+fbx+xqdnEpmbjZG2Rr3fQg75utadsJiEjl18H1+d8bBrLD103BaLsLdW82TKYVxsHYaUpvS8BdXoDl+MzOH49hePXkzl+PYWTN1LQ3ZrdT6mAJhXd6V+/HO3CvIjaPo9jk75i9nMKPPycmGtbDc3dOQ2fik9FT8VJSI+C/Nhfip695z41MxfH/gvu2SYq0R5ST7r+DQILXJ4XjPLw8MDGxkYGOsooIQSZmZnExcUBmM28KJVB5ZtDhTZwcQts+wReWlDaNZIeE4VCQSPfRjTybcTV1Kv8euZXVl1cxeWUy3yy7xO+Pvw1L1Z8kT5V+uBr51va1ZUkqRBCCETWvRNfPwqKW7lEi8POzg47OztWrVpFgwYN8iVy9/LyQqfTsXLlSnr06FHs/drYGIM/BfWe1+v1LF++nIyMDBo2bFjg9rGxsfz9998sWrTItOzQoUNotVratWtnWubj40PVqlXZvXt3gQGp9BwdALaWJRcc8nayIiEjl77z9pmWWaiU9GtQjrdbVcTlIYYElhS1SkklT3sqedrT41a6jaSMXNaeiGbl4escjkzm3/M3CfG0o12YFz4tBpNSrTFxGwYSoUthopsLnzT+RLbrJUmSHoXUVODen+9KfMjevd7UFQoFOp2uJA9bYlQFJEXU6/WmYJSrq2sBW0llibW1MRFnXFwcHh4ecvheWddmIlzcCqf+hEbDwbd2addIeswCHAIYW38sb9d8m78u/cWvZ34lMi2SRacX8cuZX2jp35J+VfpRx7OO/NAgSWWMyMriXK3Sed8OOXwIhU3xelKq1WoWLlzI66+/zty5c6lVqxbNmzend+/ehIeH06BBA8aNG0ffvn0ZOnQo9erVo1WrVrz88ssFzmoIkJGRwdixY1GpVGa9rk6cOEHDhg3Jzs7Gzs6OlStXElpI0uxFixZhb2/Piy++aFoWExODhYUFzs7OZmU9PT3zzboIxpxOmbl6wJgYvKSUd7Pj5A1jj6gwHwdequ1Hlxq+D5Wb6nFwtrVgQIMABjQIICI+g5VHbvB8+O0vKKu4VmFm85m8ve1tVl9ajZ+dH2/WeLMUayxJkvRsK9GA1MqVKwtdt3v3br799tti5YUqS/K+9bIpZqNHKn13fmMpA1JlnFc1CO8Fx3+DzRPglTUyseEzys7Cjn5V+tGnch923djF4tOL2RO9h62RW9kauZVKzpXoV6UfHYM6YqV+soYLSZJU+rp3787zzz/Pzp072bNnDxs2bGDGjBnMmzePgQMH8umnnzJy5Ei2bdvG3r17mTt3LlOnTuXff/+lWrVqpv00atQIpVJJZmYm3t7eLFy40Gx9SEgIR48eJTk5mRUrVvDKK6+wY8eOAoNSP/30E/369SvWULq7k4vnydTqEUKgVimxVCsL2PLBfPhcCNX9nWhY3pVQnydv+ClAoJst77WtlG95U7+mfNTgIybvmczsY7PxsfOhS4X8s1dKkiRJj94jzyF19uxZxo4dy5o1a+jXrx9TpkyhXLlyj/KQ9+1pzZnwrJKv2RMmORK+rQP6HOi3Aiq2Ke0aSWXEpeRL/HrmV9ZcXkOWzjgsyMnSiR6VetArpBdetl6lXENJMves5ZB6UobsFWbw4MFs3ryZq1ev5luXm5tLzZo1qVOnDosWLTLlkFq9ejWhoaE4OTkVq+d8mzZtCA4O5ocffjBbvnPnTpo1a8bRo0epXv12/tJt27bRunVrEhMTzXpJVa9ena5duzJp0iSz/RSVPwpkm6goXx36ip9O/oRaoWZu27nU965f2lWSJEl6ahS3TVRyX6XcJSoqitdff53w8HB0Oh1Hjx5l0aJFZS4YJT1agYGBzJo1q9D1ERERKBQKjh49+tjqJJUxTuWg3uvGv7dMAIO+dOsjlRnBTsGMbziezT02M6r2KHxsfUjOSWbeiXk8t+I53t/xPkfjjj5xPW8l6WmhUChQ2tiUyk9JDOENDQ0lIyOjwHUWFhYEBwfnW+/v709wcHCx0zgIIcjJycm3fP78+dSuXdssGAVQu3ZtNBoNmzdvNi2Ljo7m5MmTNGrUKN9+Mh5B/qhnxbu13uW5wOfQCR3v/fMel5IvlXaVJEmSnjklHpBKSUlh9OjRVKhQgVOnTrF161bWrFlD1apVS/pQUhEGDhyIQqHgs88+M1u+atWqfI04vV7PV199RXh4OFZWVjg5OdGhQwf++++/R15Pf39/03TW9yKDV0+xpqPA0hFiT8Lx30u7NlIZ42jpyMCqA1n34jpmtZhFXa+66IWejREbGbB+AH3+7sPmq5sxCENpV1WSpDIoISGBVq1asXjxYo4fP86VK1dYvnw5M2bMoEuXLqxdu5b+/fuzdu1azp8/z7lz55g5cybr1q2jS5fiD+UaN24cO3fuJCIighMnTvDRRx+xfft2+vXrZ1YuNTWV5cuXM3jw4Hz7cHR05LXXXmPUqFFs3bqVI0eO0L9/f6pVq0abNuY9iA3i0eSPelYoFUo+afIJNT1qkqZN460tbxGfFV/a1ZIkSXqmlGhAasaMGZQvX561a9eydOlSdu/eTdOmTUvyENJ9sLKyYvr06SQlJRVaRghB7969mTx5Mu+88w5nzpxhx44d+Pv706JFC1atWvVI66hSqfDy8ip0mmXpGWHjAk3fM/79z6egzS7d+khlkkqponVAa35q/xN/dP6DFyu+iIXSglMJpxi5fSQv/vUiay6tQWcomxNnSJJUOuzs7Khfvz5fffUVzZo1o2rVqowfP57XX3+d7777jtDQUGxsbBg1ahQ1atSgQYMG/P7778ybN48BAwYU+zixsbEMGDCAkJAQWrduzb59+9iwYQNt27Y1K/fbb78hhKBPnz4F7uerr76ia9eu9OzZk8aNG2NjY8OaNWvy5cXMytVjEAK1smTzRz1LLFWWfN3yawIcAojKiGL41uFkajNLu1qSJEnPjBLNIaVUKrG2tqZNmzZFJpP+888/S+qQJeJpzCE1cOBAEhISuHjxIp07d2bGjBmAsYdUt27dTENcli1bRu/evVm9ejWdO3c220f37t3ZsWMHV69excbGhrZt26JWq1m/fj0KhYLk5GTCw8MZMGAAn376aYH1CAwM5I033uDixYssX74cZ2dn/u///o833ngDwJST4ciRI9SoUYOkpCSGDx/Opk2bSE9Px8/Pj3HjxjFo0KB8PbuaN2/O9u3b8x3zSX3NnnnaLPi2NqTegHafQKO3S7tG0hMgKTuJJWeW8OuZX0nTpgHgZ+fHa9Ve44XgF7BQle0ZoaSny7OWQ0oqXXn5oxytNQS42hZYRr5uxROZGkn/df1JykmihX8LZrWYhUr55A+DTM1N5d/r/xKXGYcSJUqFEpVSZfytMP7O+1EpVCgUCtPyO3/fvTxfOeWt5ShMj5UUsE5Z+L41So2cTVeSniLFbROVaLeUl19+Wb6RlCEqlYqpU6fSt29f3nnnHfz8/PKV+fXXX6lUqVK+YBTAqFGj+PPPP9m8eTNdu3Zl0aJFVKtWjW+++YZ3332XoUOH4unpycSJE4usxxdffMGUKVMYN24cf/zxB2+++SbNmjWjcuXK+cqOHz+e06dPs379etzc3Lh48SJZtxKm7t+/n3r16rFlyxbCwsKwsJAfNJ8qGmtoOQ7+Ggb/zoSa/cHa+d7bSc80Zytnhtcczithr7Ds3DJ+PvUz19OvM2nPJOYem8ugqoN4seKLWKutS7uqkiRJJSovf5SdHK730Mo5lOObVt8weNNgtl/bzucHP2dMvTGlXa0Hkpqbyj+R/7Dp6iZ2R+1+YnoN+9j60D6oPR0CO1DZpbL8TClJz4gS/Q+2cOHCktxdmSSEIEtbOkmXrTWq+35z7tatGzVq1GDChAnMnz8/3/rz589TpUqVArfNW37+/HkAfH19+eGHHxgwYACxsbGsWbOGI0eOoNFoiqxDx44deeuttwAYPXo0X331Fdu3by8wIBUZGWma1QaMPazyuLu7A+Dq6oqXl5xd66lUvQ/s/g5unoFdX0HbyaVdI+kJYW9hz+Bqg+lbuS9/nP+DhacWEpsZy2f7P+PH4z/yStgr9Arpha2m4F4EkiRJTxKZP6rk1fCowdQmUxm1YxRLzizBz86P/qH9S7taxZKSk8K2yG1surqJvdF7zYJQwY7BhLmFYRAG9EKPEAK90GMQBtNP3mPTb4Mewa1yhlvb3Xp85/Z6g77A/Ra1/8JEZUSx4OQCFpxcQKBDIM8FPcdzgc8R7BT8OJ5CSZJKifwPdp+ytHpCP95YKsc+Pbk9Nhb3/5JNnz6dVq1aMWrUqAc67p1BsJdeeomVK1cybdo05syZQ6VKle65fXh4uNm+vLy8iIuLK7Dsm2++Sffu3Tl8+DDt2rWja9euBc4qIz2llCpoMxGW9oK9c6HeG+CYv2efJBXGRmPDy2Ev06tyL/66+BfzT8wnKiOKrw59xfwT8+kf2p++lfviaOlY2lWVJEl6YDJ/1KPRLrAdo9JH8cWhL5hxYAbett60Dmhd2tUqUFFBqApOFWgX0I52ge3KXEDn7sCVEIJcfS4HYg+w/sp6/r3+LxGpEcw9Npe5x+ZS0bkiHQI78FzQc/jb+5d29SVJKmElFpAaOnQoH330Ef7+936jWLZsGTqdLt+sI9Kj0axZM9q3b8+4ceMYOHCg2bpKlSpx+vTpArc7c+YMABUrVjQty8zM5NChQ6hUKi5cuFCs49/dg0qhUGAwFDwbVocOHbh69Sp///03W7ZsoXXr1gwbNoyZM2cW61jSU6BSewhoDFf/g3+mQdfvS7tG0hPIUmVJz5CedKvYjb8v/838E/OJSI1g9tHZLDq1iN4hvRkQOgBX6+JN3S5JklSW5A3Xs7W8/97zUtFeCXuF6+nXWXZuGWN2jmG+zXzC3cPvveFjkBeE2nh1I/ui9qETdwWhAtvRPqA95Z3Kl2Iti6ZQKFArzD+C2mhsaBvQlrYBbcnQZhjPMWIj/0X9x4WkC1xIusA3R76hmls1ngt8jvaB7fG09SylM5AkqSSVWEDK3d2dqlWr0qhRI1544QXq1KmDj48PVlZWJCUlcfr0aXbt2sVvv/2Gr68vP/74Y0kd+rGy1qg4Pbl9qR37QX322WfUqFEjX4+m3r1707dvX9asWZMvj9QXX3yBq6ur2ewwo0aNQqlUsn79ejp27Mjzzz9Pq1atHrheBXF3d2fgwIEMHDiQpk2b8sEHHzBz5kxTzii9vnSGTEqPiUJhHKo3rzUc+xUaDgPP0NKulfSE0ig1dK3Qlc7lO7P56mZ+PPEjF5IuMP/kfJacWUKPSj0YGDZQNmwlqZhKcC4c6SGkmwJSRTfl5et1/xQKBWPqjSEqPYqdN3by9ra3Wdxxcan1zknKTjL1hNofvd8sCFXJuRLtAtrRNrAt5R3LbhDqfthqbOkc3JnOwZ1JyUlha+RW1l1Zx4GYA5yIP8GJ+BPMPDiTWp616BDYgbaBbXGxcintakuS9IBKLCA1ZcoU3n77bebPn8/cuXM5efKk2Xp7e3vatGnDvHnzaNeuXUkd9rFTKBQPNGyutFWrVo1+/frx7bffmi3v3bs3y5cv55VXXuHzzz+ndevWpKb+P3v3HR5F1TZw+Le7STa9d0ihQ4DQCUV6EwEFUZpSVBABC4J+Cr6K2LCA4vtaAFEBG4hKld5b6KF3DD0hkE56suf7Y83CkgAJJNmU576uucjOnDlzZmZn9/DsKUl8/fXXLF26lIULF+LgYBxz5e+//+aHH34gPDycxo0b8+abbzJ06FAOHTqEm1vRDD79zjvv0KRJE+rWrUtGRgbLly83jWXl7e2NnZ0dq1atonLlytja2uLiIt1uyqXKTaHOo3B8Kax7F5763dIlEmWcTqvj4SoP0zW4K5svbmbWoVkciT3Cz8d/ZsHJBTxW/TGerfesdAcQ4g5yWzunpqZiZyeTBFjSreNH3WtA89TUVCBva3Vxd1ZaK6a2m8qwVcM4Hnec0etG8/MjP5dYd+/49HjWX1jPmnNr2B2922zspVputega3JWuQV0JdgkukfJYiovehcdrPM7jNR7netp11p5fy6rIVeyP2c++q/vYd3UfU3ZPIcwvjIeDH6ZTUCecbcreDKdCVGQaVUw/nSQkJHD+/HnS0tLw9PSkWrVqpbZJcXmc5njYsGEkJCSwePFi07rz589Tq1YtMjIyzH4xy87O5ssvv+THH3/kzJkz6PV6WrZsyX/+8x8eeughAK5du0b9+vV55ZVXmDBhgmm/1q1bExwczIIFC/ItR3BwMGPHjmXs2LGmdQ0bNqR37968++67nDt3jipVqhAREUHDhg354IMP+PXXXzl37hx2dna0adOGL774gipVqgAwe/Zs3nvvPS5fvkybNm3YtGlTnmOW1XsmbnP9DHzdHFQODPsbgh+ydIlEOaKUIjwqnFmHZrHv6j4AdBodj1R5hOH1h5fq7g6i9CroFMel1b3KHxUVRUJCAt7e3tjb25fael15l5KRzaX4VHRaDdW8HPO9D0opUlNTiYmJwdXVFT8/PwuUtOyLSY1h0N+DuJp6laY+TZnZZSY2uuKZ5TkuPc4UhNoTvccsCFXbvbaxJVRQl3IfhCqI6JRoVp9bzcrIlRyNPWpab621pnWl1nQP7k77gPbYW9tbsJRCVGwFrRMVW0CqLCmPAamKTO5ZObJ8HOz9Hio1geHrjd35hChi+67u47tD37H9ynYANGjoEtSFEaEjqO2edzZQIe6kvAeklFJER0eTkJBQ8oUTJvGpmaRk5OCg1+Fmf/fgiKurK76+vhI8fACn4k8xZOUQUrJS6FG1B1MemlJk1zM2LdYYhDq/hr3Re82CUHXc69A12BiECnIOKpLjlUcXki6w6twqVp1bxen4m+Pb2upsaRfQju7B3Xmo8kPodXoLllKIiseiAalDhw7lfzCNBltbWwIDA9HrS8+HggSkyhe5Z+VI8lX4byPISoEn50Ld3pYukSjHjl4/yqxDs9hwcYNpXbvK7RgROoIGXg0sWDJRVpT3gFSunJwcsrKySrBkIldaZjZPzggnLSuH6QMaUr+S6x3TWltbo9Pd//ij4qYdV3YwZt0YslU2z4c+z0uNXrrvvK6nXWf9+X+DUFf3YlA3J/rJDUJ1C+pGgLN0IS+sM/FnWHluJasiV3Eh+YJpvYO1Ax0DOvJwlYdp6d8Sa610YRWiuFk0IKXVau/6y4G1tTX9+/dn5syZpSJgIAGp8kXuWTmz8SPY/Am4V4Uxu0EnlQhRvE7Fn2L24dmsPrfa9B+FML8wRoaOpKlPU2lpIO6oogSkhOX8tf8S434/SJCHPZteay+fRyVo0elFvLPjHQDea/UefWr0KfC+19Ous+78OtacX8O+q/vMglAhHiF0DepK1+CuMo5hEVFKcSzuGKsjV7Py3EqiU6JN21z0LnQO7Ez3Kt1p6tMUnVaCtkIUB4sGpJYsWcIbb7zB66+/TvPmzVFKsWfPHqZNm8akSZPIzs7mzTffpH///kydOrWoD19oEpAqX+SelTMZycZWUinX4JGp0HyEpUskKohzief4/sj3LD+73DSrUUOvhjwf+jwPVXpI/iMo8ijrAZ2yXv6KYNB3O9lxNpZxXWrycqcali5OhfO/iP8x69AsrDRWfN35a1r5t7pj2txBuNecMwahFDf/y1XPo56pO15lp8olUfQKy6AMHLp2iBWRK1hzbg2x6bGmbZ52nnQN6kr3Kt0J9QpFq9FasKRClC8WDUg1b96c999/n27dupmtX716NW+//Ta7d+9m8eLFjB8/nrNnzxb14QtNAlLli9yzcmj3d7DiNXDwgpcPgN7R0iUSFcjlG5f58ciPLDq9iExDJmDsVjEydCQdAjtIBVaYlPWATlkvf3l3KT6Vhz7ZCMC2NzpQ2U0GbC5pSine3PomKyJX4GjtyNzuc6npVtO0PSY1hrXn17L2/Fr2X91vFoSq71nfODB5cBcqOVayRPErvBxDDnuv7mVl5ErWnl9LUmaSaZufgx8PBz/Mw1Uepo57HfnRSYgHZNGAlJ2dHREREdSubT4Y7IkTJ2jUqBFpaWmcO3eOkJAQ03S0liQBqfJF7lk5lJ1pnHEvPhLaT4D2b1q6RKICikmNYe7RuSw8tZC07DQAqrtWZ3j94XQL7oaV9u7Tr4vyr6wHdMp6+cu7/64/zedrT9Gqmge/jmhh6eJUWJk5mTy/9nn2Xd2Hj70PX3b8kgMxB1hzbg0RMRFmQahQz1BTSyh/R38LllrcLisni/CocFZFrmLDxQ2kZKWYtgU5B/Fw8MN0r9Kdaq7VLFhKIcouiwakGjVqRIMGDZg1axY2NsbZP7KyshgxYgQHDx4kIiKC7du38/TTTxMZGVnUhy80CUiVL3LPyqkjf8Efz4CNI7wcAY7eli6RqKDi0+P56dhP/HbiN25k3QAg0CmQ4fWH07NqT6xlnLMKq6wHdMp6+cszpRTtp27ifGwqn/drwOONpZuXJSVmJPL0iqc5l3Quz7ZQr1DjmFBBXfFz9Cv5wolCS89OZ+vlrayKXMWWS1tIz0k3bavhVoPuwd15OPhhGWheiEKwaEBqx44dPProo2i1WkJDQ9FoNBw6dIicnByWL19OixYt+Omnn4iOjub1118v6sMXmgSkyhe5Z+WUUvBdR7iyH5qNgB6WH39OVGxJmUnMPzGfn479REJGAgC+Dr48W+9Z+lTvg62VfP5UNGU9oFPWy1+e7TkXx5MzwnGw0bHnP52xt5EWmZZ2MfkiQ1YO4XradRp6NTS1hPJ18LV00cQDSMlKYdPFTayKXMW2K9vINmSbtoX5hTG+yXjqeNSxXAGFKCMsGpACuHHjBj///DOnTp1CKUXt2rUZNGgQTk5OxXG4ByIBqfJF7lk5FrkV5vYErZVxxj0PaUYtLC81K5WFpxYy5+gcrqddB8DD1oNhdYfRr1Y/7K1lnJeKoqwHdMp6+cuzN/44xIK9F+nXtDKfPtHA0sUR/0rOTCYjJwNPO09LF0UUg8SMRDZc2MDKyJXsit6FQRnQoKFXtV683OhlfBx8LF1EIUqtgtYpinQk1meffZbk5GQAHB0deeGFF/j888/54osvGDlyZKkMRgkhypAqbaBGVzBkw4b3LV0aIQCwt7ZnaN2hrOq7iv+E/Qc/Bz9i02OZtm8aXf/sysyDM80GThWioL755hvTjytNmjRh69atd0y7bds2WrdujYeHB3Z2dtSuXZsvvviiBEsriktqZjZ/H44C4Ikm0mWoNHGycZJgVDnmonehT40+zOo6ixWPr6B7le4oFEvPLqXnop58FfEVqVmWHw9ZiLKsSFtI6XQ6oqKi8PYuW2O7SAup8kXuWTkXfQRmPAQoGLEBKjWxdImEMJNlyGL52eV8f+R7ziedB8BKa0Vlx8oEOAUQ6Bxo/NcpkEDnQPwd/bHWyrhT5UFRtjBasGABgwcP5ptvvqF169bMnDmT2bNnc+zYMQIDA/Okj4iI4MSJE4SGhuLg4MC2bdsYOXIkX3zxBc8//3yJl18UnT/3XWL8woMEutuz+fX2MvuXEBZ0+Nphpu6dyv6Y/YCxRfSLjV6kT/U+6LQ6C5dOiNLDIi2kiqn3n7hPMTExjBw5ksDAQPR6Pb6+vnTr1o3w8HDAWHnt2bMn3t7e2NraEhwcTP/+/bl+3djl5Ny5c2g0GtPi5uZG27Zt2bx5s+kYW7ZsoVevXvj7+6PRaFi8eHGecvz1119069YNT09PNBoNBw4cyJPm7Nmz9OnTBy8vL5ydnenXrx9Xr14tlusiyjjfetBgoPHvtZOMY0sJUYpYa63pU6MPSx5bwqdtP6W6a3WyDdmcSzrH1stb+eX4L3y8+2NGrx9Nz0U9afZzM7r/2Z2Ra0fywc4PmHd0HpsvbuafxH/IzMm09OkIC/n888957rnnGD58OHXq1GH69OkEBATw7bff5pu+UaNGDBw4kLp16xIcHMzTTz9Nt27d7tqqSpQNv+wyBrb7NwuQYJQQFlbfqz5zHp7D9PbTCXQKJDY9lsnhk3li2RNsu7zN0sUToswp8hER5Yuy9Ojbty9ZWVnMnTuXqlWrcvXqVdavX09cXBwxMTF07tyZXr16sXr1alxdXYmMjGTp0qWkppo3PV23bh1169YlJiaGiRMn8sgjj3DkyBGqVKlCSkoKDRo04JlnnqFv3775liMlJYXWrVvz5JNPMmLEiHy3d+3alQYNGrBhwwYA3n77bXr16sXOnTvRaos0birKgw4T4cifcG4rnFkHNbpYukRC5KHT6uhexTgzT3RKNBeSL3Ah+QIXky5yPuk8F29c5GLSRdJz0rl04xKXblzKk4cGDX4OfgQ4/9uiyinQ9Hdlp8rYWdlZ4MxEccvMzGTfvn28+eabZuu7du3Kjh07CpRHREQEO3bs4IMPPiiOIooScjwqif0XErDSaniyqcysJ0RpoNFo6BTUibaV27Lg5AK+PfgtZxLOMGrdKFr5t2J80/HUdKtp6WIKUSYUeUCqZs2a9wxKxcXFFfVhxW0SEhLYtm0bmzZtol27dgAEBQXRvHlzABYvXkxSUhKzZ8/Gysr4NqhSpQodO3bMk5eHhwe+vr74+voyc+ZMKleuzJo1axg5ciTdu3ene/fudy3L4MGDAWOLq/xs376dc+fOERERYWrO9+OPP+Lu7s6GDRvo3LnzfV0DUY65BkDY87Djf8ZWUtU6gjSTFqWURqPBz9EPP0c/wvzCzLYppbiWdo3zSee5lHzJGLRKumD6NzU7lSspV7iScoVdUbvy5O1t723q+hfoFGjWJdDB2qGkTlEUsevXr5OTk4OPj/mAuT4+PkRHR99138qVK3Pt2jWys7N59913GT58+B3TZmRkkJGRYXqdlCRjnZU2v+66AEC3ur54O8kwBEKUJtY6a54OeZpe1Xox69Asfj3xKzuu7GDnsp30qd6HFxu9KGOMCXEPRR6Qmjx5Mi4uLkWdrSgkR0dHHB0dWbx4MS1atECv15tt9/X1JTs7m0WLFvHEE08UuGWbvb1xtqisrKwiK2tGRgYajcasjLa2tmi1WrZt2yYBKZG/h8bB/nkQcxQOLYCGgyxdIiEKTaPR4G3vjbe9N818m5ltU0oRmx7LxeR/W1QlG1tU5ba0Ss5MJiY1hpjUGPZe3Zsnbw9bD1OgyhSw+rd1lZONTDJSFtz+3ayUuuf39datW7lx4wY7d+7kzTffpHr16gwcODDftFOmTGHy5MlFVl5RtFIyslkUcRmAQWF5xw0TQpQOLnoXXm/2OgNqDeCL/V+w9vxa/jz9JysiV/BsvWcZEjJEZtwV4g6KPCA1YMCAMjeoeaEoBZaaTcHaHgoYOLKysmLOnDmMGDGCGTNm0LhxY9q1a8eAAQMIDQ2lRYsWTJw4kUGDBvHCCy/QvHlzOnbsyJAhQ/L8IpsrJSWFCRMmoNPpTK2uikKLFi1wcHDgjTfe4KOPPkIpxRtvvIHBYCAqKqrIjiPKGXt3aDMe1r4DGz6Euo+Dtfx6LMoPjUaDp50nnnaeNPJulGd7QnqCKTh1IekCF5Mvmv5OyEggNj2W2PRYImIi8uzrpne72Q3w32BVkHMQVV2qSqW5FPD09ESn0+VpDRUTE3PH7+hcVapUAaB+/fpcvXqVd999944BqQkTJjBu3DjT66SkJAICZBa30mLpwSvcyMimiqcDLat6WLo4Qoh7CHAO4PP2n3Mg5gCf7f2MQ9cO8fWBr1l4ciEvNX6JXlV7ycDnQtymSANSFWL8qKxU+MjfMseeeAVsCt4Fo2/fvvTo0YOtW7cSHh7OqlWr+PTTT5k9ezbDhg3jww8/ZNy4cWzYsIGdO3cyY8YMPvroI7Zs2UL9+vVN+bRq1QqtVktqaip+fn7MmTPHbPuD8vLyYuHChYwaNYr//ve/aLVaBg4cSOPGjdHp5ENb3EXz52HXTEi6BLtnQeuXLV0iIUqMq60rrrauhHqF5tmWmJGYpwvgxeSLXEi6QGx6LPEZ8cRfi+fQtUNm+2nQUMmxEtXdqlPDtQbVXatT3a06VZyrYK2TmQBLio2NDU2aNGHt2rX06dPHtH7t2rU89thjBc5HKWXWJe92er0+TwtqUXrkDmY+qHkgWm0FqGMLUU409G7Iz91/ZvW51UzfP53LNy7z9va3+eX4L4xvOp4Wfi0sXUQhSo0iDUjJLHulj62tLV26dKFLly688847DB8+nEmTJjFs2DDAOD7Uk08+yZNPPsmUKVNo1KgRU6dOZe7cuaY8FixYQEhICK6urnh4FM8vdF27duXs2bNcv34dKysrXF1d8fX1Nf3SK0S+rO2gw1uwZDRsnQaNB4Odm6VLJYTFuehdcNG7UNezbp5tKVkpZi2qcgNV/yT+Q1x6nGmA9U0XN5n2sdJYEewSbAxQuVanhlsNarjWoJJTJbQamXiiOIwbN47BgwfTtGlTWrZsyaxZs7hw4QIvvPACYGzddPnyZebNmwfA119/TWBgILVr1wZg27ZtTJ06lZdeesli5yDu36FLCRy5nISNTkvfJjKYuRBljUaj4eEqD9MhsAO/Hv+V7w59x4m4E4xYM4K2ldsyvsl4qrpWtXQxhbC4Ig1IGQyGosyudLK2N7ZUstSxH1BISAiLFy/Od5uNjQ3VqlUjJSXFbH1AQADVqlV74GMXhKenceC/DRs2EBMTw6OPPloixxVlWIMBEP4VxByDrZ9D1/ctXSIhSjUHawfqeNShjkedPNvi0uM4E3+G0wmnOR1/mrMJZzmTcIYbWTc4k3CGMwlnzNLbWdlR1aUqNdyMralquNagult1vOy8Kkar6WLUv39/YmNjee+994iKiqJevXqsWLGCoKAgAKKiorhw4YIpvcFgYMKECURGRmJlZUW1atX4+OOPGTlypKVOQTyAX3Ya7+0j9X1xd7CxcGmEEPdLr9PzTL1n6F29NzMOzuD3k7+z5dIWtl/ezhM1n2BUg1F42EmXXFFxFfkYUuWeRlOobnOWEhsby5NPPsmzzz5LaGgoTk5O7N27l08//ZTHHnuM5cuXM3/+fAYMGEDNmjVRSrFs2TJWrFjBjz/+WODj3LhxgzNnbv4HJTIykgMHDuDu7k5goHEAzri4OC5cuMCVK8ZA3smTJwFMM/eBcVa9OnXq4OXlRXh4OK+88gqvvvoqtWrVKqpLIsorrQ46vwu/9jN23wsbCS7ya7IQ98Pd1p3mfs1p7tfctE4pRXRKNKcTThuDUvHGwNTZhLOkZadxNPYoR2OPmuXjone52Zrq3yBVddfquOhl0pPCGD16NKNHj85325w5c8xev/TSS9IaqpxITMti6UFjnempFkEWLo0Qoii42boxIWwCA2sP5PN9n7Px4kYWnFzA8n+WM7z+cJ6u8zS2VjIWqqh4Sn1AasuWLXz22Wfs27ePqKgoFi1aRO/evU3blVJMnjyZWbNmER8fT1hYGF9//TV16+btplCRODo6EhYWxhdffMHZs2fJysoiICCAESNGMHHiRKKiorC3t2f8+PFcvHgRvV5PjRo1mD17NoMHDy7wcfbu3UuHDh1Mr3MHRx06dKipsrx06VKeeeYZU5oBAwYAMGnSJN59913AGKSaMGECcXFxBAcH89Zbb/Hqq68+4FUQFUaNrhD0EJzfBhs/gt7fWLpEQpQbGo0GP0c//Bz9aFu5rWl9tiGbS8mXOJNws0XVmYQzXEi6QGJGIvuu7mPf1X1meXnbeZuCU9Vdq1PTrSZVXKrIQOpC3OKv/ZdIy8qhhrcjTYOkG7oQ5UmwSzD/7fhf9kTvYereqRyLPcaX+7/k95O/83Ljl3mkyiPSFV5UKBpVygd+WrlyJdu3b6dx48b07ds3T0Dqk08+4cMPP2TOnDnUrFmTDz74gC1btnDy5EmcnAo2rXVSUhIuLi4kJibi7Oxsti09PZ3IyEiqVKmCra1ErcsCuWcV1KW9MLsToIFR28GnYgelhbCUjJwMziWe41T8KVM3vzPxZ7iSkn93dw0aKjtVNgtSVXetTpBLENbasjWQ+t3qE2VBWS9/eZCdY6DDtE1cjEvj/d71GCwtpIQotwzKwN///M1/I/5LdIpxVtW6HnV5vdnrNPFpYuHSCfFgClqnKPUBqVtpNBqzgJRSCn9/f8aOHcsbb7wBQEZGBj4+PnzyyScFHjdBAlLli9yzCuz3IXBsibHF1FMLLV0aIcQtbmTeHIfqTMIZU4uquPS4fNNbaa0Idg6mhmsN0xhVtd1r4+vgW2rHpyrrAZ2yXv7y4O9DUYz5dT9u9tbseLMTdjYy27AQ5V16djo/HfuJ2Ydnk5qdCkCnwE682uRVgpwlKC3KpoLWKUp9l727iYyMJDo6mq5du5rW6fV62rVrx44dO2QgTyEqmk6T4MTfcHoNRG6FKm0sXSIhxL8cbRxp6N2Qht4NzdbHpsWaBahyl5SsFNPfK8+tNKX3tvemkXcjGnk3oqF3Q2q51cJKW6arM0IAxh9aZ239B4DBLYMlGCVEBWFrZcuI0BH0qdGHbw98yx+n/2D9hfVsvriZ/rX780LoC7jaulq6mEIUizJdg4uONjZt9PHxMVvv4+PD+fPn77hfRkYGGRkZptdJSUnFU0AhRMnyqAZNhsGe2bD2HRixwTgRgRCi1PKw88DDzoMwvzDTOqUUUSlRZq2pcmf9i0mNYfW51aw+txowzvQX6hVqDFJ5NSLUKxRHG0dLnY4Q923v+XgOXkzAxkrLkJbSKkKIisbTzpO3W77NoDqDmLZ3Glsvb+WX47+w9OxSRoaOZGDtgdjoZNZNUb6U6YBUrtub7iul7tqcf8qUKUyePLm4iyWEsIR2b8CB3+DKflg9Edq+Dvbuli6VEKIQNBoN/o7++Dv6mw2knpadxpHrR4iIiSAiJoKDMQdJzkpmV9QudkXtAkCr0VLTrSYNvRqaWlL5OfpZ6lSEKLDvthhbR/VtXAlPR72FSyOEsJRqrtX4pvM3hF8JZ9reaZyMP8nUvVP57cRvjG0ylm5B3Upt13UhCqtMB6R8fX0BY0spP7+blc2YmJg8raZuNWHCBNNscGBsIRUQEFB8BRVClBxHb2j7GqyfDDu/gf3zoPnz0PJFcPCwdOmEEA/AzsqOZr7NaObbDDAOCHs24awpQBURE8HlG5c5EXeCE3EnmH9yPgA+9j409m5MQ29jkKqGWw3p5idKlcjrKaw9fhWA5x6qauHSCCFKg5b+LVnQcwFLzy7lfxH/4/KNy7y++XV+9vqZ15q+lqcLvBBlUZmujVWpUgVfX1/Wrl1Lo0aNAMjMzGTz5s188sknd9xPr9ej18svT0KUWw+9Cp41YPMnEH0Ytn0Ou2ZC8+HQ6mVw8LR0CYUQRUCr0VLDzTjoeb9a/QCISY0hIiaCAzEHiIiJ4ETcCa6mXmXluZWmsajsrexN3fwaejekgVcDHKwdLHkqooL7fts/KAWdantT3Vu6nAohjHRaHX1q9KFbcDfmHp3Lj0d/5OC1gwxeOZhuwd0Y23gslZ0qW7qYQty3Uh+QunHjBmfOnDG9joyM5MCBA7i7uxMYGMjYsWP56KOPqFGjBjVq1OCjjz7C3t6eQYMGWbDUQgiL0migTi+o3RNOroBNH0P0Idj+Jez+Dpo+C61fMbamEkKUK9723nQL7ka34G4ApGalmnfzu3aQG1k32Bm1k51RO4Gb3fxyu/g18m6Er4OvJU9DVCBxKZks3HsJgBFtpXWUECIve2t7RjUcxRM1n+CrA1+x6PQiVp9bzYYLG3iqzlMMrz8cF72LpYspRKFplFLK0oW4m02bNtGhQ4c864cOHcqcOXNQSjF58mRmzpxJfHw8YWFhfP3119SrV6/Ax7jblITp6elERkZSpUoVbG1tH/h8RPGTeybyUApOrTK2mLoSYVxnZQdNnzEGppzkP55CVBQ5hhzOJJzhQMwB9sfs50DMAa6kXMmTzs/Bz9TFr5F3I2q41kCnvfusZwWd4ri0KuvlL6u+WHuKL9efpn4lF5a+2FrGhhFC3NPJuJNM2zuN8KhwAFz0LoxqMIp+NfthrbO2cOmEKHidotQHpEqCBKTKF7ln4o6UgjPrjC2mLu81rrOyNc7M13osOMvAx0JURFdTrhJx7WY3v5NxJ8lROWZpHKwdCPUMpZGPMUAV6hmKvbW9WZqyHtAp6+UvixLTsnjokw0kp2fz9aDG9AiV7yEhRMEopdh+ZTvT9k7jTIKxR5GTtROtK7WmbeW2tKnUBldbV8sWUlRYEpAqBAlIlS9yz8Q9KQVn18OmT+DSbuM6nR4aDzGOP+VSybLlE0JYVGpWKoevHza1oDp47SApWSlmaXQa3c1ufj6NaOTVCLscuzId0JGAVMmbvu4U09edppaPEytfaYNWK62jhBCFk23IZtGZRcw4MIOYtBjTeq1GS0OvhrSt3JZ2ldtRzbWatMAUJaagdQptCZZJlLCYmBhGjhxJYGAger0eX19funXrRni4sWlnREQEPXv2xNvbG1tbW4KDg+nfvz/Xr18H4Ny5c2g0GtPi5uZG27Zt2bx5s+kYU6ZMoVmzZjg5OeHt7U3v3r05efLkHcs0cuRINBoN06dPN1vfvn17s2NpNBoGDBhQ9BdFCDCOMVW9Mzy3BgYvhsCWkJMBe76D/zaE5eMg4aKlSymEsBB7a3vC/MIY1WAUM7vMZPuA7SzstZCJYRPpXqU7vg6+5Kgcjscd59cTv/L65tfp/EdnHl/yuKWLLsqQxLQsvt8WCcArnWtIMEoIcV+stFY8WfNJ1jyxhp8f+ZkR9UdQ060mBmVgf8x+pu+fTp+lfej+V3em7JrCjss7yMzJtHSxhQDKwKDm4v717duXrKws5s6dS9WqVbl69Srr168nLi6OmJgYOnfuTK9evVi9ejWurq5ERkaydOlSUlNTzfJZt24ddevWJSYmhokTJ/LII49w5MgRqlSpwubNmxkzZgzNmjUjOzubt956i65du3Ls2DEcHMxnLFq8eDG7du3C398/3/KOGDGC9957z/Tazs6u6C+KELfSaKBaB6jaHiK3GMeYOr8d9n4P++dBo6ehzThwDbR0SYUQFqTT6qjtXpva7rUZWHsgANEp0aaB0g/EHOBk/Ml8x6IS4k5+2BZJcno2tXyceLiujGUohHgwOq2OBl4NaODVgJcbv0zUjSg2X9rM5kub2R21m8s3LvPriV/59cSv2FvZ08q/lbFrX+U2eNrJDNTCMqTLHuWzy15CQgJubm5s2rSJdu3a5dm+ePFinnzySdLS0rCyyj8uee7cOapUqUJERAQNGzYE4PLly1SuXJkZM2YwcuTIPPtcu3YNb29vNm/eTNu2bU3rL1++TFhYGKtXr6ZHjx6MHTuWsWPHmra3b9+ehg0b5mk5dT/K6j0TpcS5bcYxps5tNb7WWkHDQdBmPLgFW7RoQojSKyUrhfB/wulSu0uZ7fImXfZKzq1jR33zVGMeqS9jRwkhik9qVio7o3ay5dIWtlzawrW0a2bb63vWp23ltrQPaE8tt1rStU88sILWKaSFVCEppUjLTrPIse2s7Ar84eDo6IijoyOLFy+mRYsW6PV6s+2+vr5kZ2ezaNEinnjiiQLna29vHMA1Kysr3+2JiYkAuLu7m9YZDAYGDx7M66+/Tt26de+Y9y+//MLPP/+Mj48P3bt3Z9KkSTg5ORWoXEIUmeCHYNhyOL/DGJiK3GxsLXXgV2gwwBiYcpdpuYUQ5hysHWju19zSxRBlhLSOEkKUJHtrezoGdqRjYEcMysDxuONsvmhsPXUs9hiHrx/m8PXDfH3ga7ztvWlXuR3tA9rT3Lc5tlbyA78oPhKQKqS07DTCfg2zyLF3DdqVZ0afO7GysmLOnDmMGDGCGTNm0LhxY9q1a8eAAQMIDQ2lRYsWTJw4kUGDBvHCCy/QvHlzOnbsyJAhQ/Dx8ck3z5SUFCZMmIBOp8u31ZVSinHjxvHQQw9Rr1490/pPPvkEKysrXn755TuW96mnnqJKlSr4+vpy5MgRJkyYwMGDB1m7dm2BzleIIhfUCoYuhQs7jYGpfzZCxM9w4DcI7Q9tXwOPapYupRBCiDImMS2LH7bL2FFCCMvQarTU9ahLXY+6jG44mpjUGLZe2sqmS5vYeWUnMakxLDy1kIWnFmKrs6WFXwvaBrSlbaW2+Djk//9EIe6XdNmjcF32UrNSy0RAKld6ejpbt24lPDycVatWsXv3bmbPns2wYcMAiI2NZcOGDezcuZPFixcTFxfHli1bqF+/vqnLnp2dHVqtltTUVPz8/Pjkk094+umn8xxrzJgx/P3332zbto3KlSsDsG/fPnr06MH+/ftNY0cFBwfn6bJ3u3379tG0aVP27dtH48aNC33O0mVPFLmLu41jTJ1ZZ3yt0UL9fsbAlGcNy5ZNCFEqlPUub2W9/GXF1NUn+WrjGZlZTwhR6qRnp7Mneo9p7KnolGiz7XXc65i69oV4hKDVyBxpIn8FrVNIQIrCBaTKSpe9Oxk+fDhr167l/PnzebZlZmbSqFEjmjZtyty5c00BqaVLlxISEoKrqyseHh755vvSSy+xePFitmzZQpUqVUzrp0+fzrhx49Bqb35Y5eTkoNVqCQgI4Ny5c/nmp5RCr9fz008/0b9//0KdowSkRLG6tM8YmDq92vhao4V6faHt6+BVy7JlE0JYVFkP6JT18pcFF2JT6fzFZjKzDcx4ugkP15PuekKI0kkpxan4U2y5tIXNlzZz6NohFDdDBx62HrSt3JZ2ldvR0r9loRtOWEqOIYf4jHiup103W2LTYolNiyUuIw47Kzvc9G646l1xtXU1/e1me/NfJxsnCcjdhYwhVUw0Gk2ZedjyExISwuLFi/PdZmNjQ7Vq1UhJSTFbHxAQQLVq+XdNUkrx0ksvsWjRIjZt2mQWjAIYPHgwnTt3NlvXrVs3Bg8ezDPPPHPHch49epSsrCz8/GSQT1HKVG4CT/0OVyJg86dwcgUcXgiH/4B6jxsDU951LF1KIYQQpdB7y4+RmW3goeqedKsrXV+EEKWXRqOhlnstarnXYkToCGLTYtl6eStbLm1hx5UdxKbHsujMIhadWYS11prmvs2NAaqAdlRyrFSiZVVKkZSZRGy6MaiUX7Ap9+/4jHgMyvDAx9RqtMaA1b9LbrDK3dYdF73LzeCV3s0U1HKwdpAB428jAalyKjY2lieffJJnn32W0NBQnJyc2Lt3L59++imPPfYYy5cvZ/78+QwYMICaNWuilGLZsmWsWLGCH3/8scDHGTNmDL/++itLlizBycmJ6Ghjs04XFxfs7Ozw8PDI06rK2toaX19fatUytiY5e/Ysv/zyC4888gienp4cO3aM8ePH06hRI1q3bl10F0WIouTfCAb+BlEHjYGpE8vhyJ9w5C8IeQza/R/43HkQfyGEEBXLxhMxrDt+FSuthncfDZH/lAghyhQPOw96V+9N7+q9ycrJYl/MPjZf3Mymi5u4dOMS269sZ/uV7UzZPYXqrtVNA6PX96yPTqu7r2OmZ6fnDSql5x9oyjLkP+lWfjRocLd1x9POEw87DzztPE2Lq96V9Jx0EjMSiU+PJz49noSMBBIyEohLjyM+PZ7U7FQMykBcehxx6XEFPq6V1sosQHV7qysXvUue7UXRS6o0k4BUOeXo6EhYWBhffPEFZ8+eJSsri4CAAEaMGMHEiROJiorC3t6e8ePHc/HiRfR6PTVq1GD27NkMHjy4wMf59ttvAWjfvr3Z+h9//NE0TtW92NjYsH79er788ktu3LhBQEAAPXr0YNKkSeh09/fhJUSJ8WsAA36B6MPGwNTxpXBssXGp86gxMOVb39KlFEIIYUEZ2TlMXnYUgGcfqkJ1b5lFWAhRdlnrrGnh14IWfi34v2b/R2RiJJsvGYNTB64d4EzCGc4knOH7I9/jqnelTaU2tAtoRyv/VthZ2RGXHpcnqBSbHptn3Y2sG4Uql5ONEx62HnjZe+Fpaww23R5w8rD1wM3WDSvt/YdCMnMySchIMAasMowBq8T0ROIzzANYuX/Hp8eTnpNOtiGba2nXuJZ2rcDH0uv05oErvRvudu7U86xHC78WeNp53vd5lAYyhhSFG0NKlH5yz4RFXT1qDEwdWwK5/exr9zQGpvwaWLRoQojiVdbHYCrr5S/Nvt54hs9Wn8TbSc/68e1wsrW2dJGEEKJYJGYksu3yNjZf2sy2y9tIzkw2bdNqtCilzMaiuhe9Tn+zJdO/QSYvOy9ToOnW13qdvjhOqUikZaflaXUVnxFPYkYicelxxm0Z8SSk3wx0FaTVV023mrTwa0FL/5Y09m5caoYXkkHNC0ECUuWL3DNRKsQchy2fGbvw5X7p1nrEGJjyb2TRogkhikdZD+iU9fKXVlcS0ug0bTNpWTlM79+Q3o1KdmwVIYSwlCxDFgdiDpgGRo9MjASMgSkP2/xbL3nae+Jp62kKNjlaO5brLmt3kjuZ2q2trnL/jU6JZk/0Ho7HHTfbx1prTUPvhrT0a0kLvxaEeITcd3fJByUBqUKQgFT5IvdMlCrXTv4bmPoTcgdQrNEN2r8BlZpYtmxCiCJV1AGdb775hs8++4yoqCjq1q3L9OnTadOmTb5p//rrL7799lsOHDhARkYGdevW5d1336Vbt24WK78weuGnfaw6Gk3zYHcWjGxRIf9jJYQQAFdTrmKltcJV72qxQEl5Epcex+6o3YRHhRN+JZyolCiz7c42zoT5hRlbUPm1JMA5oMTKJgGpQpCAVPki90yUStdPGwNThxfeDExV7wyNh0KNLmBtZ9nyCSEeWFEGdBYsWMDgwYP55ptvaN26NTNnzmT27NkcO3aMwMDAPOnHjh2Lv78/HTp0wNXVlR9//JGpU6eya9cuGjUqWKtMCUgVvb8PRTHm1/1YaTUse+kh6vjJdRVCCFH0lFJcSL5A+BVjcGpP9B6Ss5LN0lRyrGTq3hfmG4arrWuxlUcCUoUgAanyRe6ZKNWun4Gt0+DQAlA5xnU2jlCrO9TtA9U6gbW8b4Uoi4oyoBMWFkbjxo1Nk4cA1KlTh969ezNlypQC5VG3bl369+/PO++8U6D0EpAqWnEpmXT5fDOxKZm83KkG47rUtHSRhBBCVBDZhmyOxh5l55WdhEeFc/DaQbIN2abtGjTU8ahjClA18m5UpGNwFbROIbPsCSFESfKsDn2+hbavwb4f4egSSLxgbDl1eCHonY1jTdXtA9U6gpWNpUsshChhmZmZ7Nu3jzfffNNsfdeuXdmxY0eB8jAYDCQnJ+Pu7l4cRRQFMHnZUWJTMqnl48SLHapbujhCCCEqECutFQ28GtDAqwEjG4wkNSuVvVf3En4lnJ1ROzmTcIZjscc4FnuMH478gF6np7F3Y1r4G7v31XKvhVajLf5yFvsRhBBC5OVRDbp+AF3eh8v7jIOfH10EyVfg0HzjYutinKGv7uNQtR3oZFYmISqC69evk5OTg4+Pj9l6Hx8foqOjC5THtGnTSElJoV+/fndMk5GRQUZGhul1UlLS/RVY5LH22FWWHLiCVgOfPhGKjVXxV+qFEEKIO7G3tqdt5ba0rdwWgGup19gZtZOdUTsJvxLOtbRrxrGoosL5gi9w07sR5hdGS/+WtPRriZ+jX7GUSwJSQghhSRoNVG5qXLp+AJd2G4NTxxbDjatw4BfjYucGdXoZg1PBbUAnH99ClHe3D36tlCrQgNi//fYb7777LkuWLMHb2/uO6aZMmcLkyZMfuJzCXGJqFm8tOgzA822r0SDA1bIFEkIIIW7jZe9Fr2q96FWtF0op/kn8x9R6ak/0HuIz4ll1bhWrzq0CIMg5yNS9r5lvM5xtiqZrv/yPRgghSgutFgJbGJeHp8CF8H+DU0sg9Trsn2dc7D0h5FFjcCqoFcgsJUKUK56enuh0ujytoWJiYvK0mrrdggULeO6551i4cCGdO3e+a9oJEyYwbtw40+ukpCQCAkpuBp6ySinFxbg09pyLY+/5ePadj+NyfJppe7ZBkZFtoKqXA2M717BgSYUQQoh702g0VHOtRjXXajwd8jRZhiwOXztsmr3vyPUjnE86z/mk8yw4uQCtRks9z3q09GtJC78WNPBqgPV99uSQQc2RQc3LG7lnotzJyYbz2+HoX3BsKaTF3dzm6AMhjxnHnApoYQxqCSEsoqgHNW/SpAnffPONaV1ISAiPPfbYHQc1/+2333j22Wf57bff6N27d6GPKYOa39u209f54O9jnIhOvms6G52W354Po0mQjOElhBCibEvOTGZP9B5TC6pzSefMtttZ2dHMt5mxBZVfS6q5ViM5OVkGNRdCiHJBZ2UcQ6pqO3hkKkRuMY43dXyZsVvf7lnGxckPQnpDvcehUlMJTglRho0bN47BgwfTtGlTWrZsyaxZs7hw4QIvvPACYGzddPnyZebNmwcYg1FDhgzhyy+/pEWLFqbWVXZ2dri4uFjsPApLKUWOQWGlK12fX+djU/jg7+OsPXYVAGudhvqVXGga7E7TIDdq+Dihu6U7pbOdFa72MimFEEKIss/JxomOgR3pGNgRgKgbUcaxp6LC2RW1i7j0OLZc2sKWS1sA8LLzopFzowLlXbq+7UWRiomJYeTIkQQGBqLX6/H19aVbt26Eh4cDEBERQc+ePfH29sbW1pbg4GD69+/P9evXATh37hwajca0uLm50bZtWzZv3mw6xrfffktoaCjOzs44OzvTsmVLVq5caVaOW/O4dfnss89MaTIyMnjppZfw9PTEwcGBRx99lEuXLpXAVRKijNFZQ/VO8NhX8NppeOoPaDAI9C6QHAW7voXvu8D0+rD6Lbi0D6QhrBBlTv/+/Zk+fTrvvfceDRs2ZMuWLaxYsYKgoCAAoqKiuHDhgin9zJkzyc7OZsyYMfj5+ZmWV155xVKnUChKKVYcjqLjtM00em8tn646QeyNjHvvWMxSM7P5dNUJuny+hbXHrqLTanimdTB73+rCX6NbM/GROnSt60sVTwcCPexNiwSjhBBClFd+jn70qdGHT9t+ysZ+G1nYayHjmoyjlX8r9Do919KusfLcyntnhHTZA8pvl702bdqQlZXFlClTqFq1KlevXmX9+vWEhobSrFkz6tSpQ69evXjllVdwdXUlMjKSpUuXMm7cOAIDAzl37hxVqlRh3bp11K1bl5iYGCZOnMjGjRs5cuQIVapUYdmyZeh0OqpXN05nPHfuXD777DMiIiKoW7cuQJ4xMFauXMlzzz3HmTNnqFq1KgCjRo1i2bJlzJkzBw8PD8aPH09cXBz79u1Dpyvc+Dhl+Z4Jcd+yM+DsBuOYUydXQOaNm9tcg4xd+ur2Ab8GxoHUhRBFrqx3ebNU+feci+OjFceJuJBgtt7WWsvA5oE837Yqfi52JVYeMAbIVh6J5v3lx4hKTAegTQ1P3ukZQg0fpxItixBCCFFWZORkcCDmABtPbWRC+wn3rFNIQIryGZBKSEjAzc2NTZs20a5duzzbFy9ezJNPPklaWhpWVvn33MwNSEVERNCwYUMALl++TOXKlZkxYwYjR47Mdz93d3c+++wznnvuuXy39+7dm+TkZNavXw9AYmIiXl5e/PTTT/Tv3x+AK1euEBAQwIoVK+jWrVuhzr2s3jMhikxWGpxZZwxOnVoFWak3t7lXNQ6GXrcP+NSV4JQQRUgCUoVz5HIi09edYt3xGADsrHU837YqtX2dmLH5LAcvJQJgY6VlfJeaDG9TFZ22+D+zzsTcYPKyo2w9bWwxXtnNjnd6htAlxKdAsxwKIYQQFV1B6xQyhlQhKaVQaWn3TlgMNHZ2Ba4IOTo64ujoyOLFi2nRogV6vd5su6+vL9nZ2SxatIgnnniiwPna29sDkJWVlWdbTk4OCxcuJCUlhZYtW+a7/9WrV/n777+ZO3euad2+ffvIysqia9eupnX+/v7Uq1ePHTt2FDogJUSFZ20HdXoZl8xUOL3aOObUqTUQ9w9snWpcPGvebDnlXcfSpRZCVBBHryTy5brTrPl3PCatBvo3C+TVzjXwdjb+kPRwPV+2n4nlvxtOszsyjikrT7D6aDRTn2xAVS/HIi9TXEomKw5HsfTAFXafM04cYWOl5YV21Rjdvhq21jKbqRBCCFHUJCBVSCotjZONm1jk2LX270Pzb0DoXqysrJgzZw4jRoxgxowZNG7cmHbt2jFgwABCQ0Np0aIFEydOZNCgQbzwwgs0b96cjh07MmTIkDtOKZ2SksKECRPQ6XRmra4OHz5My5YtSU9Px9HRkUWLFhESEpJvHnPnzsXJyYnHH3/ctC46OhobGxvc3NzM0vr4+OTp7ieEKCQb+5tBp4wbxhZTRxfB6bVw/RRs/sS4eNUxDoZetw94yjTlQoiil5CayVuLj/D3oSjA2EDz0Qb+vNSxBtW9zYNMGo2Gh2p40rq6Bwv3XuK95cfYfyGBR/67lZc61qCalwPWOq1p0Wk16LSg1WhQQExSOlGJxiUmKZ1sgzLlC5BjMJCZrcjKMZCamU3EhQRTGoDOdbz5T48Qgj0dSubiCCGEEBWQBKTKsb59+9KjRw+2bt1KeHg4q1at4tNPP2X27NkMGzaMDz/8kHHjxrFhwwZ27tzJjBkz+Oijj9iyZQv169c35dOqVSu0Wi2pqan4+fkxZ84cs+21atXiwIEDJCQk8OeffzJ06FA2b96cb1Dqhx9+4KmnnipQVzqllDSNF6Io6R2h/hPGJT0JTq40BqfOrINrx2Hjh8bFpz7U7W0MTnlUs3SphRDlwKFLCYz6eT+XE9LQaKBXqD8vd6pOde+7j8ek0Wjo1yyA1jU8eeOPQ2w7c53PVp8sljLWq+TMow386Rnqj79ryY5ZJYQQQlREMoYUhRtDqqx02buT4cOHs3btWs6fP59nW2ZmJo0aNaJp06bMnTvXNIbU0qVLCQkJwdXVFQ8Pj3seo3PnzlSrVo2ZM2eard+6dStt27blwIEDNGjQwLR+w4YNdOrUibi4OLNWUg0aNKB3795Mnjy5UOcoY0gJUUhpCcaB0I/8Bf9sBEP2zW0+9aFSI/CuCz4h4FMP7N0tVlQhSjMZQyovpRQ/77rA+8uOkZljIMjDnq8HNaZeJZf7ymv+nossP3SFjCwDWTkGMnOMrZwMBkW2QZHzbysnb2c9fi62+LnY4eOsx1qnNU04qgBrneaWFlYa6lVyoVoxdAUUQgghKiIZQ6qYaDSaAnebK41CQkJYvHhxvttsbGyoVq0aKSkpZusDAgKoVq3grSSUUmRk5J2q+fvvv6dJkyZmwSiAJk2aYG1tzdq1a+nXrx9gnM76yJEjfPrppwU+rhDiPtm5QsNBxiU1Dk4sN7ac+mczXD1sXG7l6GsMTnmHGAdG96kLnrXAWgLAQoibIq+n8PnaUyw7eAWAriE+TO3XAGdb6/vKT6PRMLB5IAObBxZlMYUQQghhIRKQKqdiY2N58sknefbZZwkNDcXJyYm9e/fy6aef8thjj7F8+XLmz5/PgAEDqFmzJkopli1bxooVK/jxxx8LfJyJEyfSvXt3AgICSE5OZv78+WzatIlVq1aZpUtKSmLhwoVMmzYtTx4uLi4899xzjB8/Hg8PD9zd3XnttdeoX78+nTt3fuBrIYQoBHt3aDzEuKTEQuRmiDkGV48al4TzcCPauJzdcHM/jc7Yve/WIJV3CLgGgVZrufMRQhSbs9duMG/HORxtrQit7EpoZRd8nW0JPxvLD9sjWX8iBqVAp9XwxsO1GNGmqnTFF0IIIYSJBKTKKUdHR8LCwvjiiy84e/YsWVlZBAQEMGLECCZOnEhUVBT29vaMHz+eixcvotfrqVGjBrNnz2bw4MEFPs7Vq1cZPHgwUVFRuLi4EBoayqpVq+jSpYtZuvnz56OUYuDAgfnm88UXX2BlZUW/fv1IS0ujU6dOzJkzB51OZrURwmIcPIwDnXNzEgIykiHmuDE4dWugKj3BOEj69VNwbPHN9DaO4FX7Zne/3ICVdPsToszKzjHw/bZIPl97ioxsg9k2J70VyRk3u/12qu3Nix2r0yjQ7fZshBBCCFHByRhSFG4MKVH6yT0TooQpBclRcPUYXD3yb6DqGFw/CTmZ+e/j5Je3NZVXLbDSl2zZhShCFWEMqVNXk3l94UEOXkoE4KHqnlRytePgpQROx9wgx6Cws9bxZNPKDGsVTFUZl0kIIYSocGQMKSGEECVDowFnf+NS45ZutjlZEHsWYo7+G6w6avw74YIxgJUcBWfX35KPDjyq/xukCrk5kLpLoHT7E6IU+Cn8HO8vP05mjgEnWyve6RnCE00qm7rhpWXmcPbaDQLc7XGxu79xooQQQghRcUhASgghRPHQWYN3beNSr+/N9elJcO3Eze5+uV3/0hOMraqun4Sjf91Mb+MI3nX+bUlV9+aA6tLtT4gSkZVj4N2lR/ll1wUAOtfx5sM+9fFxNm+FbGeju6/Z84QQQghRMUlASgghRMmydYaA5sYll6nb361Bqn+7/WXegEt7jMutcrv9edY0zhRo4wh6R9A7gY2T8V+z147SJVCIQopLyWTUz/vYFRmHRgNvPFybkW1lcHIhhBBCPLhyE5D65ptv+Oyzz4iKiqJu3bpMnz6dNm3aWLpYQgghCsKs298tkyLkZEHsGfMg1dWjkHiHbn/3orW+S9Dq339v/9v02tF8vZWtsdxClFMRF+J56bcILsWn4ai34ssBDelUx8fSxRJCCCFEOVEuAlILFixg7NixfPPNN7Ru3ZqZM2fSvXt3jh07RmBgoKWLJ4QQ4n7prI3d9bzrmK9PTzLO9hdzFOIija2oMpIh48Ytfyff/Dsr1bifIQvS4o3Lg9Lo8g9a5RfssrYHjda4aHU3/9bk/q25bf0t27T5rbs9rTaf/HW35ZvPPtr88tX9+68E2yqquJRMpqw7xPw9F1EKAt3tmT20KTV9nCxdNCGEEEKUI+UiIPX555/z3HPPMXz4cACmT5/O6tWr+fbbb5kyZUqRHEMmIyw75F4JUQHYOkNgmHEpiJxsY3DKLHCVfDNwZXp945ZA1g3ISLrl7+SbeQCoHOO4V+kJxXWWlpUbqMoNaGmt8gla6f4NaunyWa8zD4bdmo9Z2vzW3Snf2wNutwbhNPkE7G4N6t1t2z0CfrlluOO2f/e9kWrpu1Ykev1vK8kGGwD6Nq7Mf3rUwc3BxsKlEkIIIUR5U+YDUpmZmezbt48333zTbH3Xrl3ZsWPHA+dvbW2cJSY1NRU7O7sHzk8Uv9RU438Icu+dEEKgszKOM2Xn+uB5GQy3BbeSbwtiJZsHsjJvQGYKoIz7KoMxmKUMNxdDjnEcrdz1htu250l7y3ZDbn7qZt6GnDsfL3fbvZjSZz34NasoMsrHDyKJadmEBHnwfu96NAuWyQOEEEIIUTzKfEDq+vXr5OTk4ONjPqaBj48P0dHR+e6TkZFBRkaG6XVSUtId89fpdLi6uhITEwOAvb29DORZSimlSE1NJSYmBldXV3Q6naWLJIQoj7RaYwstW2dLl+T+mYJX+QS6DDnmf98aJLt9fW7gzJCdzzbDHdIWQR5mZTbcZdutgT5lnv72wF+eQF8+QUGz/fPJjywg2dJ394G92b0Wz3eqh5VOa+miCCGEEKIcK/MBqVy3B4mUUncMHE2ZMoXJkycXOG9fX18AU1BKlG6urq6meyaEECIfud3bkMB9kUpKgskuli7FA3u6RbAEo4QQQghR7Mp8QMrT0xOdTpenNVRMTEyeVlO5JkyYwLhx40yvk5KSCAgIuOMxNBoNfn5+eHt7k5UlXRdKM2tra2kZJYQQQgghhBBClHJlPiBlY2NDkyZNWLt2LX369DGtX7t2LY899li+++j1evR6faGPpdPpJNghhBBCCCGEEEII8YDKfEAKYNy4cQwePJimTZvSsmVLZs2axYULF3jhhRcsXTQhhBBCCCGEEEIIcZtyEZDq378/sbGxvPfee0RFRVGvXj1WrFhBUFCQpYsmhBBCCCGEEEIIIW5TLgJSAKNHj2b06NGWLoYQQgghhBBCCCGEuIdyE5B6EEopwDi4uRBCCCHE/citR+TWK8oaqQ8JIYQQoigUtE4kASkgNjYW4K4z7QkhhBBCFERycjIuLi6WLkahSX1ICCGEEEXpXnUiCUgB7u7uAFy4cKHIKpDNmjVjz549RZJXceVZ2suYlJREQEAAFy9exNnZuUjyhIp3HYsjv+K4NxXxOsp9KZ35FXWe8llWestY1PdGKUWTJk3w9/cvgtKVvOKoD0Hpfx8UR56l/b0KFfM6FnWeFfXzXe5L6cyvOPKUz7LSmV9R51kc96WgdSIJSAFarRYAFxeXIrsBOp2uSD8AiyPPslBGAGdn51J93mXhOhZHGaFo701FvI5yX0pnfsWVp3yWlb78chXlvbGxsTHVK8qa4qgPQdl4H5SFMoJ8vpfWPCva57vcl9KZX3HkKZ9lpTO/4sqzqJ+ZgtSJymaNqQwYM2ZMqc+zLJSxOFTE61gR70tx5Fna8ysOFfG+FFeeRa0iXseKeF/Kg7LwPigLZSxqFfU6VsR7U9rzK648i1pFvI4V8b4UR55loYzFoSBl1KiyOvJmEUpKSsLFxYXExMRiiQCL+yP3pfSSe1M6yX0pneS+lF5yb8zJ9Si95N6UTnJfSie5L6WX3JvSyZL3RVpIAXq9nkmTJqHX6y1dFHELuS+ll9yb0knuS+kk96X0kntjTq5H6SX3pnSS+1I6yX0pveTelE6WvC/SQkoIIYQQQgghhBBClChpISWEEEIIIYQQQgghSpQEpIQQQgghhBBCCCFEiZKAlBBCCCGEEEIIIYQoUeUmILVlyxZ69eqFv78/Go2GxYsXm22/evUqw4YNw9/fH3t7ex5++GFOnz5t2n7u3Dk0Gk2+y8KFC03p4uPjGTx4MC4uLri4uDB48GASEhJK6CzLnge9LwBnz56lT58+eHl54ezsTL9+/bh69apZmuDg4Dz37c033yzu0yuzpkyZQrNmzXBycsLb25vevXtz8uRJszRKKd599138/f2xs7Ojffv2HD161LQ9Li6Ol156iVq1amFvb09gYCAvv/wyiYmJZvnIM1NwRXFfbk/bvXv3fJ89eWYKrijui3zHFI+iembK0/eM1IdKL6kTlT5SHyq9pE5UOkmdqHQqy/WhchOQSklJoUGDBnz11Vd5timl6N27N//88w9LliwhIiKCoKAgOnfuTEpKCgABAQFERUWZLZMnT8bBwYHu3bub8ho0aBAHDhxg1apVrFq1igMHDjB48OASO8+y5kHvS0pKCl27dkWj0bBhwwa2b99OZmYmvXr1wmAwmOX33nvvmd2///znPyVyjmXR5s2bGTNmDDt37mTt2rVkZ2fTtWtX03UH+PTTT/n888/56quv2LNnD76+vnTp0oXk5GQArly5wpUrV5g6dSqHDx9mzpw5rFq1iueee87sWPLMFFxR3JdbTZ8+HY1Gc8fjyTNTMEVxX+Q7pngUxb0pb98zUh8qvaROVPpIfaj0kjpR6SR1otKpTNeHVDkEqEWLFplenzx5UgHqyJEjpnXZ2dnK3d1dfffdd3fMp2HDhurZZ581vT527JgC1M6dO03rwsPDFaBOnDhRtCdRDt3PfVm9erXSarUqMTHRlCYuLk4Bau3ataZ1QUFB6osvvij2cyivYmJiFKA2b96slFLKYDAoX19f9fHHH5vSpKenKxcXFzVjxow75vP7778rGxsblZWVpZSSZ+ZBPch9OXDggKpcubKKiorK8+wpJc/Mgyiq50W+Y4re/dyb8vw9I/Wh0kvqRKWT1IdKL6kTlU5SJyqdylJ9qNy0kLqbjIwMAGxtbU3rdDodNjY2bNu2Ld999u3bx4EDB8x+3QgPD8fFxYWwsDDTuhYtWuDi4sKOHTuKqfTlV0HuS0ZGBhqNBr1eb0pja2uLVqvNc+8++eQTPDw8aNiwIR9++CGZmZklcBblQ26zcnd3dwAiIyOJjo6ma9eupjR6vZ527drd9b2emJiIs7MzVlZWgDwzD+p+70tqaioDBw7kq6++wtfX9475yzNzf4rieZHvmOJxP/emIn3PSH2o9JI6Uekg9aHSS+pEpZPUiUqnslQfqhABqdq1axMUFMSECROIj48nMzOTjz/+mOjoaKKiovLd5/vvv6dOnTq0atXKtC46Ohpvb+88ab29vYmOji628pdXBbkvLVq0wMHBgTfeeIPU1FRSUlJ4/fXXMRgMZvfulVdeYf78+WzcuJEXX3yR6dOnM3r0aEudWpmilGLcuHE89NBD1KtXD8D0fvbx8TFL6+Pjc8f3emxsLO+//z4jR440rZNn5v49yH159dVXadWqFY899tgd85dn5v4U1fMi3zFF737vTUX6npH6UOkldSLLk/pQ6SV1otJJ6kSlU1mrD1nd955liLW1NX/++SfPPfcc7u7u6HQ6OnfubNZH9VZpaWn8+uuvvP3223m25df3WCl11z7JIn8FuS9eXl4sXLiQUaNG8d///hetVsvAgQNp3LgxOp3OlO7VV181/R0aGoqbmxtPPPGEKXor7uzFF1/k0KFD+f46fvv7+k7v9aSkJHr06EFISAiTJk26ax53y0fcdL/3ZenSpWzYsIGIiIi75i/PzP0piudFvmOKx/3em4r0PSP1odJL6kSWJ/Wh0kvqRKWT1IlKp7JWH6oQASmAJk2acODAARITE8nMzMTLy4uwsDCaNm2aJ+0ff/xBamoqQ4YMMVvv6+ubZ5R5gGvXruWJNoqCKch96dq1K2fPnuX69etYWVnh6uqKr68vVapUuWO+LVq0AODMmTPyRXIXL730EkuXLmXLli1UrlzZtD63SXN0dDR+fn6m9TExMXne68nJyTz88MM4OjqyaNEirK2tzfKRZ6bwHuS+bNiwgbNnz+Lq6mqWZ9++fWnTpg2bNm3K95jyzNxbUTwvIN8xxeFB701F+p6R+lDpJXUiy5H6UOkldaLSSepEpVOZrA8V2WhUpQj5DFZ3u1OnTimtVqtWr16dZ1u7du1U375986zPHVxt165dpnU7d+6UwdUK6EHvS67169crjUZz12u+bNkyBajz58/fb3HLNYPBoMaMGaP8/f3VqVOn8t3u6+urPvnkE9O6jIyMPAMSJiYmqhYtWqh27dqplJSUPPnIM1M4RXFfoqKi1OHDh80WQH355Zfqn3/+ueOx5Zm5s6J6XnLJd0zRKep7k6u8fM9Ifaj0kjpR6SD1odJL6kSlk9SJSqeyXB8qNwGp5ORkFRERoSIiIhSgPv/8cxUREWG6ML///rvauHGjOnv2rFq8eLEKCgpSjz/+eJ58Tp8+rTQajVq5cmW+x3n44YdVaGioCg8PV+Hh4ap+/fqqZ8+exXpuZVlR3JcffvhBhYeHqzNnzqiffvpJubu7q3Hjxpm279ixw5TvP//8oxYsWKD8/f3Vo48+WqLnWpaMGjVKubi4qE2bNqmoqCjTkpqaakrz8ccfKxcXF/XXX3+pw4cPq4EDByo/Pz+VlJSklFIqKSlJhYWFqfr166szZ86Y5ZOdnW3KR56ZgiuK+5Kf2//jI89M4RTlfZHvmKJVVPemPH3PSH2o9JI6Uekj9aHSS+pEpZPUiUqnslwfKjcBqY0bNyogzzJ06FCllFJffvmlqly5srK2tlaBgYHqP//5j8rIyMiTz4QJE1TlypVVTk5OvseJjY1VTz31lHJyclJOTk7qqaeeUvHx8cV4ZmVbUdyXN954Q/n4+Chra2tVo0YNNW3aNGUwGEzb9+3bp8LCwpSLi4uytbVVtWrVUpMmTcr3FyphlN89AdSPP/5oSmMwGNSkSZOUr6+v0uv1qm3bturw4cOm7Xe6t4CKjIw0pZNnpuCK4r7cKd9bK1/yzBROUd4X+Y4pWkV1b8rT94zUh0ovqROVPlIfKr2kTlQ6SZ2odCrL9SHNvycghBBCCCGEEEIIIUSJ0Fq6AEIIIYQQQgghhBCiYpGAlBBCCCGEEEIIIYQoURKQEkIIIYQQQgghhBAlSgJSQgghhBBCCCGEEKJESUBKCCGEEEIIIYQQQpQoCUgJIYQQQgghhBBCiBIlASkhhBBCCCGEEEIIUaIkICWEEEIIIYQQQgghSpQEpIQQQgghhBBCCCFEiZKAlBBCCCGEEEIIIYQoURKQEkIIIYQQQgghhBAlSgJSQgghhBBCCCGEEKJESUBKCCGEEEIIIYQQQpQoCUgJIYQQQgghhBBCiBIlASkhhBBCCCGEEEIIUaIkICWEEEIIIYQQQgghSpQEpIQQQgghhBBCCCFEiZKAlBBCCCGEEEIIIYQoURKQqmB69uyJq6srFy9ezLMtLi4OPz8/WrdujcFgKPaynDt3Do1Gw5w5c4okv2PHjvHuu+9y7ty5+85jxYoVvPvuuw9UjmHDhhEcHPxAeZSU4OBghg0bZulimLz77rtoNJoiz3fTpk1oNBo2bdpU5HmXpMzMTF544QX8/PzQ6XQ0bNjwnvssW7aMXr164ePjg42NDe7u7nTq1IlffvmFrKwss7SxsbFMmDCBkJAQ7O3tcXZ2pkWLFnz99dd50oryrbw8M0KA1H3uReo+liV1n7srTN1HKcX8+fNp06YN3t7e2NraUrlyZbp168bs2bPzpC9MvScqKor//Oc/tGzZEk9PT5ydnWnSpAmzZs0iJyenqE9blGJl6fOuLJCAVAUze/ZsrKysGD58eJ5tL774IsnJycydOxettuy9NY4dO8bkyZMfuFI2efLkoiuUKJThw4cTHh5e5Pk2btyY8PBwGjduXOR5l6Rvv/2WmTNn8tZbb7Ft2zZ++umnO6ZVSvHMM8/w6KOPYjAY+Pzzz1m3bh1z586lQYMGjB49mm+++caU/sSJEzRq1IiZM2fy1FNP8ffffzN//nwaN27MK6+8QpcuXUhNTS2J0xSlQHl5ZoQAqfvci9R9LEvqPndXmLrPhAkTGDhwIHXq1GH27NmsXLmSDz74AB8fH5YsWWKWtrD1nn379jFv3jw6derEvHnz+PPPP2nXrh2jRo1ixIgRxXb+ovR5++23WbRokaWLUX4oUeEsWLBAAWrGjBmmdX/99ZcC1DfffFPsx8/Ozlbp6ekqMjJSAerHH38sknwXLlyoALVx48b7zmPMmDHqQR+LoUOHqqCgoPvaNyUl5YGOXVhBQUFq6NChJXpMcf+GDx+u7OzsCpT2k08+UYCaPHlyvtujoqLU1q1blVLGZzIkJES5uLiokydP5kk7f/58BaiRI0fef+GLSEk/IxVNZmamysrKsnQxhChyUve5M6n7iNKsoHWf1NRUpdfr1ZAhQ/LdnpOTY/r7fuo9cXFxKjMzM0/a3OfnwoULBTmdYpWammrpIpRrUgctHhKQqqAGDBigHB0dVWRkpLp+/bry9vZWXbp0UUoptWfPHtWrVy/l5uam9Hq9atiwoVqwYIHZ/jExMWrUqFGqTp06ysHBQXl5eakOHTqoLVu2mKXLrXh98skn6v3331fBwcFKp9OplStX5qmUbdmyRQHq119/zVPeuXPnKkDt3r073/P58ccfFZBnubXC9/3336vQ0FCl1+uVm5ub6t27tzp27Jhp+9ChQ/PNIzIyUiml1FdffaXatGmjvLy8lL29vapXr5765JNP8nw5FbRS1q5dO1W3bl21efNm1bJlS2VnZ6f69++vlFLq/Pnz6qmnnlJeXl7KxsZG1a5dW02dOtXsy1Qppd59913VvHlz5ebmppycnFSjRo3U7NmzlcFgMEuXmZmpXn/9deXj46Ps7OxU69at1a5duwpcKcvIyFDvv/++qlWrlrKxsVGenp5q2LBhKiYmxixdUFCQ6tGjh1q2bJlq2LChsrW1VbVr11bLli1TShnvU+3atZW9vb1q1qyZ2rNnj9n+kyZNylMpXr9+vWrXrp1yd3dXtra2KiAgQD3++ONmXwrffPONCg0NVQ4ODsrR0VHVqlVLTZgwwbR948aN+VbYlyxZolq0aKHs7OyUo6Oj6ty5s9qxY0e+ZTpy5IgaMGCAcnZ2Vt7e3uqZZ55RCQkJZml///131bx5c+Xs7Kzs7OxUlSpV1DPPPHPP65uWlqbefPNNFRwcrKytrZW/v78aPXq0io+PN6W51/v7VpmZmcrd3V3Vrl07z3shP7n/oZkyZcod03Tt2lVZWVmpqKiou+Y1f/581aVLF+Xr62u6/2+88Ya6ceNGnrQ7d+5UPXv2VO7u7kqv16uqVauqV155xbQ999rv27dP9e3bV7m6uipfX1+lVMGumVJF8/65k4Lsd+nSJTVixAhVuXJlZW1trfz8/FTfvn1VdHS0KU1iYqIaP3682bm88sorea4ZoMaMGaPmzZunateurezs7FRoaKjp+cp1+vRpNWzYMFW9enVlZ2en/P39Vc+ePdWhQ4fM0uU+F/PmzVPjxo1T/v7+SqPRqOPHjz/QMxMTE2M659zPi1atWqm1a9fe85oKUZyk7iN1H6n7lN+6z7Vr1xSg3njjjXseuyjrPbnP6e3X8HZpaWlq3LhxqkGDBsrZ2Vm5ubmpFi1aqMWLF+dJm5OTo/773/+qBg0aKFtbW+Xi4qLCwsLUkiVLTGly33d//vmnatiwodLr9aZzP3z4sHr00UeVq6ur0uv1qkGDBmrOnDl5jvH++++rmjVrmo5Rv359NX36dFOa+/0+L+h+K1euVB07djS9d2rXrq0++ugjszQF+WzO/SzcsGGDeuGFF5SHh4dyd3dXffr0UZcvXzZLW9B66tChQ5WDg4M6dOiQ6tKli3J0dFQtWrQwbbv9864o66UVjQSkKqjY2Fjl5+enOnTooPr166dcXV3VxYsX1YYNG5SNjY1q06aNWrBggVq1apUaNmxYni+AEydOqFGjRqn58+erTZs2qeXLl6vnnntOabVasy++3IpXpUqVVIcOHdQff/yh1qxZoyIjI/P9lbBRo0aqdevWecrbrFkz1axZszueT0xMjProo48UoL7++msVHh6uwsPDTZWG3G0DBw5Uf//9t5o3b56qWrWqcnFxUadOnVJKKXXmzBn1xBNPKMC0f3h4uEpPT1dKKfXqq6+qb7/9Vq1atUpt2LBBffHFF8rT0zPPl25hKmXu7u4qICBA/e9//1MbN25UmzdvVjExMapSpUrKy8tLzZgxQ61atUq9+OKLClCjRo0yy2PYsGHq+++/V2vXrlVr165V77//vrKzs8vTKmbo0KFKo9Go119/Xa1Zs0Z9/vnnqlKlSsrZ2fmelbKcnBz18MMPKwcHBzV58mS1du1aNXv2bFWpUiUVEhJi9mtMUFCQqly5sqpXr5767bff1IoVK1RYWJiytrZW77zzjmrdurX666+/1KJFi1TNmjWVj4+P2f63V8oiIyOVra2t6tKli1q8eLHatGmT+uWXX9TgwYNNH/C//fabAtRLL72k1qxZo9atW6dmzJihXn75ZVM++VXKfvnlFwWorl27qsWLF6sFCxaoJk2aKBsbG1PLoVvLVKtWLfXOO++otWvXqs8//1zp9Xqze79jxw6l0WjUgAED1IoVK9SGDRvUjz/+qAYPHnzX62swGFS3bt2UlZWVevvtt9WaNWvU1KlTlYODg2rUqJHp/RceHq4eeeQRZWdnl+f9fbsdO3YUuFKmlFLPP/+8AtTx48fvmOabb75RgPrtt9/umtf777+vvvjiC/X333+rTZs2qRkzZqgqVaqoDh06mKVbtWqVsra2VqGhoWrOnDlqw4YN6ocfflADBgwwpcm99kFBQeqNN95Qa9euVYsXLy7wNSuq909+CrLfpUuXlJ+fn/L09FSff/65WrdunVqwYIF69tlnTdc6JSVFNWzY0CzNl19+qVxcXFTHjh3N/oMFqODgYNW8eXP1+++/qxUrVqj27dsrKysrdfbsWVO6zZs3q/Hjx6s//vhDbd68WS1atEj17t1b2dnZqRMnTpjS5T4XlSpVUk888YRaunSpWr58uYqNjX2gZ6Zbt27Ky8tLzZo1S23atEktXrxYvfPOO2r+/Pl3vaZCFDep+0jdR+o+5bfuo5RS1atXV05OTmratGnq+PHjd/xRrijrPUOHDlVWVlbq+vXrd02XkJCghg0bpn766Se1YcMGtWrVKvXaa68prVar5s6da5Z28ODBSqPRqOHDh6slS5aolStXqg8//FB9+eWXpjRBQUHKz89PVa1aVf3www9q48aNavfu3erEiRPKyclJVatWTc2bN0/9/fffauDAgaYgea4pU6YonU6nJk2apNavX69WrVqlpk+frt59911Tmvv9Pi/IfrNnz1YajUa1b99e/frrr2rdunXqm2++UaNHjzalKehnc25AqmrVquqll15Sq1evVrNnz1Zubm556p8FracOHTpUWVtbq+DgYDVlyhS1fv16tXr1atO2Wz/virJeWhFJQKoCW7FihenXhp9++kkppVTt2rVVo0aN8nTZ6Nmzp/Lz88vzK1Wu7OxslZWVpTp16qT69OljWp9b8apWrVqeX9Pyq5TlfqBERESY1u3evVsBeT6sb3enZuvx8fHKzs5OPfLII2brL1y4oPR6vRo0aJBpXUGbrefk5KisrCw1b948pdPpVFxcnGlbYSplgFq/fr3Z+jfffFMBateuXWbrR40apTQaTb5Ni28t03vvvac8PDxMX8LHjx9XgHr11VfN0udWSu5VKcut9Pz5559m6/fs2ZOnq0NQUJCys7NTly5dMq07cOCAApSfn59Z9H/x4sUKUEuXLjWtu71S9scffyhAHThw4I7le/HFF5Wrq+tdz+H2SllOTo7y9/dX9evXN3tPJycnK29vb9WqVas8Zfr000/N8hw9erSytbU1XeepU6cqIM8vh/eyatWqfPPP7V4ya9Ys07rcX2vuJbep+a1dU+7m4YcfVoDpCzM/K1euzFOZuReDwaCysrLU5s2bFaAOHjxo2latWjVVrVo1lZaWdsf9c6/9O++8Y7a+oNesqN4/97vfs88+q6ytrc1aI9xuypQpSqvV5vnFPLfsK1asMK0DlI+Pj0pKSjKti46OVlqt9q6/8mZnZ6vMzExVo0YNs8+B3Oeibdu2efZ5kGfG0dFRjR079o7lEcKSpO4jdR+p+5TPuo9SxucmMDDQ9Iw7OTmpnj17qnnz5pkFp4qq3rN69Wql1WrzvM8KIvfz47nnnlONGjUyrc9tNfnWW2/ddf+goCCl0+nyPBsDBgxQer0+TxfC7t27K3t7e9O96tmzp2rYsOFdj3G/3+f32i85OVk5Ozurhx566K4t+Qv62Zz7GXprMEsppT799FMF3LGV293qqbmtR3/44Yc8+93+eVeU9dKKqOyN3iiKTPfu3WnRogU1atTg6aef5syZM5w4cYKnnnoKgOzsbNPyyCOPEBUVxcmTJ037z5gxg8aNG2Nra4uVlRXW1tasX7+e48eP5znWo48+irW19T3LNHDgQLy9vfn6669N6/73v//h5eVF//797+s8w8PDSUtLyzOjSkBAAB07dmT9+vUFyiciIoJHH30UDw8PdDod1tbWDBkyhJycHE6dOnVfZXNzc6Njx45m6zZs2EBISAjNmzc3Wz9s2DCUUmzYsMEsbefOnXFxcTGV6Z133iE2NpaYmBgANm7cCGC6r7n69euHlZXVPcu4fPlyXF1d6dWrl9l7omHDhvj6+uaZvaVhw4ZUqlTJ9LpOnToAtG/fHnt7+zzrz58/f8djN2zYEBsbG55//nnmzp3LP//8kydN8+bNSUhIYODAgSxZsoTr16/f85xOnjzJlStXGDx4sNkgto6OjvTt25edO3fmGcD70UcfNXsdGhpKenq66To3a9YMMF7X33//ncuXL9+zHIDpft7+/nzyySdxcHAo8PuzuCmlAO45E9A///zDoEGD8PX1Nb0n27VrB2D6bDh16hRnz57lueeew9bW9p7H7tu3r9nrgl6z4nr/FHS/lStX0qFDB9N7PT/Lly+nXr16NGzY0Oz56tatW76zI3Xo0AEnJyfTax8fH7y9vc2eo+zsbD766CNCQkKwsbHBysoKGxsbTp8+ne/n8+3XNz+FeWaaN2/OnDlz+OCDD9i5c6fM0ChKFan7SN1H6j7lt+7TrFkzzpw5w6pVq5g4cSItW7Zk/fr1DBkyhEcffdRUlymIe9V79u/fT79+/WjRogVTpkwpUJ4LFy6kdevWODo6mj4/vv/+e7PPj5UrVwIwZsyYe+YXGhpKzZo1zdZt2LCBTp06ERAQYLZ+2LBhpKammgbQb968OQcPHmT06NGsXr2apKSkPPnf7/f5vfbbsWMHSUlJjB49+o7Xt7CfzZD/+xXMn7eC1FNvVZA6UlHWSysiCUhVcHq9HhsbGwCuXr0KwGuvvYa1tbXZMnr0aADTF97nn3/OqFGjCAsL488//2Tnzp3s2bOHhx9+mLS0tDzH8fPzK3B5Ro4cya+//kpCQgLXrl3j999/Z/jw4ej1+vs6x9jY2DuWwd/f37T9bi5cuECbNm24fPkyX375JVu3bmXPnj2mymN+51wQ+ZUpNjb2jmXN3Q6we/duunbtCsB3333H9u3b2bNnD2+99ZZZmXLT+/r6muVnZWWFh4fHPct49epVEhISsLGxyfO+iI6OzlMJcnd3N3ud+/660/r09PQ7HrtatWqsW7cOb29vxowZQ7Vq1ahWrRpffvmlKc3gwYP54YcfOH/+PH379sXb25uwsDDWrl17x3zv9Z4wGAzEx8ebrb/9WuW+H3Ovc9u2bVm8eDHZ2dkMGTKEypUrU69ePX777bc7liO3LFZWVnh5eZmt12g0+Pr6Fuj9ebvAwEAAIiMjiyx97gxOt1dwbnXjxg3atGnDrl27+OCDD9i0aRN79uzhr7/+Am5eq2vXrgFQuXLlApXv9vtU0GtWXO+fgu537dq1e57j1atXOXToUJ5ny8nJCaVUnucrv2dWr9ebfQaNGzeOt99+m969e7Ns2TJ27drFnj17aNCgwX1/PhfmmVmwYAFDhw5l9uzZtGzZEnd3d4YMGUJ0dPQ9jyNESZC6j9R97kXqPkZlqe6Ty9ramm7duvHhhx+yevVqLl68SPv27Vm+fLkp2POg9Z6IiAi6dOlCjRo1WLFiRYGe07/++ot+/fpRqVIlfv75Z8LDw9mzZw/PPvus2fvh2rVr6HS6PO/d/DzIszRhwgSmTp3Kzp076d69Ox4eHnTq1Im9e/ea9rnf7/N77VeQemBhPptz3ev9WtB6ai57e3ucnZ3veq5QtPXSiujePxGICsPT0xMwfkA9/vjj+aapVasWAD///DPt27fn22+/NduenJyc7373alVxq1GjRvHxxx/zww8/kJ6eTnZ2Ni+88EKB979d7odTVFRUnm1XrlwxnffdLF68mJSUFP766y+CgoJM6w8cOHDf5YL8r4uHh8cdywo379P8+fOxtrZm+fLlZq1MFi9enCc/gOjoaLNf77Kzswv0he/p6YmHhwerVq3Kd/utrTWKQ5s2bWjTpg05OTns3buX//3vf4wdOxYfHx8GDBgAwDPPPMMzzzxDSkoKW7ZsYdKkSfTs2ZNTp06Z3a9c93pPaLVa3NzcCl3Wxx57jMcee4yMjAx27tzJlClTGDRoEMHBwbRs2TLffTw8PMjOzubatWtmX2RKKaKjo02/PhZG06ZNcXd3Z8mSJUyZMuWez1+XLl2YNWsWixcv5s0338w3zeLFi7GysqJ9+/Z3zGfDhg1cuXKFTZs2mX5tAkhISDBLl3uely5dKtD53F7+wlyz4nj/5LrXfl5eXvc8R09PT+zs7Pjhhx/uuL2wfv75Z4YMGcJHH31ktv769eu4urrmSV+Qz+fCPDOenp5Mnz6d6dOnc+HCBZYuXcqbb75JTEzMHT9HhLAUqfvcmdR9pO5TEKWl7nMnHh4ejB07lk2bNnHkyBEeeeSRB6r3RERE0LlzZ4KCglizZg0uLi4FKsfPP/9MlSpVWLBggdkzkJGRYZbOy8uLnJwcoqOj7xnUfpBnycrKinHjxjFu3DgSEhJYt24dEydOpFu3bly8eBF7e/v7/j6/134FqQcW5rO5oApaT81V0M/woq6XVjTSQkqY1KpVixo1anDw4EGaNm2a75L7BazRaPL8GnDo0CFTM9AH4efnx5NPPsk333zDjBkz6NWrl+mXjLu5PQqeq2XLltjZ2fHzzz+brb906ZKpWeu98sj9QLr1nJVSfPfdd4U4s4Lp1KkTx44dY//+/Wbr582bh0ajoUOHDqYyWVlZodPpTGnS0tL46aefzPbL/SL95ZdfzNb//vvvZGdn37M8PXv2JDY2lpycnHzfE4X9MrhfOp2OsLAw0y+zt18fAAcHB7p3785bb71FZmYmR48ezTevWrVqUalSJX799Vez5tspKSn8+eeftGzZ0qyJfWHp9XratWvHJ598AhgrL3eS+/67/f35559/kpKSYvb+LChra2veeOMNTpw4wfvvv59vmpiYGLZv3w5Anz59CAkJ4eOPP863C8aCBQtYs2YNw4cPv+svdvk9JwAzZ840e12zZk2qVavGDz/8kKciVhD3c82K8v1T0P26d+/Oxo0b8zQpv1XPnj05e/YsHh4e+T5fwcHBBSrDrfL7fP77778L3JUiP/f7zAQGBvLiiy/SpUuXfK+5EJYmdR+p++RH6j6FZ+m6T1ZW1h2DjbldsXJbCd1vvefAgQN07tyZypUrs3bt2kIF8DQaDTY2NmZBjujoaJYsWWKWrnv37gB5At8F1alTJ1Pg5Vbz5s3D3t6eFi1a5NnH1dWVJ554gjFjxhAXF2dqHXar+/0+z2+/Vq1a4eLiwowZM+7YjbIwn80FVdB6amEVV720opAWUsLMzJkz6d69O926dWPYsGFUqlSJuLg4jh8/zv79+1m4cCFg/KJ+//33mTRpEu3atePkyZO89957VKlSpUBf9PfyyiuvEBYWBsCPP/5YoH3q1asHwKxZs3BycsLW1pYqVarg4eHB22+/zcSJExkyZAgDBw4kNjaWyZMnY2try6RJk0x51K9fH4BPPvmE7t27o9PpCA0NpUuXLtjY2DBw4ED+7//+j/T0dL799ts8TZuLwquvvsq8efPo0aMH7733HkFBQfz999988803jBo1ytRXvEePHnz++ecMGjSI559/ntjYWKZOnZrnQ7ZOnTo8/fTTTJ8+HWtrazp37syRI0eYOnVqgZqhDhgwgF9++YVHHnmEV155hebNm2Ntbc2lS5fYuHEjjz32GH369Cny6wDGsTo2bNhAjx49CAwMJD093dSSpHPnzgCMGDECOzs7WrdujZ+fH9HR0UyZMgUXF5c7/sKm1Wr59NNPeeqpp+jZsycjR44kIyODzz77jISEBD7++ONCl/Wdd97h0qVLdOrUicqVK5OQkMCXX35p1jc9P126dKFbt2688cYbJCUl0bp1aw4dOsSkSZNo1KgRgwcPLnRZAF5//XWOHz/OpEmT2L17N4MGDSIgIIDExES2bNnCrFmzmDx5Mq1bt0an0/Hnn3/SpUsXWrZsyfjx42nZsiUZGRksW7aMWbNm0a5dO6ZNm3bXY7Zq1Qo3NzdeeOEFJk2ahLW1Nb/88gsHDx7Mk/brr7+mV69etGjRgldffZXAwEAuXLjA6tWr8/wH4n6vWXG9fwq633vvvcfKlStp27YtEydOpH79+iQkJLBq1SrGjRtH7dq1GTt2LH/++Sdt27bl1VdfJTQ0FIPBwIULF1izZg3jx483fRYWVM+ePZkzZw61a9cmNDSUffv28dlnnxW4i2R+CvrMJCYm0qFDBwYNGkTt2rVxcnJiz549rFq16o6/cAphaVL3kbrP7aTuUzClqe6TmJhIcHAwTz75JJ07dyYgIIAbN26wadMmvvzyS+rUqWP6Hrqfes/JkydN1//DDz/k9OnTnD592rS9WrVqebps3apnz5789ddfjB49mieeeIKLFy/y/vvv4+fnZ5ZPmzZtGDx4MB988AFXr16lZ8+e6PV6IiIisLe356WXXrrrdZg0aRLLly+nQ4cOvPPOO7i7u/PLL7/w999/8+mnn5padPXq1Yt69erRtGlTvLy8OH/+PNOnTycoKIgaNWrc9/d5QfZzdHRk2rRpDB8+nM6dOzNixAh8fHw4c+YMBw8e5KuvvgIK/tlcUIWppxZGUdZLK6SSH0ddlCbt2rVTdevWNVt38OBB1a9fP+Xt7a2sra2Vr6+v6tixo9mMXRkZGeq1115TlSpVUra2tqpx48Zq8eLFeWYdyJ1N5rPPPstz7PxmmrlVcHCwqlOnTqHOZ/r06apKlSpKp9PlyXv27NkqNDRU2djYKBcXF/XYY4+po0ePmu2fkZGhhg8frry8vJRGo1GAioyMVEoptWzZMtWgQQNla2urKlWqpF5//XXTDBy3zm5TmJlmbr/2uc6fP68GDRqkPDw8lLW1tapVq5b67LPP8sz088MPP6hatWopvV6vqlatqqZMmaK+//57s3Lnntf48eOVt7e3srW1VS1atFDh4eEqKCjonjPNKKVUVlaWmjp1qun8HR0dVe3atdXIkSPV6dOnTemCgoJUjx498uwPqDFjxpity++9cftMM+Hh4apPnz4qKChI6fV65eHhodq1a2c2O83cuXNVhw4dlI+Pj7KxsVH+/v6qX79+6tChQ6Y0+U19rJRxtpuwsDBla2urHBwcVKdOndT27dvN0uSW6dq1a2brc2f0yL3Oy5cvV927d1eVKlVSNjY2ytvbWz3yyCNm0yjfSVpamnrjjTdUUFCQsra2Vn5+fmrUqFF5poAtzEwzuZYsWaJ69OihvLy8lJWVlWkK3BkzZqiMjAyztNevX1dvvvmmql27tuk+N2/eXH311Vd5Zoq6kx07dqiWLVsqe3t75eXlpYYPH67279+f77MeHh6uunfvrlxcXJRer1fVqlUzm6nmTtdeqYJds6J6/+SnoPtdvHhRPfvss8rX11dZW1ub0l29etWU5saNG+o///mPqlWrlunzqX79+urVV19V0dHRpnT5PUdKqTzPcXx8vHruueeUt7e3sre3Vw899JDaunWrateunWrXrp0pXe5zsXDhwjx53u8zk56erl544QUVGhqqnJ2dlZ2dnapVq5aaNGmS2UxTQliS1H2k7iN1n/JX98nIyFBTp05V3bt3V4GBgUqv1ytbW1tVp04d9X//938qNjY2zz6Fqffknvudljs907f6+OOPVXBwsNLr9apOnTrqu+++y3P/lTLOiPjFF1+oevXqmZ7dli1bqmXLlpnS3Ol9p5RShw8fVr169VIuLi7KxsZGNWjQIE/5pk2bplq1aqU8PT2VjY2NCgwMVM8995w6d+6cUur+v88Ls9+KFStUu3btlIODg7K3t1chISF5ZjUsyGdz7r25fcbi/J6BgtZT7/a+y+/zrqjqpRWRRqlCTDcgRAk5dOgQDRo04OuvvzYNXCeEEEIIUV5J3UcIIURFIwEpUaqcPXuW8+fPM3HiRC5cuMCZM2ceqD+7EEIIIURpJnUfIYQQFZUMai5Klffff58uXbpw48YNFi5cKBUyIYQQQpRrUvcRQghRUUkLKSGEEEIIIYQQQghRoqSFlBBCCCFEOXH58mWefvppPDw8sLe3p2HDhuzbt8/SxRJCCCGEyMOiAalvv/2W0NBQnJ2dcXZ2pmXLlqxcudK0XSnFu+++i7+/P3Z2drRv356jR4+a5ZGRkcFLL72Ep6cnDg4OPProo1y6dKmkT0UIIYQQwqLi4+Np3bo11tbWrFy5kmPHjjFt2jRcXV0tXTQhhBBCiDws2mVv2bJl6HQ6qlevDsDcuXP57LPPiIiIoG7dunzyySd8+OGHzJkzh5o1a/LBBx+wZcsWTp48iZOTEwCjRo1i2bJlzJkzBw8PD8aPH09cXBz79u1Dp9NZ6tSEEEIIIUrUm2++yfbt29m6dauliyKEEEIIcU+lbgwpd3d3PvvsM5599ln8/f0ZO3Ysb7zxBmBsDeXj48Mnn3zCyJEjSUxMxMvLi59++on+/fsDcOXKFQICAlixYgXdunUr0DENBgNXrlzByckJjUZTbOcmhBBCiPJLKUVycjL+/v5otSXfCD0kJIRu3bpx6dIlNm/eTKVKlRg9ejQjRozIN31GRgYZGRmm1waDgbi4ODw8PKQ+JIQQQoj7VuA6kSolsrOz1W+//aZsbGzU0aNH1dmzZxWg9u/fb5bu0UcfVUOGDFFKKbV+/XoFqLi4OLM0oaGh6p133inwsS9evKgAWWSRRRZZZJFFlgdeLl68+OAVo/ug1+uVXq9XEyZMUPv371czZsxQtra2au7cufmmnzRpksWvlSyyyCKLLLLIUn6Xe9WJrLCww4cP07JlS9LT03F0dGTRokWEhISwY8cOAHx8fMzS+/j4cP78eQCio6OxsbHBzc0tT5ro6Og7HvP2XwTVv43ELl68iLOzc5GclxBCCCEqlqSkJAICAkzDCpQ0g8FA06ZN+eijjwBo1KgRR48e5dtvv2XIkCF50k+YMIFx48aZXicmJhIYGCj1ISGEEEI8kILWiSwekKpVqxYHDhwgISGBP//8k6FDh7J582bT9tubjCul7tmM/F5ppkyZwuTJk/Oszx1cXQghhBDiflmqu5ufnx8hISFm6+rUqcOff/6Zb3q9Xo9er8+zXupDQgghhCgK96oTWXSWPQAbGxuqV69O06ZNmTJlCg0aNODLL7/E19cXIE9Lp5iYGFOrKV9fXzIzM4mPj79jmvxMmDCBxMRE03Lx4sUiPishhBBCiJLVunVrTp48abbu1KlTBAUFWahEQgghhBB3ZvGA1O2UUmRkZFClShV8fX1Zu3ataVtmZiabN2+mVatWADRp0gRra2uzNFFRURw5csSUJj96vd7065/8CiiEEEKI8uDVV19l586dfPTRR5w5c4Zff/2VWbNmMWbMGEsXTQghhBAiD4t22Zs4cSLdu3cnICCA5ORk5s+fz6ZNm1i1ahUajYaxY8fy0UcfUaNGDWrUqMFHH32Evb09gwYNAsDFxYXnnnuO8ePH4+Hhgbu7O6+99hr169enc+fOljw1IYQQQogS1axZMxYtWsSECRN47733qFKlCtOnT+epp56ydNGEEEIIIfKwaEDq6tWrDB48mKioKFxcXAgNDWXVqlV06dIFgP/7v/8jLS2N0aNHEx8fT1hYGGvWrDEbGOuLL77AysqKfv36kZaWRqdOnZgzZw46nc5Sp1VoSin2X4gnwM0eb2dbSxdHCCGEEGVUz5496dmzp6WLUWSS07O4kpBOLV/LDBQvhBBCiOKjUblTzFVgSUlJuLi4kJiYaJHue/PCz/HOkqNoNdCmhhePN65E1xBf7GzKTlBNCCGEqOgsXZ94UKWt/KmZ2fT87zb+uZ7CW4/UYUTbqpYukhBCCCEKoKB1CovPslfRxadkMm3NKQAMCjafusbmU9dw1Fsxqn01RrevZrHZeoQQQgghLOXTVSf553oKAB+uOI7eWsuQlsGWLZQQQgghiowEpCzsi3WnSEzLoravE18/1ZglB67w1/5LXIpP47PVJ7kUn8r7j9XDSmfZ8ecT07LYdvo6mTk5aDUadFoNtlY6WlX3wN5G3kZCCCGEKDq7/ollzo5zAHQN8WHNsau8s+QotlY6+jULsGzhhBBCCFEkJJJgQaeuJvPLrgsAvNMrhGpejozrUpOxnWrwy67zTFp6lN92X+Racib/G9ioxLvwGce2SuC33RdYfugK6VmGPGmqeTnw24gWMvaVEEIIIYpEamY2r/9xCID+TQP4uG99Pvj7ON9vi+SNvw5hbaXhsQaV0GqlBbkQQghRlklAykKUUry//Bg5BkW3uj60quZp2qbVahjcMhgvJ1tenh/BuuNXeWr2TmYNaYqno77Yy5aVY2BxxGW+3xbJiehk0/pqXg74u9qRY1BkGxRnY25w9loKA77byXwJSgkhhBCiCHy66iQX4lLxc7HlrZ510Gg0/KdHHdKzcvhl1wVeXXCQ8b8fxMXOGld7G/xcbHmlUw3CqnpYuuhCCCGEKAQJSFnI+uMxbD19HRudlomP1Mk3zcP1fPlleBjPzdnD/gsJNP1gHcEe9oT4O1PX34X6lVxoHOSGo75obmN6Vg4L911ixqazXE5IA8DWWkvPUH8GNg+gcaCb2XhW52NTGDhrJ/9cS2HArJ38OqIFvi4SlBJCCCHE/dl5S1e9j/uG4mxrDYBGo+H9x+qh02r4aed5DAriU7OIT80i8noKO/+J5dXONRndoTo6aTklhBBClAkyyx4lP6tMZraBbtO3EHk9hZHtqjKhe/4BqVynrybz4q8RnLyanGebVgMh/s40C3ankqsdSenZJKVlkZSWRWaOAVtrHbbWWmytdFhbabm1ipZjUCSlZ3MjI5vk9CyOXUkiJjkDAE9HPSPaVGFA80Bc7KzvWLYLsakM/G4nlxPSCPawZ+6zzQnycLiv6yKEEEKUZaVtlrrCsnT5E9Oy6Pm/rVyMS2NAswA+7huab7qM7BwSU7NISMsiITWL+bsv8FfEZQBaV/fgi/4N8XaSH8iEEEIISylonUICUpR8BWzKiuPM3PIPno56Nr7WDifbOwd8bhV7I4PjUckci0rkyOUk9l+I51J8WpGWzc/FlhfaVaN/swBsrQs2ZtXFuFQGzNppalUV4udM+1petK/lTeNAV4sPyC6EEEKUBEsHdB6UJcuvlGLMr/tZcTiaym52rHylTYHrRwB/7LvE24uPkJaVg6ejDZ8+EUrH2j7FWGIhhBBC3IkEpAqhJCtgP2yL5L3lxwD478BGPNrA/4Hyi0pMY8+5ePaeiyM+NQsXOytc7KxxtrXGWqclI9tAelYO6dk5ZGWb32qtBhxtrXCytcbJ1govRz2tq3tiY1X4ANKl+FTG/X6QPefiuPUdVdXTgQ9616NVdc877yyEEEKUAxKQun8/7TzP24uPYK3TsPCFVjQMcC10HmdijC3Kc8e/7NOoEpN6heBqb1PEpRVCCCHE3UhAqhBKqgK29OAVXv4tAoDXu9ViTIfqxXYsS4m9kcGW09fYeOIam07GkJSeDRgrhRMfqYOXU/EPyi6EEEJYggSk7s/RK4n0+WYHmdkG/tOjDsPbVL3vvNKzcpi25iTfb4vEoIxDEHzQux4P1/MtwhLf3W+7L7DnXBxvPFwbH5nwRQghRAUkAalCKIkK2PYz1xn2426ychTDWgUzqVeI2QDh5VFSehbTVp9k3s7zKAXOtlaM7VyTAc0DsLeR8fSFEEKULxKQKrwbGdn0+t82Iq+n0LmON98NaVok9aP9F+L5vz8OcSbmBgAvdqjOa91qPXC+AnkBTQAAjvlJREFUd2MwKD5acZzZ2yIBqORqx9xnm1Hd26lYjyuEEEKUNhKQKoTiroAdu5JEv5nh3MjIpkd9P/47sFGFmgHm0KUEJi46zJHLSYAxMDUwLJAhLYOp5Gpn4dIJIYQQRUMCUoVjMCheWXCAZQev4O9iy4pX2hRp97r0rBy+XH+abzedBeCzJ0J5smlAkeV/q8xsA68tPMjSg1cA8HbSE5OcgYudNbOHNqVZsHuxHFcIIUozlZODITXVuKSkYEhJRWNjjdbODq2dHRo7e7T2dmi0MuZweSMBqUIozgpYelYOPf67lbPXUmhR1Z25zzZHb1WwwcLLkxyD4rfdF5i99R/OxaYCoNNq6Nc0gA9616tQATohhBDlkwSkCi47x8D//XmIv/ZfRqfVsOD5FjQtpqDNtDUn+d+GM1jrNPw6okWRB4eS07N44ed9bD8Ti5VWw2dPhtKupjfPzd1DxIUE9FZavhzQqES7DQohxP1QmZnkpKSgUlPJSUkxBpFuCSYZUu/wr1m6m3+r9PQCHVdja4vW3t4YqLK3Q2Nvj9Yu97UxaKW1t0djZ2dcn7vOzu7mOgf7m4Eue2MajY1Nue+VVFpJQKoQirMC9tGK48za8g9eTnrWjG2Lm0PFHlgzx6DYeCKGH7ZHsuNsLAAf9K7H0y2CLFwyIYQQ4sFIQKpgMrMNvLrgAH8fjkKn1fB5vwY81rBSsR3PYDDO4LfySDTuDjYsGdOaAHf7B8pTKcXRK0ksirjMkgNXuH4jA3sbHTOebkLbml4ApGXm8NJvEaw7fhWNBj57ogFPNKlcFKckhBAmSikMyclkRUdjSEoyDw7d/q8piJR/QEllZRVPIa2s0Do4oLWzQ2Vno1JTMaSlQXGHInQ6U5BKa2//b6DLzizQpbGzQ2vvYB78cnD4d3E0/utofK1zdERjZydBrgKQgFQhFLYClpyexfUbmVTxdLhrun3n43hiRjhKwewhTekcItMP3+r7bZG8v/wYTrZWbBjfXgY8F0IIUaZJQOre0rNyGP3LfjaciMFGp+V/gxrRrW7xtxxKzcym38xwjlxOoqaPI3+OaoWTrXWh84lJTuev/Zf5c98lTv87PhWAr7Mt3w1pSv3KLmbps3MMvL3kCL/tvihBKSHEfTGkp5MdHU1WVBRZUdFkRUeRfevfV6IwpKYW6TE1ev2/wRn7W4IzDuav77Xd4ebfGmvrPEEcpRQqPR1DWpqpW19uoMqQlmYMlKWlosxe/5s2LRWVmvt3mml97v4qM7NIr4cZrdb8nB0d0JnO3wGto6PZttxAlvG1o3mwqxx3VyxonUJGli6kS/GpPDkjnKjEdN7pGcKzD1XJN11aZg6vLTyEUtC3cWUJRuVjWKtgFkdc5vDlRD78+xjTBzSydJGEEEIIUUSUUqw6Es2BiwkkpGYRn5rJ2Ws3OHstBb2VlllDmtLu39ZExc3exorZQ5rx6FfbOHX1BkN/2M3MwU0L9GNYdo6BjSevsWDPRTaejCHHYPwt18ZKS5cQH/o0rETbml7YWOX9T4WVTstHfeqj02r4eecFXv/jIBqgrwSlhBCAys4mOyaGrH8DTtnR0WRdiSIrOvrfoFMUOfHxBcpL5+KCztU1/8CQ/W1BInv7OweY7O3RWBc+YF9YGo3m3+52duBetF2pVXY2hvR0DCmpqLRbAlmptwS0bl2XlvZvkOvf1/92PcxJuYHhRorpNQYDGAwYkpMxJCc/eEE1mpv3wPG21lhmLbTMg1w6R0d0Hh5YeXmhc3Ut0y22pIUUBY/exSSl8+TMcM7H3oxAv9q5Ji93qp7nTTB52VF+3H4OH2c9a15th4td8T/UZdGhSwk89vV2lIJfhofRurqnpYskhBBC3BdpIWXu553n+c/iI3nWO9jo+H5YM1pU9XjgYxTWoUsJPDV7F8np2fi72DJrSFPqVXK5Y/qT0cmM/GmvafxLgCZBbjzZpDKPhPrhXMBWVgaD4u0lR/hl1wU0Gpj2ZAMebyxBKSHKM6UUOXFxZEVFkx0ddTPQdOvfMTHGIMc9aOztsfb1xdrXFyt/P6x9/bD288Xazw8rXz+sfX3Q2j9YV2Rxd0opVFoaOTdu3OzymJKCIeXf1/+uN25PNVtnuHEDQ2oKObnBrRs3CnTfC0JjbY3OyxMrLy+svb2x8vLKu3h7o3N3L9HWWNJlrxAKcrESUjPpP3MnJ68mE+BuxyP1/Ji55R8AnnuoCv/pUQeNRkNMUjqrjkbzzpKjAMx5phnta3mX2LmURZOWHGFu+HmqejqwcmybCjnouxBCiLJPAlI3nbqaTK//bSMj20DPUD9q+zrham+Dq701TYPc8XWxLaJSF97ZazcYMXcv/1xPwdZay7QnG9Ij1C9Pug0nrvLybwe4kZGNu4MNfRtXon+zAKp7O93XcQ0GxX+WHOHXf4NStXycqOVrXEL8nGlTw0smeRGiDMm5ccPUiulmV7p/u9ZFR5EdfRWVkXHvjKytjYEEP1+s/fyNgSd/P6x8jQEnaz8/tM7OZboVjDBn6q74b3Aq55ZWWKYAlym4lWLWSsuYPpmc67HkJCQU/KA6HVb/tqq6NVBl/PeWdR4eRdJCTgJShXCvi3UjI5unZu/i4MUEvJ30/PFCKwI97PlhWyTvLT8GQJsanlxLzuBE9M2mewOaBfBx39ASO4+yKik9i07TNnMtOYNxXWrycqcali6SEEIIUWgSkDJKz8qh99fbORGdTNuaXswZ1gxtKQu0JKZm8dL8CLacugbAow386VrXhzY1vHC2teL7bZF8uOI4SkFYFXdmPN2kSCamMRgU7y47yrzw83m2tavpxYynm2BnIz/MCVFaqOxs0o8dI3XPXjLPnzcLOhlu3Lh3BoDOy/NmoMnPFyu/my2crPz8sPL0LLfjCIniZcjMJOfaNbKvXSPr2jWyY2LI/ve1cblO9rVr5MTGFnwAeY0Gnbt7/i2tTMErb6y8PNHq79ztXQJShXC3i5VjUAz5YRfbz8TiZm/NgpEtqelz85exhXsv8safh/h3OAE0GqhfyYVOtX0Y2a4qttZSqSiIZQev8NJvEWg00CTQjU51fOhcx5vq3o7ya4AQQogyQQJSRu8uPcqcHefwdLRh5SttS+2kJdk5Bj5eeYLZ2yJN63RaDdW8HDh11fgfzQHNAnjvsXr5jg/1IK4kpHE8KokT0cmcjE5m7bGrpGXl0DzYndnDmha4K6AQomip7GzSjx8ndfduUnbvJm3vPuPYQXegdXG52ZUut4WTn+/N1k0+PmhsKvYs68LyVHY22bGxZMdcuy1gdVsQ6/p1yMkpcL5aFxesvDzz7SqYam+PX4cOEpAqiLtVwP63/jTT1p7CwUbHb8+3ILSya579N56MYf3xqzQLdqdNDS/ci+AXtIpGKcXrfxzij32XzNYHe9jTv1kg/ZpWxsOxdFZohRBCCJCAFBi7uT07Zy8APz7TjA5lYNiCfefjWHUkmg0nYjh7zfgfT60G3uoRwrOtg0vkh7F95+MY9uMektOzqVfJmXnPhkl9UogSoHJySD9+gtTdu0ndtYvUffvytHzSOjtj37QptrVrmwedfHzROd591nUhyhJlMJATH583UBVzjexrMWYBLZWVdde8buTk0PzMaQlIFcSdKmD7zsfTb2Y4OQbF5/1k8MmScDkhjQ3Hr7LueAzhZ2PJzDEO9maj09K9vi9DWgbRJKhoZ2EQQgghikJFD0jFJKfz8PStxKVk8mzrKrzTK6QYSlm8LsSmsvXMNWp4O9G8SsnWN45eSWTI97uJTcmkurcjPz3XHD8XuxItgxDlncrJIf3ECVJ37zEGofbuzTNbmtbJCfumTbFv3hyHsOboa9VCo5NeL0LkUkphSEw0a2mVdVt3wfioKBpv2CABqYLIrwKWlJ7FI19u5VJ8Go819Gd6/4bSdayEpWRk8/fhKH7eeZ5DlxJN69vX8uI/Perc96CiQgghRHGoyAEppRTDftzD5lPXqOPnzOIxrWSSkvtwJuYGg7/fRVRiOh4ONkwf0JA2NbxM25VS/LX/Mp+vPUXH2t6837ueBUsrROmnDAYyTpwgZfduYxBq714MSUlmabSOjtg3aYJ9WBj2Yc2xrV1bAlBCPCAZQ6oQ8rtYY+dHsPjAFSq72bHilTbSl9/CDl1K4Oed5/lr/2WyDQqdVsNTYYGM7VxTmrQLIYQoFSpyQGrujnNMWnoUvZWW5S89RA0f+dHofl2KT2XEvH0cj0pCo4GXO9bg5U41iElOZ+Jfh9l48pop7ZpX25qNbSpERacMBjJOnTKOAbXr3xZQiYlmabQODtg1bYJD8zDsw8KwrSMBKCGKmgSkCuH2i7Uo4hKvLjiITqvh95EtaRLkZukiin9FXk/hoxXHWXvsKgBOtlaM7VyTIS2DsNbJ7BRCCCEsp6IGpE5fTabn/7aRkW1g8qN1GdoquPgKWUGkZ+UwedlRftt9EYCGAa6cjblBckY2NlZaKrvZ8c+1FJ5oUpmpTzawcGmFsBxlMJBx+jSpu3aTusfYCirn9gCUvT12TZrgENb83wBUHTRWVhYqsRAVgwSkCuHWi3U+STFgVjgpmTm82rkmr3SuYeniiXzsOHOd9/8+zvEoY5Pb6t6OvNMzhLY1ve6xpxBCCFE8KmJAKiM7hz5f7+BYVBLtanox55lmMsRBEVoUcYmJfx0hLcs461GjQFc+eyKU5PRs+nyzA2udhm1vdMTH2dbCJRWiZBgDUGeM4z/t3k3qnj3kJCSYpdHY22PfuDH2Yc1xCAvDNiREAlBClLCC1inkybzFhbgUnvn5CCmZObT+//buOzyKan3g+Hdbeu8dQuiE0HtVqgVEUcHCFQsXFQtiBQuWqyjWn9eCXhWwYgXBQpfeEaS3kNDSSCd9y/z+mGTJkgABkuxu8n6eZ57dnTk7ezYnm33zzinNA5l0VZy9qyTOo3fzIH57uC8/bDvBm0sOciSjgH99sYUhbUN5dVQ8IRKYCSGEEHXunaWH2JeaT4CnC2/ekiDJqFp2Y6co2kf68u6yw3Rt6s+/ejVFp1V/xt2a+rM1OYfZ65N55prWdq6pEHVDsVgoPXLk7CTkW7dizsmxKaPx8MCjUyc8evTAs0d3NQFlkOlWhHAG0kOKs9m73i8v4lShhnYRPsz7d0+8Zd4op5BXZOS9FYf4cuMxzBaFVqHe/DCxF74e0n5CCCHqT2PrIbU1OZtbP9mIosCn47owtF1YPdRSVFi2L50JX27D203PxqmD8HKV68zC+SmKQlliojoJ+Wa1F1SVBJS7u20Cql07SUAJ4WCkh9RlOJFdTJPwQGbf3U2SUU7E18PA9BHtuK17DOM+38zB9DNM+GobX97THTeDTFAohBBC1DazReGFX/eiKHBr1yhJRtnBoNYhxAV7kni6kHlbjnNfv2b2rpIQl0wxmyk7epSibdusK+GZs7Jsymjc3PDo3AmP7j3w6N4d9/h2aFxkUSMhGgJJSFUS4GHgy3t6EOItw72cUctQb+bc3Z1bZ21kS1I2j32/kw9u72zt2i6EEEKI2vH91hPsT83Hx03PM9e0sXd1GiWtVsOEfs145pfdfLEuibt6N5UFXoRDUxQFU3o6xbt2UbJ7N8W7dlOyZw+WwkKbchpXV9w7dbJOQu4eHy8JKCEaKElIVfLRnZ2JDfK0dzXEFWgT7sMn/+rC+C+28ueeNF5atJeXRraTOS2EEEKIWpJXZOStpQcBeGxISwI85R9FexnVKZK3lh4iJa+E33alcGOnKHtXSQgrc34+JXv2ULxrN8W7d1Oyaxem06erlNO4u+OekKBOQt69O24JCWglASVEoyAJqUriI/3sXQVRC3rHBfHOmA48/N0Ovtx4jF/+PoVGA1qNBr1Wwz19Y5l0VXN7V1MIIYRwSv+34jDZhWW0CPHizp5N7F2dRs3NoGN87ya8tfQQn6w+yqiOkXIRTtiFpayM0gMH1F5Pu3dRvGs3ZUlJVQvqdLi2bIl7fDzuHRJwa5+Aa1wzWQVPiEZKPvmiQbo+IYKsgjJe/m0fBaUmm2NvLT1Iz2YBdGkSYKfaCSGEEM7pSMYZvtyYDMALI9rKEDEHcGfPJny0KpEDaWdYfeg0A1uFVCkzb8txsgrLeHBgnCSsxBVTLBbKkpLOJp9276HkwAEwGquUNcTEVEo+tcetTRu07u52qLUQwhFJQko0WHf1bsqIDhHkFRtRFAUF+GDlEebvOMUTP+7ij0f64e4ik54LIYQQNaEoCi8t2ofJojCkbSj9WgTbu0oC8PNw4bbuMXy+LolZqxOrJKR2n8zjmV92A9C1iT89mgXao5rCiRkr5n2qGHq3e3eVeZ8AdAEBuLdvj1v79moCKj4evb+/HWoshHAWkpASDVqAp4vN3BYvjmzHxsQskjILmbnkANNHtLNj7YQQQgjncCAtn9nrkll7OBMXnZbnrpOJzB3JvX1jmbshmU1Hs9lxPIdOMWoSQFEUXv1jn7XcL3+fqrWEVHGZWS7sNUDmM2cqzfukJqFMGRlVymnc3XFr1xb39gm4t4/HLaEDhsgI6YEnhLgkkpASjYqvu4HXR7dn/OytzF6fzLB2YfSUK4VCCCFEFRaLwp970pi7MZktSdnW/Q9d3ZwmgbIIjCOJ8HNnVKdIftp+klmrE/lkXFcAVh7IYNPRbDQaUBT4fXcqL93QDjfD5SeS8oqN/Oe3ffz090muT4jg1Rvj8XEz1NZbEfXIUlZG6cGD5b2fLjLvU4sWau+nhPa4t2+Pa/PmMu+TEOKKyV8R0egMbBXCbd2j+W7LCZ786R8WP9ofT1f5KAghhBCVfbw6kTeXqKvp6bQahrULZVzPpvRsJnMwOqL7BzTjp+0nWbovncTTBTQJ8GDGnwcAmNCvGX/sTuVkTjFL96UzskPEZb3GXwcyeOaXXaTnlwKw6J8U/jmRywe3dyIhyq+23oqoA4rFQlnyMeuE48W7d1O6fz9KdfM+RUZaJxx3Tyif98nDww61FkI0dPJfuGiUpl3bhjWHMjmRXczMxQd46YZ4e1dJCCGEcCibjmYBcFPnSJ4a1powXzc710hcSPMQbwa3CWX5/nQ+XX2UDtF+HMkowN/DwKSrmuOq1/LflUeY//fJS05IpeYV8/bSQ/y0/SQAzYI8uX9AHP+34jDHs4sY/fEGnh7emnv7xsqQLQdizMgg75f5FG3ZTPHuPVjOnKlSRufnp875lFCefGrfHn2AJJ2FEPVDElKiUfJ2M/DG6ATu/Hwz3245zoNXNSfURwJtIYQQAtS5h/al5ANwV6+mkoxyEg8MjGP5/nR+2XGS5fvTAXj46hb4uhu4sVMk/115hDWHM8k4U0KI94XbtKDUxJ+7U5m/4xQbj2ahKKDRwH19Y3l8aCvcDDqGtQvj6Z93sXhvGv/5fT+/7Url0cEtGNgyWBJTdqIoCkVbtpLz3XecWb4cTGdXm9a4uuLWrl35nE8JuCckYIiKkrYSQtiNJKREo9W3RRDdmvqzNTmHLzcm8+Sw1vaukhBCCOEQMs6UklVYhk6roVWYt72rI2qoSxN/ujcNYEtyNlmFZTQJ9ODOnk0AaBbsRacYP3Ycz2XhzhTu69es2nMoisIna47y3vJDlBgt1v3dYwN4engrujQ523vG18PAx3d25utNx/jP7/vZeSKXu2dvpUOUL48MasHVrUMk2VFPzGfOkLfgV3LmzaMsMdG6371TJ3xHjsC9Y0d13ieDzPclhHAckpASjdq9fZuxNXk732w+zqSrmuPhIh8JIYQQYm9KHgBxwZ5XNAG2qH/3D2zGljnqJPRPDWuNi15rPXZT5yh2HM/ll79PVZuQMlsUXl60l7kbjwHq0LybOkdyQ8dIogOqn0NIo9EwrldThsWH8enqo3y9+Rj/nMzj3rnbSIjy5clhrejbPEgSU3Wk5MABcr79jrxFi1CKiwHQeHjgO2IE/reNxa21XHAVQjgu+e9bNGpD2obSJNCDY1lF/Lz9JON6NbV3lYQQQgi7qxiu1zbcx841EZfqqlYhjO/dFI0Grm0fZnNsREI4Ly/ay77UfPan5tOmUvuWmsxM+f4fft+dCsDz17flnj5Na5xICvF247nr23L/wDj+t/YoX208xq6TeYz7fAs9mwXw5LDWdGniX3tvtBGzlJZyZskScr79juKdO637XZrH4X/bbfiOHInOW3o2CiEcnySkRKOm02q4p08s0xfu5fN1SdzRowlarVzBE0II0bjtSy1PSEVIQsrZaDQaXhzZrtpjfh4uDGodyuK9aczfccqakMo4U8LkeTvZkJiFQafh7Vs7XvZKfEFerky9pg0T+jXjo78S+XrTMTYdzWb0xxuYdFWcTJFwBcpOniT3++/J/elnzDk56k69Hu8hgwm4/Xbcu3aVnmhCCKciCSnR6N3cJYq3lx4kOauI5fvTGdou7OJPEkIIIRqwveU9pNpF+Nq5JqK23dQ5ksV70/h+6wl2Hs/lcMYZcoqMAHi66PhkXFf6tgi64tcJ8nLlhRFtubdfLO8tO8SP20/yv7VJPHx1CxkGegkUs5mCtWvJ+e47CtesBUUBQB8Whv+YW/G7+Wb0wcF2rqUQQlwe7cWLCNGwebrquaN8ws/P1iXZuTZCCCHElZsxYwYajYbJkydf8nPPlBg5llUEYDOkSzQMA1uFEODpQl6xkS3J2dZkVKtQb+b9u1etJKMqi/RzZ+bNCYR4u1JmsvD38ZxaPX9DZcrOJvN//yNx6DBO3v8AhavXgKLg2acPUR/8l+bLlxH0wAOSjBJCODXpISUE6pLW/1tzlC1J2ew6mUtClJ+9qySEEEJclq1bt/Lpp5+SkJBwWc8/mHYGgHBfNwI8XWqzasIBuOi1/O9fXVh3OIumQR7EBXsRF+yFu0vd9VrSaDT0jgtkwc4UNiZm0TuudpNeDYWiKBTv2EnOd99xZvFiFKOaLNT6+uJ34434jx2DS9Om9q2kEELUIrv2kJoxYwbdunXD29ubkJAQRo0axcGDB23KKIrCiy++SEREBO7u7gwcOJC9e/falCktLeXhhx8mKCgIT09PRo4cycmTJ+vzrQgnF+brxojyuRI++isRpbw7tBBCCOFMCgoKuOOOO/jf//6Hv//lTSB9MK1iuJ70jmqoujQJ4NHBLbihYyTxkb51moyqUJGE2pCYVeev5WwshYXkzPuepBtv4tjtt5O/aBGK0Yhb+/aEv/oqLVb9RegzT0sySgjR4Ng1IbV69WomTZrEpk2bWLZsGSaTiaFDh1JYWGgtM3PmTN555x0++OADtm7dSlhYGEOGDOHMmTPWMpMnT2b+/PnMmzePdevWUVBQwPXXX4/ZbLbH2xJO6r5+sQAs3pvGkz/tosxksXONhBBCiEszadIkrrvuOgYPHnzRsqWlpeTn59tsAAfKe0jJCnuiNvWKCwTgnxO5FJaa7Fwbx1B65Ahpr/yHw/0HkPbii5QeOIDG1RXfm26i6Y8/EPvjD/iNvgmtu7u9qyqEEHXCrkP2Fi9ebPN49uzZhISEsH37dvr374+iKLz33ns8++yz3HTTTQDMnTuX0NBQvv32WyZOnEheXh6ff/45X331lTX4+vrrr4mOjmb58uUMGzas3t+XcE7tInyZcVN7nluwh5+2nyQtr4SP7uyMj5vB3lUTQgghLmrevHn8/fffbN26tUblZ8yYwUsvvVRl//6KhJT0kBK1KDrAg+gAd05kF7M1OZuBrULsXSW7UIxGzqxYQc6331G0ZYt1v0uTJvjdNha/UaPQ+fnZr4JCCFGPHGpS87y8PAACAgIASEpKIi0tjaFDh1rLuLq6MmDAADZs2ADA9u3bMRqNNmUiIiKIj4+3ljnX+a4ICnFb9xg+u6srHi461h3J5JaPN5KSW2zvagkhhBAXdOLECR599FG+/vpr3NzcavScqVOnkpeXZ91OnDgBQGKG2lNdVtgTta13M3XY3sZGOGzPmJbG6fff5/DVV3Nq8mNqMkqrxWvwIKI//4xmf/5B4PjxkowSQjQqDjOpuaIoTJkyhb59+xIfHw9AWloaAKGhoTZlQ0NDOXbsmLWMi4tLlXkSQkNDrc8/1/muCAoBcFWrEH6Y2Iu752zlYPoZhr27hjHdormrd1OiAzzsXT0hhBCiiu3bt5ORkUGXLl2s+8xmM2vWrOGDDz6gtLQUnc52niBXV1dcXV2rnMtotuDrpSfKX4YJidrVu3kg3287USvzSH229ii//H2Kd8Z0oHWYY/bmUywWijZtUicpX/kXlE8nogsOwv+WW/C75RYM4eF2rqUQQtiPwySkHnroIXbt2sW6deuqHNNoNDaPFUWpsu9cFyozdepUpkyZYn2cn59PdHT0ZdRaNFTxkb4smNSHf3+5jb0p+Xy2Lokv1icxtG0YEwc0o1PM5U0UK4QQQtSFQYMGsXv3bpt9d999N61bt+bpp5+ukoy6mLbhPheNtYS4VL2aqfNI7UnJI6/IiK/H5U2LcCK7iJmLD1JmtnDvnG0sfKgPgV5Vk6v2Ys7LI3f+fHK/m0dZ+UV0AI/u3fG/bSzegwahcZEVLIUQwiESUg8//DALFy5kzZo1REVFWfeHhYUBai+o8EpXDzIyMqy9psLCwigrKyMnJ8eml1RGRga9e/eu9vXOd0VQiMoi/dxZ9FBfVh86zRfrk1h7OJPFe9NYui+N98Z2YmT5qnxCCCGEvXl7e1t7mFfw9PQkMDCwyv6akPmjRF0I8XEjLtiTxNOFbErKYli7sMs6z1tL1WQUwKncYh745m++vrcHLnr7zkZSvGcvOd99S/7vf6CUlACg9fTEd9Qo/G8bi2vz5natnxBCOBq7/tVWFIWHHnqIX375hZUrVxIbG2tzPDY2lrCwMJYtW2bdV1ZWxurVq63Jpi5dumAwGGzKpKamsmfPnvMmpISoKa1Ww1WtQ/jq3h4smdyf4e3CsCgwed4OFv6TYu/qCSGEEHVCVtgTdaV33JXNI7XnVB6/7lRjsPfGdMTLVc+WpGxeXLQXRVFqrZ41ZSkpIfeX+STdcivJN99M3s+/oJSU4NqqFWEvvUSLNasJe/45SUYJIUQ17NpDatKkSXz77bf8+uuveHt7W+d88vX1xd3dHY1Gw+TJk3nttddo0aIFLVq04LXXXsPDw4Pbb7/dWvbee+/l8ccfJzAwkICAAJ544gnat29foyWPhaipVmHefHRHZ575ZRc/bDvJ5Hk7AKSnlBBCCIe0atWqy36uTGgu6krvuEC+2nSMDYmZl/xcRVGY8ed+AG7oGMGoTpH4uOu5d+42vt18nDZh3ozr1bSWa3yeupSVkTnrE7K/+QZL+cJMGoMB72HD8L/9dtw7dZRhr0IIcRF2TUh9/PHHAAwcONBm/+zZsxk/fjwATz31FMXFxTz44IPk5OTQo0cPli5dire3t7X8u+++i16v59Zbb6W4uJhBgwYxZ86cS54vQYiL0Wo1vH5TAoA1KaUoCjd0jLRzzYQQQojaYdBpaB7iZe9qiAaqZ/k8UofSCzh9ppRg75pPo7HmcCbrj2ThotPyxNBWAFzdOpSnh7fm9T8P8OKifSRE+dEh2q8uqm5VevQop554gtJ9anLMEBmJ39gx+I0ejb58tXAhhBAXp1EusW9raWkpW7ZsITk5maKiIoKDg+nUqVOV4XbOJD8/H19fX/Ly8vDxkS7q4uIsFsXaUwqgW1N/xvVqyvB2YXafv0AIIYR9OHs8UVH/wa//ybKnh9u7OqIBu/b/1rIvNZ/3b1Pn5DyVW8z8v0/iZtAxvndT9LqqsZTFonDdf9exPzWfe/vG8vz1ba3HFEXh319tZ9m+dO7pE8sLI9pWeX5tUBSF3O9/IP3111FKStD5+RH2wvN4DxuGRi6ECyGEVU1johr3kNqwYQP//e9/WbBgAWVlZfj5+eHu7k52djalpaU0a9aMf//739x///02vZeEaIgqekp5uRqYuzGZrck5bE3OIcjLlTt7xnD/gDjcDBKYCCGEcD5twiSOE3Wrd1wg+1Lz+XbzMeb/fZJVh05TcYl82b503r+tE6E+bjbP+XH7Cfan5uPtpuehq2znY9JoNFyfEM6yfelsSb68uakuxpSTQ+pzz1OwYgUAnr17Ez5jBobQkDp5PSGEaAxq1JXjhhtu4OabbyYyMpIlS5Zw5swZsrKyOHnyJEVFRRw+fJjnnnuOFStW0LJlS5sJxoVoqLRaDS+MaMuGZ67m0UEtCPF2JbOglPeWH+bOzzaTXVhm7yoKIYQQl6x1uCSkRN3q3VwdtrfpaDZ/HVSTUd2bBuDpomNzUjbXvb+WdYczURSFNYdOc+dnm3n6590APDiwOf6eLlXO2SNWPee+lHzyS4y1Wt+C9es5OnIkBStWoDEYCHn6aaI/+58ko4QQ4grVqIfU0KFD+fHHH3FxqfrHH6BZs2Y0a9aMu+66i71795KSIquPicYj1MeNx4a05KGrm/P7rlSe/3UP247lcONH65k9vhvNgmUeDiGEEM6jaxOZA0fUrZ7NAokN8iS/2MjNXaMY2y2G2CBPjp4u4MFv/uZA2hnGfbGZ2EBPjmYWAqDTaripUyR392la7TnDfN1oEujBsawitifncFXrK08WWcrKOP3Ou2TPmQOAS1wckW+9iVubNld8biGEEJcxh1RD5OxzPgjHcjj9DHfP2crJnGJ83Q18Mq6LdQJPIYQQDZezxxPOXn/hfBRFqbISXYnRzEuL9vLdlhMAeLjoGNMtmnv6xBId4HHB8z310z/8sO0kEwc0Y+o1V5Y0Kj1yhFNPPEnpgQMA+N02ltCnnkLr7n5F5xVCiMag1ueQqlBcXMyyZcs4dOgQGo2GFi1aMGTIENzlj7MQALQI9Wb+g32Y8OU2dp7I5c7PNjOgZTDD48MY0jYUP4/qexoKIYQQQjQm5yajANwMOmbclMBVrUI4mVPM6M5R+HoYanS+7rGB/LDtJFuSsi+7ToqikPPdd2S8MROltBSdvz/hr76K99VXXfY5hRBCVO+SElILFy7kvvvuIzMz02Z/UFAQn3/+OSNGjKjVygnhrIK9XZn37548+dMuFv2TwooDGaw4kIFeq6FP8yD+Myr+olf5hBBCCCEaq6Htwi75OT1i1eGmu0/mUVRmwsPl0q69m7KySH32OQpWrQLAs29fwl97FUOIzBUlhBB1ocbr02/YsIGbb76Z/v37s379erKzs8nOzmbdunX069ePm2++mY0bN9ZlXYVwKm4GHf+9rRNLJvdn8uAWtA7zxmRRWH3oNA9/twOzpdGPlhVCCCGEqDVR/u5E+Lphsij8fSz3kp5bsHYtR28YRcGqVWgMBkKnTSX6008kGSWEEHWoxnNIXXvttURHR/PJJ59Ue3zixImcOHGCP/74o1YrWB9kzgRRXw6k5XPLxxs5U2pi2rWt+Xf/OHtXSQghRC1x9njC2esvBMBj3+9k/o5TPHJ1c6YMbXXR8pbSUjLefpucL78CwLVFcyLeegu3Vhd/rhBCiOrVNKaocQ+pjRs38tBDD533+KRJk6SHlBAX0TrMh+euVyfZfHvpIY6eLrBzjYQQQgghGo7u5cP2NtVgHqmSQ4dIvuVWazLK/447aPrjj5KMEkKIelLjhFRJSckFM1u+vr6UlpbWSqWEaMhu7RpNvxZBlJosPPXTLhm6J4QQQghRSyrmkdp5IpcSo7naMoqikP31NyTffAulhw6hCwwk+pNZhD3/HFo3t/qsrhBCNGo1Tki1bNmSlStXnvf4ihUraN68ea1USoiGTKPRMOOm9ni66Nh2LIcvNybbu0pCCCGEEA1CbJAnQV6ulJks/HMit8pxU2YmJ+6/n/T//AelrAzP/v1o9usCvAYMqP/KCiFEI1fjpSfGjx/PE088QWhoKNdee63Nsd9//52nnnqKZ599ttYrKERDFOXvwTPXtuH5BXuYufggecVGABQFdFoNg9qE0C7C1861FEIIIYRwLhqNhh7NAvh9VypbkrLp0SxQPWCxsOXzp/GbvQFzdjYaFxdCnnwS/zvvQKPR2LfSQgjRSNU4IfXoo4+yYcMGrr/+elq1akWbNuo8OPv27ePw4cOMGjWKRx99tM4qKkRDc0f3GH7flcKmo9m8t/ywzbF3lx/ixo6RTBnakih/DzvVUAghhBDC+fSIVRNSm5Oyebh831+PjSRsSSJmwCU2hsj/+y9uLVvas5pCCNHo1TghpdVq+fHHH/n+++/57rvvOHDgAACtW7fmxRdfZOzYsXVWSUdhNpsxGo32roYAXFxc0GprPOLUIWm1Gv5vbCc+XpVImdmCBtBqNKTll7BsXzq/7DjFb7tTubt3U0Z2jCDSzx1fd4NcxRNCCGFXEg85voYQJ12JHrFqr6jtx3Iwmi0YdFrKIt0B+KOrhn29knnn+De4xT4DBnd7VlUIIRo1jaIojX5G5YstSagoCmlpaeTm5tZ/5US1tFotsbGxuLi42LsqdWLXyVxe+2M/m47arhDjbtAR7ufGNfFhPDKoBa56nZ1qKIQQ4lw1XeLYUUk81HA09DjpYiwWhc7/WUZukZFfHuxN5xh/ADYt/pDH0j+lAAtNy4x8WGwgZvhb0HKYnWsshBANS01jIklIcfEfVmpqKrm5uYSEhODh4SE9VOzMYrGQkpKCwWAgJiamwbaHoiisOniaj1clkni6gKzCMpvj7SJ8eP+2TsQFe9mphkIIISpr6AkpiYecQ2OJky7m319uY+m+dJ65pjX3D4iz7j+cfYhJS+4htSwPP7OZ/0vPpHPTwXDN6+AXY8caCyFEw1HTmOiShuxd7AtNo9FgMplqXksnYDabrcFXYGCgvasjygUHB5OSkoLJZMJgMNi7OnVCo9FwVesQrmodAkCJ0UxqXgn/nMjlpUV72ZuSz/Xvr2P6iLaM6RbdaANOIYQQdU/iIefSGOKki+keG8DGo1mUGM02+1sEtOTbUQt4aPkD7M0+wH3hIfzn5F9c+0F36P8E9H4Y9K52qrUQQjQuNU5IzZ8//7zHNmzYwH//+18aYmerijkSPDxkYmlHUtEF3Ww2N5pAy82gIzbIk9ggT3rFBTLlh52sP5LFM7/sZu3hTF4f3R5vt7r7WVhKSijeuZPCTZso2bsPnZ8fhqhIXKKiMURF4RIdhT40FI1OhhEKIURDI/GQc2mMcdK57uzZhLv7xKLTVr1gF+QexOxrvmTq2qmsOL6Cp0OCOJGTy79XvoLmn+/g2rcg7io71FoIIRqXGiekbrjhhir7Dhw4wNSpU1m0aBF33HEHr7zySq1WzpFI7xPH0tjbI9THja/u6cH/1h7lzSUH+X13KvvT8pl1ZxdahnrXymsoZWUU795N4aZNFG3eQvHOnShlZRd+ksGAS0QEhqgoDNFRuERFYaiUsNL5+tZK3YQQQthHY//+dRbSTuqFvAtx17vz9oC3eXf7u8zdN5cP/P047ubNi2lHMHw1CtrdCMNeA5+I+qmwEEI0QjVOSFWWkpLC9OnTmTt3LsOGDWPnzp3Ex8fXdt2EEBeg1WqYOCCO7rEBPPjN3xw9XcioD9fz+ugERna49OBJMZko2bePwk2bKdq8maK//0YpLrYpow8JwaNHD9w7dcRSWIjx5CmMJ05QduokxpRUMBopO3aMsmPHqq+zt7eanIqKwhAdrfawilYTVobISLSNdPJVIYQQQtQ/nVbHE92eIMYnhtc2v8ZCd0hp2ZH3Enfju3c+HF4GA6dCj4mga5w9zYQQoi5dUkIqLy+P1157jf/+97907NiRFStW0K9fv7qqm3BwAwcOpGPHjrz33nvnLaPRaJg/fz6jRo2qt3o1Np1i/Pnt4b48Mm8H649k8ch3O/j7WA7Trm2Di/78Sz4rFgulBw9SuHkzRZu3ULR1K5aCApsyuoAAPLp3x7NHdzx69MQltul5r7oqZjOm9HTKTpzEePIEZSdPYjxxEuPJk5SdPIk5MxPLmTOU7t9P6f79VU+g0aAPDa0yDNAQpW764GA0jXgJayGEEM6radOmTJ48mcmTJ1d7PDk5mdjYWHbs2EHHjh3rtW4Cbm11KxFeETyx+gm2GbO5s3VXPsorI/rkDlj6LOz8Bq57G5r0tndVhRCiQalxQmrmzJm88cYbhIWF8d1331U7hE84lrS0NF599VV+//13Tp06RUhICB07dmTy5MkMGjTIWm7Dhg385z//YePGjRQXF9OiRQvGjx/P5MmT0V3hfECpqan4+/vXqKwkry5foJcrX97Tg7eXHuSjVYl8tekYozpF0jHaz1pGURTKEhPVBNSmzRRt3Yr5nKW7tT4+eHTvhmf3Hnj07IFrixY17vav0ekwRERgiIiAHt2rHLcUFWE8depsourUyfLklZqwUoqKMKWlYUpLo3jb9qrnd3E5OxQwsmoPK51X7a82qCgKSmkpSkkJlorbklKUkmL1trQES0kJSmmpeluxr7ik/Fjp2duS8rKVzlXtEMiKn3eV24qHFe1xvnLVP0+9e2nP0aABvR6dry86fz/0/v7o/APQ+fuffRygPtZ6eckQESGEQ8rIyOD555/nzz//JD09HX9/fzp06MCLL75Ir169rOVqEg8lJyfzyiuvsHLlStLS0oiIiODOO+/k2Weftc7bdDmio6NJTU0lKCjoomUleVU3+kb25ctrvmTSikkkF6Zyh5c/7w96ho4bPoWMfTD7GuhwGwx5GbxC7F1dIYRoEGqckHrmmWdwd3enefPmzJ07l7lz51Zb7pdffqm1yonLl5ycTJ8+ffDz82PmzJkkJCRgNBpZsmQJkyZN4sCBA4A6Wf2tt97K3XffzV9//YWfnx/Lly/nqaeeYtOmTfzwww9X9E9mWFhYbb0lcRE6rYanhremY7QfafkldIz2w1JSwuJXbsQ7sYDQY0bMOXk2z9F6eODeras1AeXWunWdTUqu9fDAtUULXFu0qHJMURTM2dlqcqpyD6vyIYHGtDSUsjLKjh6l7OhRCqt7/35+NnNX6cPCwGxBKSs9mxiqnCiqJkFkKS1PKpWcTTSJGtLry5NUFQkrf/QB/uj8/G0f+5/dtK6yipEQou6NHj0ao9HI3LlzadasGenp6axYsYLs7GxrmZrGQwcOHMBisfDJJ5/QvHlz9uzZw4QJEygsLOStt9667DrqdDqJmRxAS/+WfHvttzy08iH2Ze3j3uSf+M8NM7nm8DrYPhf++Q4O/AGDnoeu94BWFnIRQogroVFquDTe+PHja5SYmD179hVXqr7l5+fj6+tLXl4ePj4+NsdKSkpISkoiNjYWNzc3O9Xw0l177bXs2rWLgwcP4unpaXMsNzcXPz8/CgsLadKkCQMGDODnn3+2KbNo0SJGjhzJvHnzGDNmTLWvMXDgQBISEnBzc+Ozzz7DxcWF+++/nxdffNFapnKvp7KyMqZMmcLPP/9MTk4OYWFhTJw4kalTp9K0aVOOVZp3qEmTJiQnJ5/3/Tlru9S3k6cPk3nVSFxN5Tt0Cp5N/fDo0hHPoTfi1uNqNE6w+o5iNGJMSytPWJ1QE1UnT1BWnrAy5+TUfSV0OrSurmjc3W1v3dzQurmicXVD4+aK1ua2/Jibu7WM+tgNjaurmpDRaKDiz3D5rfXPcsVfZ+uf6XP+XNf4eZV2nvc55zy3/I5SZsScl4c5JxtzTg6m7BzMubmYs8sf5+RUmWusprQeHmcTVAH+ao8rv8pJK9teWDpfX1nFUTi0C8UTzqAhxkO5ubn4+/uzatUqBgwYUG2ZK42H3nzzTT7++GOOHj163no0bdqUf//73xw5coQff/wRf39/nnvuOf79738DVXs95eTk8NBDD7F06VIKCgqIiopi2rRp3H333VXi8QEDBrBq1Sqbfc7aXo6iyFjEM2uf4a8TfwHwSKdHuM+/E5o/pkDqP2qh8A5w3TsQ1dWONRVCCMdU05ioxj2k5syZUxv1cnqKolBsNNvltd0NuholBbOzs1m8eDGvvvpqlWQUgJ+fHwBLly4lKyuLJ554okqZESNG0LJlS7777rvzBmAAc+fOZcqUKWzevJmNGzcyfvx4+vTpw5AhQ6qUff/991m4cCE//PADMTExnDhxghMnTgCwdetWQkJCmD17NsOHD7/ioYJCFekTTnLfGBabTvJ3Ew1J4Qp3F6QwIXc/huXfwfZYaDZQ3WL7g0eAvatcLY3BgEt0NC7R0XhWGl5RwVxQiPHkCevwP+OJk5gy0kGvv7QEkVtFGTebY1pXV6dI3NmLpaQEc07O2YRV+X1zbg6m7GzMuXlnj+dkY87JBZMJS1GRdShnjWg06Hx8ziaorEmrAHSBAegDg9AHBaILCFRv/fwkgSVEHXKGmMjLywsvLy8WLFhAz549ca2mZ+aVxkN5eXkEBFz8+/Ptt9/mlVdeYdq0afz000888MAD9O/fn9atW1cp+/zzz7Nv3z7+/PNPgoKCOHLkCMXlyf8tW7bQvXt3li9fTrt27a5oqKConofBg3cHvsvb29/mq31f8f6O9znefBQv3LMUw46vYMUramLqs8HqhOfDXz877F0IIUSNXdYqe41ZsdFM2xeW2OW19708DA+XizfZkSNHUBSl2gCnskOHDgHQpk2bao+3bt3aWuZ8EhISmD59OgAtWrTggw8+YMWKFdUmpI4fP06LFi3o27cvGo2GJk2aWI8FBwcDarJMuqzXHo2rF31nLaFlUQapG19h/8lVfOzvyzK/QF5JTSE+Jwm2J8H22YAGwhPKk1MDIKYXuHjY+y3UiM7LE13r1rhd5HfeERSbikktSOVkwUlySnIIdg8mwiuCcK9wXHXOOYRN6+aGNjwcQ3h4jcorioKloEBNUmVnY8rJwZyTW560qvS4Ui8sS34+KIraWysvD5KSalAxLbqAAPSBgegDA9EFBaKvSFZZk1cB6IOC0AcESNJRiEvkDDGRXq9nzpw5TJgwgVmzZtG5c2cGDBjA2LFjSUhIAK4sHkpMTOS///0vb7/99kXrcu211/Lggw8C8PTTT/Puu++yatWqauO148eP06lTJ7p2VXvfNG3a1HqsImYKDAyUmKkO6bQ6nur2FDHeMczYMoMFRxaQUpDCOwPfwbftDbDsBXUI3+ZZENQSut1r7yoLIYTTqVFC6v777+fZZ58lOjr6omW///57TCYTd9xxxxVXTlyeiiE4NZ376XyjNhVFueg5KoK5CuHh4WRkZFRbdvz48QwZMoRWrVoxfPhwrr/+eoYOHVqjOoorE+IRwntXv8+SY0uYsXkGR0qyuSMyjH+F9eNBswfuR9fA6f3q1b7Uf2D9/4HOBaJ7QLMB0OwqCO8IOslhX0yJqYTUwlROFZwipSDF5vZUwSmyS7LP+9yK5FSEVwSRXpHqrWek0yeszqXRaNB5e6Pz9oaYmBo9RzGZ1KGClXth5Zb3usrKxpydhSkzC1NWFubMTDVpZbGo9zMzqclsYFpf3/MkrwIr7Q9CHxiI1t39yn4IQoh6M3r0aK677jrWrl3Lxo0bWbx4MTNnzuSzzz5j/Pjx1nKXGg+lpKQwfPhwbrnlFu67776L1qNyzKTRaAgLCztvzPTAAw8wevRo/v77b4YOHcqoUaPo3VtWeLOHsa3HEuEVwZOrn2RL2hbG/TmODwd9SPSNsyCsPSyZBkufh7irIKCZvasrhBBOpUb/XQYHBxMfH0/v3r0ZOXIkXbt2JSIiAjc3N3Jycti3bx/r1q1j3rx5REZG8umnn9Z1ve3G3aBj38vD7PbaNdGifGW0/fv3X3DFupYtWwKwf//+aoOcAwcO0LZt2wu+luGcHgUajQaLxVJt2c6dO5OUlMSff/7J8uXLufXWWxk8eDA//fTTRd6RqA0ajYbhTYfTI6wHb2x9g9+P/s6c1NWs9I7hxdH/pZtnNCStgaOr1C3/FCSvVbeV/wFXX4jtd3aIX1DVyckbgzJzmZpwOnOKU4W2yaaUghQyizMveg4vgxcRXhEEuAWQWZzJqYJTFJuKOV18mtPFp/nn9D/VPu/chFW4Z7g1cRXuGY6bvuHOE6LR69WeTEFB1CQtpxiNauLKmqjKxJyVpSavsjLVfdnZmDMzMWVng9mMJS+Psrw8yi4wD4y1Ph4eF09elffC0np7ywqEokFyhpiogpubG0OGDGHIkCG88MIL3HfffUyfPp3x48dfVjyUkpLCVVddRa9evWoc915KzHTNNddw7Ngxfv/9d5YvX86gQYOYNGnSFU2cLi5f/6j+1hX4kvKSuPOPO3n/6vfp0OMBdZLzY+tgwSQY/5tMdC6EEJegRgmpV155hYcffpjPP/+cWbNmsWfPHpvj3t7eDB48mM8++6zB93jRaDQ16iJuTwEBAQwbNowPP/yQRx555LyTmg8dOpSAgADefvvtKgHYwoULOXz4MK+88kqt1s3Hx4cxY8YwZswYbr75ZoYPH052djYBAQEYDAbMZvvMRdGY+Lv583q/17k29lpe2vgSx88c554l9zCm1Rgmd56MV8Kt6gTXWYlw9C81OZW8Fkry4MBv6gbQbQJcMxO0Wru+n9pmNBur9nAqTOHUGfVxRnH1V7Mr89B7EOkdSaRnJJHekUR4lieQvNQEko+Lj02CQlEUcktzra9ZOclVUZeaJKyC3INselVV7mnV0BNW59IYDBhCQzCEXnxpbsViUYcCZlVNXpmyMjFXTl5lZaGUlqIUFWEsKsJYPg/exeqiCwpCHxKMISQEfXAI+pCzmyFUvdX6+EjiSjgVZ4iJzqdt27YsWLAA4JLjoVOnTnHVVVfRpUsXZs+ejbaOvgeDg4MZP34848ePp1+/fjz55JO89dZb1jmjJGaqX60CWvHNtd/w8MqH2Z+9n3uX3MurfV9l2KgP4eM+cHwDbPoYej9k76oKIYTTqHEUERISwtSpU5k6dSq5ubkcO3aM4uJigoKCiIuLkyDawXz00Uf07t2b7t278/LLL5OQkIDJZGLZsmV8/PHH7N+/H09PTz755BPGjh3Lv//9bx566CF8fHxYsWIFTz75JDfffDO33nprrdXp3XffJTw8nI4dO6LVavnxxx8JCwuzTrLetGlTVqxYQZ8+fXB1dcXf37/WXltU1T+qPwtuWMDb297m58M/8/3B71l9cjUv9HyBflH9IKi5unWfABYzpO4823sqaS1s/R+gwLVvOdVEnkaLkbTCtPMOqTtddBrl3NXszuGudz87pM4r0no/wiuCKK+oKgmni9FoNPi7+ePv5k98UHyV44qikFeaZ02OndsrK6UghSJTEZnFmWQWZ7Lr9K5qXyfIPYgIz4gqyaoIrwgiPCMaVcKqMo1Wi95fXeXPtXnzC5ZVFAVLYWF5wioLU+aFk1eWggK1t1ZqKqbUVEouVA9X10qJqvLkVUholX3aaharEEJULysri1tuuYV77rmHhIQEvL292bZtGzNnzuSGG24AuKR4KCUlhYEDBxITE8Nbb73F6dOnra9Vm/M5vfDCC3Tp0oV27dpRWlrKb7/9Zp3jKiQkBHd3dxYvXkxUVBRubm74+vrW2muL8wv1DGXO8Dk8veZpVp1cxROrn2B327vo32cibVe9g9eKl6HFEAhuZe+qCiGEU7isy1p+fn7WJIJwTLGxsfz999+8+uqrPP7446SmphIcHEyXLl34+OOPreVuvvlm/vrrL1577TX69+9PcXExzZs359lnn2Xy5Mm1mmj08vLijTfe4PDhw+h0Orp168Yff/xhvbL49ttvM2XKFP73v/8RGRlJcnJyrb22qJ63izcv9n6Ra2KvYfqG6ZwqOMWDKx5kRLMRPN39aXxdywNcrQ4iu6hbv8dh57ew4EHY+hlodHDNGw6TlDJajKQXptv0bkopSOHkmZOkFKaQUZSBRal+iEQFN52bdd6mKK+oKsknP1e/ek3CazQa/Nz88HPzo11QuyrHq0tYndu7yyZhlVl9wirQLdAmSRXpFUm0dzRdQ7ti0MmE31A+/5WXFzovL1wqLcxwPpaSEnXi9tOnMZ0+jTEjA1N6Bqb0dHVfRgamjAzMeXkopaUYT5y4aK8rraenmqAKDa2UuDpnCw5GW81qYkI0Nl5eXvTo0YN3332XxMREjEYj0dHRTJgwgWnTplnL1TQeWrp0KUeOHOHIkSNERUXZvNb55qC6HC4uLkydOpXk5GTc3d3p168f8+bNA9SJ2t9//31efvllXnjhBfr168eqVatq7bXFhXkYPHjvqvd4a9tbfL3/a+bum8tcQNM0mqZlRtotup34Ho/SLjiB1gGtG+3FHiGEqAmNconfnrt2Vf+PjEajwc3NjZiYmGqX1HVk+fn5+Pr6kpeXh4+Pj82xkpISkpKSiI2Nxc1NvlAchbRL7SsyFvHfHf/lm/3foKAQ6BbIsz2fZUiTqismAvD3V7CwvFt6zwdh2Gv1kpQymst7OBWeIrXAdmhdamEq6UXpF004uepc1fmXyofVVU7ARHpFEuAW0KB6fSqKQn5ZPicLTtr8zFIKUtR9hakUGgvP+3w/Vz+GNx3OyLiRxAfFN6ifjaOwlJTYJKiM1oTV2X2mjAwshedvp3PpfH2rJqpCgsuHCZb3vAoMlNUFa9GF4glnIPFQwyHtVT8WJy1m6bGl7M3cS0phSpXjOo2O5n7NaRfUjnaB7YgPiqeFfwsMWvm7K4Ro2GoaE11yQkqr1V7wnxGDwcCYMWP45JNPnOYLUAIw5yPtUnd2Zuxk+obpHM1TJ3Ye0mQI03pMI8g9qGrh7XNh0SPq/V4PwdD/XHFSqsxcRlphms3QtMo9fjKKMi46pM5F62Kdr8na48czQk1AeUUS6BYoSZVKKhJWNj/vQvX+nsw9NhO1N/Vpysi4kYyIG0GYpyw3Xt/MBYWYTpf3sqqcwMpIt0leKaU1WVcQ0GjUidhDgtEHB6P380Pn54fO31+99fM/+9jfD72fH5ry+WtEVZKQEo5C2qv+ZRVnsXfbLPZun8VeVzf2+IWSVZZXpZyL1oVWAa2sCar4oHia+jRFJ5OhCyEakDpLSP366688/fTTPPnkk3Tv3h1FUdi6dStvv/0206dPx2Qy8cwzzzBmzBinWQlEAjDnI+1St0rNpXzyzyd8secLzIoZHxcfnu7+NCOajaiayNn2Bfz2mHq/z2QY/OIFk1Kl5lJSC1KrDC2rmLy7JnM4WXs4nTMHUkXCKcAtAK2mYU22bi9mi5lNqZtYmLiQlcdXUmJWZ0HSoKF7WHdGxI1gSJMheBg87FxTUUFRFCx5ebZDBCsSVqczzu7LzAST6ZLPr/X0tE1aWW/VZJbe37/KscYyfFASUsJRSHvZiaLAD/+C/QtRQtqQfucP7M05zJ6sPezJ3MPerL2cKTtT5Wkeeg/aBLYhPlBNULULbEeUd5RcPBNCOK06S0h1796dV155hWHDbJf5XbJkCc8//zxbtmxhwYIFPP744yQmJl5e7euZBGDOR9qlfhzIPsAL619gf/Z+APpE9mF6z+mEe4XbFtzyP/jjCQBK+k4mpetdNivVVfS4SSlI4XTx6XNfpgo3nZtND6dwz3CbSbilh5N9FJQVsOzYMhYdXcTWtK3W/e56dwbHDGZE3Ai6h3WXq7xOQrFYMOfknB0SmJmJOTdX3Zebizkn1/rYnJODOS8PzrNE/cVoPDzQ+fmqCauKXlfnJrUqJ7T8/NC4uzvd51wSUsJRSHvZUWEmfNgDijKh72PqhbpyiqJw/Mxx9mbuZU/WHvZm7mV/9n6KTcVVTuPr6ku7QHWoX7ugdsQHxhPqGVqPb0QIIS5fnSWk3N3d2bFjB61bt7bZf+DAATp16kRxcTHJycm0bduWoqKiy6t9PZMAzPlIu9Qfo8XI3L1z+Xjnx5RZyvDQe/Bo50eJ9o5WezcVqkmn1LSdnCpIIUt/8WSEu97d2qOpYtW3ignEI7wi8Hf1d7p/RBubUwWn+P3o7yxMXMix/GPW/SEeIVzf7HpGxo0kzi/OjjUUtU2xWLDk52POzcWUk3M2YVWRtMrNKb+fizkvF1P58cvphQXqqoPn9sDS+/urQwwDA9EFBNjcar297f53QxJSwlFIe9nZ/t/g+ztAo4V7lkB09/MWNVlMJOUlsTdrr9qLKnMvB3MOYrQYq5QNdg+2mY8qPjAePze/OnwjQghxeeosIdWpUyc6dOjAp59+ikv5PBJGo5EJEybwzz//sGPHDtavX8+dd95JUlLSlb2LeiIBmPORdql/R/OOMn39dHae3nnRsh4WC5GuAUSGdiTcK/xs8skrgkjPSHxdfe3+j6OoHYqisCtzF4sSF/Fn0p/kl+Vbj7UNbMvIuJFcE3sNAW4BdqylsBdFUbAUFFRKWp29NWXn2Ca0cs4+VoxV/xG7KIMBfUAAusAA9AGB6AMD0FW+DQqs9DigToYRSkJKOAppLwfwy0TYNQ8C4uD+teDiWeOnGs1GDuUeUntSlQ/1O5J7pNpFWyK9Iq3D/OKD4mkb2BZPQ81fSwgh6kKdJaQ2bNjAyJEj0Wq1JCQkoNFo2LVrF2azmd9++42ePXvy1VdfkZaWxpNPPnnFb6Q+SADmfKRd7MNsMTPv4Dy+3f8tbno369xNlYfTRe77A58Vr6ABuOo5GOAcfwfElSszl7H65GoWJi5k3cl1mBS1Z4xeo6dvVF9Gxo1kQNQAXHQyKbY4P0VRsBQWqT2urL2w1ISVKTsbc3YOpuwszFnZmLKyMGdnYykouOTX0Xp5WZNXusAA9IFBVZNYgQHoAgPR+fqi0V58XjpJSAlHIe3lAIpz4aNecCYFuk+Ea2de2elMxRzIPsCeTHU+qn1Z+0jOT65SToOGWN/Ys0P9guKJ8opCr9Vj0Bow6AzoNXq5MCiEqFN1lpACKCgo4Ouvv+bQoUMoikLr1q25/fbb8fb2vqJK24sEYM5H2sXBrXsPlk9X7w96Afo9btfqiPqXXZLNn0l/sjBxIfuy9ln3+7j4MLzpcEbEjaBDcAcJiEWtsJSWYs7OxpSZhTk7C1NWtnqbmYU5JxtTVraaxMrMwpSTA5faA0urVYcGVuqBVV0Sq9DFheC2bSUhJexO2stBHFkBX9+k3v/XQmg2oFZPn1+Wz76sfdYE1Z7MPaQWptbouQatwZqgst4/Z581iVVpf3X7avrcivs2x8r3B3sE4+PifH83hRDVq/WE1D333MP//d//OW3S6UIkAHM+0i5OYO3bsOJl9f7gl6DvZLtWR9hPYm4iixIX8dvR30gvSrfuj/GOYUTcCEbEjSDSK9KONRSNiaIoWPLz1aRVVqY6dLA8iWXKysScnYM5KwtTttoDy5JXddn28ykwm+l+5LAkpITdSXs5kN8eU1ck9o2GBzaAW93+bcgszmRf1j7rxOl7MveQXZJdp69ZWyK9Imkd0JrWAa1pE9CG1gGtCfEIkYtXQjihWk9I6XQ6UlNTCQkJqbVKOgoJwJyPtIuTWP0m/PUf9f7Q/0Dvh+1bH2FXZouZLWlb+O3obyw7tsxmVaGuoV0ZGTeSIU2G4OXiZcdaCmFLMRrVSdyzbHtcWXtgZWerQwmzssjNyKDb3j2SkBJ2J+3lQEoL4OPekHsMOo2DGz6o9yooioJJMWE0GzFa1M1kOfu4zFKGyWJS91mMlJnLrPcvVN5oMWI0X+SxxYjJbDp7jorzK7bnyyutPvkf4BZAK/9W1kRV68DWNPFuIiv6CuHgapqQ0tf0hJcxsk8I0dgNeBIUM6yaAUufA40Oej1o71oJO9FpdfSK6EWviF482+NZlh9fzsIjC9mStoVt6dvYlr6N1za/xtUxVzMybiQ9wnug19b4a0qIOqExGDCEhGCowQW5vLw88POr+0oJIZyHqxeM+hjmXAc7voI2I6DlsHqtgkajwaBRh8Y5qrzSPA5mH2R/9n4OZB/gQPYBkvKSyC7JZmPqRjambrSWdde709K/pU1Pqub+zXHV1f5iFUKIunXxGTorke6SziUjI4OJEycSExODq6srYWFhDBs2jI0b1T/oO3bs4PrrryckJAQ3NzeaNm3KmDFjyMzMBCA5ORmNRmPd/P396d+/P6tXr7a+xpo1axgxYgQRERFoNBoWLFhQpR6//PILw4YNIygoCI1Gw86dO6uUSUxM5MYbbyQ4OBgfHx9uvfVW0tPTq5QTTmjgM9D/KfX+kqmw+RP71kc4BA+DByPjRvLZsM9YevNSHu38KLG+sZSYS/gj6Q/uX34/Q38aytvb3uZQziF7V1eIGrF3nDRjxgy6deuGt7c3ISEhjBo1ioMHD9q1To5CYiJhV037QK9J6v2FD0ORcwyhq0++rr50D+/OXe3uYka/Gcy/YT6bbt/Ed9d9xwu9XmBMqzEkBCfgpnOj2FTMP6f/4fuD3/PixhcZ+/tYen7Tk5sW3sSz657lq31fsTVtq83Kv0IIx3RJl55btmx50WArO1v+wDqK0aNHYzQamTt3Ls2aNSM9PZ0VK1aQnZ1NRkYGgwcPZsSIESxZsgQ/Pz+SkpJYuHAhRUVFNudZvnw57dq1IyMjg2nTpnHttdeyZ88eYmNjKSwspEOHDtx9992MHj262noUFhbSp08fbrnlFiZMmFDt8aFDh9KhQwdWrlwJwPPPP8+IESPYtGkT2hqsbCQc3FXT1J5Sa9+GP58CjRa6V/1dEI1TmGcY97W/j3vj72Vv1l4WJi7kz6Q/OV18mjl75zBn7xxaB7RmRLMRXNvsWoLcg+xdZSEc0urVq5k0aRLdunXDZDLx7LPPMnToUPbt24enZ+NeBl5iImF3Vz8Hh5dC5iH440m4+XN718jhuendiA+KJz4o3rrPbDFzLP+YtSdVxW1eaR6Hcw5zOOcwCxMXWstHekXSJqANrQJaybxUQjigGs8hpdVqee+99/D19b1gubvuuqvGL75mzRrefPNNtm/fTmpqKvPnz2fUqFHW44qi8NJLL/Hpp5+Sk5NDjx49+PDDD2nXrp21TGlpKU888QTfffcdxcXFDBo0iI8++oioqKga16MhzpmQm5uLv78/q1atYsCAqit6LFiwgFtuuYXi4mL0+urzksnJycTGxrJjxw46duwIwKlTp4iKimLWrFlMnDjRprxGo6nShhc7H8DSpUu55ppryMnJsf78c3JyCAgIYNmyZQwePLjKuZy1XRo1RYHlL8L699TH178LXe+xZ42EAzOajaw9tZaFiQtZfXI1JosJAJ1GR++I3oyMG8nA6IG46eXzLxxHTedLqC+nT58mJCSE1atX079//4uWb4jxEDT8mKg6ztxeDdrJ7fD5EPUi3S1zoN2N9q5Rg6AoCulF6ezPsk1SnW/FwQC3AFoHtLZJUjXxaYJWIwlfIWpLrc8hBTB27NhandT8YleSZs6cyTvvvMOcOXNo2bIl//nPfxgyZAgHDx60rvY3efJkFi1axLx58wgMDOTxxx/n+uuvZ/v27eh0dTDZnaKAseji5eqCwQNqmM338vLCy8uLBQsW0LNnT1xdbcdUh4WFYTKZmD9/PjfffHONrxJ4eHgAYLzUJbMvoLS0FI1GY1NHNzc3tFot69atq3HwJRycRgODXwSLCTZ+oK46o9FBl5onsUXjYdAZuDrmaq6OuZrcklwWJy9mUeIidmXuYu2ptaw9tRZvgzdDmw5lRNwIOoV0kkBSiHPkla8QGBAQUO3x0tJSSktLrY/z8y9xeIvERIDEROISRHWBflNgzZvw2xSI6Q3eofauldPTaDSEeYYR5hnGVTFXWffnleZZ56Oq2I7mHSW7JJsNKRvYkLLBWtZd704r/1Znk1SBrWnuJ/NSCVHXapyQqotujddccw3XXHNNtccUReG9997j2Wef5aabbgJg7ty5hIaG8u233zJx4kTy8vL4/PPP+eqrr6xf0F9//TXR0dEsX76cYcPqYMJAYxG8FlH7562JaSngUrMu93q9njlz5jBhwgRmzZpF586dGTBgAGPHjiUhIYGePXsybdo0br/9du6//366d+/O1Vdfzb/+9S9CQ6v/YiwsLGTq1KnodLpqrzBerp49e+Lp6cnTTz/Na6+9hqIoPP3001gsFlJTq7+yIZyURqOutqcosOlDWPQoaHXQ6U5710w4MD83P8a2HsvY1mNJyktiUeIifjv6G6mFqfx8+Gd+PvwzIe4hDGoyiCFNhtA5pLOsviMaPUVRmDJlCn379iU+Pr7aMjNmzOCll166/BeRmEhiInHp+j8FhxZD2m74bTKM/bbGyVVxaXxdfekR3oMe4T2s+0pMJRzOOcz+7P0czD7IgewDHMo5RLGpmJ2nd7Lz9E5rWb1GT6xfrLUXVcfgjrQNbCsxhhC1qMaXk+t7lb2kpCTS0tIYOnSodZ+rqysDBgxgwwY1m719+3aMRqNNmYiICOLj461lGrPRo0eTkpLCwoULGTZsGKtWraJz587MmTMHgFdffZW0tDRmzZpF27ZtmTVrFq1bt2b37t025+nduzdeXl54e3uzaNEi5syZQ/v27WutnsHBwfz4448sWrQILy8va9e+zp07100vN2FfGg0MexV63A8o8OtDsPM7e9dKOIlY31ge6fwIi0cv5othX3BD3A14GbzIKM7guwPfcc+Se7j6x6t5eePLbEjZgNFSez0XhHAmDz30ELt27eK7787/93Xq1Knk5eVZtxMnTtRjDeuXxETCYehd4MZPQGuAg3/APxID1Sc3vRvtg9tza6tbeb7X83xz3TdsvH0jC25YwOv9Xmd8u/H0CO+Br6svJsVknZNq5taZ3P7H7Qz8YSBPrXmKX4/8SmZxpr3fjhBOr8Y9pCwWS13Wo4q0tDSAKlemQkNDOXbsmLWMi4sL/v7+VcpUPL86V9RF3eChXpWzB4PHJT/Fzc2NIUOGMGTIEF544QXuu+8+pk+fzvjx4wEIDAzklltu4ZZbbmHGjBl06tSJt956i7lz51rP8f3339O2bVv8/PwIDAysrXdjY+jQoSQmJpKZmYler8fPz4+wsDBiY2Pr5PWEnWk0MPx1sJhh6/9gwQPqROcdxti7ZsJJaDVauoV1o1tYN14wv8Cm1E0sO7aMlcdXkl2SzY+HfuTHQz/i6+rLVdFXMaTJEHqF98Kgc9wlr4WoLQ8//DALFy5kzZo1F5xT09XVtcrwtUsiMVFtvRsbEhM1AqHt1AVfVrwEfz4NTfuBX7S9a9Vo6bV64vziiPOL47pm1wFV56Xal7WPbenbyC3N5c+kP/kz6U8AWge0pk9EH/pE9qFjcEeJM4S4RJc0h5Q9nDtUUFGUiw4fvFiZK+qirtHUuIu4I2rbtm21yxADuLi4EBcXR2Fhoc3+6Oho4uLi6qF2EBSkrp61cuVKMjIyGDlyZL28rrADjQaufVOd2HPbF7DgfnX4Xvub7V0z4WRcdC70j+pP/6j+vNDrBbambmXZ8bPJqQVHFrDgyAK8Dd4MjB7I4CaD6RPZR+aFEA2Ooig8/PDDzJ8/n1WrVtV9AkNiojolMVED1/sRtYfUya2w8CG4cz7IKooOo7p5qYwWI7tP72bdqXWsT1nPvqx91rmpPt/zOR56D3qE97AmqKK8a77IlhCNlcMmpMLCwgC1F1R4eLh1f0ZGhrXXVFhYGGVlZeTk5Nj0ksrIyKB3797nPffUqVOZMmWK9XF+fj7R0Q3rqkRWVha33HIL99xzDwkJCXh7e7Nt2zZmzpzJDTfcwG+//ca8efMYO3YsLVu2RFEUFi1axB9//MHs2bNr/DoFBQUcOXLE+jgpKYmdO3cSEBBATEwMANnZ2Rw/fpyUFPUq6sGDBwG1/Sraefbs2bRp04bg4GA2btzIo48+ymOPPUarVq1q60ciHJFGA9e+rfaU+nsu/DJB7SkVf5O9ayaclEFroHdkb3pH9ua5Hs/xd8bfLE1eyorjKzhdfJpFRxex6OgiPPQeDIgawOAmg+kb2RePy+htIYSjmTRpEt9++y2//vor3t7e1t7ivr6+uLu727l29iMxkXBIOj2MmgWz+sLRVbDtc+g+wd61Ehdg0BroHNqZzqGdeaTzI2QVZ7ExdSMbTm1gfcp6skuy+evEX/x14i8Amvg0sSanuoZ2lVhDiOooDgJQ5s+fb31ssViUsLAw5Y033rDuKy0tVXx9fZVZs2YpiqIoubm5isFgUL7//ntrmZSUFEWr1SqLFy+u8Wvn5eUpgJKXl1flWHFxsbJv3z6luLj4Mt6V/ZSUlCjPPPOM0rlzZ8XX11fx8PBQWrVqpTz33HNKUVGRkpiYqEyYMEFp2bKl4u7urvj5+SndunVTZs+ebT1HUlKSAig7duw47+v89ddfClBlu+uuu6xlZs+eXW2Z6dOnW8s8/fTTSmhoqGIwGJQWLVoob7/9tmKxWM77us7aLuI8zGZFWfCgokz3UZQX/RVlz3x710g0MGaLWfk7/W/l9c2vK4N+GKTEz4m3bl2/6qpMXjlZ+T3xd6WgrMDeVRVO7ELxRH2o7rsWsPluv5CGGA8pSsOPiarjzO3V6GyapcY//wlTlMwj9q6NuExmi1nZm7lX+d+u/yl3/XmX0nFuR5tYo9OXnZT7ltynzN49WzmUfeiSP9NCOJOCsgJlzZE1NYqJNIpSz7OVV1L5SlKnTp145513uOqqq6xXkt544w1mzJjB7NmzadGiBa+99hqrVq3i4MGDeHt7A/DAAw/w22+/MWfOHAICAnjiiSfIyspi+/btNZ78MT8/3zpppI+Pj82xkpISkpKSiI2Nxc3NrXZ/AOKySbs0QBYL/DoJ/vkWtHq4ZQ60GWHvWokGyKJY2JO5h+XHlrP02FJOFZyyHnPRutA7sjdDmgxhYPRAfFx8LnAmIWxdKJ5wBhIPNRzSXk7EYoEvR0LyWojuCXf/oU5hIJxaQVkBm9M2s/7UetafWk9Koe18eyEeIdbeUz3De+Lr6munmgpx+RRFIbUwVV2xMucAh7IPcSD7ACcLTmIuNrP/gf0XjYnsmpBatWoVV111VZX9d911F3PmzEFRFF566SU++eQTcnJy6NGjBx9++KHN8sUlJSU8+eSTfPvttxQXFzNo0CA++uijSxqCJwGY85F2aaAsZph/P+z+QU1K3foltL7O3rUSDZiiKOzP3s/yY8tZdmwZyfnJ1mN6rZ4e4T0Y2mQoV0Vfhb+b//lPJASSkBKOQ9rLyeQcg4/7QNkZGPIK9HnE3jUStUhRFJLyk9hwagPrUtaxLW0bpeazC2xpNVraB7W3JqjaBbZDJ0lJ4WBKzaUcyT3CoexDHMw5yMHsgxzMOciZsjPVlg8ggDXj1zh2QspRSADmfKRdGjCzCeZPhD0/qUsij/kaWg23d61EI6AoCkdyj7D02FKWH1vOkdyzc8HoNDq6hnVlaJOhXB1zNUHuQXasqXBUkpASjkLaywn9/SUsfBh0LjBxDYS0sXeNRB0pMZXwd/rfrEtZx4ZTG0jMS7Q57uvqS6/wXvSJ7EOfiD4EewTbqaaiscoszrQmng5kH+BQziGS8pIwK+YqZfVaPXG+cbQKaEUr/1bWW22ZtkYxkSSkkADMGUm7NHBmE/xyH+ydrwZmY76BlkPtXSvRyBzNO2rtOXUg+4B1vwYNXUK7MLjJYAbHDCbUM9SOtRSORBJSwlFIezkhRYFvb4XDSyG8I9y3HHQGe9dK1IO0wjR1aF/KejalbOKM0bbHSUv/lvSJ7EPfiL50CumEQX4vRC0xWUwcyz9mM+TuYM5BMoszqy3v5+pHK/9WtAxoSSv/VrQOaE0z32bV/k7WNCaShBQSgDkjaZdGwGyEn+6B/QtB5wq3fQvNB9u7VqKROpF/gmXHl7EseRl7svbYHOsQ3IEhTYYwpMkQIrwi7FRD4QgkISUchbSXkzqTBh/2gJJcGDgNBj5t7xqJemaymNiduZt1p9ax/tR69mXtQ+Hsv+vuend6hPWw9p6K9mlYK8WLunOm7AyHcg5Zh9odzD7IkdwjNsNHK2jQEOMTY+3x1DqgNS39WxLqEYpGo6nR60lC6hJIAOZ8pF0aCbMRfhwPB35Tk1K3z4O4q+1dK9HIpRSkWHtO7Ty90+ZYu8B21uRUjE+MfSoo7EYSUsJRSHs5sd0/wc/3qnNp3rcCIjrau0bCjnJKctiYspH1Kerk6FklWTbHY7xj6B3Rm76RfekW1g0Pg4edaiochaIonCo4ZZN4Ophz0GYRn8rc9e7WxFNL/5a0CmhFC78WV/y7JAmpSyABmPORdmlETGVqUurg76B3g9u/h2YD7V0rIQBIL0xnxfEVLD++nO3p27EoFuuxVv6trMmpZn7N7FhLUV8kISUchbSXE1MU+PEu2PcrBLeBiatB72rvWgkHYFEsHMo5xLpT69iQsoEd6TswKSbrcb1WT0v/ljT3a06cX5z1NtwzHK1Ga8eai7pSYirhSO4Rm+TToZxDFBgLqi0f5hlGa//WNkPuoryj6uT3QxJSl0ACMOcj7dLImMrgh3FwaDHo3eGOHyC2v71rJYSNrOIsVp5YydLkpWxN22oz8WNTn6Z0Ce1Cx5COdArpRIx3TI27PAvnIQkp4SikvZxcYSZ81BMKT0OfR2HIy/aukXBAhcZCtqRuYX3KetadWnfBHjDNfJvZJKma+zUn3DNcYhEnUGwqJrUwlZSCFFIKUkgtTOXkmZMcyjlEcn6yzcXQCnqtnuZ+zW0mGW8V0ApfV996q7ckpC6BBGDOR9qlETKVwrw74MgyMHjAHT9C0772rpUQ1cotyeWvE3+x7NgyNqZuxGQx2RwPcAugQ3AHOoV0omNIR9oGtsVVJ1fAnZ0kpISjkPZqAA78DvNuBzRwz2KI6WnvGgkHpigKJ8+c5GCOOi9QYm4iR3KPkJyfXCUGqeCh9yDOL07dfOOsiaowzzBJVNWj/LJ8UgvKE06FKer9wrPJp+yS7As+39/Vn5YBLWnt39o67O58E43XJ0lIXQIJwJyPtEsjZSxRg7PEFWDwhDt/hia97F0rIS4ovyyfbWnb2Jmxk52nd7Incw9Gi9GmjEFroF1gOzqGdKRjcEc6hHQgyD3ITjUWl0sSUsJRSHs1EPMfgH++hYBmcP86cPG0d42EkzFZTBw/c9yaoErMTSQxN7HGiarKPaouZUJroVIUheySbJseTucmnc43vK4yD70HEV4R6uap3sb5xdE6oDXB7sEO2S41jYn09VgnIYS4MgY3GPsNfHcbHP0LvrkZ7vwFYnrYu2ZCnJePiw9Xx1zN1THqhPxl5jL2Ze1jZ8ZOdmTsYOfpnWSXZLPz9E6bSdKjvaPpFNLJ2pMqzi9O5oAQQojGZPgMSFoN2Udh+Ytw7Zv2rpFwMnqtnma+zWjm24whTYZY9xstRo7nH7cmqCqSVcfyj1FkKmJ35m52Z+62OZeXwYtmfs1o7tecZr7NrMmqxpyoMlvMnC4+bZNoOlVwypqASitMo8RcctHz+Ln6WZNN4V7h1qRThFcE4Z7h+Lj4NNifsfSQouFeEczIyOD555/nzz//JD09HX9/fzp06MCLL75Ir1692LFjB88//zxbtmwhPz+fsLAwevTowYcffkhQUBDJycnExsZaz+fn50f79u155ZVXGDBgAAAzZszgl19+4cCBA7i7u9O7d2/eeOMNWrVqVW2dJk6cyKeffsq7777L5MmTrfsHDhzI6tWrbcqOGTOGefPmVXseZ24XUQvKiuC7MZC0Bly8Ydx8iO5m71oJcVkUReHEmRPsPF2eoMrYSWJuos0yzwDeBm8SQhLoFNyJTiGdiA+Kl9V0HIz0kHJcDTkmqo6zt5eo5MgK+Pom9f6/fpWFXUSdqkhUHck9wtHcozaJqsoTqFdWOVEV53u2V1WIR4jTJ1GMZiNphWmcKjxVZShdSkEK6YXp5/25VNCgIdg92Jpoqi7h1BDjOekhJRg9ejRGo5G5c+fSrFkz0tPTWbFiBdnZ2WRkZDB48GBGjBjBkiVL8PPzIykpiYULF1JUVGRznuXLl9OuXTsyMjKYNm0a1157LXv27CE2NpbVq1czadIkunXrhslk4tlnn2Xo0KHs27cPT0/bbsULFixg8+bNREREVFvfCRMm8PLLZydtdHd3r/0fimgYXDzgtu/h21shea0aqI1bAFFd7F0zIS6ZRqMhxieGGJ8YRsaNBNRhfrtO72JHxg7+yfiHXZm7OGM8w/pT6rLPADqNjlYBregY3NE6F1WYZ5g934oQDktiIuG0mg+CrvfCts/h14fggfXgVn8TE4vGxaA1WIfrVWY0GzmWf4wjeWeH/VUkqgqMBew6vYtdp3fZPMfb4H12jqpKc1W5G9wxW8yYFTMmiwmLYsFsMWNSTGf3KyYsFou1jFlR91ccryhvUSxnj597zkr3K5+7uudWvl9mLiOjKIPUglROF5+ucoHwXHqNnlDPUGtyqfKwugjPCMI8w+w+n5Mjk4RUA5Wbm8u6detYtWqV9cpdkyZN6N69O6AGQvn5+Xz22Wfo9eqvQWxsLFdffXWVcwUGBhIWFkZYWBiffPIJUVFRLF26lIkTJ7J48WKbsrNnzyYkJITt27fTv//ZVdBOnTrFQw89xJIlS7juuuuqrbOHhwdhYfLPlKghFw+4/Xv45hY4th6+uhH+tQAiO9u7ZkJcMR8XH/pG9qVvpDpxv8li4mDOQXUeqvKhfulF6ezL2se+rH18e+BbQF3Ot2NwR3UuqpCOtPJvhV4rX/WicZOYSDi9IS+r82fmJMOSaXDDh/aukWhkDDoDzf2b09y/uc1+o9lIcn6ymqDKOzv873j+cc4Yz1SZjsAZuepczyaaqhlWF+wejE6rs3c1nZZEqZdIURSKTcV2eW13vXuNuz16eXnh5eXFggUL6NmzJ66utqs3hYWFYTKZmD9/PjfffHONz+vhoXYnNBqN1R7Py8sDICAgwLrPYrEwbtw4nnzySdq1a3fec3/zzTd8/fXXhIaGcs011zB9+nS8vb1rVC/RSLl4wu0/qHNJHd8IX42Cfy2EiI72rpkQtUqv1dMusB3tAttxR5s7AEgrTLMmp3Zk7OBQziHSCtNYXLiYxcnqP8buencSghLoEKLOQ5UQnICPi/MNJROOSWIiiYlEPXH1glEfw+xrYcfX0HoEtBpu71oJgUFnoIV/C1r4t7DZX2YusyaqKk+mfvzMcSyKxVpOr9Gj1+rRaXVoNVp0Gp36uPy28r6K+9YyWh16Tfn+au7rtGpZ623l81Qqo9VoMWgNNq8V5B5kTTgFuAU4/dBDRyYJqUtUbCqmx7f2mUB58+2bazy+VK/XM2fOHCZMmMCsWbPo3LkzAwYMYOzYsSQkJNCzZ0+mTZvG7bffzv3330/37t25+uqr+de//kVoaGi15ywsLGTq1KnodDrrFcbKFEVhypQp9O3bl/j4eOv+N954A71ezyOPPHLe+t5xxx3ExsYSFhbGnj17mDp1Kv/88w/Lli2r0fsVjZirF9zxI3x1E5zcAl/eAHctgvAEe9dMiDoV5hnG8NjhDI9V/ykpMhaxJ3OPmqA6vYNdGeowv81pm9mcthlQ5zGI84ujY0j5ML/gjkR7R0ugJS6LxEQSE4l61KQ39JoEGz+ARY9A9CbwCLj484SwAxedCy39W9LSv6XNfpPFhKIo1kSQEDKpOZc2iWeRscgpgq8KJSUlrF27lo0bN7J48WK2bNnCZ599xvjx4wHIyspi5cqVbNq0iQULFpCdnc2aNWto3769dQJPd3d3tFotRUVFhIeH88Ybb3DnnXdWea1Jkybx+++/s27dOqKiogDYvn071113HX///bd1noSmTZsyefJkmwk8z7V9+3a6du3K9u3b6dy56hAsmaxTVFGSrw7bO7UN3APUpFRY/MWfJ0QDZVEsHM09yo7TO6xD/Y6fOV6lXIBbAB2DO9IhpAPxgfG0DWyLl4uXHWrs/BrbpOYSEzlGTHS+9ypxUgNkLIFP+kPmQYgfDTd/Ye8aCSFEtWoaE0lCiksLwJyle/r53HfffSxbtoxjx45VOVZWVkanTp3o2rUrc+fOtQZfCxcupG3btvj5+REYGFjteR9++GEWLFjAmjVrbFahee+995gyZQpa7dkMuNlsRqvVEh0dTXJycrXnUxQFV1dXvvrqK8aMGVPluARaololefDlKEj5GzwCYeBUaD4YAmIv+lQhGoPM4kz+Of2PNUG1N2svRkvV4UZNfZoSHxSvDhMMakfrgNa462VS5YtpbAkpiYkcIyaqjsRJDdip7fDZEFDMcPNsiL/J3jUSQogqZJW9OqLRaJx6Wca2bduyYMGCao+5uLgQFxdHYWGhzf7o6Gji4uKqfY6iKDz88MPMnz+fVatW2QReAOPGjWPw4ME2+4YNG8a4ceO4++67z1vPvXv3YjQaCQ8Pr8G7EqKcmy+Mm68O20vdCX88oe4PiFNXqWk+GJr2VeeeEqIRCnIPYlDMIAbFDAKg1FzK/qz97MjYwe7M3ezN3EtKYQrJ+ckk5yfz29HfANBqtMT5xdEusB3xgfG0C2pHS/+WuOhc7Pl2hJ1JTGRLYiJRLyK7QL/HYc1M+P1xaNIHvKsfWiqEEI5OElINVFZWFrfccgv33HMPCQkJeHt7s23bNmbOnMkNN9zAb7/9xrx58xg7diwtW7ZEURQWLVrEH3/8wezZs2v8OpMmTeLbb7/l119/xdvbm7S0NAB8fX1xd3cnMDCwyhVEg8FAWFgYrVq1AiAxMZFvvvmGa6+9lqCgIPbt28fjjz9Op06d6NOnT+39UETj4O6nDtfb9jkcXg4nNkF2ImxJhC2fgs5FnYeh+WB1C24NMn+OaKRcda7WFfkqZJdkszdzL3uy9rAvcx97svaQWZzJ4ZzDHM45zIIjCwB1ovUWfi1selLF+cVh0MrSxsKxSEwkGpz+T8KhPyFtN/w2GcZ+K7GMEMIpSUKqgfLy8qJHjx68++67JCYmYjQaiY6OZsKECUybNo3U1FQ8PDx4/PHHOXHiBK6urrRo0YLPPvuMcePG1fh1Pv74YwAGDhxos3/27NnWORkuxsXFhRUrVvB///d/FBQUEB0dzXXXXcf06dPR6WQJTXEZ3Hyg72PqVpIPSWvgyDI4shLyjsPRVeq29DnwiYS4q9XkVLOBakJLiEYswC2AflH96BfVz7ovvTBdTVBl7WNv5l72Zu0ltzSX/dn72Z+9nx/5EVATXK0CWll7UcUHxtPEp4kshyzsSmIi0eDoXeDGT+CTAXDwD9j5LXS6w961EkKISyZzSHHpcyYI+5N2EZdFUSDrCBxZDoeXwbH1YCo5e1yjg6iuanIqbhBEdAT5R1qIKhRF4VTBKfZl7bP2pNqbtZcCY0GVsh56D9oEtrEmqdoFtmuwK/s1tjmkhOOS9mok1r4DK14CVx94YAP4Rdu7RkIIAcgcUkIIUZVGA0Et1K3nA2AshmMb4MgKNUmVeRBObFa3v15VV+ur6D0Vd7XM0SBEOY1GQ5R3FFHeUQxtOhRQV/U7nn+cvVlqD6q9mXvZn72fIlMR29O3sz19u/X53i7e6jC/8qF+8YHxhHmGNcgklRBC1Jk+j8LBP+HkFlj4ENw5HypNmi+EEI5OElJCiMbL4F4+2fkg4DXIPQGJ5cmpo6uhOBv2/KRuAGHtz849Fd0DdDJXjhAVtBotTX2b0tS3Kdc1uw4As8XM0byj7M3ay55MdcjfgewDnCk7w6bUTWxK3WR9foBbAG0D26oTpwfFEx8UT5B7kL3ejhBCOD6tDkZ9DLP6qlMRbPscuk+wd62EEKLGJCElhBAV/KKhy3h1Mxvh5NazvadSd6qTh6bthnXvgos3xPY/m9Dyb2rfugvhgHRaHS38W9DCvwWjmo8CwGg2ciT3CHuy9rA3cy/7svZxOOcw2SXZrDu1jnWn1lmfH+IRYk1QtQtUV/YLdA9Eq5EeAEIIAUBQcxjyEvz5FCx7Qe3RHVj9SpBCCOFoJCElhBDV0RnU1fia9IZBz0PBaTj6l5qcOrICijLh4O/qBhDY/GzvqSZ9wMV5l0IXoi4ZdAbaBLahTWAbbml5CwAlphIO5hy0mTT9aN5RMooyyCjK4K8Tf519vtZAiEcIYZ5hhHuGE+YZRphHGOFe4YR6hBLmGYaPi48M/xNCNB7dJsD+RZC8FhY8CHf/IXNgCiGcgiSkhBCiJryCIeFWdbNYIO2f8t5TK9Q5p7KOqNvmWaBzVRNZFQmq4FayHLMQF+Cmd6NDcAc6BHew7isyFnEg+wB7MvdY56U6ceYERouRUwWnOFVw6rznc9e7WxNVlRNXoZ6h1vvuevf6eGtCCFH3tFoY9RF81BtObIIN/4W+k+1dKyGEuChJSAkhxKXSaiGik7r1fwJK8tQ5pxLLE1R5J9TeVEf/gqXPgk9k+dC+wRA7ANz97P0OhHB4HgYPOod2pnNoZ+s+o8XI6aLTpBWmqVtR2tn75VtOaQ7FpmKS8pJIyks67/l9XX3V5JSHmqgK8wyz6W0V4hGCQSvzxAkhnIRfDAyfoU5u/ter0HIYhLSxd62EEOKCJCElhBBXys0X2o5UN0WBzENnh/YdWw/5p+DvL9VNo4OobuW9p66G8I7SrV6IGjJoDUR4RRDhFXHeMiWmEtKL0kkrTCO1MLVKwiqtKI1CYyF5pXnkleZxIPtAtefRoCHIPciaqKoYDmgdJugZRpB7kMxnJYRwHJ3uVIfuHV4C8yfCfStkARYhhEOThJQQQtQmjUYdohfcCnpNAmOxmpQ6sgIOL4Osw2p3+hOb4K//gKsvxPSEpn2haR8I6wA6+dMsxOVy07vRxKcJTXyanLfMmbIzVRJW6UXpNo+NFiOni09zuvg0uzN3V3sevVZPqEeoNVnlr/jX1dsSQoiL02hg5PvwYQ9I/QfWvg0Dn7F3rYQQ4rzkvx4hhKhLBvezc0kNnwE5x84O7UtaA6V56pXMw0vU8i7e5QmqPtC0H4R3kKubQtQybxdvvF28aeHfotrjFsVCdkk26YXp1Q4NTC1M5XTxaUwWk818VuZic32+DSGEqMo7DK57G36+F9a8qQ7di+hk71oJIUS1JCElhBD1yb8JdL1H3SxmSNsFyesheR0c36DOR3VkmboBGDzPJqia9FWDSr2Lfd+DEA2cVqMlyD2IIPcg2gW1q7aMyWJS57OqlKxKzkjmZV6u59oKIcQ54kerQ/f2LYD5D8C/V4HBzd61EkKIKmTigwYsIyODiRMnEhMTg6urK2FhYQwbNoyNGzcCsGPHDq6//npCQkJwc3OjadOmjBkzhszMTACSk5PRaDTWzd/fn/79+7N69Wrra3z88cckJCTg4+ODj48PvXr14s8//7SpR+VzVN7efPNNa5nS0lIefvhhgoKC8PT0ZOTIkZw8ebIefkpC2JFWpyaYej8Et8+Dp5Jg4hoYNgNaXQdufmAsVHtUrXgZvhgKbzSBL2+A1W/CsY1gKrX3uxCiUdJr9YR7hdMppBPXxF7D3fF383jXx+1dLXEeEhOJRkWjgeveAc9gOL0fFj2qXvgqybN3zYQQwob0kGrARo8ejdFoZO7cuTRr1oz09HRWrFhBdnY2GRkZDB48mBEjRrBkyRL8/PxISkpi4cKFFBUV2Zxn+fLltGvXjoyMDKZNm8a1117Lnj17iI2NJSoqitdff53mzZsDMHfuXG644QZ27NhBu3bqVeXU1FSb8/3555/ce++9jB492rpv8uTJLFq0iHnz5hEYGMjjjz/O9ddfz/bt29HpZMJn0UhodeoQvfAO0OtBsFggY295D6q1cGwDFGfD0VXqBqB3g+juau+ppn0hqivoXe35LoQQwuFITCQaHc9AGPE+zLsNds1TNwD/pmqcEZZwNubwCrFrVYUQjZdGURTF3pWwt/z8fHx9fcnLy8PHx8fmWElJCUlJScTGxuLm5jxdXXNzc/H392fVqlUMGDCgyvEFCxZwyy23UFxcjF5ffV4yOTmZ2NhYduzYQceOHQE4deoUUVFRzJo1i4kTJ1b7vICAAN58803uvffeao+PGjWKM2fOsGLFCgDy8vIIDg7mq6++YsyYMQCkpKQQHR3NH3/8wbBhw6qcw1nbRYgrYrGoVzqT18OxdeptUaZtGZ1reYKqT3mCqpt00xeinlwonnAGDTEegoYfE1XHmdtL1LJdP8Le+eoUAXknqi/jFQbhCbaJKr8YtaeVEEJchprGRNJD6hIpioJSXGyX19a4u6Op4ReDl5cXXl5eLFiwgJ49e+LqattjIiwsDJPJxPz587n55ptrfF4PDw8AjEZjlWNms5kff/yRwsJCevXqVe3z09PT+f3335k7d6513/bt2zEajQwdOtS6LyIigvj4eDZs2FDj4EuIBk+rhdB26tbj36AocPpgeXKqPEFVmKH2pkpeC6sBnYualGrSR52HKqo7uHjY+50IIRoAiYkkJhJOIOEWdQMoylZX30vbBam71PtZR6AgDQ6nweGlZ5/n5gdh7c/2ogpLgKAWam9uIYSoJZKQukRKcTEHO3exy2u3+ns7Go+a/SOp1+uZM2cOEyZMYNasWXTu3JkBAwYwduxYEhIS6NmzJ9OmTeP222/n/vvvp3v37lx99dX861//IjQ0tNpzFhYWMnXqVHQ6nc0Vxt27d9OrVy9KSkrw8vJi/vz5tG3bttpzzJ07F29vb2666SbrvrS0NFxcXPD3t10uOzQ0lLS0tBq9XyEaJY0GQlqrW7f71ARV5uGzvaeOrYczqertsfWwBtAaILJL+Sp+fSG6B7h42vudCCGckMREEhMJJ+MRAHFXqVuF0gJI31ueqPpHTVRl7IeS3LMXuCoYPNSLYpWH+4W0kakChBCXTRJSDdjo0aO57rrrWLt2LRs3bmTx4sXMnDmTzz77jPHjx/Pqq68yZcoUVq5cyaZNm5g1axavvfYaa9asoX379tbz9O7dG61WS1FREeHh4cyZM8fmeKtWrdi5cye5ubn8/PPP3HXXXaxevbraAOyLL77gjjvuqFH3cUVRanyVUgiBmqAKbqluXe9RE1TZR8t7T5VvZ1LgxCZ1W/s2aPUQ0VlNTjXtA9E9wdXL3u9ECCFqlcREQpyHqxfE9FC3CqYydYqAil5UabsgbY+60MrJrepWQatXk1JhHc4O+wuNl1hCCFEjMocUlzZngrN0Tz+f++67j2XLlnHs2LEqx8rKyujUqRNdu3Zl7ty51vkSFi5cSNu2bfHz8yMwMPCirzF48GDi4uL45JNPbPavXbuW/v37s3PnTjp06GDdv3LlSgYNGkR2drbNFcEOHTowatQoXnrppSqvIXMjCHEZFAVyksonSS9PUOWfs3KTpnzlv6Z9oGk/tQeVm/PNhSOEPTS2OaQkJnKMmKg6EieJWmcxQ1Zi+XC/nWqyKm0XFOdUU1gDgc3VBFXl3lQeAfVdayGEncgcUnVEo9HUuIu4I2rbti0LFiyo9piLiwtxcXEUFhba7I+OjiYuLq7Gr6EoCqWlVZei//zzz+nSpYtN4AXQpUsXDAYDy5Yt49ZbbwXUVWj27NnDzJkza/y6QoiL0GggoJm6dR6nJqhyj50d3pe8FnKPw6lt6rb+/9TneYerz/GPhYCmle43A3c/e74jIYQdSUx0cRITiQZDqzvbC7v9zeo+RYG8k5XmpSof8ncmBbIOq9uen8+ewyeqPDlVKVHlEyGTpwvRiElCqoHKysrilltu4Z577iEhIQFvb2+2bdvGzJkzueGGG/jtt9+YN28eY8eOpWXLliiKwqJFi/jjjz+YPXt2jV9n2rRpXHPNNURHR3PmzBnmzZvHqlWrWLx4sU25/Px8fvzxR95+++0q5/D19eXee+/l8ccfJzAwkICAAJ544gnat2/P4MGDr/hnIYQ4D41GXf7Zvyl0ukPdl3vibHIqeb3ao+pM6tm5qM7l7l8pQRV7NuHlH6suIy1BphDCziQmEqKOaDTgF61uba4/u7/g9Nn5qCoSVdlH1V7Z+Sfh4O9ny3oEqsmp4FbgEwm+UermEwneYTKJuhANnCSkGigvLy969OjBu+++S2JiIkajkejoaCZMmMC0adNITU3Fw8ODxx9/nBMnTuDq6kqLFi347LPPGDduXI1fJz09nXHjxpGamoqvry8JCQksXryYIUOG2JSbN28eiqJw2223VXued999F71ez6233kpxcTGDBg1izpw56HTyJSREvfKLBr+x0GGs+rgoG7KT1MRU9tHyrfxxQbraVf/UdnU7l8GzPEHV9GyPqoqklU+kBJlCiHohMZEQ9cwrGJoPVrcKJfmQvudsL6q08snTi7Lg6F/qdi6NTu1B5RMJvpFVE1a+UWpCSy5+CeG0ZA4pLn3OBGF/0i5COIDSgvJEVXmyypq0Soa8E8AFvl50LuAXYzv8ryJZ5RcjK/YIp9TY5pASjkvaSzgFYwlk7FOTU9lJkH9KHQKYdxLyU0AxX/wcerdKCavyZNW591296/69CCFsyBxSQggh6parF4S1V7dzmUrV+agq96iqSFzlHgNzGWQdUbcqNOAbXX3PKv9YWblHCCGEaAgMbhDZWd3OZTGrPbHzTqnD/PLKk1WV7xdmgKkEshPV7XxcfSslqqrpZeUTIRfChLATSUgJIYSofXpXCGqhbueymNWroNX1rMpJgrICyDuubklrqj7fM8Q2QeUXo179dPUCl4pbT3DxUjedfNUJIYQQTkVbMVwvAuhWfRlTqdqTyqZnVcX98kRWSR6U5kFGHmTsPf/reYaoCSvfqPLeVefc9wqVqQaEqAMSpQshhKhfWp2aRPKLgWYDbI8pChSePidZVel+UZZ6RbQwA05srtnr6d3VBJVNwsrr7G3l+1WSWtWUl4BUOLiPPvqIN998k9TUVNq1a8d7771Hv3797F0tIYSoXXrX8gtUsecvU3qmau+q/FPq1AIV900lZ2OLlB3Vn0erVxdycfUpvwjmfc79SpubbzX7y8tKTywhbEhCSgghhOPQaNTV+bxCIKZH1eMleecMAzyqBpRlhWrPqtICKDuj3lqM6nNMxepWlFk7ddS7V01gWRNeXmrAeW7Cy+CuJrI0uvJbrbrZ7NOBtny/zT5dpbLac85xkefIRK+Nzvfff8/kyZP56KOP6NOnD5988gnXXHMN+/btIyYmxt7VE0KI+uXqDSGt1a06iqIu4JJ3ojxRdeqc+yfVlYYtJvWCWeHpK6uPzqWaRFU1ia3qklou3uBWkdhyk+940SBIQkoIIYTzcPOFiE7qdjGm0rMJqrJC22RVWUH5vjOVElkFtvett+VlLKby85YnuK40KK0XmmqSVBVJrEoJrIqEl1ZfaSt/rDPYPj7vVum4znD+851333meY319ve170ept71fZV/lxxXMbfvD+zjvvcO+993LfffcB8N5777FkyRI+/vhjZsyYYefaCSGEg9FowDNQ3SI6Vl/GbDq7snDpmfItv9L9iscFlfbnqysLVo4jQJ1DsyhL3a6EVl99Ty2dS/n3puHs96f1ccV3rb7qMev3raHSd7ih6nN15zy/JudtBN+94vI1mIRUXXdPt1gstXYuceVkcUghxEXpXdXNM/DKz6UoahB5blLrQgmvykkuY7E6d5ZiLr+1qJv1fqX9VcqZwWI5p1z5sYtXvDyRZoIaLFbU4Gm0F0la6Ssl6/Rny2jOTXppqybVNFoosW+sUFZWxvbt23nmmWds9g8dOpQNGzbUymtIPOQcJE4Sohbp9OVzSkVe/jks5nMSWDVMalU+XpHgqvhuL85RN0enPSeZpdGq+62JKk2lx5rz7Oc8xzjnWDXPudBrVXu/ujpRzf4LPK7p+7nQ+zs3kXcp57nUx+c9dgWvXVRGTTSIhFRddk93cXFBq9WSkpJCcHAwLi4uaCTLa1eKonD69Gk0Gg0Gg8He1RFCNAYaTe0muGqLpZokVbWJrXOOVT5ecd9a3qRuZtPZ+9bNrA6FtJjAbCx/runsY0ul51uMav0q7ldX/mKPbc5XuQ6mSnW12D6+UKJOsaiJxbpSat8kQGZmJmazmdDQUJv9oaGhpKWlVSlfWlpKaWmp9XF+fv55zy3xkPOQOEkIB6TVgbuful0Ji+Vsr6vqEljmsvLvb2Ol79GK+8azx6zf8xc6Vvm4qWbnqLbO5ecyFV/ZexfOpYYxUYNISNVl93StVktsbCypqamkpKTURnVFLdBoNERFRaHTyeTCQohGTKsFtOpVR6FSlLPJNbPxbFKucoLOmsA657HZdOEy53texf2CQnj9MXv/BKokihRFqTZ5NGPGDF566aUanVPiIecicZIQDZRWq84j5eYDXEGPrbpQ8f17biLLmswqv0VRy1pvUe9XnKPicUWZyue3KUv1Zas95/nuV35+Nfcv63Uv9NzzvL+LvuY5yZ06OW8t1KXy/YIieP0JLsbpE1KX0z39Uq4IgnpVMCYmBpPJhNksYx4cgcFgkCBLCCFEVRqNOrwCff2vZpSfD9gvIRUUFIROp6vSGyojI6NKrymAqVOnMmXKFOvj/Px8oqOjz3t+iYech8RJQoh6V/H9q9MDbvaujbC3/HygESSkLrV7OlzaFcEKFd2epeuzEEIIIRyRi4sLXbp0YdmyZdx4443W/cuWLeOGG26oUt7V1RVX10tL2kk8JIQQQojaorV3BWpLTbung3pFMC8vz7qdOHGiPqoohBBCCFGnpkyZwmeffcYXX3zB/v37eeyxxzh+/Dj333+/vasmhBBCCGHD6XtIXWr3dLi8K4JCCCGEEI5uzJgxZGVl8fLLL5Oamkp8fDx//PEHTZo0sXfVhBBCCCFsOH0Pqcrd0ytbtmwZvXv3tlOthBBCCCHs48EHHyQ5OZnS0lK2b99O//797V0lIYQQQogqnL6HFKjd08eNG0fXrl3p1asXn3766SV1T1fKZ4O/2OTmQgghhBDnUxFHKOeuQOMkJB4SQgghRG2oaUzUIBJSV9o9PSsrC+CCK8sIIYQQQtTEmTNn8PX1tXc1LpnEQ0IIIYSoTReLiTSKs17Gq0W5ubn4+/tz/PjxWgsgu3XrxtatW2vlXHV1TkevY8Xy0ydOnMDHx6dWzgmN7+dYF+eri7ZpjD9HaRfHPF9tn1P+ljluHWu7bRRFoUuXLhw6dAit1vlmRaiLeAgc//egLs7p6L+r0Dh/jrV9zsb6913axTHPVxfnlL9ljnm+2j5nXbRLTWOiBtFD6kpV/IB8fX1rrQF0Ol2t/gGsi3M6Qx0BfHx8HPp9O8PPsS7qCLXbNo3x5yjt4pjnq6tzyt8yxztfhdpsGxcXF6dMRkHdxEPgHL8HzlBHkL/vjnrOxvb3XdrFMc9XF+eUv2WOeb66Omdtf2ZqEhM5Z8TkBCZNmuTw53SGOtaFxvhzbIztUhfndPTz1YXG2C51dc7a1hh/jo2xXRoCZ/g9cIY61rbG+nNsjG3j6Oerq3PWtsb4c2yM7VIX53SGOtaFmtRRhuyhdlHz9fUlLy+vTjLA4vJIuzguaRvHJO3imKRdHJe0jS35eTguaRvHJO3imKRdHJe0jWOyZ7tIDynA1dWV6dOn4+rqau+qiEqkXRyXtI1jknZxTNIujkvaxpb8PByXtI1jknZxTNIujkvaxjHZs12kh5QQQgghhBBCCCGEqFfSQ0oIIYQQQgghhBBC1CtJSAkhhBBCCCGEEEKIeiUJKSGEEEIIIYQQQghRryQhJYQQQgghhBBCCCHqVYNJSK1Zs4YRI0YQERGBRqNhwYIFNsfT09MZP348EREReHh4MHz4cA4fPmw9npycjEajqXb78ccfreVycnIYN24cvr6++Pr6Mm7cOHJzc+vpXTqfK20XgMTERG688UaCg4Px8fHh1ltvJT093aZM06ZNq7TbM888U9dvz2nNmDGDbt264e3tTUhICKNGjeLgwYM2ZRRF4cUXXyQiIgJ3d3cGDhzI3r17rcezs7N5+OGHadWqFR4eHsTExPDII4+Ql5dncx75zNRcbbTLuWWvueaaaj978pmpudpoF/mOqRu19ZlpSN8zEg85LomJHI/EQ45LYiLHJDGRY3LmeKjBJKQKCwvp0KEDH3zwQZVjiqIwatQojh49yq+//sqOHTto0qQJgwcPprCwEIDo6GhSU1NttpdeeglPT0+uueYa67luv/12du7cyeLFi1m8eDE7d+5k3Lhx9fY+nc2VtkthYSFDhw5Fo9GwcuVK1q9fT1lZGSNGjMBisdic7+WXX7Zpv+eee65e3qMzWr16NZMmTWLTpk0sW7YMk8nE0KFDrT93gJkzZ/LOO+/wwQcfsHXrVsLCwhgyZAhnzpwBICUlhZSUFN566y12797NnDlzWLx4Mffee6/Na8lnpuZqo10qe++999BoNOd9PfnM1ExttIt8x9SN2mibhvY9I/GQ45KYyPFIPOS4JCZyTBITOSanjoeUBghQ5s+fb3188OBBBVD27Nlj3WcymZSAgADlf//733nP07FjR+Wee+6xPt63b58CKJs2bbLu27hxowIoBw4cqN030QBdTrssWbJE0Wq1Sl5enrVMdna2AijLli2z7mvSpIny7rvv1vl7aKgyMjIUQFm9erWiKIpisViUsLAw5fXXX7eWKSkpUXx9fZVZs2ad9zw//PCD4uLiohiNRkVR5DNzpa6kXXbu3KlERUUpqampVT57iiKfmStRW58X+Y6pfZfTNg35e0biIcclMZFjknjIcUlM5JgkJnJMzhQPNZgeUhdSWloKgJubm3WfTqfDxcWFdevWVfuc7du3s3PnTpurGxs3bsTX15cePXpY9/Xs2RNfX182bNhQR7VvuGrSLqWlpWg0GlxdXa1l3Nzc0Gq1VdrujTfeIDAwkI4dO/Lqq69SVlZWD++iYajoVh4QEABAUlISaWlpDB061FrG1dWVAQMGXPB3PS8vDx8fH/R6PSCfmSt1ue1SVFTEbbfdxgcffEBYWNh5zy+fmctTG58X+Y6pG5fTNo3pe0biIcclMZFjkHjIcUlM5JgkJnJMzhQPNYqEVOvWrWnSpAlTp04lJyeHsrIyXn/9ddLS0khNTa32OZ9//jlt2rShd+/e1n1paWmEhIRUKRsSEkJaWlqd1b+hqkm79OzZE09PT55++mmKioooLCzkySefxGKx2LTdo48+yrx58/jrr7946KGHeO+993jwwQft9daciqIoTJkyhb59+xIfHw9g/X0ODQ21KRsaGnre3/WsrCxeeeUVJk6caN0nn5nLdyXt8thjj9G7d29uuOGG855fPjOXp7Y+L/IdU/sut20a0/eMxEOOS2Ii+5N4yHFJTOSYJCZyTM4WD+kv+5lOxGAw8PPPP3PvvfcSEBCATqdj8ODBNmNUKysuLubbb7/l+eefr3KsurHHiqJccEyyqF5N2iU4OJgff/yRBx54gPfffx+tVsttt91G586d0el01nKPPfaY9X5CQgL+/v7cfPPN1uytOL+HHnqIXbt2VXt1/Nzf6/P9rufn53PdddfRtm1bpk+ffsFzXOg84qzLbZeFCxeycuVKduzYccHzy2fm8tTG50W+Y+rG5bZNY/qekXjIcUlMZH8SDzkuiYkck8REjsnZ4qFGkZAC6NKlCzt37iQvL4+ysjKCg4Pp0aMHXbt2rVL2p59+oqioiH/96182+8PCwqrMMg9w+vTpKtlGUTM1aZehQ4eSmJhIZmYmer0ePz8/wsLCiI2NPe95e/bsCcCRI0fki+QCHn74YRYuXMiaNWuIioqy7q/o0pyWlkZ4eLh1f0ZGRpXf9TNnzjB8+HC8vLyYP38+BoPB5jzymbl0V9IuK1euJDExET8/P5tzjh49mn79+rFq1apqX1M+MxdXG58XkO+YunClbdOYvmckHnJcEhPZj8RDjktiIsckMZFjcsp4qNZmo3IgVDNZ3bkOHTqkaLVaZcmSJVWODRgwQBk9enSV/RWTq23evNm6b9OmTTK5Wg1dabtUWLFihaLRaC74M1+0aJECKMeOHbvc6jZoFotFmTRpkhIREaEcOnSo2uNhYWHKG2+8Yd1XWlpaZULCvLw8pWfPnsqAAQOUwsLCKueRz8ylqY12SU1NVXbv3m2zAcr//d//KUePHj3va8tn5vxq6/NSQb5jak9tt02FhvI9I/GQ45KYyDFIPOS4JCZyTBITOSZnjocaTELqzJkzyo4dO5QdO3YogPLOO+8oO3bssP5gfvjhB+Wvv/5SEhMTlQULFihNmjRRbrrppirnOXz4sKLRaJQ///yz2tcZPny4kpCQoGzcuFHZuHGj0r59e+X666+v0/fmzGqjXb744gtl48aNypEjR5SvvvpKCQgIUKZMmWI9vmHDBut5jx49qnz//fdKRESEMnLkyHp9r87kgQceUHx9fZVVq1Ypqamp1q2oqMha5vXXX1d8fX2VX375Rdm9e7dy2223KeHh4Up+fr6iKIqSn5+v9OjRQ2nfvr1y5MgRm/OYTCbreeQzU3O10S7VOfcfH/nMXJrabBf5jqldtdU2Del7RuIhxyUxkeOReMhxSUzkmCQmckzOHA81mITUX3/9pQBVtrvuuktRFEX5v//7PyUqKkoxGAxKTEyM8txzzymlpaVVzjN16lQlKipKMZvN1b5OVlaWcscddyje3t6Kt7e3cscddyg5OTl1+M6cW220y9NPP62EhoYqBoNBadGihfL2228rFovFenz79u1Kjx49FF9fX8XNzU1p1aqVMn369GqvUAlVdW0CKLNnz7aWsVgsyvTp05WwsDDF1dVV6d+/v7J7927r8fO1LaAkJSVZy8lnpuZqo13Od97KwZd8Zi5NbbaLfMfUrtpqm4b0PSPxkOOSmMjxSDzkuCQmckwSEzkmZ46HNOVvQAghhBBCCCGEEEKIeqG1dwWEEEIIIYQQQgghROMiCSkhhBBCCCGEEEIIUa8kISWEEEIIIYQQQggh6pUkpIQQQgghhBBCCCFEvZKElBBCCCGEEEIIIYSoV5KQEkIIIYQQQgghhBD1ShJSQgghhBBCCCGEEKJeSUJKCCGEEEIIIYQQQtQrSUgJIYQQQgghhBBCiHolCSkhhBBCCCGEEEIIUa8kISWEEEIIIYQQQggh6pUkpIQQQgghhBBCCCFEvfp/Oqr9mhVOMi0AAAAASUVORK5CYII=",
+      "text/plain": [
+       "<Figure size 1200x480 with 4 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "fig4, axs4 = plt.subplots(2,2)\n",
+    "fig4.set_figwidth(12)\n",
+    "\n",
+    "NOx_hist_emissions[220:].plot(ax= axs4[0,0])\n",
+    "emissions_NOx_road.plot(title = 'Yearly total road emissions of NOx across scenarios', ax= axs4[0,0])\n",
+    "NH3_hist_emissions[220:].plot(ax= axs4[0,1])\n",
+    "emissions_NH3_road.plot(title = 'Yearly total road emissions of NH3 across scenarios', ax= axs4[0,1])\n",
+    "CO_hist_emissions[220:].plot(ax= axs4[1,0])\n",
+    "emissions_CO_road.plot(title = 'Yearly total road emissions of CO across scenarios', ax= axs4[1,0])\n",
+    "SO2_hist_emissions[220:].plot(ax= axs4[1,1])\n",
+    "emissions_SO2_road.plot(title = 'Yearly total road emissions of SO2 across scenarios', ax= axs4[1,1])\n",
+    "\n",
+    "axs4[0,0].set_ylabel('Tg(NO)')\n",
+    "axs4[1,0].set_ylabel('Tg(NO)')\n",
+    "\n",
+    "\n",
+    "fig4.tight_layout()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "73db51a6-6ef9-4063-b35e-03488227db1f",
+   "metadata": {},
+   "source": [
+    "# New emissions since 2015"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "46d7cac9-e133-41d5-83ec-9b68adc4829b",
+   "metadata": {
+    "tags": []
+   },
+   "source": [
+    "We look at some emissions catalogues to see how emissions have been evolving since 2015:\n",
+    " * CAMS data (seems to underestimate emissions for NOx)\n",
+    " * CEDS data is only provided up to 2015\n",
+    " * EDGAR 6&7 data"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "b36c5fc1-2455-46c5-bc0a-a241fd83ffc8",
+   "metadata": {},
+   "source": [
+    "## NOx"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 83,
+   "id": "84377e1d-1620-42a7-aa7f-a67ad35011f1",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "cams_file = '/home/b/b309253/data-exploration/emissions/cams-glob-ant-anthro-nox.csv'\n",
+    "cams_data = pd.read_csv(cams_file, sep='\\t')\n",
+    "cams_data.columns = ['Date', 'CAMS Off Road', 'CAMS Road', 'CAMS Sum']\n",
+    "cams_data = cams_data.set_index(pd.date_range(\"1/1/2000\", periods=24, freq='Y')).drop(columns = ['Date'])"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 87,
+   "id": "34c63c20-e320-4323-8469-7e672d3cde19",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "ceds_file = '/home/b/b309253/data-exploration/emissions/ceds-anthro-nox-yearly.csv'\n",
+    "ceds_data = pd.read_csv(ceds_file, sep=',')\n",
+    "ceds_data.columns = ['Date', 'CEDS tranport']\n",
+    "ceds_data\n",
+    "ceds_data = ceds_data.set_index(pd.date_range(\"1/1/1950\", periods=65, freq='Y')).drop(columns = ['Date'])"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 146,
+   "id": "5da24dc3-098e-4ed7-9cec-e6cbb37697bb",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "Text(0, 0.5, 'Tg(N)/a')"
+      ]
+     },
+     "execution_count": 146,
+     "metadata": {},
+     "output_type": "execute_result"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjQAAAGxCAYAAAB1Hiz1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAADQqklEQVR4nOzdd3iTVRvA4d+b0TTde1BKyyiUvbfsIRsBFXDiRnHhwIED9FNQVHDiABkqgsqQJYJskL2hbLqA7r3SNMn5/giNlLbQQktaOPd15dK+80kamifnPOccRQghkCRJkiRJqsZU9g5AkiRJkiTpRsmERpIkSZKkak8mNJIkSZIkVXsyoZEkSZIkqdqTCY0kSZIkSdWeTGgkSZIkSar2ZEIjSZIkSVK1JxMaSZIkSZKqPZnQSJIkSZJU7cmERqoyBg0ahIeHB7GxscX2paamEhgYSOfOnbFYLJUeS1RUFIqiMHfu3Aq5XkREBJMmTSIqKuq6r7F69WomTZp0Q3GMGTOG0NDQG7rGzRIaGsqYMWPsHYbNpEmTUBSlwq+7adMmFEVh06ZNFX7tm8loNDJ27FgCAwNRq9W0aNGi1GPHjBmDoig0btwYs9lcbL+iKDz77LPFtsfGxvLss89St25dHB0d8fT0pHv37vzyyy/ISe8lmdBIVcasWbPQaDQ8/vjjxfY9++yzZGVlMW/ePFSq6ve2jYiIYPLkyTec0EyePLnigpLK5fHHH2fHjh0Vft1WrVqxY8cOWrVqVeHXvplmzpzJd999x8SJE9m2bRs//fTTNc+JiIgo85eG7du306xZM/78809eeOEF1qxZw9y5cwkKCuKBBx5g9OjRN+XLjlR1aewdgCQVCggI4JtvvmHkyJF89913PPXUUwAsXbqUX3/9lW+++YZ69epVagxmsxmTyVSp96iucnNzcXJysncYdlOzZk1q1qxZ4dd1c3OjQ4cOFX7dm+3o0aPo9foSW1ZK4uzsTKtWrXj33Xe577770Ov1pR6bnp7O8OHDcXd3Z9euXfj7+9v2DR06lGbNmvH666/TokULXn/99Rt+LlL1VP2+6kq3tHvvvZdRo0bxyiuvEBUVRUpKCmPHjqVPnz48/fTT7N27lyFDhuDl5YWjoyMtW7bkt99+K3KNpKQknnnmGRo1aoSLiwt+fn707NmTrVu3FjmusFvp448/5n//+x+1a9dGp9OxcePGYnFt3boVRVH49ddfi+2bP38+iqKwZ8+eEp/T3LlzueeeewDo0aMHiqIU68768ccfad68OY6Ojnh5eTFs2DCOHz9u2z9mzBi+/vprANv5iqLYWny+/vprunbtip+fH87OzjRt2pSPP/6YgoKCa7/oJejevTtNmjRhy5YtdOrUCScnJx599FEAYmJieOCBB/Dz80On09GwYUM+/fTTYt+OJ0+eTPv27fHy8sLNzY1WrVoxe/bsYl0DBQUFTJgwgYCAAJycnLjjjjvYvXt3mWM1Go3873//Izw8HJ1Oh6+vL4888ghJSUlFjgsNDWXQoEGsXLmSli1botfradiwIStXrgSsv6eGDRvi7OxMu3bt2Lt3b5HzS+py2rBhA927d8fb2xu9Xk+tWrUYMWIEubm5tmNmzpxJ8+bNcXFxwdXVlfDwcN58803b/tK6nJYvX07Hjh1xcnLC1dWVPn36FGshKozp2LFjjB49Gnd3d/z9/Xn00UfJyMgocuzvv/9O+/btcXd3x8nJiTp16th+p1djMBh44403qF27Ng4ODgQFBTFu3DjS09NtxyiKwqxZs8jLyyvx/V2ajz76iAsXLvD5559f9bhZs2aRmJjI1KlTiyQzhSZMmEB4eDjTpk2zvefHjh2Lo6Mj+/btsx1nsVjo1asX/v7+xMXFXTM+qZoRklTFpKSkiMDAQNGjRw9x7733Cg8PDxEbGys2bNggHBwcRJcuXcSiRYvEmjVrxJgxYwQg5syZYzv/xIkT4umnnxYLFy4UmzZtEitXrhSPPfaYUKlUYuPGjbbjIiMjBSCCgoJEjx49xB9//CHWrl0rIiMjbfsuv27Lli1F586di8Xbtm1b0bZt21KfT2Jiovjwww8FIL7++muxY8cOsWPHDpGYmCiEELZ9o0ePFqtWrRLz588XderUEe7u7uLUqVNCCCHOnDkj7r77bgHYzt+xY4cwGAxCCCHGjx8vZs6cKdasWSM2bNggpk+fLnx8fMQjjzxSJJaHH35YhISEXPN30K1bN+Hl5SWCg4PFl19+KTZu3Cg2b94sEhMTRVBQkPD19RXffvutWLNmjXj22WcFIJ5++uki1xgzZoyYPXu2WLdunVi3bp14//33hV6vF5MnTy4Wk6Io4tVXXxVr164Vn332mQgKChJubm7i4YcfvmqcZrNZ9OvXTzg7O4vJkyeLdevWiVmzZomgoCDRqFEjkZubazs2JCRE1KxZUzRp0kT8+uuvYvXq1aJ9+/ZCq9WKd955R3Tu3FksWbJELF26VNSvX1/4+/sXOf/dd98Vl//JjIyMFI6OjqJPnz5i2bJlYtOmTeKXX34RDz74oEhLSxNCCPHrr78KQDz33HNi7dq14p9//hHffvuteP75523X2bhxowCKvDd/+eUXAYi+ffuKZcuWiUWLFonWrVsLBwcHsXXr1mIxNWjQQLzzzjti3bp14rPPPhM6na7I7/7ff/8ViqKIUaNGidWrV4sNGzaIOXPmiAcffPCqr6/FYhF33nmn0Gg04u233xZr164Vn3zyiXB2dhYtW7a0vf927NghBgwYIPR6fbH3d0kefvhh4ezsLIQQYtiwYcLDw0OkpKTY9gNi3Lhxtp/79u0r1Gq1yM7OLvWaEyZMsP37EEKIvLw80aJFC1GnTh3b7+Odd94RKpVKrF279qrPW6qeZEIjVUmrV68WgADETz/9JIQQIjw8XLRs2VIUFBQUOXbQoEEiMDBQmM3mEq9lMplEQUGB6NWrlxg2bJhte2HSUrduXWE0GoucU1JCM2fOHAGIAwcO2Lbt3r1bAGLevHlXfT6///57sQ8tIYRIS0sTer1eDBgwoMj2mJgYodPpxH333WfbNm7cOFGW7yBms1kUFBSI+fPnC7VaLVJTU237ypPQAGL9+vVFtr/++usCELt27Sqy/emnnxaKooiTJ09eNab33ntPeHt7C4vFIoQQ4vjx4wIQ48ePL3J84Qf6tRKawoRh8eLFRbbv2bNHAOKbb76xbQsJCRF6vV6cP3/etu3gwYMCEIGBgSInJ8e2fdmyZQIQy5cvt227MqH5448/BCAOHjxYanzPPvus8PDwuOpzuDKhMZvNokaNGqJp06ZF3tNZWVnCz89PdOrUqVhMH3/8cZFrPvPMM8LR0dH2On/yyScCEOnp6VeN5Upr1qwp8fqLFi0SgPj+++9t2y5PUq7l8mNPnDgh1Gq1ePnll237r0xowsPDRUBAwFWvOXPmTAGIRYsW2badPn1auLm5ibvuukv8888/QqVSibfeeqtMMUrVj+xykqqk/v3706FDB8LCwnjggQc4c+YMJ06c4P777wfAZDLZHgMGDCAuLo6TJ0/azv/2229p1aoVjo6OaDQatFot69evL9KNU2jIkCFotdprxjR69Gj8/PxsXT8AX375Jb6+vowcOfK6nueOHTvIy8srNponODiYnj17sn79+jJd58CBAwwZMgRvb2/UajVarZaHHnoIs9nMqVOnris2T09PevbsWWTbhg0baNSoEe3atSuyfcyYMQgh2LBhQ5Fje/fujbu7uy2md955h5SUFBITEwFs3XuFv9dC9957LxrNtUv8Vq5ciYeHB4MHDy7ynmjRogUBAQHFunFatGhBUFCQ7eeGDRsC1i62y+uDCrdHR0eXeu8WLVrg4ODAk08+ybx58zh37lyxY9q1a0d6ejqjR4/mzz//JDk5+ZrP6eTJk1y8eJEHH3ywSAG8i4sLI0aMYOfOnUW6tMD6Hr5cs2bNMBgMtte5bdu2gPV1/e2337hw4cI14wBsv88r35/33HMPzs7OZX5/Xk2DBg147LHH+Oqrr4iJibnu64hLXZmXdwvWq1ePH374gWXLljFo0CC6dOlywyMFpapLJjRSlaXT6XBwcAAgISEBgFdeeQWtVlvk8cwzzwDYPiw+++wznn76adq3b8/ixYvZuXMne/bsoV+/fuTl5RW7T2BgYJnjeeqpp1iwYAHp6ekkJSXx22+/8fjjj6PT6a7rOaakpJQaQ40aNWz7ryYmJoYuXbrYahG2bt3Knj17bIlXSc+5LEqKKSUlpdRYC/cD7N69m759+wLwww8/sH37dvbs2cPEiROLxFR4fEBAQJHraTQavL29rxljQkIC6enpODg4FHtfxMfHF0sgvLy8ivxc+P4qbbvBYCj13nXr1uWff/7Bz8+PcePGUbduXerWrVukHuTBBx/kxx9/JDo6mhEjRuDn50f79u1Zt25dqde91nvCYrGQlpZWZPuVr1Xh+7Hwde7atSvLli3DZDLx0EMPUbNmTZo0aVJiTdiVsWg0Gnx9fYtsVxSFgICAMr0/y2LSpEmo1WrefvvtEvfXqlWLpKQkcnJySr1GYT1ZcHBwke0DBw7E398fg8HASy+9hFqtrpCYpapHjnKSqgUfHx8A3njjDYYPH17iMQ0aNADg559/pnv37sycObPI/qysrBLPK8/cIk8//TRTp07lxx9/xGAwYDKZGDt2bJnPv1LhB1FJBYoXL160Pe+rWbZsGTk5OSxZsoSQkBDb9oMHD153XFDy6+Lt7V1qrPDf72nhwoVotVpWrlyJo6NjkVivvB5AfHx8kZYTk8lUpg9LHx8fvL29WbNmTYn7XV1dr3mNG9GlSxe6dOmC2Wxm7969fPnll7z44ov4+/szatQoAB555BEeeeQRcnJy2LJlC++++y6DBg3i1KlTRX5fha71nlCpVHh6epY71qFDhzJ06FDy8/PZuXMnU6ZM4b777iM0NJSOHTuWeI63tzcmk4mkpKQiSY0Qgvj4eFvLz40KDAzkxRdfZOrUqbz88svF9vfp04e1a9eyYsUK2+t6OSEEy5cvx8vLi9atWxfZN3bsWLKysmjcuDHPP/88Xbp0ua7XT6r6ZAuNVC00aNCAsLAwDh06RJs2bUp8FH54KYpSrMXk8OHDFTKHSGBgIPfccw/ffPMN3377LYMHD6ZWrVrXPO/Kb8yFOnbsiF6v5+effy6y/fz582zYsIFevXpd8xqFicflz1kIwQ8//FCOZ1Y2vXr1IiIigv379xfZXjjSq0ePHraYNBpNkW/DeXl5xeYm6d69OwC//PJLke2//fZbmYbPDxo0iJSUFMxmc4nvicIkt7Kp1Wrat29vaxW78vUB6zDl/v37M3HiRIxGI8eOHSvxWg0aNCAoKIgFCxYUGRGWk5PD4sWLbSOfrpdOp6Nbt2589NFHgLW7sjSF778r35+LFy8mJyenyPvzRr322mt4eXmVOOz68ccfx8/PjzfeeMPWjXa5jz/+mBMnTjBhwoQi3cezZs3i559/5quvvmL58uWkp6fzyCOPVFjMUtUiW2ikauO7776jf//+3HnnnYwZM4agoCBSU1M5fvw4+/fv5/fffwesH3Lvv/8+7777Lt26dePkyZO899571K5du0LmmHnhhRdo3749AHPmzCnTOU2aNAHg+++/x9XVFUdHR2rXro23tzdvv/02b775Jg899BCjR48mJSWFyZMn4+joyLvvvmu7RtOmTQHrUNf+/fujVqtp1qwZffr0wcHBgdGjRzNhwgQMBgMzZ84s1i1REcaPH8/8+fMZOHAg7733HiEhIaxatYpvvvmGp59+mvr16wPWZv7PPvuM++67jyeffJKUlBQ++eSTYolmw4YNeeCBB5gxYwZarZbevXtz9OhRPvnkE9zc3K4Zz6hRo/jll18YMGAAL7zwAu3atUOr1XL+/Hk2btzI0KFDGTZsWIW/DmCt09qwYQMDBw6kVq1aGAwGfvzxRwB69+4NwBNPPIFer6dz584EBgYSHx/PlClTcHd3L7V1Q6VS8fHHH3P//fczaNAgnnrqKfLz85k2bRrp6elMnTq13LG+8847nD9/nl69elGzZk3S09P5/PPP0Wq1dOvWrdTz+vTpw5133slrr71GZmYmnTt35vDhw7z77ru0bNmSBx98sNyxlMbNzY2JEycyfvz4Yvs8PDxYsmQJgwYNonXr1rz66qs0b96czMxMFi1axC+//MLIkSN59dVXbeccOXKE559/nocfftiWxMyePZu7776bGTNm8OKLL1ZY7FIVYc+KZEm6mm7duonGjRsX2Xbo0CFx7733Cj8/P6HVakVAQIDo2bOn+Pbbb23H5Ofni1deeUUEBQUJR0dH0apVK7Fs2bJiI3wKRzJNmzat2L1LGuV0udDQUNGwYcNyPZ8ZM2aI2rVrC7VaXezas2bNEs2aNRMODg7C3d1dDB06VBw7dqzI+fn5+eLxxx8Xvr6+QlEUAYjIyEghhBArVqwQzZs3F46OjiIoKEi8+uqr4q+//io2sqo8o5yufO0LRUdHi/vuu094e3sLrVYrGjRoIKZNm1ZslNmPP/4oGjRoIHQ6nahTp46YMmWKmD17dpG4C5/Xyy+/LPz8/ISjo6Po0KGD2LFjhwgJCbnmKCchhCgoKBCffPKJ7fm7uLiI8PBw8dRTT4nTp0/bjgsJCREDBw4sdj5XjKgRouT3xpWjnHbs2CGGDRsmQkJChE6nE97e3qJbt25FRkbNmzdP9OjRQ/j7+wsHBwdRo0YNce+994rDhw/bjilp2LYQ1pFW7du3F46OjsLZ2Vn06tVLbN++vcgxhTElJSUV2V44Iq/wdV65cqXo37+/CAoKEg4ODsLPz08MGDCgyBDw0uTl5YnXXntNhISECK1WKwIDA8XTTz9tGwpd6HpHOV0uPz9f1K5du8TfiRDW0X/jxo0TderUsf1b6dq1q/j5559tI7qEECI7O1uEh4eLRo0aFRm9JoR1tKBWqy02Uk+q/hQh5AIYklQehw8fpnnz5nz99de2gmRJkiTJvmRCI0lldPbsWaKjo3nzzTeJiYnhzJkzt/VSAJIkSVWJLAqWpDJ6//336dOnD9nZ2fz+++8ymZEkSapCZAuNJEmSJEnVnmyhkSRJkiSp2pMJjSRJkiRJ1Z5MaCRJkiRJqvbsOrHezJkzmTlzpm0NjsaNG/POO+/Qv39/wLog2rx584qc0759e3bu3Fnme1gsFi5evIirq2u5priXJEmSJMl+hBBkZWVRo0aNIgu1lsauCU3NmjWZOnUq9erVA2DevHkMHTqUAwcO0LhxYwD69etXZDbWwkXjyurixYvFFiuTJEmSJKl6iI2NpWbNmtc8zq4JzeDBg4v8/MEHHzBz5kx27txpS2h0Ol2xlXjLo3B9n9jY2DJNpS5JkiRJkv1lZmYSHBxc5kVmq8xaTmazmd9//52cnJwiK79u2rQJPz8/PDw86NatGx988AF+fn6lXic/P5/8/Hzbz4UrLLu5ucmERpIkSZKqmbKWi9i9KPjIkSO4uLig0+kYO3YsS5cupVGjRgD079+fX375hQ0bNvDpp5+yZ88eevbsWSRhuVLhwm+FD9ndJEmSJEm3PrtPrGc0GomJiSE9PZ3Fixcza9YsNm/ebEtqLhcXF0dISAgLFy5k+PDhJV7vyhaawiarjIwM2UIjSZIkSdVEZmYm7u7uZf78tnuXk4ODg60ouE2bNuzZs4fPP/+c7777rtixgYGBhISEcPr06VKvp9Pp0Ol0lRavJEmSJElVj927nK4khCi1SyklJYXY2FgCAwNvclSSJEmSJFVldm2hefPNN+nfvz/BwcFkZWWxcOFCNm3axJo1a8jOzmbSpEmMGDGCwMBAoqKiePPNN/Hx8WHYsGH2DFuSJEmSpCrGrglNQkICDz74IHFxcbi7u9OsWTPWrFlDnz59yMvL48iRI8yfP5/09HQCAwPp0aMHixYtKvMQLkmSJEmSbg92LwqubOUtKpIkSZIkyf7K+/ld5WpoJEmSJEmSyksmNJIkSZIkVXsyoZEkSZIkqdqTCY0kSZIkSdWeTGgkSZIkSar27D5TsCRJkmQ/wmQhPzKD/KhMNB46dGGeaDzkbOtS9SMTGkmSpNuMKd2A4WQahpNp5J9JQxgtRfZrfPU4hnmiq+eBrq47Kp38qJCqPvkulSRJusUJs4X8qMxLSUwqpoTcIvtVrloc63pgSjVgjM3ClJRHdlIe2f9eBJWCQy1Xa4IT5oFDTVcUlWKnZyJJpZMJjSRJ0i3InJGP4VQahhOpGM6kI/LN/+1UwKGWG44NPHFs4IU20NmWpFjyTOSfTcdwOg3DmXTMKQaMUZkYozJhXTSKowbHeu7owjxxDPNE4+Vop2coSUXJhEaSJOkWIMwCY0wmhpOpGE6mURCXU2S/ylmLY31PaxJT3xOVk7bE66j0GvRNfNA38QHAlJKH4XQ6+afTMJxNRxhM5B1NIe9oCgBqb0ccwzxxrOeBrq4HKr38WJHsQ77zJEmSqilzltHaCnMyFcMpa7Jho4BDTdf/WmGCXK6rq0jjrcfFW49Lh0Br0nQhi/zT1hYcY0wW5hQDOSlx5OyMs94z2PVS640HDsGuKGo5mFa6OeRaTpIkSdWEsAiMsVn/tcJcyC6yX+WkQVffmsA4hnmgdnGo1Hgs+Sbyz2ZgOJ1G/ul0TMl5RfYrOjW6uh44hnlYR095O6Iosv5GKpvyfn7LFhpJkqQqzJxtxHA6HcOJVPJPp2HJNRXZrw1ysbXCOATf3IJdlU6DvpE3+kbegHX0VGHrTf6ZdCy5JgwRKRgiLnVPeehsxcWO9TxK7faSpOshW2gkSZKqEGERFFzItrXCGM9nwWV/pRVHDY71PaytMPU9UbtWbivM9RIWQcHFbGsydioNY0wmmC9/IpeSscLuqVpuKBrZPSX9p7yf3zKhkSRJsjNLboF1VNGJNAyn07BkFxTZrw10tiYwDTytH/zq6tdtY8k3WyfwuzR66sqh44qDCl0dD2trU7gXGk85eup2JxOaK8iERpKkqkhYBIZTaeTsjsdwIgUum9tO0alxDPOwJTFqt1tv5l5zRj6GM+m2+htLzhVJXIAzjg29cGzoJee+uU3JhOYKMqGRJKkqMaXnk7s3npw9CZgz8m3bNf5OtgRGF3J7db8Ii6AgPsc2b44xOrNIN5vKRYtjAy/0Db3QhXnImYtvEzKhuYJMaCRJsjdhFhhOpJKzJx7DyVTbh7Wi1+Dcyg/ndgFo/Z3tG2QVYs4psCY3x1MwnEpDGC6bFFCtoKvjjr6hN44NZdfUrUwmNFeQCY0kSfZiSjWQsyeenH0JWDKNtu0Otd1xaReAvokPivb2aYm5HsJsIT8yE8PxFPJOpGJOMRTZrw1wwrGhN47hN3+Ul1S5ZEJzBZnQSJJ0MwmThbzjKeTsjif/TLqtNUblrMWptR/ObQPQ+jrZNcbqSgiBKSkPw/FU8o6nFO+actbiGC67pm4VMqG5gkxoJEm6GQqS88jZE0/uvoQio5R09TxwbheAvpH3bVUXczOUqWsq3AvHht5yzalqSCY0V5AJjSRJlUWYLOQdTba2xpzLsG1XuTrg3MYf5zb+aLz1dozw9mHrmjqRiuF4CqYruqY0/k62uhvZNVU9yITmCjKhkSSpohUk5pKzO57c/Qn/zdyrgGN9T5zbBeAY7iXXMLIjIQSm5Mu6pqJK6Jpq4Gmtvakvu6aqKrn0gSRJUiWwGM3kHbG2xhijM23b1e4OOLUJwLmtPxoP2a1RFSiKgtbXCa2vE65da1onLjyZRt6lrilLTgG5+xPJ3Z8ou6ZuIbKFRpIk6SqMcTnk7I4j90DifzUaKnBs4IVz+0Ac63vK7otqRJgt5EdlYjh+la6pJj44t/KT3YV2JrucriATGkmSysuSbybvcJK1NSY2y7Zd7anDuW0Azm38b8nZe283xbqmojOLzNjsEOKGU2s/nJr6otLLDo2bTSY0V5AJjSRJZWW8kG1tjTmYhMgvbI1R0Df2xrltALp6HrI15hZmyS0g70QquQcSiwy5R6Ogb+SNUyt/HMM8q+VaWtWRrKGRJEkqB4vBRO7BJHJ2x1FwMce2XePtiHO7AJxa+VfZFa2liqVy0uLcyh/nVv6YM/LJPZhIzv5ETAm55B1OJu9wMioXLU4t/HBq5YdDDRd7hyxdRrbQSJJ0WxAWgTnVQEFiLgWJuZgSrP8tSMgF06V+BrVirZ9oF4CujjuKIr+J3+6EEBRczCF3fwK5B5OKLKKpDXDCqZU/Ti38ULvJpLeiyS6nK8iERpJuL8JswZRioCAhF1Nh8pKYS0FSLphK/nOn8dPj3DYQp1Z+qJ21NzliqboQZguGk2nkHkgkLyIFzIWLcoEuzBPn1n7WCRS1avsGeouQXU6SJN0WRIGFguS8oklLQi6m5DywlPI9TaNC66tH4+eE1t8JrZ8TGn8nND562RojXZOiVqFv5I2+kTeW3AJyDyeTuz8BY0wW+afSyD+VhqJT49TM19olFeom31c3kWyhkSSpSrMYzUWTlkRrEmNKySsyWdrlFAc1Gj892kuJi8bPmryoPR1lUa9U4QqScsk9YJ3Xxpyeb9uu9nLEqaWfHAJ+nWSX0xVkQiNJ1YPFYPqvtiXpvxoXc1p+qecojhq0fnq0/s5o/P5reVG76+Q3Y+mmExaBMSqDnP2J5B1J/m+kHHII+PWQCc0VZEIjSVWTOaeArC3nKbiYjSkhF3OmsdRjVc4aNH7O1m4iXz0af+v/q1y0MnGRqiSL0YwhIoWc/Ynkn04rZQi4h1wi4ypkDY0kSVWeEILUX44XWdARQOXmYO0m8nOytbZo/Jxkoa5U7agc1Nbh3S38MGfmk3sgiZz9CcWHgDf3xam1P9pAZ5mc3yCZ0EiSdNPl7k8k/1wGilaF++A6aP2d0fo5yaZ46ZakdtPh2q0mLl2Dig4Bzy4ge/tFsrdflEPAK4DscpIk6aYy5xSQ8OleLLkm3PuH4tot2N4hSdJNJ8wWDKfSyN1f8hBwfWNvHIJd0fo737YzE8suJ0mSqrSMVeew5JrQBjjjckeQvcORJLtQ1Cr0Db3RNyx9CDiAolWhreGCQ00XHIJdcajpitrbUXZPlUAmNJIk3TSGM+nk7k8EBTyG15MFkZKEdckFlw6BuHQIpCA5j9wDiRijMzHGZiHyzdb/j8687HgN2pquRZMcuTyHfROamTNnMnPmTKKiogBo3Lgx77zzDv379weshYOTJ0/m+++/Jy0tjfbt2/P111/TuHFjO0YtSdL1EAUW0pedAcC5fSC6WrILWJKupPXR494nBLAOAzcl52E8n4UxNouC89kYL2ZjyTUVacUBUHvobMmNtqa1RUelu73aLOz6bGvWrMnUqVOpV68eAPPmzWPo0KEcOHCAxo0b8/HHH/PZZ58xd+5c6tevz//+9z/69OnDyZMncXV1tWfokiSVU+bGGEzJeahcHXDvF2rvcCSpylNUim3Un3MrfwCEyUJBfI41yYnJwng+G1NSLub0fPLS88k7knzpZND4OeFQ0xWHYBdrohPgjKK5dVtFq1xRsJeXF9OmTePRRx+lRo0avPjii7z22msA5Ofn4+/vz0cffcRTTz1VpuvJomBJsr+ChBwSvjgAZoHX/eE4NfW1d0iSdMuwGEwYz2djPJ9FwfksjLHZmDNKmJBSo+AQaO2m0gZbu6w03voqO3t2tS0KNpvN/P777+Tk5NCxY0ciIyOJj4+nb9++tmN0Oh3dunXj33//LTWhyc/PJz//v19kZmZmicdJknRzCIsgbekZMAscw73QN/Gxd0iSdEtROWpwrOeBYz0P2zZzlhFjbJatu8p4PhuRZ7L+f2yW7TjFUW1txSlsyQl2Re2ms8OzuHF2T2iOHDlCx44dMRgMuLi4sHTpUho1asS///4LgL+/f5Hj/f39iY6OLvV6U6ZMYfLkyZUasyRJZZe7NwFjVCaKgwqPu+rK0RmSdBOoXR1sC2mCtSbVnGIokuAYL2QjDGbyz6STfybddq7KzQGHmq7oarujb+yNxsvRTs+ifOye0DRo0ICDBw+Snp7O4sWLefjhh9m8ebNt/5V//IQQV/2D+MYbb/DSSy/Zfs7MzCQ4WM5zIUn2YM4ykv5XJABufULReFSPP4ySdKtRFAWNjx6Njx6nFn6AdS6cgvjcS11V2RhjMylIyMWSacQQkYIhIoWMVefQ1nBG39gHfRNvNH5OVfZLid0TGgcHB1tRcJs2bdizZw+ff/65rW4mPj6ewMBA2/GJiYnFWm0up9Pp0OmqZ3OZJN1q0ledQ+SZ0NZwxqVTDXuHI0nSZRS1CocgFxyCXKC9dZvFaKbgYjbGmCwMJ1LJj8yg4GIOBRdzyFwXjcZXj76xN/rGPmhrulSp5MbuCc2VhBDk5+dTu3ZtAgICWLduHS1btgTAaDSyefNmPvroIztHKUnStRhOpZF3MAkU8BwedtvOdipJ1YnKQY0u1B1dqDuuXWtizjZiOJ5K3rEUDKfTMCXlkbXpPFmbzqN211mTmybeOIS627242K4JzZtvvkn//v0JDg4mKyuLhQsXsmnTJtasWYOiKLz44ot8+OGHhIWFERYWxocffoiTkxP33XefPcOWJOkaLEYzaZfmnHHpVAOHmnKaBUmqjtQuDji3DcC5bQAWgwnDyVTyjqZgOJmKOSOf7H8vkv3vRVTOWvSNvHFs4o1jXQ+7DA+3a0KTkJDAgw8+SFxcHO7u7jRr1ow1a9bQp08fACZMmEBeXh7PPPOMbWK9tWvXyjloJKmKy1ofgznVgNrdAbe+IfYOR5KkCqBy1ODU3A+n5n6IAjOG0+nkHU0m73gqlpwCcvbEk7MnHkWnvjSi0RvH+l6odOqbEl+Vm4emosl5aCTp5iqIvzTnjEXg/VAj2ygLSZJuTcJsIT8yg7yjKeQdS8GSZfxvp0aFY33rYpv6hl6onLRlvm61nYdGkqSqwWAwYLFYcHJyKve5wiJIW3IaLALHxt4ymZGk24CiVuFYzxPHep54DKmLMTaLvGMp5B1NxpxqsI2YSlMp6Oq6W0dMNfJG7Vax60/JhEaSJJu8vDxmzpyJyWRi3LhxODs7l+v8nF1xGGOyUHRqPIfUraQoJUmqqhSVgi7EDV2IG+79QymIz7V2Sx1NxpSQS/7pdPJPp5P+5xkcarldGjHljcZbf8P3lgmNJEk2GzdutM2uvXPnTnr16lXmc82Z+WSsiQLA/c5Q1O5y+gRJup0pioJDoDMOgc649wmhIDkPw7Fkco+mUBCbZVtFPGN1JNpAZ/RNbmyuG5nQSJIEWOd82rNnj+3n3bt306lTJ/T6sn1zSl9xDpFvxiHYFecOgdc+QZKk24rWR4+2WzCu3YIxZeRjiLB2S+VHZlAQl0NB3KW5bnysc90UhJSvS0omNJJ0Czl06BB//fUXAwcOpGnTpmU+TwjB6tWrEULQsGFDkpOTSUpKYvfu3XTr1u2a5+cdT7Gu8qsCj2H17D4fhSRJVZvGXYdLxxq4dKyBOacAw/EU63Dw02mYkvPI2nyerPyccl3z1l1HXJJuM0lJSaxYsQKDwcCqVavIzs4u87mHDx8mJiYGrVZLv3796Nq1K2Dtdrp8sdeSWPLNpP95FgCXO2riUMPl+p+EJEm3HbWzFuc2AfiMaUyNdzrgdV84+mY+KA7lG+4tExpJugWYTCYWL16MyWQCrCOV1q5dW6ZzDQYD69atA6Br1664u7vTuHFjvLy8yMvLY+/evVc9P3NdNOb0fNSeOtx617qxJyJJ0m1NpdPg1MwX7/saEjihbfnOraSYJEm6idavX098fDx6vZ6RI0cC1laXyMjIa567f/9+srOz8fLyomPHjgCoVCruuOMOAHbs2EFBQUGJ5xovZJO9/QIAHnfVQ1XOb1SSJEmlUbTlS1FkQiNJ1dzZs2fZsWMHAEOHDqVhw4a0adMGgFWrVtlabUpisVhshcCdO3dGo/mvrK5Zs2a4u7uTnZ3N2rVruXIOTmG+NOeMAH0zH/QNvCr6qUmSJJWZTGgkqRrLyMhgyZIlgHW1+vDwcAB69eqFs7MzycnJ/Pvvv6Wef/r0adLS0nB0dCxWRKzRaOjXrx8Ae/bsYefOnUX2X1h2jIIL2SiOGjwGyzlnJEmyL5nQSFI1ZTKZ+O2338jJycHPz4++ffva9un1etvP27ZtIzc3t8Rr7N69G4BWrVrh4FB8iGTDhg1ta6v9/fffREREAHB09R4KdsUD4Ni9BmrXip3xU5IkqbxkQiNJ1dRff/3FhQsXcHR0ZNSoUcUSkmbNmhEQEIDRaLR1SV0uOTmZs2eto5Pati29+K5Tp062/UuWLCE2Npa6LcPJKEglyXCejf/uqsBnJUmSdH1kQiNJ1dC+ffvYt28fACNGjMDLq3j9iqIotjlkdu3aVayVprB2pn79+nh6epZ6L0VR6NevH2FhYZhMJpYsWYKDnxNxdVPZlrCE2Ih/iTqSXFFPTZIk6brIhEaSqpG4uDh+++03VqxYAUDPnj0JCwsr9fjw8PASW2ny8/M5cOAAAO3bt7/mfdVqNXfffTcNGjRg5MiRqNVq2g7ph9GSh6XgHBvmHyA/r/TiY0mSpMomExpJqgaysrL45Zdf+O6772x1LK1atbINrS5NSa00RqORf/75B6PRiLe3N7Vr1y5TDDqdjtGjRxMQEACAT61QfEPqABayko7w75Iz1/8EJUmSbpBc+kCSqjiLxcKSJUuIjIxEURSaNGnCHXfcgb+/f5nODw8Px9/fn4SEBJYsWUJCQgJZWVmAdai2SnX932sad+vFpvnnMBsjiNjagrA2/tRsUHr3lSRJUmWRLTSSVMXt3buXyMhINBoNTz31FCNGjChzMgPWVpru3bsDcObMGbKysvDw8ODuu++mZcuWNxRbeOeuKCoVwhyPxZzKxp+OU5BvvqFrSpIkXQ+Z0EhSFZaammpblqB379627p7yatCgAXXq1MHR0ZE+ffowbtw4mjRpgqLc2CKSzh6e1G7RGgC16hSZyQZ2LT93Q9eUJEm6HrLLSZJusoyMDM6cOUOTJk3Q6XSlHmexWFi2bBkFBQWEhobSrl27676nSqXigQceQFGUG05irtSoa0/O7d8DlhMIVXsObYilXms/Auq4V+h9JEmSrka20EjSTbZq1SpWrFjBd999x8WLF0s9bvv27cTExODg4MDQoUNvqNYFrElNRSczAHVat0Pn5ExeZipBYTkgYMNPJzAXWCr8XpIkSaWRCY0k3UQGg8E2mV1qaiqzZs1ix44dRdZJEkKwYcMG1q9fD0Dfvn2vOk+MvWkddNTvaB1t5eBwBr2rlrS4HPb+FWXfwCRJuq3IhEaSbqIzZ85gNpvx9PQkPDwci8XC33//zcyZM9mxYwfZ2dksX76cLVu2ANCtWzdat25t56ivrVHXngCc3beDTsNDAdi/Jprk81l2jEqSpNuJTGgk6SY6efIkAI0aNWLkyJEMHDgQrVZLYmIif//9N5988gkHDhxAURQGDx5Mjx49KqWbqKIFNWiEu58/BYY8hOkMdVr6YrEINsw/gcUsu54kSap8MqGRpJvEZDJx6tQpwDrqSFEU2rZty0svvcSAAQMIDAwErKtcjxo1qlq0zBRSFMXWSnNsywa6jqqPzklDUkwWB9bF2Dk6SZJuB3KUk3TbEEIQHx/PhQsXyMvLIy8vj/z8fNzd3QkICMDf3x83N7dKaxGJjo4mPz8fZ2dnatasaduu1+tp164d7dq1IzExEa1WW6VrZkrTqGsvdvzxKzFHDmExZ3HHPWGsn3ecPSujqNPCF88AZ3uHKEnSLUwmNNIt7+LFixw+fJgTJ06Qnp5+1WO9vb3p3LkzzZo1Q6Op2H8eJ06cAKytM6WNWPLz86vQe95MHv4BBIU34sKJCE5s20ybwcM5vTeBmGOpbJh/guGvtEJRVf3uM0mSqieZ0Ei3LLPZzMaNG9m2bZttm0ajISQkBFdXV/R6PQ4ODqSmppKQkEBycjIpKSksX76cjRs30qlTJ9q3b3/Dw6XB2jpUmNCEh4ff8PWqqkZde3LhRATHNq+nzeDhdL8/nF8n7yL+XAZHNp+nWY9ge4coSdItSiY00i0pJSWFxYsX2+Z5adiwIc2aNaNu3bo4ODiUeE5+fj779u1jx44dZGVl8ffff2MymejSpcsNx3Px4kWysrLQarVlXgzSHoQQTF4RQXyGgXE96tG0Zvkmx6vf4Q42zPmOlPMxJEadw792XToOq8uWhafYsewcoU19cPPRV1L0kiTdzmRCI91y4uPjmT17NgUFBTg6OjJ48GAaN258zfN0Oh2dOnWiXbt27Nixg/Xr17NhwwaCg4MJDQ0FrLP3Hjt2jPj4eDIzM8nMzMTDw4N+/fqh15f+QV04uqlevXpotdoKeZ6VYcXhOOb+GwXAmmPxDG1Rg1f6NiDYy6lM5zs6u1C3TQdO7dhKxOb1+NeuS5OuQZzZl8jF0+ls/PkEQ15oUS1GbkmSVL3IUU7SLeeff/6hoKCA4OBgnn766TIlM5fTaDTccccdNG/eHCEEf/zxB9nZ2WRkZPDTTz+xePFitm/fzpEjR4iOjubQoUP8/PPPGAyGEq+Xk5PD0aNHgcrvbso0FLBwdwxpOcZyn5trNDFl9XEAwgNcAfjz4EV6fbaZOdsji0z+dzWNL412OvHvFswmE4pKoccD4ai1Ks6fSOP4v3Hljk2SJOlaZEIj3VLOnz/PmTNnUBSFYcOG4e5+fesJKYrCwIED8fX1JTs7m19++YWZM2cSGRmJVqulbdu29OnTh8GDB6PX67lw4QILFizAaCyaSJw7d46ZM2eSmpqKo6Mj9evXr4inWSKLRTD2p328vuQID/64i1yjqVznz9x0lrgMAzU99Swb15kVz95BxzreGE0WJq+I4Kmf9pGee+1EKaRZS5zcPcjNSCf68AEAPPydaD+4DgDb/zhDTnp++Z+gJEnSVciERrqlbNq0CYDmzZvj5eV1Q9dycHDg3nvvRavVEhcXh8FgoEaNGjz11FMMHDiQzp0707p1ax588EF0Oh0xMTH8+uuv7Nu3j927d7N69Wrmz59PdnY2Pj4+jBkz5qrdUjfqx+2R/Hs2BYCjFzJ55fdDWCxla1WJTc3luy3WVbInDmiIo1ZN05ruLHiiPZMGN8JBrWJtRAIDv9jGvujUq15LrdEQ3rkbYJ2TplDz3sH4hbhizDOx+deTZW7xkSRJKguZ0Ei3jNjYWFvrTNeuXSvkmr6+vraWni5duvDYY4/h4+NT5JgaNWpw//33o9VqiYyMZMWKFaxevZrdu3cD0KpVK5588kkCAgIqJKaSnIzP4uO/rXU697WvhVatsPpIPDPWny7T+R+sOo7RZKFTXW/6NfkvTkVRGNO5Nkue6USotxMX0vN49ffDmK4x+69tKYS9OzHkZAOgUin0fKghKrVC5KFkzuxLvJ6nKkmSVCJZFCzdMjZv3gxAixYtbrh15nKNGjWiUaNGVz2mVq1aPPjgg+zYsQOz2YxGo0Gj0dCwYUMaNmxYYbGUJN9k5sVFBzGaLPRo4MsHdzWhRU0PJiw+zBfrT1Pf34VBzWqUev7+mDTWHItHrVJ4d3DjEgt2mwS5s+K5O3j3z2M83CkUjfrq34X8QuvgExxCcmw0p3Zuo1mvfgB4B7nQun8oe1ZGsnXRKWqGe6J3KXnUmSRJUnnIhEa6JVzeOlMRw6yvR61atahVq9ZNvacQgo/+OsnxuEw8nbR8dHczFEXh3rbBnErIYta2SN798xi9G/rjqFWXeI1lBy4AMLR5DRpcKgYuiaujls9GtihTXIVLIWz5ZQ4RWzbYEhqA1v1COHcgkZQLOWxddJq+j5WvaFuSJKkksstJqjQWi4XNmzezd+/eSr/X1q1bgYpvnanKLBbBeysj+HF7JABThjfDz9XRtv/1/uHUcHckJcfIikMXS7yG2SJYfSQegMEtSm/FuR4N7+iOoqi4cCKC9Pj/RjapNSp6PNgQRYHTexKIPpZSofeVJOn2JBMaqdIcP36cjRs3snLlSqKioirtPsnJybZFH++4445Ku489mS2C9ccTOBSbTr7JjMls4dU/DjNnexQAkwY3KlL7AqBRq3iwYygAc/+NKrEId09UKsnZ+bjrtXSu61Ns/41w8fKmVtPmAERs3VBkn3+oG026BgFwZk9Chd5XkqTbk0xopEphNpvZsOG/D7GVK1diMpVvGHFZ7dy5E7CukeTt7V0p9yjN+uMJzNp6rtJH7Mzaeo7H5u1l6NfbafruWrpN28Ti/edRqxSmj2zOmM4lzz48qm0wjloVxy5msjc6rdj+VYetLSd3NvbHQVPxfw4K56SJ2LKh2GtUq7H1d5UYk1Xh95Uk6fYjExqpUhw6dIiUlBScnJxwdnYmOTmZf//9t8Lvk5uby8GDBwHo2LFjhV//agwFZp779QD/W3WcjScrb8SOyWyxzd6r16oxmi1cSM/DQaPi2wdaM6xlzVLP9XR2YFhLa0vI3EutOYXMFsFfR60JzcCrFA3fiHptO6J11JORmMCFkxFF9vmGWOt10uJyMBoqJ9mVJOn2YdeEZsqUKbRt2xZXV1f8/Py46667bFPEFxozZgyKohR5dOjQwU4RS2VRUFBgmw+mS5cu3HnnnYB1FFJKSvnqJUwmE2fOnCElJQWLpfhQ4b1792IymQgMDCQkJOSGYy+PHWdTyDWaAfh1d2yl3WdtRAJxGQa8nR048E4ftrzag2/ub8Wf4zrTp5H/Nc9/uFMoYF3K4GJ6nm37rsgUkrONeDhp6VS3clq2tI6O1G/fGbC20lzO2V2Hi6cOISA5VrbSSJJ0Y+w6ymnz5s2MGzeOtm3bYjKZmDhxIn379iUiIgJnZ2fbcf369WPOnDm2n0tbXFCqGvbu3UtmZiZubm60adMGjUbDwYMHOXfuHIsXLyYgIIDk5GSysrLo168fDRo0KPVaS5cu5dixY4B1raXAwEAaNWpEq1atAGxzvXTo0OGmrw/0z/H/aj82nEgkPsNAgLvjVc6w2hedxpL953mhd1iRIt7SFLbOjG5XC0etmlreTtTyLtvaSgDhAW50rOPNjnMp/LQzmtf6WZdfsHU3NQpAe41h2DeiUdeeHNv8D6d2bKPHmCfROuhs+3xruZKdlk9idBY1wjwrLQZJkm59dk1o1qxZU+TnOXPm4Ofnx759+4pMjKbT6Sp1UjKp4uTn59tGHHXr1s22EOPAgQP55ptvuHjxom0FbLDW1tSpU6fEBRuPHj3KsWPHUBQFlUpFfn4+UVFRREVFsX37dmrXrk12djaurq7lXq/pRgkhWH/c2s3k5qgh02Di972xPNcr7Krn5RnNPLdgPxczDJxKyGLBEx2umkwcj8tkd2QqapXC/R2uf0j4mM6h7DiXwoJdMTSv6U7PcH/WHLWObhrYLPC6r1sWwY2a4OrtS1ZKEuf27aZBx/+G1fuFuhF5KJnEqMxKjUGSpFtflaqhycjIACg27HbTpk34+flRv359nnjiCRITS69XyM/Pt62CXPiQbp4DBw6Qm5uLt7c3LVq0sG339vZm+PDhNGnShK5duzJ8+HDc3d3JysqyFfVeLisri1WrVgHQtWtX3nzzTcaOHUu/fv1wcXEhIyPDVjvTrl07NJqy5+YVUcB77GIm8ZkG9Fo1bw6wTpy3cE8s5mssNfDD1nNczLAuYrknKo1pf5+86vHzLrXO9GscQKD79S+b0LuhP/X9XcjIK2Dsz/vp8vEGUnKMeDpp6VhJ3U2FFJWKRl17AMW7nfxD3ABIjJZdTpIk3ZgqM7GeEIKXXnqJO+64gyZNmti29+/fn3vuuYeQkBAiIyN5++236dmzJ/v27UOn0xW7zpQpU5g8efLNDF26TGENVJs2bVCri07k1rhx4yItKUIIli5dytatW2nVqpWtm1EIwfLly8nLyyMwMJCuXbuiVqsJCAggICCA1q1bs3v3brZt24ZWq6V169bXjCvXaGLloTgW7I4hIi6TOj7ONAx0I8zfBaPJQkq2kZScfEK9nXmwY8g1k4d1Edbupi5hPtzVMogpf53gQnoeW08n0b2BX4nnxGcYmLnpLAB3t67JH/vO8/2Wc7QO8eTOxsVbINNzjSw7aJ30rrAO5nqpVQoLn+zIj9simb8jioRM6+KQ/ZpUbndToUZde7Jr6W9EHtxHbkY6Tu4ewH+FwRlJeRhyCnB0Lt5SJ0mSVBZVJqF59tlnOXz4MNu2bSuyfeTIkbb/b9KkCW3atCEkJIRVq1YxfPjwYtd54403eOmll2w/Z2ZmEhwcXHmBSzZ5eXlER0cDlGlV6aZNm7Jjxw7i4+PZsmUL/fv3RwjB7t27OX36NGq1mmHDhhVLjLRaLZ07d6ZDhw5YLJYSu6syDQUcu5DJ8bhMjl7MYN2xBLLy/xtJcyI+ixPxJbcKfL/lHAObBfJElzo0CSp5te71J6wJTe9G1hl4h7cKYs72KBbuji01oZn290nyCsy0DvFk2t3NcNdrmb0tkld+P4SDRkV9f1cC3BzJNZo4ciGDP/adx1BgoWGgG21Db7y+xMvZgVfubMDY7nX5dVcM+2PSGNej3g1ft0z3rlGTwHoNiDtzkhPbN9NqwFAAHJ21uPnqyUzKIykmi+CGt8ekiJIkVbwqkdA899xzLF++nC1btlCzZulDUAHbaJbTp0tedE+n05XYciNVvjNnzmCxWPDx8SnTfDAqlYo+ffrw008/sWfPHnx9fdm/f7+txqZnz574+ZWcHACo1epiyQ5YJ4t7ZM4esvOLDgUO8XZidLta9Az3IyYll+NxmZxNysZJp8HH2QE3vZZ/jiew81wqfx68yMrDcSx4vD3t6xR9LnEZeRy9kImiQM9wa3yj29VizvYo/jmeQGKmAT+3osW+h8+ns3j/eQDeGdQIRVF4vX84B2LS2B+TziNz9gCgVSuYLILLe8Ue6RRaoQXPLjoNT3StU2HXK6tGXXsSd+Ykx7ZssCU0AH4hrmQm5ZEYnSkTGkmSrptdExohBM899xxLly5l06ZN1K5d8uRgl0tJSSE2NpbAwMotZJTKr3C23quNWrpS3bp1qVevHmfOnGHlypUAaDQa2rdvf13zyhSYLUxceoTsfBP+bjqa1fSgUaAb7Wt70aGONyqVNTGo7+9K7xKGPD/epQ5HL2Tw0ZoTbD2dzFvLjrLq+S5FJp0rLAZuGeyBj4vOdr3WIZ7si05j7M/7+Pr+VrZuq5iUXN5YcgSA4S2DaB7sAYBWrWLmA615f2UExy5mcj4tlwKzNZMJ8tDTPNiddqFejGh99SS/umjQqQsb5/1AYuRZkmOi8KkVCoBfiBtn9ibKOhpJkm6IXROacePGsWDBAv78809cXV2Jj7eOunB3d0ev15Odnc2kSZMYMWIEgYGBREVF8eabb+Lj48OwYcPsGbp0BbPZbGs1K09CA9CnTx+io6NRFIV27drRoUMHXFxcriuOn3ZEcyohG08nLX+/2BUPp/IP8W8S5M5Xo1vR89NNnE7M5sftkYztVte2f/2l4dq9GhZNiN7oH84jc/ewPyadgV9sY9rdzTgRn8UX60+Tb7LgqtPwar+ir42/myNf3Wcdgm62COIy8tBp1Pi63nqtjHpXN+q0asuZPTuI2LqRrvc/AlhbaAA50kmSpBti11FOM2fOJCMjg+7duxMYGGh7LFq0CLB2KRw5coShQ4dSv359Hn74YerXr8+OHTtwdS19VWDp5ouJicFgMODk5HTNbsMr+fv788ILL/Dyyy/Tu3fv605mkrPzmf6PtZXo1TvDryuZKeTupLWNXvr8n9OcT8sFIDolh+1nrZMDXjmpXZtQL1Y+dweNa7iRmmPksXl7mfb3SfJNFjrW8ebPZztftdhYrVKo6el0SyYzhRp1sy6FcHzrRiwW66SEvrVcQYHstHxyM432DE+SpGrM7l1OV6PX6/n7779vUjTSjSjsbgoLC0OlKn+efL1JzOWmrTlJlsFEkyA3Rra98ULw4a2CWLQ3lt2Rqbzz5zHC/F2Ysy0Ko9lCPT8XwvyKxxzi7czipzvx/soIftkVg5ezA28NbMiwlkE3feK/qqhOyzY4uriSnZZKzJFDhDZvhYOjBs8AZ9LickiMziS0acUukilJ0u2hSs1DI1VPQgjbcO3ydjdVlEOx6fy2z7r8wKTBjVGrbjx5UBSF/93VBI1KYcOJRL7bfA6j2UKXMB9+eKhNqQmKo1bNB8OasnZ8Vza92p3hrWrKZOYStUZLeGfrpJmXz0kju50kSbpRMqGRblhycjKpqamo1Wrq1q177RMqmBCCySuOIQQMaxlEm9CKGylT39/VVj9Tx8eZ2Q+3Yf6j7ajt43yNM63nujnKeVWu1OjSCtynd+/AmGftyvMrnGBPrrwtSdJ1qhLDtqXqrbC7KTQ01C5D5pcfusj+mHScHNS83j+8wq//ct/6DGoeSB0flyKjnaTrE1C3Pp41apJ28Tyndv1Lk+69i7TQCCFki5YkSeUm/zpLN6xw8ciyTKZX0fKMZqb+dQKAZ7rXxd/t2os9lpeiKIQHuMlkpoIoikLjS600hd1OPjVdUKkU8rIKyE7Lt2d4kiRVU/IvtHRD4uLiuHjxIiqVqsQFIvdEpXI6ofK6Eb7bcpa4DANBHnoe73LzJ4uTrk/DLt0BiD12mMykRDQOaryCrN14idGyjkaSpPKTCY10Q/bu3QtAw4YNi41U+m1PLPd8u4PBX20jNjW3wu99MT2Pbzdb10Z6Y0A4jtriswZLVZObjx/BjZsB8NNrz7P6y0/Qas8hRD6JUbKORpKk8pMJjXTd8vPzOXLEOgNumzZtiuzbciqJN5da9xkKLExcdrRCVrkuJITgw9XHMRRYaBfqxcCmcubo6qbL6IdxcvfAkJPN8W2biNz3M/npMznw1xcc+HslmcmJ9g5RkqRqRBYFS9ftyJEjGI1GvL29CQ0NtW2PuJjJM7/sx2QR9Az3Y9uZZLacSmL5oYsMbRF0w/cVQjDlrxOsPByHosDbl9ZGkqqXwLAGPPXtPC6eOsHZvbs4tXMHmUlx5GWcZcOPZ9nw47f4htahbut21G3dHv869eTvWZKkUimiIr82V0GZmZm4u7uTkZGBm5ubvcO5ZQgh+O6774iPj6dv37506tQJgMQsA0O+3E58poEOdbyY/2h7vt9ylk/WnsLb2YF/XuqGp3PZZ/A1WwTH4zKp6+uC3kGNEIKpa07w3eZzALx/VxMe7BBSKc9RurnMZgvfjVtGgeEM3oGJJEaeQgiLbb+Lpxd127Snbuv2BDduhsbh+meCliSp6ivv57dsoZGuy4ULF4iPj0etVtOiRQvb9jnbo4jPNFDPz4XvHmiDg0bFk13rsvzQRU4lZPPeyghe7lsfDycHnB3UV/3GbbEInl94gFWH43DQqGgb6omnkwMrD8cB8N7QxjKZuYWo1Sr8atciIdKDdsMbUbOBnsgDezm7bxdRB/eTnZbKoXV/cWjdX2h1joQ2b0XdNu2p3bINTm7u9g6/zIyGPFJiY0iKiSI5NoqU2GiyUpJp0KkrHUeMRlXCCvKSJF2bTGik67Jv3z4AGjdujJOTE2BttVlx6CIAL/YOw93JOqmcg0bFlOFNGTFzB0sPXGDpgQsAODuoeX1Aw1KTkk/WnmTVpeTFaLKw/UyKbd/kIY15qGNopTw3yX78QtxIiMwkMSqL+m0DaNytF4279cJkNBIbcYSze3dxdt8uslNTOL37X07v/hdFURFYP9zaNdWmPV41qsbMzBazmbS4CyTHRpMcE0VSTDTJsVFkJMSXePzOxQs5H3GUgc+/iouX902OVpKqP5nQSOV2eTFw69atbdsPnc/gfFoeTg5qeob7FTmndYgXL/epz087o0nPLcBotpBjNPP2sqPoNCrubVN07aXf9sbyzSbrCKZP72lOi1oebD2VxJ6oNLo38OWeNje+VpN0/cxZWVx4cTyK3pEaU6eiroC1uOCyJRCuGLqtcXCgdovW1G7Rml6PPU1i5FnO7tvFmb27SIo6x8WTEVw8GcHWBXPxDKxBndbtqde6PTUaNKz0Fg8hBFkpySTHRpEcE21LYFIvxGI2mUo8x8ndA59aofjWCsEnOBSL2czmn2dz/vhR5r/2PAOfe5WQZi0qNW5JutXIGhqp3CIiIvjtt9/w8PDghRdesH0bfn9lBLO3RTK4eQ2+HN2y1POFEBgKLHyy9iSzt0WiUuCr+1oxoGkgBWYL6yISeP7XA5gsgud71uOlvvZZH0oqmTCZiB37NDnbtgGgb9GC4Fk/VEhSk3oxh1/f24VGp+aJ6V1RlWFNrszkRM7t28PZfbuIOXoYi/m/JMLRxZU6LdtQt01760KYeqcbis+Qk30pYbEmLYVJTH5uTonHa3WO+NQKwSc4BJ9aofgEh+JTK6TELrLUixdYOX0KSTFRoCh0HDGKDiNGoVLJLijp9lTez2+Z0EjltmTJEg4fPkzHjh258847AWu9S6epG4jPNPD9g63p2zjgmtcRQvD64iMs2huLVq3QJcyX3ZGpZOdbP5AGN6/BF6NaVInuA+k/8f/7gLSff0bR61G0WiyZmehbtiT4hx9Qu1x7jaursVgEP4zfginfzKi32+EdVL4kKT83l+jD+zm7dxfn9u/BkJNt26fWaAhu3Iy6rdtTp3U73Hx8S72OqaCA1AuxttaW5JgokmKjyU5JLvF4RaXCq0ZNa+JyKXnxDQnFzccPpRyrzxcY89k493uOrP8bgFpNmjPguVdw9vAs8zUk6VYhE5oryISmYpnNZqZNm4bBYOCRRx4hJMRa/7I7MpV7v9uBq07D3rd7o9OU7Vul+bLC30Jezg4MaBrAWwMbycnyqpi0X38lfvJ7AAR98TnaoCBiHnnUltTUmvUDKucbS2qWfrqfi6fT6flQQxp2uv75hSxmMxdPHufMvl2c27eLtLiLRfb7hdalbpt2hDRrRV5mhi1pSY6JIi3uAsJiKfG6rj6+/yUtwSF4B4fgFRSMRltxC5FGbN3Iuh++wpSfj7OHJwOff9U2EaEk3S5kQnMFmdBUrHPnzjF//nycnJx45ZVXUF369vnOn0eZvyOaEa1q8um9zct1TaPJwsxNZ1GroFt9PxrXcCtTV4N0c+Xs2EHM40+A2Yzv+PH4PPUkAHlHjxHzqDWpcenRg5pffYlyA3Ur2/44zaF/YmnSLYhuoyuuuzH14nnO7rXW3Vw8dRyu8afP0dkF78LE5VKti0+tEHRON5awlVXK+VhWTJ9CyvkYFEVF55EP0G7o3eVq8ZGk6kwO25Yq1YkT1oUgGzRoYEtmTGYLq49YW1gGNy//N2oHjYoXeodVXJBShTNGRXH+xfFgNuM2ZDDeTz5h26dv0pjg774l5uExZG/cSOLHH+P/xhvXfS//EOsfrsToil0CwatGTbyG1KTtkBHkZmZYh4Tv3cWFkxE4e3rha6tzCcEnJBQXT2+7dnd61wzm/g8+Y/2PMzm2eT3bFs7n/Ilj9B/3UrUapi5JN4tMaKQyE0Jw8uRJAMLDw23bd0WmkpxtxNNJS+d6PvYKT6ok5qwsYp8ZhyUjA33z5gS+/36xD3qnli2pMXUKF156mdR589GGhOB1333XdT+/UOtIp+TzWZhNFtSVsMq5k5u7bUh4VaZ1dKTfM+Op2bAJ62fPJOrgPn56/QUGPT+BoPBG9g5PkqoU2XYplVl8fDwZGRlotVrq1PlvZevlB621Cf2aBKJVy7fUrUSYzVx46WWM586h8fcn6MsvUOl0JR7rNmAAvi++AEDC/z4g659/ruuebj56dE4aLCZByoXsa59wG2jSow/3ffApnjVqkp2SzKLJr7NnxZIKXR9Nkqo7+ekjlVlhd1O9evXQXiqATM0x8uch60R5d7WoYbfYpIonLBbi33+fnK1bURwdqfn112j9/K56jvdTT+E+bBhYLJx/4UXS//ij3PdVFOWy+WjkytuFfENq88CHnxHeuRvCYmHLzz+ybNr75GXL10iSQCY0UjkUJjSXdzf9vDMaQ4GFJkFutKvtZa/QpAomTCbiJr5F+sJFoCjUmPIh+iaNr3meoigEvjfZmtSYzcS99TbJM2eWuyXB11ZHk3mNI28vDnonBjz3Cr0fH4daq+Xcvt38/PoLxJ05ae/QJMnuZEIjlUlKSgoJCQkoikJYmLWA11BgZv6OKACe6FJHzhdzixBGIxdeeZWMpUtBrabGxx/h1r9/mc9XtFoCP/wA76eeAiDp8y+InzQZUVBQ5mtUVmHwrUBRFJr36c/o96bh7h9AZlIiC995jf2r/5RdUNJtTSY00jXl5OSwcOFCAGrXrm1bu+nPgxdIzjYS6O7IgKbXP1+IVLVceOVVstasAa2WoBnTcR88uNzXUBQFv/Ev4v/WW6AopC9aRMyTT2JOTy/T+YWFwakXcygwmst9/9uBf516PDj1c8Lad8JiNrFx3g+smD6l1FmLJelWJxMa6apycnKYN28eSUlJuLq6MnDgQMA64mnW1kgAHukcKouBbxF5R4+RtXYtaLUEf/M1bn363ND1vB643zovjZMTuTt2EjlyJPnnzl3zPGcPHXo3B4RFkHJeFgaXRufkzODxb9BjzJOo1BpO7/qXn15/gYRzZ+wdmiTddPJTSCri999/Z9q0acyfP59//vmH+fPnk5iYiIuLCw8//DDe3tZVgDedSuJ0YjYuOg2j2tWyc9RSRUn//XcA3Pr2xaVLlwq5pmuvXoT+ugBtjRoURMcQdc+9pP7yC8JcesuLoij4XyoMToiSdTRXoygKrfoPYdR7H+Hm60dGQjy/vv0Kh9atll1Q0m1FJjSSTUpKCseOHSMnJ4dz586xbds2EhIScHZ25uGHH8bH5785ZmZttX7LHtk2GDfHipvyXbIfS24umStXAuBxz91XPdZgMvD61td5a9tbZORnXPPajg0aEPr7b+jbtMaSk0PC+/8j6t6R5F1atb0ksjC4fALrNeCBqZ9Tp3U7zCYT/8z6htVffoIxL9feoUnSTSETGsmmcNK8oKAgBg0aROvWrQkPD2fMmDH4+v63kF9Ucg7bz6SgUqzdTVL5WPLzyVi+3N5hFJP51xosOTloa9XCqV27Uo+zCAsTt01k1blV/Hn2T0auHElESsQ1r6/x9iZk3jz833kblasrhmPHiLp3JMnffltiS0Lh0O0kWRhcZnoXV+569W26PvAoikrFie2b+fmN8dYVvCXpFicTGsnm1KlTADRp0oQ2bdowePBgRo0aVSSZAVhxyDqRXud6PtT0dLrpcVZnwmQi9qmxXJzwGimzZpX9PKORzLVryT979qrdCBajkdwDBxBGY7ljK+xu8rj76usFfXXgK9ZGr0Wj0hDoHMiF7As8uPpBFp9afM17KGo1XvfdR92/VuM2ZDAIQdKMz4mfPLlYF5TfpRaatIRcjHmmcj+f25WiKLQdPJyR707FxcubtLgLLHjzJY5sXCu7oKRbmkxoJADy8vKIjo4GrOs0lUYIwZ+XEpohzeVEeuWlaDS4dLkDgMRPPiVt0W/XPEeYzVx4+RUuPP8C5wYO4ly//iRMm0b2tu2Y0tIAMGfnkPLjHM727kP06PuIHDkKw8lTZY4r//Rp8g4eBLUa97uGlnrc8rPL+eHIDwC82/Fdfh/8O91rdsdoMTJpxyRmHSlbkqbx8SHo44//GwW1cBHnn38BS16e7RgnNwdcvHQgIClGttKUV1B4Ix786AtCW7TGVGBk7bdfsOab6RQYDPYOTZIqhUxoJADOnDmDEAIfHx+8vEqfIO94XBZnErNx0Ki4s0nATYzw1uH92GN4P2ldqTp+0iQyVq0q9VghBPGT3yNr3TrQakGrxRgdTersH4l9/HFOd+zE6R49OdOrF4kff4wpMRGA/OPHibz7bpK/+x5hunbrRuGMvi49upc6G/De+L28+++7ADzW5DHuqncX7jp3Pu/5OU83fxqAz/d/zi/Hfynza+H1wP0EfT4DxcGB7PXribr/fgyn/kvECuejSZB1NNfFyc2d4a+9yx2jHkJRVERs2cAvE18i5XysvUOTpAonExoJ+K9+5mqtMwDLL7XO9GjgK4uBb4Dv+BfxGD0KhODia6+T/O23JXYnJX3xBem//QYqFUGffkL9Hf8SNP0z3AYPRhtiHV1miovDkpGBQ2gogR/8j3ob1uPSsycUFJA0fToXJ0y4aiyW/Hwylv0JgOc995R4THRmNC9uehGTxUSfkD483+p52z6VouKZFs8wtvlYAKbunsrS00vL/Fq49e1LrTk/ovbwID/iOFEj7ib5+x8QJhO+so7mhikqFe2H3cs973yAs6cXKedj+PnNF4nYutHeoUlShVLELd6pmpmZibu7OxkZGbi5udk7nCrJbDYzbdo0DAYDjz76KLVqlTwMWwjBHR9t5EJ6Hl/f14qBzeRkejdCWCxcnPCabWQRgLZWLXRhYQijEUtODnn79wMQMHkyniPvLXYNc3Y2+cePI8xmnNq2RVGrrdcWgoxlfxI3cSJYLNRZvQrdZQuKXi5t4SLiJ01CExBAvfX/2K5RKCM/g/tX3090ZjRNvJvwY78f0Wv0xZ+PEHyy9xPmR8xHQWFyp8kMCxtW5tfDlJRE3Dvvkr3R+kGrb94cMW4yqxdcwM3HkQf/16nM15JKlpOexuovPyHm6CEAmvbsS49HnkLrUPKCo5JkT+X9/JYtNBIxMTEYDAacnJyoWbNmqcftj0njQnoezg5qejW8+iKF0rUpKhU1pnxIwKRJOHfujKLVUhATQ/b69eRs3WpLZnyef67EZAZA7eKCU9u2OHfoUCQRURQFj2F34dK9OwBpl2Z6vpI5O5ukL78EwPvRR4olMwXmAl7c+CLRmdEEOgfyZa8vS0xmCu/5SptXuKf+PQgE7/z7Dp/u/RSzpWwz/Wp8fan5zdcETpmCysWFvEOHyHn1cQAykw0Yssu+dIJUMmcPT0ZMfI+Od48GReHIhrX8OvFlUi9esHdoknTDNPYOQLK/wtFNYWFhqK4yumX5QWt3052NA3DUqks9Tio7RavFc9RIPEeNxJydQ+7OHZiSU1Acdah0OrQ1a6Jv2vS6r+85ejTZGzaQsXQZfi++iMqp6Ki0lB9mYU5JwSEkBM9Ro4rsswgLb//7NnsT9uKsdearXl/ho/fhahRF4a0Ob+Gt9+bbQ98y99hcIjMimdplKi4OLteMtzARc27XlguvTiBv/370uQnkOfkTfyqJ0FayEP1GqVRqOt1zP0ENGrPqy2kkxUTx8xsv0vep5wjv1NXe4UnSdZMtNJKtfqZ+/fqlHmMyW1h1JA6AwS3kh0plULs449q7N56jRuJx11249e9/Q8kMgHPnTmhr1cKSlVWs+Ljg4kVS584FwG/CqygODrZ9Qgg+3PUhq86tQqNo+KTbJ9T3LP39cTmVomJci3FM6zoNnVrH5vObeWD1A0RmRJY5bm1QECHz5+HzzNO4ZcUAcG7eijKfL11bSLMWPPTRF9Rs2IQCQx6rPv+YbQt/sndYknTdZEJzm0tOTiY1NRWVSkXdunVZfzyBrzeeITrlvwXuzqfl8tJvh0jONuLppOWOelf/li5VHYpKZWt5SVvwa5Gi48TpMxD5+Ti1bWstIr7Mlwe+ZNHJRSgofHDHB9wRdEe5792vdj/m9puLn96PsxlnGb1qNOuj15c9do0G3+efp9bgzgDkhrQsdwzS1bl4eXPP2x/Qfpi1S3PX0kUc+HvlNc6SpKpJJjS3uYgI6wyvtWvXJl+oefrn/Uz7+yTdpm1i1Pc7eHvZUXp+utk2uunZnmFyIcpqxn3YXSg6HfnHj2M4ZC0Gzd66lcwVK0BR8Hv9NRRFsR0/79g821wzb3V4iwF1Blz3vZv4NGHR4EW09m9NTkEOL256kc/2fka+Ob/M16jZtQkAyQnlnyxQujaVWs0dox6i88gHAdg453vO7Nlp56gkqfzkJ9Nt7tixYwA0btyY9ccTMJot6LVqFAV2nkvlp53RGE0WOtbxZsWzd/DYHbXtHLFUXhpPT9wGWJOShE8+IWr0fcQ+YZ0Hx33IEPSNG9uOTcxNZPq+6QC82OpF7m1QcjFyefjoffih7w881OghAOYcm8PQZUP5J/qfMs1c6xvsiqJAToaRnPSyJ0JS+bQfdi9Ne92JEBZWfTGNuNMn7R2SJJWLTGhuY0lJSSQkJKBSqQgPD2f1kXgAnuhah22v9eSlPvUZ3LwGP45pw4In2tO0prudI5aul+d9owHI27uPvAMHULRa3IcPx3/im0WOW3ZmGWZhpqVfSx5r+liF3V+r0vJq21eZ3n06fk5+XMi+wPhN43l87ePEZl19kjetTo1noDMgF6qsTIqi0PuxZ6jdojUmYz5LP5pMWvxFe4clSWVm14RmypQptG3bFldXV/z8/LjrrrtsBaqFhBBMmjSJGjVqoNfr6d69u61VQboxha9j3bp1Mau0bDmdBMCApgEEeeh5vlcYX45uSc9w/yJdEtKNSc5L5ov9X5R5OHNF0Ddtimu/fmj8/fF55mnqbVhPjQ8/QH3Z3A4WYbGtx3RP/ZIn2LtRvUN6s+KuFTzV7Cl0ah2743dz36r72Jew76rn+YUWrrwtJ9irTCq1mkHjX8evdl3ysjJZOnUSuZnXXk1dkqoCuyY0mzdvZty4cezcuZN169ZhMpno27cvOTn/FaR+/PHHfPbZZ3z11Vfs2bOHgIAA+vTpQ1aW/MN2oy7vbtpwIhGjyUIdH2ca+LvaObJbl8li4sl1T/LDkR94b+d7WITlpt275ozphG3ehO/zz6O5YsFRgB0Xd3Ax5yKuDq70CelTaXE4aZ14tuWz/HnXnzT2bkx6fjqPr32c5WdLX4Hcr5b1PSlbaCqfg6Oe4a9Pws3Xj7S4iyyb9j4FRtnVJ1V9dk1o1qxZw5gxY2jcuDHNmzdnzpw5xMTEsG+f9duaEIIZM2YwceJEhg8fTpMmTZg3bx65ubksWLDAnqFXe4mJiSQlJaFWq2nQoAFrjlq7m/o3DZCtMZVIo9LwdPOnUSkqlpxewrQ908pUR2KymNgVt4ssY+Ul8n+csq7nNKTuEBw1jpV2n0JBLkHM6TeHPiF9MFlMTNw2kY/3fEyeKa/YsbYWmqgsuWL0TeDs4cnw1yejc3Ym7tQJVn/xCZab2KIoSdejStXQZGRYmzYLF0eMjIwkPj6evn372o7R6XR069aNf//9t8Rr5Ofnk5mZWeQhFXd5d5NQa9l40rqoYf8mcjmDytYnpA/vdXoPgJ+P/8xXB7+66vHZxmzGrR/H42sfZ9DSQfx+6vdSu6uEEGQZy/+hn5SbxKbYTQCMCBtRrnNvhF6j55Nun/BE0ycA+CniJ0YsH8HuuN1FjvMJckGlVjDkFJCVIleLvhm8awZz1ytvo9ZoOLNnB5vnz7Z3SJJ0VVUmoRFC8NJLL3HHHXfQpIl1mGZ8vLXVwN/fv8ix/v7+tn1XmjJlCu7u7rZHcHBw5QZeDQkhinQ3bTqZhKHAQrCXnsY15HpXN8PQekN5s721IPf7w9/z4sYXWXluJRn5ResV4nPieWjNQ/x70ZrApxpSeW/He4xcOZJ/ov8htyAXsP5Od8btZMyaMXT6tRODlw1m5qGZ1yy4LfTn2T8xCRMtfFsQ5hlWgc/02lSKiudbPc9XPb/Cz8mP2KxYHlv7GJP+nUROgbX7Wa1V4R1knWlY1tHcPDUbNaHfuJcA2P/XcvatWmbfgCTpKqrM0gfPPvsshw8fZtu2bcX2XdkFIoQotVvkjTfe4KWXXrL9nJmZKZOaKyQkJJCcnGzrbvphiXUumgFNAmV30000Onw0uQW5zNg/g/Ux61kfsx61oibMM4wA5wD8nfzZELOBpLwkfPQ+zOgxgyNJR/jm0DecTDvJ+E3j0aq0tPJvhdFs5EDiAdu1ozOj+ebgN3xz8BseavQQr7Z9tdQ4LMJi6266u/7dlf68S9MtuBt/+v/JjP0zWHRyEYtPL2Z3/G6mdplKM99m+IW6kRSTRWJUJvVay7XEbpbwTl3JSk5iyy9z2PTTbFy9fajfofwTLUpSZasSCc1zzz3H8uXL2bJlS5HFEQMCAgBrS01g4H9dIYmJicVabQrpdDp0Orly7NUUTqYXFhYGai0bT1zqbmoqu5tutseaPkaHGh1YH72ejbEbOZN+hhOpJziResJ2TD2PenzT6xsCXQJp7tucgXUGMufoHNZFr+N89nl2xe0CwEHlwD0N7mFUg1EcST7CirMr2BG3g/kR8xlab2ipSxesjlzNhewLuGpd6Rvat8RjbhYXBxfe6vAWd4beycRtE4nNiuWhvx7i6eZP0zl4IACJMbIb+WZrM3g4mcmJHPx7Fau/+hQnD09qhje+9omSdBMpwo4VdkIInnvuOZYuXcqmTZusH7BX7K9Rowbjx49nwoQJABiNRvz8/Pjoo4946qmnrnmP8i4/fjuYPXs2sbGxDBkyhHhtIM/8sp8a7o5sf72nbKGxs9isWM6lnyMhN4H4nHgcNY6MDh+Nq0PxkWdCCKIzo9l2YRt5pjyG1huKn1PRlouXN73M2ui19A/tz8fdPi5+v8xY7ll5DzkFOTzT/BmebvF0pT238so0ZvL+jvdZE7UGgHt9HsJrRWscHNU8/llXFJV8r95MFouZ5Z9O4ezenTi6uDL6/Wl41ah57RMl6TqV9/Pbri0048aNY8GCBfz555+4urra6mLc3d3R6/UoisKLL77Ihx9+SFhYGGFhYXz44Yc4OTlx33332TP0astoNHLhwgUAQkND+fLPMwAMbRkkk5kqINg1mGDXsnWRKopCqHsooe6hpR7zZLMnWRu9lr+j/+aZjGeKHFtgLuDVLa+SU5BDK79WPNHsiRuMvmK5ObjxcdeP6VqzK9P2TOPudoPZsiYeo8FMemIungHO9g7xtqJSqRn4/Cv89t6bxJ85xZIp7zL6/U9w9vC0d2iSBNi5KHjmzJlkZGTQvXt3AgMDbY9FixbZjpkwYQIvvvgizzzzDG3atOHChQusXbsWV1c5V8r1OH/+PBaLBVdXV4xqPZtPWSfTu6e1/KZ1K2rg1YBuNbthERZmHy06SmXG/hkcSzmGu86dj7p+hEZVJXqgi1AUhcF1B/P33X/T0Dccn+DC+WhkYbA9aHWODJvwDu7+AWQkJrD0o/coMMhRZ1LVYNeERghR4mPMmDG2YxRFYdKkScTFxWEwGNi8ebNtFJRUftHR0QCEhISw9MBFLALahHhSx9fFzpFJlaWw5WXl2ZVcyL5AvjmfecfmMT9iPgDvd3qfAOcAe4Z4TXqNHgC/kEsJTZSso7EXJ3cPRrwxGUdXNxLOnWbl5x9hMcs5aiT7qzLDtqWb4/KE5vd91iG997SRrTO3sua+zekQ2AGTMPHm1jcZsGQAn+z9BID7G95Pj1o97Bxh2f23BIJMaOzJMzCIYRPeRqN14Nz+PWyY862c8FCyu+tqY96zZw+///47MTExGI3GIvuWLFlSIYFJFc9kMnH+/HkAchy8OJeUiF6rZmCzGnaOTKpsTzZ7kp1xO9mfuB8APyc/Hm/6OPfWv/HVtG+mwhaapNhsLGYLKrX8TmYvNeo3ZMBzr7B8+hQOrfsLVx8/2t9VOWuASVJZlPuvwcKFC+ncuTMREREsXbqUgoICIiIi2LBhA+7ucjXmquzChQuYTCacnZ35+0w2YF3qwEVX9WonpIrVxr8NQ+oOoY57Hd5q/xZ/Df+L0eGjUavU9g6tXDz8nHBwVGMusJAal3PtE6RKFda+Ez0eehyAbb/O4/i2TfYNSLqtlfuT7MMPP2T69OmMGzcOV1dXPv/8c2rXrs1TTz1VZK4Yqeop7G6qGVyLeYetI8rubSMnHbwdKIrCB3d8YO8wbpiiUvANceXCyXQSo7PwqSkHB9hbqwFDyUxOZN+qP1nzzQxcPL0IbtzM3mFJt6Fyt9CcPXuWgQOtE1zpdDpycnJQFIXx48fz/fffV3iAUsUpTGiyNB5k55uo5eVE+9pedo5KksrHr1bhQpWyjqaq6PbAY9Rv3xmL2cSfn3xAcmy0vUOSbkPlTmi8vLzIyrIOmQwKCuLo0aMApKenk5ubW7HRSRXGbDYTExMDwPoL1uK9e1rXlHPPSNXOf4XBcuh2VaGoVPR/9mVqNGhEfm4OS6ZMIjs1xd5hSbeZcic0Xbp0Yd26dQDce++9vPDCCzzxxBOMHj2aXr16VXiAUsWIi4ujoKAArYOOXXEmHDQqRrevZe+wJKncCguDUy5kYy6w2DkaqZDGwYG7Xn0Lz8AgslKSWPLRZIx58kuudPOUO6H56quvGDVqFGBdCPKVV14hISGB4cOHM3u2XF6+qirsbsrWegAKw1oE4eMi17ySqh9Xb0ccnbVYzILkC9n2Dke6jN7VjeFvTMbJ3YOkqHOsmD4Vs8lk77Ck20SZE5q1a9dSUFCAl5cXNWpYh/mqVComTJjA8uXL+eyzz/D0lFNgV1VRUVEAHM5wAODRO2rbMRpJun6KouAXKifYq6o8/AMYNuEdNDodUYf288+sr+UcNdJNUeaEZuzYsfj6+jJy5EgWLFhAenp6JYYlVSSLxWKrn4k3u9IlzIcGAXJ0iFR9+YXICfaqsoB69Rn0wmsoioqjG9exc/FCe4ck3QbKnNCcO3eOLVu20LRpU2bMmEFAQAC9evXiiy++sH37l6omIQSDhg7juAgiVTjxmGydkao52xIIsjC4yqrbuh29HhsLwL+//8LRTf/YOSLpVleuGppmzZrx1ltvsXv3bs6dO8c999zDmjVraNiwIc2bN+edd95h7969lRWrdJ3UajW7UhzYlV+Den6udKvva++QJOmGFLbQpMXlUJAv1xGqqpr3GUC7oXcDsO77L4k6tN/OEUm3suueN7xGjRqMHTuW1atXk5yczDvvvENUVBT9+vXjww8/rMgYpRtUYLYwZ3sUYK2dkUO1perO2UOHs7sDQkBSrGylqcruGPUQ4Z27YTGbWTF9ColR5+wdknSLqpCFUJydnRkxYgTz588nMTGRJ554oiIuK1WQlYcvciE9Dx8XB4a1DLJ3OJJUIWzz0cjC4CpNUam48+kXCW7UFGNeHkunTiIzOcneYUm3oHIvfRAVFcXWrVuJiooiNzcXX19fWrZsSceOHXF0dESlUuHrK7s0qgqLRTBz01kAHulcG0dt9Vq7R5JK4xfiRuShZFlHUw1otFqGvDKRhe9MIOV8DEunTmLk5I9wdHaxd2jSLaTMLTQLFiygQ4cO1KlTh1dffZVly5axdetWZs2aRb9+/fD39+eZZ56xzXciVQ0bTyZyKiEbF52GBzqE2DscSaow/xUGyxaa6sDR2YXhb0zC2dOL5Nholn/6IWZTgb3Dkm4hZUpoWrVqxWeffcYDDzxAVFQU8fHx7Nu3j23bthEREUFmZiZ//vknFouFNm3a8Pvvv1d23FIZFbbO3N+hFu56rZ2jkaSKU1gYnJGYR36u/GCsDtx8/Bj++iS0jnpijx3m72+/kHPUSBWmTAnN+++/z969e3n22WepVav4dPk6nY7u3bvz7bffcvz4cUJDQys6Tuk67I5MZW90Gg5qFY91lkO1pVuLo4sWNx9HABJjZLdTdeEXWoch419HUak4vnUj2xf9ZO+QpFtEmRKawtW1y8LHx4e2bdted0BSxZm56QwAI1rXxM/N0c7RSFLFs02wJwuDq5XQFq3p++RzAOxa+huH1v1l54ikW0GFjHKSqp4zidlsPJmESoGnutaxdziSVCkKE5okWRhc7TTp0YeOd48GYP3smZzbv8fOEUnVXZkTGpVKhVqtvupDoyn3oCmpkvx58AIA3Rv4EerjbOdoJKlyFBYGJ8jC4Gqp49330bh7b4SwsGLGVOLPnrZ3SFI1VuYMZOnSpaXu+/fff/nyyy9lcVcVIYTgz4MXARjaooado5GkyuNbyxUUyE7NJzfTiJObg71DkspBURT6PPEs2akpRB8+wNKPJnPf/z7B3S/A3qFJ1VCZW2iGDh1a7NGgQQPmzp3Lp59+yj333MPJkycrM1apjA7GphOTmoteq6ZPI397hyNJlcZBr8HT3wmQw7erK7VGw+Dxb+AbUpvcjHSWfvQeRkOevcOSqqHrqqG5ePEiTzzxBM2aNcNkMnHw4EHmzZtX4ggo6eYrbJ3p29gfJwfZDSjd2v5beVvW0VRXOicnhr3+Ls6eXqScj2GtHM4tXYdyJTQZGRm89tpr1KtXj2PHjrF+/XpWrFhBkyZNKis+qZxMZgsrD8cBcFcLucyBdOvzvVRHkyRbaKo1Vy8fBr/4Oiq1mpM7trJ/9Z/2DkmqZsqc0Hz88cfUqVOHlStX8uuvv/Lvv//SpUuXyoxNug47zqWQnJ2Pp5OWO8J87B2OJFU6/0trOiVEZ8lv9dVcUHgjuj34OACbf/6R2Igjdo5Iqk7K3B/x+uuvo9frqVevHvPmzWPevHklHrdkyZIKC04qv8LupoHNAtGq5ah86dbnXdMFRaWQl2kkOy0fVy8551J11rLfIOLPnOT4tk2snPERD0ydgauX/HImXVuZE5qHHnoIRVEqMxbpBhkKzKw5Gg/AUNndJN0mtA5qvGo4k3I+m6ToLJnQVHOKotDnyWdJjokiKSaKFZ9NYeSkqag1cukW6erKnNDMnTu3EsOQKsLGE4lk55sI8tDTupanvcORpJvGP8SVlPPZJERnUqelr73DkW6QVufIkJcn8vObLxJ3+iQb582i92NP2zssqYqTfRK3kPUnEgEY0DQAlUq2pkm3D1/bjMGyMPhW4REQyIBnXwHg0NpVHNu83s4RSVVdmVpoxo4dy8SJEwkODr7msYsWLcJkMnH//fffcHA3ixACk8mE2Wy2dyjXTQjB2bg0glzVdK3jgcFgsHdI0iWFs2jLLtvKU1gYnHipMFi+1reGOq3a0vHu0ez441f++eFrfGqF4l+7rr3DkqqoMiU0vr6+NGnShE6dOjFkyBDatGlDjRo1cHR0JC0tjYiICLZt28bChQsJCgri+++/r+y4K4zRaCQuLo7c3Fx7h3JDTGYLz7RxQ1Hc8BbpREZm2Dsk6TJOTk4EBgbi4CBnsq0MXjWcUWkU8nNNZCTl4eHnZO+QpArSccRo4s+eJvLAXlZ89iH3T5mB3sXV3mFJVZAiyjjOMTExkdmzZ7Nw4UKOHj1aZJ+rqyu9e/fmySefpG/fvpUS6PXKzMzE3d2djIwM3NzciuyzWCycPn0atVqNr68vDg4O1fabXVqOkcQsA3oHNbW85NpNVYUQAqPRSFJSEmazmbCwMFQq2dNbGX6fupfEqEz6PNaI+m3l1Pm3EkN2Nj+/+SIZCfGEtmjN8NfeRZH/jm55V/v8LkmZE5rLpaenEx0dTV5eHj4+PtStW7fKJgJXe0EMBgORkZGEhITg5FS9v9FFp+SQkVeAv5sj/m5ylEdVk5ubS3R0NLVr18bRUf5+KsPmX09ydPMFmvcO5o67w+wdjlTBEqPO8evbr2Iy5tNhxGg631t9yhqk61PehOa6UlwPDw+aN29Ohw4dqFevXpVNZsqqun9jFkKQk2+t/3HRyaUOqqLq/h6rDvxshcFyCYRbkV9oHfo8+SwAOxf/ytl9u+0ckVTVlPvT7/DhwyVuVxQFR0dHatWqhU6nu+HApLIzFFgwWSyoFAW9g9re4UiSXfiFWusqEmOysFiEHOl3C2rUpQdxp09y8O+V/PXVp9w/ZTqeATXsHZZURZQ7oWnRosVVW2S0Wi0jR47ku+++k03rN0l2vgkAZ50GVTVvLZOk6+UZ4IxGp8aUbyYtPgfvGi72DkmqBN0feozEyLNcPHWc5Z9+yH3vf4JWftZIXEeX09KlSwkLC+P777/n4MGDHDhwgO+//54GDRqwYMECZs+ezYYNG3jrrbcqI16pBIUJjexukm5nKpWCb7A1iZHdTrcutUbL4PGv4+TuQXJMFGu//1Ku4SUB15HQfPDBB3z++ec89thjNG3alGbNmvHYY48xffp0Pv30U+6//36+/PJLli5dWhnxSpfEx8fz3HPPUadOHRoEedG3XWMeHjWC9ev/m3wqNDQURVGKPaZOnQpAVFRUke2urq40btyYcePGcfr06SL3M5vNTJkyhfDwcPR6PV5eXnTo0IE5c+aUGuPcuXPx8PColOdvD2PGjOGuu+6ydxjSVRTW0SRGyQn2bmUuXt4MfvF1FJWKE9s3c2DNCnuHJFUB5f5Kf+TIEUJCQoptDwkJ4cgR68qoLVq0IC4u7sajk0oUFRVF586d8fDw4L0PpuAWVBfMJk7v3864ceM4ceKE7dj33nuPJ554osj5rq5F53D4559/aNy4Mbm5uRw5coTPP/+c5s2bs2LFCnr16gXApEmT+P777/nqq69o06YNmZmZ7N27l7S0tBt+PkajsUrPz2I2m6t94fvt4vI6GunWVrNRE7o98Bib5v/A5p9m41e7LjXDG9s7LMmeRDm1aNFCPPzwwyI/P9+2zWg0iocffli0aNFCCCHEtm3bRGho6DWvtXnzZjFo0CARGBgoALF06dIi+x9++GEBFHm0b9++XPFmZGQIQGRkZBTbl5eXJyIiIkReXp5tm8ViETn5BTf9YbFYyvyc+vfvL4KCgkR2draIz8gTh2LTRFRythBCiLS0NNtxISEhYvr06aVeJzIyUgDiwIEDRbabzWbRvXt3ERISIkwmkxBCiObNm4tJkyaVOcaNGzcW+929++67trjef/998fDDDws3Nzfx0EMPCSGEmDBhgggLCxN6vV7Url1bvPXWW8JoNNqu+e6774rmzZuL+fPni5CQEOHm5iZGjhwpMjMzbcd069ZNjBs3TowbN064u7sLLy8vMXHixCKvb2pqqnjwwQeFh4eH0Ov1ol+/fuLUqVO2/XPmzBHu7u5ixYoVomHDhkKtVouHHnqo2PPZuHFjmV+Pkt5rUsVLS8gRXz21Xswct1GYCsz2DkeqZBaLRayY8ZH45N6BYuaTD4is1BR7hyRVoKt9fpek3C00X3/9NUOGDKFmzZo0a9YMRVE4fPgwZrOZlStXAnDu3DmeeeaZa14rJyeH5s2b88gjjzBixIgSj+nXr1+Rbo3K/iafV2Cm0Tt/V+o9ShLx3p04OVz715GamsqaNWv44IMPcHJyIi4pG/ivfqYiunhUKhUvvPACw4YNY9++fbRr146AgAA2bNjAM888g6/vtRf/69SpEzNmzOCdd97h5MmT1hhd/ivSnDZtGm+//XaRWitXV1fmzp1LjRo1OHLkCE888QSurq5MmDDBdszZs2dZtmwZK1euJC0tjXvvvZepU6fywQcf2I6ZN28ejz32GLt27WLv3r08+eSThISE2FqqxowZw+nTp1m+fDlubm689tprDBgwgIiICLRa64q+ubm5TJkyhVmzZuHt7U1AQAAGg4HMzEzb+9HLy+sGXmWpMrj76tE5acjPNZF6MQffWnJG2VuZoijc+dTzpMRGkxwbzcoZU7nn7Q9Ra2Q94e2o3L/1Tp06ERUVxc8//8ypU6cQQnD33Xdz33332boyHnzwwTJdq3///vTv3/+qx+h0OgICyj7rZ35+Pvn5+bafMzNvrb70M2fOIIQgPDycLIOJXKMZlaLgpteWePxrr71WrEB75cqVdO/e/ar3CQ8PB6zdW+3ateOzzz7j7rvvJiAggMaNG9OpUyeGDh1a6u/PwcEBd3d3FEUp8ffXs2dPXnnllSLbLo8zNDSUl19+mUWLFhVJaCwWC3Pnzi3yXlu/fn2RhCY4OJjp06ejKAoNGjTgyJEjTJ8+nSeeeMKWyGzfvp1OnToB8MsvvxAcHMyyZcu45557ACgoKOCbb76hefPmtuvq9Xry8/PL9X6Ubi5FUfCt5cr5E2kkRmfKhOY2oHV0ZMjLb/LzG+O5cCKCzT/PpueYp+wdlmQHZU5oHn30UT7//HNcXV1xcXFh7NixlRmXzaZNm/Dz88PDw4Nu3brxwQcf4OfnV+rxU6ZMYfLkydd9P71WTcR7d173+Tdy37IQl1Xzx2daF6D0dnFAqy65vvvVV19lzJgxRbYFBQWV+T6FtSONGjXi6NGj7Nu3j23btrFlyxYGDx7MmDFjmDVrVpliv1ybNm2Kbfvjjz+YMWMGZ86cITs7G5PJVGx2yNDQ0CI1QIGBgSQmJhY5pkOHDkVqXjp27Minn36K2Wzm+PHjaDQa2rdvb9vv7e1NgwYNOH78uG2bg4MDzZo1K/fzkuzPL9TtUkKTReMu9o5Guhk8A4MY8NzLLPv4fQ78tYLAuvVp2KWHvcOSbrIyj3KaN28eeXl5lRlLMf379+eXX35hw4YNfPrpp+zZs4eePXsWaYG50htvvEFGRobtERsbW657KoqCk4Pmpj/KWnQaFhaGoigcOHwMQ4EZtaLg61L6RIY+Pj7Uq1evyEOv11/zPoUf7rVr17ZtU6lUtG3blvHjx7N06VLmzp3L7NmziYyMLFPsl3N2Lrre1M6dOxk1ahT9+/dn5cqVHDhwgIkTJ2I0GoscV9glVEhRFCwWS5nvK0oZ3imuWKFZr9fLQuBqyi/kUmFw9K3VOitdXd3W7ekwfCQAa7//iqTo8v9dkqq3Mic0pX0QVKaRI0cycOBAmjRpwuDBg/nrr784deoUq1atKvUcnU6Hm5tbkcetxMvLi7533sn3380kNzcHH1cdmstaZ9LT02/4HhaLhS+++ILatWvTsmXLUo9r1KgRYK2FKomDgwNms7lM99y+fTshISFMnDiRNm3aEBYWRnR0dPmDx5ocXflzWFgYarWaRo0aYTKZ2LVrl21/SkoKp06domHDhle9bnmej2Q/hUO3Uy7kYDLK39ftpOM99xHavBUmYz7LP/0QQ062vUOSbqJyzUNj72+sgYGBhISEFJsj5Xbz4bTpmM1mHhjcmy1/r+T06dMcP36cL774go4dOxY5Nisri/j4+CKPK+uKUlJSiI+P59y5cyxfvpzevXuze/duZs+ejVpt7Qq7++67mT59Ort27SI6OppNmzYxbtw46tevb6u3uVJoaCjZ2dmsX7+e5ORkcnNzS31O9erVIyYmhoULF3L27Fm++OKL657LKDY2lpdeeomTJ0/y66+/8uWXX/LCCy8A1hauoUOH8sQTT7Bt2zYOHTrEAw88QFBQEEOHDr3qdUNDQzl8+DAnT54kOTmZgoKC64pPqlwunjr0rlqERZB8Xn6g3U5UKjUDnnsFN19/0hPi+OurTxHlaMGVqrdyJTT169fHy8vrqo/KlJKSQmxsLIGBgZV6n6rMYhHovWuwcPUmunXvzquvvkKTJk3o06cP69evZ+bMmUWOf+eddwgMDCzyuLzIFqB3794EBgbStGlTXn/9dRo2bMjhw4fp0eO/Pug777yTFStWMHjwYOrXr8/DDz9MeHg4a9euRVPKiIJOnToxduxYRo4cia+vLx9//HGpz2vo0KGMHz+eZ599lhYtWvDvv//y9ttvX9dr9NBDD5GXl0e7du0YN24czz33HE8++aRt/5w5c2jdujWDBg2iY8eOCCFYvXp1se6sKz3xxBM0aNCANm3a4Ovry/bt268rPqlyKYqCX+ilCfZkt9NtR+/qxpCX3kCjdeDc/j3sXLLI3iFJN4kiytiXpFKpmDFjBu7u7lc97uGHHy7zzbOzszlz5gwALVu25LPPPqNHjx625GjSpEmMGDGCwMBAoqKiePPNN4mJieH48ePFJocrzdWWHzcYDERGRlK7du1qs+5Uao6R82m5aNUqGgS4yrWbrtC9e3datGjBjBkz7B1KEdXxvVad7V4ZyZ6VkTRoH0DvRxrZOxzJDo5u+oe/Z84ARWH4a+9Su2XxgQhS1Xa1z++SlGvY9qhRo646wqi89u7dW6QV4KWXXgKsSdHMmTM5cuQI8+fPJz09ncDAQHr06MGiRYvKnMzcilJzrAXR3s4OMpmRpFLIwmCpSffexJ85yaF1f7Hqy2k8MOVzPPzllAu3sjInNJVRP9O9e/erFhv//ffNn+CuKss1WuedURQFT+equ1SAJNlbYWFwWkIuRoMJB0c50drtqPvDT5IYeY64MydZ/tmHjH7vY7Q62UJ6q6rSo5ykolKyrUOY3fXaUuedud1t2rSpynU3STefk5sDLp46EJAk13W6bWm0Wga/9AZO7h4kRZ3jn1nfyM+yW1iZPxUtFkuFdjdJ5WMyW0jPs46q8ZatM5J0TbbC4CiZ0NzOXL19GPTCBBSViogtGzi0drW9Q5IqifyaX02k5hoRQqDXqnFyKNuswpJ0O7PV0cTIOprbXXDjZnS9bwwAG+f9wMVTx69+glQtyYSmGhBCkHqpu8nbxcHu8wFJUnVQWEeTGCUTGglaDxpG/Q53YDGbWPHZFHLS0+wdklTBZEJTDWQaTBjNFtQqBQ+97G6SpLIoXJgyM9mAIVtOgni7UxSFO8c+j1dQMNlpqayc8RFmk8neYUkVSCY0VZwQgoQM6yKUXs4OqFSydUaSysLRWYu7r3XdMtntJAE46J0Y8vKbOOj1nD9+lK0L5tg7JKkCyYSmikvNNWIwmVGrrr4IpSRJxcnCYOlK3kHB9HtmPAD7Vv3Jie2b7RyRVFFkQlOFmS2ChAzrRHp+ro5FFqG8lX3//fcEBwfbZqcubVtVEhoaWiXjut3JCfakkoS160S7oXcD8Pd3X5AcE2XfgKQKcXt8QlZTydn5mCwWHDQqvF2K1s7Ex8fz3HPPUadOHXQ6HcHBwQwePJj169cXu86HH36IWq1m6tSpxfbNnTsXRVFKXGn6t99+Q1EUQkNDbdvMZjNTpkwhPDwcvV6Pl5cXHTp0YM6cqzfdms1mpk+fTrNmzXB0dMTDw4P+/fsXWw8pMzOTZ599ltdee40LFy7w5JNPlritJIqi2B4uLi40b96cuXPnXjUu6dZmKwyOli00UlGdRz1IraYtMOXns/yzD8nPzbF3SNINkglNFVVgtpCUZW2dCXRzLLLMQVRUFK1bt2bDhg18/PHHHDlyhDVr1tCjRw/GjRtX7Fpz5sxhwoQJ/PjjjyXey9nZmcTERHbs2FFk+48//kitWrWKbJs0aRIzZszg/fffJyIigo0bN/LEE0+Qllb6iAEhBKNGjeK9997j+eef5/jx42zevJng4GC6d+/OsmXLbMfGxMRQUFDAwIEDCQwMxMnJqcRtpZkzZw5xcXEcOnSIkSNH8sgjj8gZp29jPsEuKArkpOeTc6m1U5LAujL3wOdfxdXHl7S4i/z19XS5Mnd1J25xGRkZAhAZGRnF9uXl5YmIiAiRl5f330aLRYj87Jv/sFiKxBabmiMOxaaJ0wlZwnLFvv79+4ugoCCRnZ1d7DmlpaUV+XnTpk0iKChIGI1GUaNGDbF58+Yi++fMmSPc3d3Fs88+Kx5//PH/7h8bK3Q6nXj99ddFSEiIbXvz5s3FpEmTrvWyF7Fw4UIBiOXLlxfbN3z4cOHt7S2ys7PFnDlzBFDkUdK2yMjIEu8DiKVLlxbZ5uXlJV566SXbz9HR0WLIkCHC2dlZuLq6invuuUfEx8fb9p85c0YMGTJE+Pn5CWdnZ9GmTRuxbt26ItdMSEgQgwYNEo6OjiI0NFT8/PPPIiQkREyfPr3U16DE95p0UyyYvFN89dR6ce5Qkr1DkaqguDOnxPT77xKf3DtQ7FyyyN7hSJe52ud3SeQCJ1cqyIUPa9z8+755ERycrSGYLaTlWoeZBro7Fpl3JjU1lTVr1vDBBx/g7Oxc7DIeHh5Ffp49ezajR49Gq9UyevRoZs+eTdeuXYud99hjj9G1a1c+//xznJycmDt3Lv369cPf37/IcQEBAWzYsIFnnnkGX1/fMj21BQsWUL9+fQYPHlxs38svv8ySJUtYt24dI0eOJDg4mN69e7N7926Cg4NxdXUttq0s9zWbzSxevJjU1FS0Wi1gbSm66667cHZ2ZvPmzZhMJp555hlGjhzJpk2bAOsK8AMGDOB///sfjo6OzJs3j8GDB3Py5Elba9WYMWOIjY1lw4YNODg48Pzzz5OYmFim10K6+fxquZJ6MYfEqExqN/OxdzhSFRNQN4xejz7N2u++YNuin/CvU4/Q5q3sHZZ0HWSXUxWUnJ2PEAJnBw3OuqI555kzZxBCEB4efs3rZGZmsnjxYh544AEAHnjgAf744w8yM4sXSLZo0YK6devyxx9/IIRg7ty5PProo8WO++yzz0hKSiIgIIBmzZoxduxY/vrrr6vGcerUqRJrdADb9lOnTqHX6/H29gbA19eXgIAAnJ2di21Tq0ufKXn06NG4uLig0+kYOXIkXl5ePP744wD8888/HD58mAULFtC6dWvat2/PTz/9xObNm9mzZw8AzZs356mnnqJp06aEhYXxv//9jzp16rB8+XJbnH/99RezZs2iY8eOtG7dmtmzZ5OXl3fV10CyH9tIJ1kYLJWiac++NO11JwjBqi+mkZGYYO+QpOsgW2iupHWytpbY476AyWKxzQrs61p8mLa4tLBaWWYLXrBgAXXq1KF58+aANWmpU6cOCxcuLLGw9tFHH2XOnDnUqlXL1lLx1VdfFTmmUaNGHD16lH379rFt2za2bNnC4MGDGTNmDLNmzSrfc75MRc1+PH36dHr37k1sbCwvvfQS48ePp169egAcP36c4OBggoODbcc3atQIDw8Pjh8/Ttu2bcnJyWHy5MmsXLmSixcvYjKZyMvLIyYmxnYNjUZDmzZtbNcIDw8v1jImVR3/zRichRBCzrQtlajnmKdIjDxHwrnT/Pz6CzTo1JXG3XsRULe+fM9UE7KF5kqKYu36udmPS/9gUrONmIXAUavG1bF4vhkWFoaiKBw/fu21SH788UeOHTuGRqOxPY4dO8bs2bNLPP7+++9n586dTJo0iYceegiNpuR8V6VS0bZtW8aPH8/SpUuZO3cus2fPJjIyssTj69evT0RERIn7Cp9HWFjYNZ9PWQQEBFCvXj169OjB77//zrhx42z3Lu3D7PLtr776KosXL+aDDz5g69atHDx4kKZNm2I0Gm3HQsUlYFLl867pjEqtYMgpICvFYO9wpCpK4+DAkJffwDOwBoacbA6tW82CiS8z96Wn2bX0N7JSku0donQNMqGpQiwWQXJh64yLrsQPTS8vL+68806+/vprcnKKDzNMT08H4MiRI+zdu5dNmzZx8OBB22PLli3s2bOHo0ePlnjtIUOGsHnz5hK7m0rTqFEjgBLjARg1ahSnT59mxYoVxfZ9+umneHt706dPnzLfr6zq1avHiBEjeOONN2xxxsTEEBsbazsmIiKCjIwMW9fX1q1bGTNmDMOGDaNp06YEBAQQFRVlO75hw4aYTCb27t1r23by5Enb6y5VPRqtGu8gF0AO35auzs3HjzGfzWTExPdpeEd3NA46Ui+eZ9vC+Xw/7hF+/99bHN+6kf+3d+dxUZX7A8c/Z2Zg2PdNExRNVERccxf3PUrDbi6RXpdMvZbLLdMWrW5pWmr+zLJc8F4r00rTMs0NzLVUyA13wA1EVED2Zc7vj9EpBBQVGZbv+/U6L+WcZ57zncfjzJfnPOd5crMlMS6P5JZTOXIjI8c474xWg6ONRbHlFi1aRNu2bWnZsiXvvvsugYGB5OXlsWXLFj777DOio6NZunQpLVu2LHIAcJs2bVi6dCnz5s0rdCwsLIxFixaZxq3cacCAAbRr1462bdvi5eVFTEwMU6dOxc/Pr9hxPQMHDmTNmjUMHTqUOXPm0LVrV1JTU/n0009Zv349a9asKXKAc2mYPHkyjRs35sCBA3Tr1o3AwECGDBnC/PnzTYOCO3bsaLqF9Pjjj/PDDz8QHByMoii89dZbGP72KGe9evXo1asXo0aN4osvvkCn0zFhwgSsra0fSfyidLjXtOfq+ZskxqXyeHMPc4cjyjGNRkutwKbUCmxKdkYGp/bv4njEdi5GH+X8kSjOH4nC0toav9btaRjUlccaNJQe23JCemjKCVVVuZpmnCfDzV5fYN6ZO/n6+nLo0CE6d+7M5MmTCQgIoHv37mzbto3PPvuMnJwcVq5cSUhISJGvDwkJYeXKlabbKH/394G5RenZsycbNmwgODgYPz8/hg4dSv369fn111+LvUWlKAqrV6/mjTfeYN68edSvX58OHToQFxfHjh076Nev311a5uE0atSIbt268fbbb6MoCuvWrcPZ2ZmgoCC6detG7dq1+fbbb03l582bh7OzM23btiU4OJiePXvSrFnBJx6WL1+Ot7c3HTt25JlnnuHFF1/Ew0O+JMszT5lgTzwAvY0NjTr34LkZsxixYAltBgzG0cOTnMxMju7YwrfvvM7SV0axZ83XpCQmmDvcKk9Rbw8KqKRSU1NxdHQkJSUFBweHAseysrKIiYnB19cXKysrM0VolJyRw/nrGeg0CvW8HNDKIpSVSnm61qqipIs3+fY/f2BppWXk3CAU+f8lHpBqMHDpxHGO7dzGqX27yPnbE441GgTg37EL9Vq3x9K6+AlARcnc7fu7KHLLqRxQVdU0K7CrnV6SGSFKmXM1W7QWGnKy8klOzMDZ69Hc4hSVn6LRUMM/gBr+AXT552jO/L6XYzu3E3ckiovRR7kYfZTtyxZTt2Ub/Dt2xScgEI2m+KkmROmRhKYcSMvOIzM3H42i4Gpree8XCCHui1arwd3bjoRzqSTG3ZSERpQKC70VDTp0pkGHzty8lsTx33ZwPGIb1y9fJHpXONG7wrFzdcO/Q2caduyKS/Ua5g65UpOEphy43TvjYmtZZVbUFqKsudd0uJXQpFKvlZe5wxGVjL2rG636PUvLpweQcOYUxyK2cWJPBGnXkvh93Rp+X7eGao/Xw79jV+q3DcLKzs7cIVc6ktCYWUZ2HmnZeSgouNkVnkhPCFE6PGvacwS4KgODxSOkKArV6tajWt16dHphJGcP/s7xnduIiTpI/JmTxJ85SfiKL6jTvBX+Hbvi26Q5mrvMfi5KThIaM7v9ZJOTjQWWOumdEeJRub0EwtXzNzHkG9BIb6h4xHSWltRr0556bdqTnnyDE7sjOBa+lavnYzm1fzen9u/GxtGJBu074h/UFY9atc0dcoUmCY0ZZeXmk5JpXISyqGUOhBClx8nDBgsrLblZ+dxIyDBNtidEWbB1cqZ5334079uPxNhzHIvYRvSucDJSkjn4848c/PlH3Gv60rBjNxq074iNo5O5Q65wJKExo8RbY2ccrCywspAuRyEeJUWj4OFjz6VTyVyJTZWERpiNR63aeNSqTdCQfxL750GORWzj3MHfuRoXQ/h/v2TnV8uo07wVLYL7U92v6IV9RWGS0JhJVm4+yRnGie08HaR3Roiy4FHTgUunko3jaNqZOxpR1Wl1Ouo0b0Wd5q3ITLvJyd07ORaxlYSzpzn9+x5O/76H6vX8aRHcn8ebt0LRyG3Su5GExkwSU//qnbG2lH8GIcqCe017ABLjUs0ciRAFWdvZ06RnX5r07MvV87Ec/Hkd0b+Fc/nkcdafPI5zteo079sf/45dsLCUX4KLIumeGWTl5pOcKb0zZSE2NhZFUYiKijJ3KKIc8Lw1MDjpYhr5uYZ7lBbCPNx9atFrzARGLVxKy6cHoLe15Ub8ZbYu+ZQl/xrB3u+/ISM1xdxhljuS0JhBafTOJCQkMH78eGrXro1er8fb25vg4GC2bdtWqOwHH3yAVqtl1qxZhY6FhYWhKIpptem/W716NYqiUKtWLdO+/Px8Zs6cSf369bG2tsbFxYXWrVuzfPnyYmMNDw9HURTT5urqSpcuXdi9e/cDvXchHpS9qxVWthYY8lWSLqWZOxwh7srOxZUOg4fx4qfL6Tx0FA7uHmSkJLNn9Vd8OW4425Z9RnJCvLnDLDckoSljpdE7ExsbS/Pmzdm+fTuzZ8/myJEjbNq0ic6dOzNu3LhC5ZcvX85rr73GsmXLiqzP1taWxMRE9u7dW2D/smXL8PHxKbBvxowZzJ8/n/fee4/jx4+zY8cORo0axY0bN+4Z98mTJ4mPjyc8PBx3d3f69u1LYmLifbxzIR6Ooih43LrtdFVuO4kKwtLahmZ9nmbEJ1/S9+VX8fCtQ15ONlGbf2bphBdZP/cD4k+fNHeYZicJzR1UVSUjN+ORbOk56ZxLuk5WfiZ6izxUJcd07H7WCB07diyKovD7778zYMAA/Pz8aNiwIZMmTWLfvn0FykZERJCZmcm7775Leno6O3fuLFSfTqdj8ODBBRKeixcvEh4ezuDBgwuU3bBhA2PHjuXZZ5/F19eXxo0bM2LECCZNmnTPuD08PPDy8qJRo0a8+eabpKSksH///gKxtmzZEr1eT7Vq1Xj99dfJy8szHd+0aRPt27fHyckJV1dXnnzySc6ePVvgHL///jtNmzbFysqKFi1aEBkZec+4RNVyez4aWXlbVDQarZb67Try/Mz5PPvWB/g2aQ6qyun9e/j6zcmsmj6FMwf2oxqq5u1UGY16h8y8TFp93arMz7t/8H5sLO69Ouv169fZtGkT77//Pra2hdejcXJyKvDz0qVLGTRoEBYWFgwaNIilS5cSFBRU6HUjRowgKCiITz75BBsbG8LCwujVqxeenp4Fynl5ebF9+3bGjh2Lu7v7/b3JWzIyMky3qCwsLAC4dOkSffr0YdiwYfz3v//lxIkTjBo1CisrK2bMmAFAeno6kyZNolGjRqSnp/P222/Tv39/oqKi0Gg0pKen8+STT9KlSxdWrlxJTEwMr7zyygPFKCovdx8ZGCwqNkVR8AkIxCcgkKTzsRz4aR3Ru8K5dOIYl04cw7l6DVo82Q//Dl3QWVad9QEloalgzpw5g6qq1K9f/55lU1NT+f7779mzZw8Azz//PO3ateP//u//Ci3F3qRJE+rUqcN3331HaGgoYWFhzJ07l3PnzhUoN3fuXAYMGICXlxcNGzakbdu2PP300/Tu3fue8dSoYVyYLSPD2CPVvHlzunbtCsCiRYvw9vZm4cKFKIpC/fr1uXz5MlOmTOHtt99Go9EQEhJSoL6lS5fi4eHB8ePHCQgI4KuvviI/P59ly5ZhY2NDw4YNuXjxImPGjLlnbKLquD0w+PrldHKz87HQyxxQouJy86lFr7ETaD8wlEObNnB4yy/cuHyRLV8sZPe3K2naK5jGPfpgbWdv7lAfOUlo7mCts2b/4P33LngfsnINnEtKw6CquNnp8XKwKvK8JXH71pSiKPcs+/XXX1O7dm0aN24MGJOW2rVrs2rVKl588cVC5YcPH87y5cvx8fEhLS2NPn36sHDhwgJl/P39OXr0KAcPHmTXrl3s3LmT4OBghg0bxpIlS+4az2+//YatrS2RkZFMmTKFsLAwUw9NdHQ0bdq0KfC+2rVrR1paGhcvXsTHx4ezZ8/y1ltvsW/fPpKSkjDc6lY9f/48AQEBREdH07hxY2xs/urpatOmzT3bSVQttk56bBwtyUjJIenCTao97mTukIR4aHYurgQNHkbr/v/g8LbNHNq4npvXrrL72/+xf91qAjp1p3nffjh5Vt6FWSWhuYOiKCW69VNSOXn5JKakY6mxwk6vw9fFtkTJSHHq1q2LoihER0fTr1+/u5ZdtmwZx44dQ6f765/ZYDCwdOnSIhOaIUOG8NprrzFjxgxeeOGFAq/7O41GwxNPPMETTzzBxIkTWblyJaGhobzxxhv4+voWG4+vry9OTk74+fmRlZVF//79OXr0KHq9HlVVC7XLnclbcHAw3t7efPnll1SvXh2DwUBAQAA5OTkFygtxLx41HYg9nERinCQ0onKxtLahxZP9adormFP7dvHHhh+4GnuOqM0/8eevG6nbqi1PBD+D1+N+5g611Mmg4EcoOzefs1fTyck3oNdp8XGxeahkBsDFxYWePXvy6aefkp6eXuh4cnIyAEeOHOHAgQOEh4cTFRVl2nbu3Mkff/zB0aNHi6z7qaeeIiIiguHDh5c4Jn9/f4Ai4ylOaGgoBoOBRYsWmerYs2dPgaRkz5492Nvb89hjj3Ht2jWio6N588036dq1Kw0aNCj0ZJW/vz9//vknmZmZpn13DpIWAjA96XQlVsbRiMpJq9PRoH0nQmd9woA3/0OtJs1RVQOn9u3iqzcm8e2M1zl78PdKNYBYEppHJCs3n3NJ6eTeSmZqu9uiK6XVfRctWkR+fj4tW7bk+++/5/Tp00RHR7NgwQLTLZalS5fSsmVLgoKCCAgIMG3t27enTZs2LF26tMi6w8LCSEpKKnaMzoABA5g3bx779+8nLi6O8PBwxo0bh5+fX4nG9dym0WiYMGECs2bNIiMjg7Fjx3LhwgXGjx/PiRMn+PHHH5k+fTqTJk1Co9Hg7OyMq6srX3zxBWfOnGH79u2FnqwaPHgwGo2GESNGcPz4cTZu3MhHH31U4phE1fH3lbeFqMwURaFmoyaETH2HF+YsxD+oCxqtjovRR1k3+13C/j2OI9t/Je9WT3dFJgnNI5Cdl8+5q8ZkxsrCmMxYlFIyA8ZbN4cOHaJz585MnjyZgIAAunfvzrZt2/jss8/Iyclh5cqVhQbR3hYSEsLKlStNt2r+ztraGldX12LP3bNnTzZs2EBwcDB+fn4MHTqU+vXr8+uvvxZ7i6o4w4cPJzc3l4ULF/LYY4+xceNGfv/9dxo3bsxLL73EiBEjePPNNwFjArRq1SoOHjxIQEAAEydOZM6cOQXqs7OzY8OGDRw/fpymTZvyxhtv8OGHH95XTKJquN1Dk3wlg+yMXDNHI0TZcPepRe9xkxi5cAktgp/B0tqG65cu8OviBXz5r+HsX7uazLSKm+QrqhkHHuzcuZM5c+Zw8OBB4uPjWbt2bYFxIaqq8s477/DFF19w48YNWrVqxaeffkrDhg1LfI7U1FQcHR1JSUkp9GRPVlYWMTEx+Pr6YmVVeKDug8gzGDibmE52Xr4xmXErvZ4ZUXE9imtNPJz/vrGHm9eyeGpCE7zru5g7HCHKXHZGBke2beLgL+tJu5YEgIXeioAu3Wnepx+OHp73qOHRutv3d1HM+k2bnp5O48aNCz1Jc9vs2bOZO3cuCxcu5I8//sDLy4vu3btz82b5zCANqsr5axlk5+VjodXgK8mMEOWWR81bt51kgj1RReltbGgR/AwjFyyh978m417Tl9zsLCJ/2cDSl0fxy8KPSbtx3dxhlphZn3Lq3bt3sfOXqKrK/PnzeeONN3jmmWcAWLFiBZ6ennz99deMHj26LEO9J1VViU/OJC07D42iUMvVplRvMwkhSpdHTXvOHkokUQYGiypOq9Ph36EzDdp3Iu5IFAc2/EDc4UiO/7aDMwf20+6552nSoy8abfmes6ncfuPGxMSQkJBAjx49TPv0ej0dO3Y0TRRXlOzsbFJTUwtsj5LBoJKckUNMUjrX0o1jUrxdbB540UkhRNmQJRCEKEhRFGoFNmXAG+8x5P25eNWpS05mBjvCvmDltIlcPnXC3CHeVblNaBISEgAKTb3v6elpOlaUmTNn4ujoaNq8vb1LLaa8fAOXbmRw7moaZxPTOJN4k+PxqZy/nkFatnHNoWqO1jhaW5TaOYUQj8btJRBuXs8i82bFf8JDiNLk9bgfg/7zEd1GjkNva8vV2HN88/arbPliYbkdOFxuE5rbipps7W5zuUydOpWUlBTTduHChVKJIys3n7NX07iWnkNadh7pOXlk5ORjUFUsdRo8HKyo52mPu/2DraAthChbemsdTp7GSTRlPhohCtNotDTu3pvh8xbTsGNXUFUOb9vE8gmjObpjS7mbw6bc3hfx8jJOz5yQkEC1atVM+xMTEwv12vydXq9Hry/dpCI1M5fz1zOMyYtWg6eDFRqNggLotArWFtqHnjBPCFH2PGrak3wlg4SzKdRq5GbucIQol2wcneg1diIBnbqzdekirl08z+bPP+Fo+Ba6jhiLu08tc4cIlOMeGl9fX7y8vNiyZYtpX05ODhEREbRt27bM4kjJzCX2WjoGVcVWr+NxDzucbS1xtLbAwdoCG0udJDNCVFDeDYyPa0dtu0DSxfLZjS5EeVHDP4DQDxcQNOSfWOituHTiOP+b8jLh/1tKTmaGucMzb0KTlpZmmpIfjAOBo6KiOH/+PIqiMGHCBD744APWrl3L0aNHGTZsGDY2NgwePLhM4lNVlSupWQA421jKY9hCVDL1Wnnh09CV/FwDmxYfJTszz9whCVGuaXU6nngqhGFzP6Nuq7aoBgMHf1rL8kljOLVvl1nX1DPrxHrh4eF07ty50P6hQ4cSFhZmmlhv8eLFBSbWCwgIKPE5HmZivZTMXOKupaNVFOpVs0enkWRGPBiZWK/8ykrL5dsPfifteja1m7rT68UA6XUVooRiIg+wbfnnpFwxPqxTq3Ezugx/CWev6g9d9/1OrGfWhKYsPGhCo6oqZ6+mk5GTh4e9Hi9H67IMW1QyktCUb1diUvnho4MY8lXaDXicJt18zB2SEBVGbk42v6/7jj9+XEN+Xh5aCwtaPj2Alk8/i87S8oHrrVAzBZdn6dl5ZOQYJ8lztSt/Ty4lJCQwfvx4ateujV6vx9vbm+DgYLZt21ao7AcffIBWq2XWrFmFjoWFhaEoCg0aNCh0bPXq1cZ5CWrVMu3Lz89n5syZ1K9fH2tra1xcXGjdujXLly+/a7yLFy+mcePG2Nra4uTkRNOmTWWdJVFuePo60P7ZugDs/eEs8WeSzRuQEBWIhaWedv8YwtCPPqVmYFPyc3PZ+903rPj3OGKjDpZZHJLQFCPxZjYALraW5W7G39jYWJo3b8727duZPXs2R44cYdOmTXTu3Jlx48YVKr98+XJee+01li1bVmR9tra2JCYmsnfv3gL7ly1bho9Pwd9UZ8yYwfz583nvvfc4fvw4O3bsYNSoUdy4caPYeJcuXcqkSZN4+eWX+fPPP9m9ezevvfYaaWlpD/DuhXg0Ajo+Rt0WHhgMKpuXHCMjVeamEeJ+OFd7jJBp7/LkhNexc3Yh+Uo838+czoa5M7l5a62oR0luOd1xG0BVVdKTb3IuKR0FhbqedljqHn1Co1hbl/i+fZ8+fTh8+DAnT57E1ta2wLHk5GScnJxMP0dERDBkyBBiYmKoVasW33zzDUFBQabjYWFhTJgwgdDQULKysvjyyy8BuHjxIo8//jgTJ07km2++ITY2FoAmTZrQv39/pk+fXuL31q9fP5ydne/ai9OpUyeaNGnC/PnzC7zOycmJsLAwAGrVqsXIkSM5deoUP/zwA66urixYsIC2bdsycuRItm3bhq+vL8uXL6dFixYljq8syC2niiEnK4/vZh3gRkIGNeo7E/xyEzQaGU8jxP3Kycxgz5qvOfTLelSDAQu9FW2fHUzT3k+h1ZVsxpj7veVUbuehMQdVVUm5kUp829bcnus3pozOXe/QQRQbm3uWu379Ops2beL9998vlMwABZIZMPaODBo0CAsLCwYNGsTSpUsLJDS3jRgxgqCgID755BNsbGwICwujV69eheb88fLyYvv27YwdOxZ3d/cSvTcvLy8iIiKIi4ujZs2aJXpNcebNm8cHH3zAW2+9xbx58wgNDaVdu3YMHz6cOXPmMGXKFF544QWOHTsmAzvFfbO00tHzxQC+m3WAiydu8MfPMbQKrm3usISocCytbej0wkj8g7qwdeki4k+dIGLlMo7t3E63EWN5rL5/qZ+zfN1LMaOMnDzOJaVz/pr5n6W/mzNnzqCqKvXr179n2dTUVL7//nuef/55AJ5//nm+++67Ite3atKkCXXq1OG7775DVVXCwsIYPnx4oXJz587l6tWreHl5ERgYyEsvvcQvv/xy1zimT5+Ok5MTtWrVol69egwbNozVq1djeIBZJvv06cPo0aOpW7cub7/9Njdv3uSJJ57g2Wefxc/PjylTphAdHc2VK1fuu24hAFyr29FpiPH/14GNscQdu2bmiISouDxq1WbQO7PpMfplrOwdSDofy6rpr7Hps/lkpKaU6rmkhwa4np7DtcwsVIy3fhzDd+Nma1mmc84o1iV7iur2HcKS9D58/fXX1K5dm8aNGwPGpKV27dqsWrWKF198sVD54cOHs3z5cnx8fEhLS6NPnz4sXLiwQBl/f3+OHj3KwYMH2bVrFzt37iQ4OJhhw4axZMmSIuOoVq0ae/fu5ejRo0RERLBnzx6GDh3KkiVL2LRpE5r7eBw+MDDQ9PfbvUeNGjUqtC8xMdE027QQ96teKy/iz6ZwbOclti47zj/eeAJ7F7lVKMSDUDQaGnXpweNPtOa3b1ZwZNtmjoVv5eyB/XQYNJRGXXqglMK0KFW6hyY7N58b6TlcvWlMZpysLajn5UB1Lxcs7e3Q2NiU2VbS2yN169ZFURSio6PvWXbZsmUcO3YMnU5n2o4dO8bSpUuLLD9kyBD27dvHjBkzeOGFF9AVc59To9HwxBNPMHHiRNauXUtYWBhLly4lJubuN+gCAgIYN24cX331FVu2bGHLli1ERESY6rxzOFdubm6hOiws/lr483abFbXvQXp/hPi79s8+jruPPVnpuWz+8ij5eXJNCfEwrO0d6PHieAa9Nwf3mr5kpd1ky5cL+eatV7kSc/ah66+yCc2F6xlMWv0n6Tn5KChUd7TG28WmTAYAPwwXFxd69uzJp59+Snp6eqHjycnJABw5coQDBw4QHh5umo05KiqKnTt38scff3D06NEi637qqaeIiIgo8nZTcfz9jfdCi4qnpK9xd3cnPj7edDw/P7/IGIUoKzoLLb1eDEBvo+NKTCp7vj9j7pCEqBSq+zXg+Znz6Tx0FJbW1sSfOclXUyeyfflisjNK/j1yp/L97f0IqKrKt3+cp/cnv3EiIRWNAo85W+Fmr68wg0gXLVpEfn4+LVu25Pvvv+f06dNER0ezYMEC2rRpAxgHA7ds2ZKgoCACAgJMW/v27WnTpk2xvTRhYWEkJSUVO0ZnwIABzJs3j/379xMXF0d4eDjjxo3Dz8+v2NeMGTOG9957j927dxMXF8e+fft44YUXcHd3N8XbpUsXfv75Z37++WdOnDjB2LFjTcmZEObi4GZN12HG5PvwjoucPiBjs4QoDRqtlmZ9nuafcz+nXtsgVNVA5KYNLJ/4EtG7Ix5oCYUqldBcvZnNiBUHmPL9EdKy82hY3REPez22eot7v7gc8fX15dChQ3Tu3JnJkycTEBBA9+7d2bZtG5999hk5OTmsXLmSkJCQIl8fEhLCypUryckpPM+GtbU1rq6uxZ67Z8+ebNiwgeDgYPz8/Bg6dCj169fn119/LfYWVbdu3di3b59p4G5ISAhWVlZs27bNdK7hw4czdOhQXnjhBTp27Iivr2+Ry2IIUdZ8A91o1tP4dN6O/53gRsKD/wYphCjIzsWVJ195jZA33sO5WnXSk2+wccEcvvvPm1yPv3RfdVWZeWiu30hm+NdHiTyfjKVWw+Qefjz/RHXOx8XK3CDikZN5aCo2Q76BH+dHcfl0Mi7VbRkwpQUWeq25wxKiUsnLzeXA+u/Zv3Y1ebk55BhUpn23UZY+uNOaA+eJPJ+MnV7H+vHtGN2xDlqZMEsIUQIarYYeIxti42DJ9cvpRHx90qyrCgtRGeksLGgdMpChHy/Ct2kLDPl59/X6KpPQzN96GoDXetWjvte9Mz0hhPg7W0c9PUY2RFHg5P4Eju+6bO6QhKiUnDy96D9lOn3Gv3pfr6syCU1adj6NvZ0Y0urhZqoVQlRdj/k507pfHQB++/Y0V8/fNHNEQlROiqJQp3nL+3pNlUlotBqFmf0byW0mIcRDadrdh1qBbuTnGdj0xRGy0gvPlySEKHtVJqF5oU1N/KvLrSYhxMNRNApdhzbAwc2K1KQstq2IRjXIeBohzK3KJDRjOtUxdwhCiErCytaCXi82QqvTEHs4icgt580dkhBVXpVJaGwsZdkqIUTpcfexp8NzdQHY9+M5Lp26YeaIhKjaqkxCI4QQpc2/fXXqtfJCNaj8uuQY6SnZ5g5JiCpLEhohhHhAiqLQcXA9XKrbkpGaw5alxzDkyyKWQpiDJDRCCPEQLPTGRSwt9FounUpm/4a7rzovhHg0JKGpoBITExk9ejQ+Pj7o9Xq8vLzo2bMne/fuBSAyMpInn3wSDw8PrKysqFWrFs899xxJSUkAxMbGoiiKaXN2diYoKIiIiAjTOXbu3ElwcDDVq1dHURTWrVtXKI4ffviBnj174ubmhqIoREVFFSpz9uxZ+vfvj7u7Ow4ODvzjH//gyhVZ5E9UHs5etnQONS7OemhTHLGHk8wckRBVjyQ0FVRISAh//vknK1as4NSpU6xfv55OnTpx/fp1EhMT6datG25ubmzevJno6GiWLVtGtWrVyMjIKFDP1q1biY+PJyIiAgcHB/r06UNMjPE3zPT0dBo3bszChQuLjSM9PZ127doxa9asYo/36NEDRVHYvn07u3fvJicnh+DgYAwG6ZoXlUfdFp406lwDgK1hx0lNyjRzREJULfLozx1UVSUvp+y/aHWWGhSlZJP+JScns2vXLsLDw+nYsSMANWvWpGVL46yK69atIzU1lSVLlphWwPb19aVLly6F6nJ1dcXLywsvLy8WL15MjRo1+PXXXxk9ejS9e/emd+/ed40lNDQUMPb4FGX37t3ExsYSGRlpWlxs+fLluLi4sH37drp161ai9yxERdAu5HESY1O5EpPKpi+OEvJqc7QW8nujEGVBEpo75OUY+OKViHsXLGUvftKxxKv32tnZYWdnx7p162jdujV6vb7AcS8vL/Ly8li7di0DBgwocaJkY2MDQG5u6c18mp2djaIoBWK0srJCo9Gwa9cuSWhEpaLVaeg5KoBv3/+dq+dvsmvNaToOrmfusISoEuRXhwpIp9MRFhbGihUrcHJyol27dkybNo3Dhw8D0Lp1a6ZNm8bgwYNxc3Ojd+/ezJkz567jVtLT05k6dSpardbU61MaWrduja2tLVOmTCEjI4P09HReffVVDAYD8fHxpXYeIcoLexcrug9vCAoc3XmJk/sTzB2SEFWC9NDcQWep4cVPSu8L/X7Oez9CQkLo27cvv/32G3v37mXTpk3Mnj2bJUuWMGzYMN5//30mTZrE9u3b2bdvH59//jkffPABO3fupFGjRqZ62rZti0ajISMjg2rVqhEWFlbg+MNyd3dnzZo1jBkzhgULFqDRaBg0aBDNmjVDqy1Zj5QQFU3Nhq606F2LAxtjCf/qBO7e9rhUtzV3WEJUaoqqqpV6EZLU1FQcHR1JSUkxjeG4LSsri5iYGHx9fbGysjJThKVn5MiRbNmyhbi4uELHcnJyaNq0KS1atGDFihXExsbi6+vL+vXr8ff3x8nJCVdX12LrVhSFtWvX0q9fvyKP364vMjKSJk2aFFkmKSkJnU6Hk5MTXl5eTJ48mVdfvb/l4SuqynatiXszGFQ2LIji4okbOHvZMOD1Flhaye+QQpTU3b6/iyK3nCoRf39/0tPTizxmaWlJnTp1Ch339vamTp06d01mSoubmxtOTk5s376dxMREnnrqqUd+TiHMRaNR6D68IbaOltxIyCB85Qkq+e+PQpiV/LpQAV27do1nn32W4cOHExgYiL29PQcOHGD27Nk8/fTT/PTTT6xatYqBAwfi5+eHqqps2LCBjRs3snz58hKfJy0tjTNnzph+jomJISoqChcXF3x8fAC4fv0658+f5/LlywCcPHkSwPTkFBifamrQoAHu7u7s3buXV155hYkTJ1KvngyWFJWbjYMlPUcFsHZuJKcPJFLtcScadaph7rCEqJQkoamA7OzsaNWqFfPmzePs2bPk5ubi7e3NqFGjmDZtGvHx8djY2DB58mQuXLiAXq+nbt26LFmyxPSYdUkcOHCAzp07m36eNGkSAEOHDiUsLAyA9evX889//tNUZuDAgQBMnz6dGTNmAMYkZ+rUqVy/fp1atWrxxhtvMHHixIdsBSEqhmqPO9H2mTrs/u4Mu9acxqOmA56+9+4+F0LcHxlDI+MaRBmQa61qU1WVTYuPci7qKnYuep6b1hIrOwtzhyVEuSZjaIQQopxRFIUuQxvg4G5N2vVstoYdRzVU6t8lhShzktAIIUQZ0Fvr6PViAFoLDXFHr3Fwc+GnEYUQD04SGiGEKCPu3vYEDfQD4Pf157h44rqZIxKi8pCERgghypB/u+rUb1sNVYVflx4jPTnb3CEJUSlIQiOEEGUsaKAfro/ZkXkzl81LjpKfLyvPC/GwJKERQogyZmGppdeLAVhYaYk/k8L+defMHZIQFZ4kNEIIYQZOnjZ0faEBAJFbznP6QPGLxwoh7q1cJzQzZsxAUZQC2+3ZZ4UQoqKr08yDxl29Adiy9BhHd14yc0RCVFzlfqbghg0bsnXrVtPPskKzEKIyaftMHXKy8ojeHU/E1ydJT86mZbAviqKYOzQhKpRyn9DodDrplRFCVFoarYbOz9fHzknPHz/HcmBjLGnJ2XQaUg+ttlx3ogtRrpT7/y2nT5+mevXq+Pr6MnDgQM6du/vguezsbFJTUwtslVFiYiKjR4/Gx8cHvV6Pl5cXPXv2ZO/evQBERkby5JNP4uHhgZWVFbVq1eK5554jKSkJgNjY2AK38pydnQkKCiIiIsJ0jpkzZ/LEE09gb2+Ph4cH/fr1My0+WZTRo0ejKArz588vsL9Tp06Fbh3eXvNJCGGcSbhlcG06DamHosCJPfFsXHSEnKw8c4cmRIVRrhOaVq1a8d///pfNmzfz5ZdfkpCQQNu2bbl27Vqxr5k5cyaOjo6mzdvbuwwjLjshISH8+eefrFixglOnTrF+/Xo6derE9evXSUxMpFu3bri5ubF582aio6NZtmwZ1apVIyMjo0A9W7duJT4+noiICBwcHOjTpw8xMTEAREREMG7cOPbt28eWLVvIy8ujR48epKenF4pn3bp17N+/n+rVqxcZ76hRo4iPjzdtixcvLv1GEaKCa9jhMfqMCURnoeH8sWv8OC+SjNQcc4clRIVQoRanTE9Pp06dOrz22mumlZ/vlJ2dTXb2XxNVpaam4u3tXeLFKVVVJS+77Ce60un1Jb5nnpycjLOzM+Hh4XTs2LHQ8XXr1vHss8+SmZmJTlf0XcXY2Fh8fX2JjIykSZMmAFy6dIkaNWrw+eefM3r06EKvuXr1Kh4eHkRERBAUFGTaf+nSJVq1asXmzZvp27cvEyZMYMKECabjnTp1okmTJoV6bqoSWZxS3I+EmBR+XniYrPRcHNytCR7fGCcPG3OHJUSZut/FKcv9GJq/s7W1pVGjRpw+fbrYMnq9Hr1e/8DnyMvOZsHQAQ/8+gf18orvsCjhF52dnR12dnasW7eO1q1bF3q/Xl5e5OXlsXbtWgYMGFDiRMnGxviBmZubW+TxlJQUAFxcXEz7DAYDoaGhvPrqqzRs2LDYur/66itWrlyJp6cnvXv3Zvr06djb25coLiGqGi9fR0Jea86G/4si9WomP8w5SN9xjfGsde8PdSGqqnJ9y+lO2dnZREdHU61aNXOHYlY6nY6wsDBWrFiBk5MT7dq1Y9q0aRw+fBiA1q1bM23aNAYPHoybmxu9e/dmzpw5XLlS/DwX6enpTJ06Fa1WW2Svj6qqTJo0ifbt2xMQEGDa/+GHH6LT6Xj55ZeLrXvIkCF88803hIeH89Zbb/H999/zzDPPPEQLCFH5OXna8MyrzXH3sSfzZi7r5h4i7mjxt9uFqOrK9S2nf//73wQHB+Pj40NiYiL/+c9/iIiI4MiRI9SsWbNEddyty6qi3nK6LSsri99++429e/eyadMmfv/9d5YsWcKwYcMAuHbtGtu3b2ffvn2sW7eO69evs3PnTho1amS65WRtbY1GoyEjI4Nq1arx4Ycf8vzzzxc617hx4/j555/ZtWsXNWrUAODgwYP07duXQ4cOmcbO1KpVq9AtpzsdPHiQFi1acPDgQZo1a3Zf77mikltO4kHlZOWx6YujXDh+HUWj0Pn5ejRoW/RYNSEqk/u95VSuE5qBAweyc+dOkpKScHd3p3Xr1rz33nv4+/uXuI77TWgqspEjR7Jlyxbi4uIKHcvJyaFp06a0aNGCFStWmBKa9evX4+/vj5OTE66urkXWO378eNatW8fOnTvx9fU17Z8/fz6TJk1Co/mroy8/Px+NRoO3tzexsbFF1qeqKnq9nv/9738899xzD/emK4jKdq2JspWfZ2DH/05wcn8CAK2e8qV571oyV42o1CrVGJpVq1aZO4QKxd/fn3Xr1hV5zNLSkjp16hR6Qsnb25s6deoU+RpVVRk/fjxr164lPDy8QDIDEBoaSrdu3Qrs69mzJ6Ghofzzn/8sNs5jx46Rm5tb5W8dClFSWp2GrsMaYOus59CmOPavjyEtOYeggX5oNJLUCAHlPKERRbt27RrPPvssw4cPJzAwEHt7ew4cOMDs2bN5+umn+emnn1i1ahUDBw7Ez88PVVXZsGEDGzduZPny5SU+z7hx4/j666/58ccfsbe3JyHB+Nuho6Mj1tbWuLq6FurVsbCwwMvLi3r16gFw9uxZvvrqK/r06YObmxvHjx9n8uTJNG3alHbt2pVeowhRySmKQpt+dbB11PPb6lMc23mJjJRsuo9oiIWlzKAuhCQ0FZCdnR2tWrVi3rx5nD17ltzcXLy9vRk1ahTTpk0jPj4eGxsbJk+ezIULF9Dr9dStW5clS5YQGhpa4vN89tlngPGx679bvny5aZzOvVhaWrJt2zY++eQT0tLS8Pb2pm/fvkyfPl2WsRDiAQR2roGtkyVblh4n5s8k1s+PpO/YxljZWZg7NCHMqlyPoSkNVWkMjSi/5FoTpe3ymWQ2LjpMdkYeTp42BI9vjIObtbnDEqLU3O8Ymgr12LYQQgij6o878cy/m2PnrCf5Sgbfzz7I1fM3zR2WEGYjCY0QQlRQLtVtCXmtBa6P2ZKRmsPauYe4EH3d3GEJYRaS0AghRAVm56yn/7+b85ifE7lZ+fz0f3+aHu8WoiqRhEYIISo4vbWO4PFNeLyFBwaDytblxzm0OY5KPkRSiAIkoRFCiEpAa6Ghx/CGNO7mDcDetWfZtfo0BoMkNaJqkIRGCCEqCUWj0H5AXdoNeByAwzsu8uuSo+Tl5ps5MiEePUlohBCikmnSzYceIxqi0SmcPXSV9Z9EkZWea+6whHikJKERQohKqO4TngSPb4KllZb4Myms/fgQN69nmTssIR4ZSWiEEKKSqlHPmf7/bo6toyXXL6fz/eyDXLuUZu6whHgkJKGpoBITExk9ejQ+Pj7o9Xq8vLzo2bMne/fuBSAyMpInn3wSDw8PrKysqFWrFs899xxJSUkAxMbGoiiKaXN2diYoKIiIiAjTOT777DMCAwNxcHDAwcGBNm3a8MsvvxSI4+91/H2bM2eOqUx2djbjx4/Hzc0NW1tbnnrqKS5evFgGrSSEcKthR8iUFjh72ZCenM0PHx3i0qkb5g5LiFInCU0FFRISwp9//smKFSs4deoU69evp1OnTly/fp3ExES6deuGm5sbmzdvJjo6mmXLllGtWjUyMjIK1LN161bi4+OJiIjAwcGBPn36EBMTA0CNGjWYNWsWBw4c4MCBA3Tp0oWnn36aY8eOmV4fHx9fYFu2bBmKohASEmIqM2HCBNauXcuqVavYtWsXaWlpPPnkk+Tny0BFIcqCvYsVz7zanGqPO5KTmcf6BVGcPnDF3GEJUbrUSi4lJUUF1JSUlELHMjMz1ePHj6uZmZlmiOzB3bhxQwXU8PDwIo+vXbtW1el0am5ubrF1xMTEqIAaGRlp2nfx4kUVUD///PNiX+fs7KwuWbKk2ONPP/202qVLF9PPycnJqoWFhbpq1SrTvkuXLqkajUbdtGlTsfVUNhX1WhOVS252nrrx88PqwtHb1IUvbVOjtp43d0hCFOtu399FkR6aO6iqiiEnv8w39T4mwLKzs8POzo5169aRnZ1d6LiXlxd5eXmsXbv2vuq1sbEBIDe38NMQ+fn5rFq1ivT0dNq0aVPk669cucLPP//MiBEjTPsOHjxIbm4uPXr0MO2rXr06AQEB7Nmzp8SxCSEens5SS89RATTq+BiosGvNaXZ/fwZV5qoRlYDO3AGUN2qugctvl/0XbfV326JYaktUVqfTERYWxqhRo/j8889p1qwZHTt2ZODAgQQGBtK6dWumTZvG4MGDeemll2jZsiVdunThhRdewNPTs8g609PTmTp1Klqtlo4dO5r2HzlyhDZt2pCVlYWdnR1r167F39+/yDpWrFiBvb09zzzzjGlfQkIClpaWODs7Fyjr6elJQoJMzy5EWdNoFDoM9MPWWc++deeI2nKe9ORsug5tgFYnv+OKikuu3goqJCSEy5cvs379enr27El4eDjNmjUjLCwMgPfff5+EhAQ+//xz/P39+fzzz6lfvz5HjhwpUE/btm2xs7PD3t6eDRs2EBYWRqNGjUzH69WrR1RUFPv27WPMmDEMHTqU48ePFxnTsmXLGDJkCFZWVveMX1VVFEV58AYQQjwwRVFo3qsW3YY1QKNROP3HFX5a+CfZmXnmDk2IB6ao93NPogJKTU3F0dGRlJQUHBwcChzLysoiJiYGX19f05ewqqqouYYyj1Ox0Dz0F/zIkSPZsmULcXFxhY7l5OTQtGlTWrRowYoVK4iNjcXX15f169fj7++Pk5MTrq6u9zxHt27dqFOnDosXLy6w/7fffiMoKIioqCgaN25s2r99+3a6du3K9evXC/TSNG7cmH79+vHOO+88xDuuOIq61oQoD84fu8YvXxwlLzsfK1sLGnV6jEada2BtZ2nu0EQVd7fv76JID80dFEVBY6kt8600eiv8/f1JT08v8pilpSV16tQpdNzb25s6deqUKJkBY8JX1LidpUuX0rx58wLJDEDz5s2xsLBgy5Ytpn3x8fEcPXqUtm3bluicQohHx6ehK/0nNcXR3Zqs9Fz++DmW/07bw85vT5F6LdPc4QlRYjKGpgK6du0azz77LMOHDycwMBB7e3sOHDjA7Nmzefrpp/npp59YtWoVAwcOxM/PD1VV2bBhAxs3bmT58uUlPs+0adPo3bs33t7e3Lx5k1WrVhEeHs6mTZsKlEtNTWXNmjV8/PHHhepwdHRkxIgRTJ48GVdXV1xcXPj3v/9No0aN6Nat20O3hRDi4XnUdGDwO605eyiRQ5vjSLqQxpEdFzkacYm6T3jQrEdNXB+zM3eYQtyVJDQVkJ2dHa1atWLevHmcPXuW3NxcvL29GTVqFNOmTSM+Ph4bGxsmT57MhQsX0Ov11K1blyVLlhAaGlri81y5coXQ0FDi4+NxdHQkMDCQTZs20b179wLlVq1ahaqqDBo0qMh65s2bh06n4x//+AeZmZl07dqVsLAwtNqSDYIWQjx6Go1C3RaePN7cg4vRNzj0axwXT9zg1P4rnNp/hZqNXGnWoybVHneU8W+iXJIxNDKuQZQBudZERZQYl8qhzec5G5kIt74pvGo70LRHTXwD3VA0ktiIR+d+x9BID40QQogiedR0oNeLASRfySBy63lO7k0g4Vwqv3x+BGcvG5r2qIlfS0953FuUC3IVCiGEuCsnTxs6D6lP6PttaNazJpZWWm4kZLD9v9GsfGsvUVvPk5Mlj3wL85IeGiGEECVi66inTf86NOtVk2M7L/Hntguk3chm93dnOLAxlkadahDYuQbW9vLItyh7ktAIUVEZ8iE9CdITITsNtJag04OlLTjXAhm4KR4RvbWOZj1r0riLNyf3J3Do1zhSEjM5sDGWyC3n8W9bjSbdfXBwszZ3qKIKkYRGiIoiPQliIuBcOMTshOTzoBYzCaRDDajfFxo8CT5tQXuP/+rXYyD9KuRlQV62MTlyrAEOj4HFrUHMhnzIzQRDLhgMYMgDaydjEiWqJK2FBv/21anfthoxUVc5tDmOxLibHIm4xNHfLvN4cw+a9fTBrYa9uUMVVYAkNEKUR1mpcCMGrhyD83vh/H5IOllEQQVs3UBvD/m5xmQkKwVSL8Lvi42brTv494OAEPBuBZpbQ+fyc+HET7B/sfEcxdE7GOvNLzyhIlpLqN7UWG+NFsaeIUdvsHaWHqIqRKNRqNPMg9pN3bl0KpnIzXGcP36d039c4fQfV/Dxd6FZz5pU93OSR77FIyOPbcujtKIMFLjWtr0J53aAogWN7q8EQ1WNW3qisbekKJ4BULuTcfNqBDZuhXtfcjONvTjRP8HJnyHzxl/HLGzBytGYAGUlQ9oV436Nztgjo7My9rjkZEDqJcjNeLA3bGELNq5g7QhWTsakSG9nvB1mYXPrPFZ/3SKztANLG7CwBp31X8c0OtBaGP+0dgarez+6KcqHq+dvEvlrHGcOJnL7W8ajlgPNe9bEt7E88i3u7X4f25aERhIaUQYKXGtrhxsTjXuxcQO3uuDdErxbG3tBbEu2RIVJfi6ci4Cj3xt7Y7JTCx63dYfm/4QWw8GhWsFjqmpMhjKuGRMMCxvj7SetpTEZUxRjL9L5fcbtylFIvmBMyB6FbjOg/cRHU7d4ZFKuZhK15TzRe+PJv7VOnpOnDU17+FCvpRdaC3nYVhRNEpo7SEIjyoMC19rNOGOSYMgzjksx5IMCKBpAMY5Lcalt7EkpTXnZkHIRsm8aNzUffNqU/hiY3ExIvWxMhjKTjX/m3IScdOPg5dx0yMu5NV4ny7j/9paXCblZf43lMeT9tXV9G1qPKd1YRZnJSM3h8I4LHI24RHaG8RFvW0dLArt6E9DhMSytZQSEKEgm1hNlplatWkyYMIEJEyYUefz2it6RkZE0adKkTGMr19zrmee8Oj241nn057GwLpvziArFxsGS1k/XoVnPmhzfdZmorRdIT85m7w9nOfhLHAFBjxHYpQa2jjLIXDwY6eurgIYNG4aiKMyaNavA/nXr1hUacJefn8+8efMIDAzEysoKJycnevfuze7dux95nN7e3sTHxxMQEHDPsrGxsSiKQlRU1COPSwhhPpZWOpp08yH0P23o8kJ9nL1syMnM49DmOP73xl7WzYtkx8oTHNocx9lDiVy9cFMm7RMlIj00FZSVlRUffvgho0ePxtnZucgyqqoycOBAtm7dypw5c+jatSupqal8+umndOrUiTVr1tCvX79HFqNWq8XLy+uR1S+EqLi0Og0N2lanfutqxBxO4tDmOK7EpHLp5A0unbxRqLy1vQWO7tY4uFvj6G6Do7u1abOys5Cnp4QkNBVVt27dOHPmDDNnzmT27NlFllm9ejXfffcd69evJzg42LT/iy++4Nq1a4wcOZLu3btjY2ND9+7d0el0/PLLLyiKQnJyMoGBgYSGhvL+++8XG0dGRgbDhw9nzZo1ODs78+abb/Liiy8ChW853bhxg3/961/8+uuvpKWlUaNGDaZNm8Y///lPfH19AWjatCkAHTt2JDw8vJRaSwhRXikahdpN3PFt7EbShTSuXU4j5WomKYmZpCYZ/8xKzyXzpnFLOJdaqA4LK60xuXG7nfDc2jxssHXSo5EnqqoESWjuoKoqubm5ZX5eC4v7+w1Dq9XywQcfMHjwYF5++WVq1KhRqMzXX3+Nn59fgWTmtsmTJ/PDDz+wZcsW+vXrx4oVK2jUqBELFizglVde4aWXXsLT05MZM2bcNY6PP/6Y9957j2nTpvHdd98xZswYgoKCqF+/fqGyb731FsePH+eXX37Bzc2NM2fOkJmZCcDvv/9Oy5Yt2bp1Kw0bNsTSUqZOF6IqURQFdx973H0KT8KXnZlH6tVMY6JzNYOUq5mmn9NuZJOblU/ShTSSLqQVeq1Gp+Dgao2jhzHhcfSwxsHNmPA4uFrLU1aViCQ0d8jNzeWDDz4o8/NOmzbtvr/E+/fvT5MmTZg+fTpLly4tdPzUqVM0aNCgyNfe3n/q1CkAHnvsMRYvXkxoaChXrlxhw4YNREZGYmFhcdcY+vTpw9ixYwGYMmUK8+bNIzw8vMiE5vz58zRt2pQWLVoAxkHFt7m7uwPg6uoqt6mEEAXorXXFJjt5ufmkJmX9lfAkZpCSZPz7zaQsDHkqyVcySL5SxJxKCtg562/16BhvYzm4GW9habUKGp0GrU6DVqeg0f7t7zqN6bj0/pQfktBUcB9++CFdunRh8uTJD/T6v/cKPfvss6xdu5aZM2fy2Wef4efnd8/XBwYGFqjLy8uLxMSi5yEZM2YMISEhHDp0iB49etCvXz/atm37QHELIQSAzkKLSzVbXKrZFjpmyDeQdiP7Vs/OrV6dW7exUpIyycvOJ+16NmnXs7l0MvmBzq8oxvFAmlvJjlanQaO9/effkiELBa32r3KmYzoNWm3hREmr06Cz0KC1+OvPv/Zpiz+m01TZSQsrREKzaNEi5syZQ3x8PA0bNmT+/Pl06NDhkZzLwsKCadOmPZK673XeBxEUFETPnj2ZNm0aw4YNK3DMz8+P48ePF/m66OhoAOrWrWval5GRwcGDB9FqtZw+ffqB4lYUBYOh6PWFevfuTVxcHD///DNbt26la9eujBs3jo8++qhE5xJCiPuh0WpwcDP2unjf0VmtqiqZN3ML9Ojc7uXJycrHkGcgP99Afp566+8qhlwDBoN6Rz2Ql2uA3GLWVTMDjU5Bp7uV6Fho0FlojQmPZcFESWuhMZaz1N5R/lZvlMVfyZn2bwnbnQmc8ee/lzP+rNEoZTpYu9wnNN9++y0TJkxg0aJFtGvXjsWLF9O7d2+OHz+Oj49PqZ9PUZQKN35j1qxZNGnSpFCPysCBAxk8eDAbNmwoNI7m448/xtXVle7du5v2TZ48GY1Gwy+//EKfPn3o27cvXbp0KdVY3d3dGTZsGMOGDaNDhw68+uqrfPTRR6Y2z8/PL9XzCSFEURRFwcbBEhsHS6o97lTi16kGFUO+Sn6ewfhnvsH497y/7csrYt/dyuWr5OcaE6jbx01broG8XOPf83L++rtxfz75eSr5Ofn8fYpcQ55KTl4+ZJn58/RW79Wdt+9MCZFWMfUu3e6x0lr81WOVmXN/S6+U+4Rm7ty5jBgxgpEjRwIwf/58Nm/ezGeffcbMmTPNHF350KhRI4YMGcL//d//Fdg/cOBA1qxZw9ChQws9tr1+/XrWrFmDra2xm/bnn39m2bJl7N27l2bNmvH6668zdOhQDh8+XOxj4ffr7bffpnnz5jRs2JDs7Gx++ukn01geDw8PrK2t2bRpEzVq1MDKygpHx1KeKVcIIR6SolHQapRyNZhYVVUMBpX8nFuJT64x4fnr7/nk56rk/T0Ryi2iXI7hVpl88nILJ1emJCz3Vo+V6dhf5fh7B5aKsWwuwP0nV5k56fdVvlwnNDk5ORw8eJDXX3+9wP4ePXqwZ8+eIl+TnZ1NdvZfqwKnphZ+xK8yeu+991i9enWBfYqisHr1aj755BPmzZvHuHHj0Ov1tGnThh07dtC+fXsArl69yogRI5gxYwbNmjUDYPr06fz666+89NJLfPvtt6USo6WlJVOnTiU2NhZra2s6dOjAqlWrANDpdCxYsIB3332Xt99+mw4dOshj20IIUQKKohh7O6zNn2QZ8gsmOMX1Sv19/51J0e39qakpsLzk5y7XazldvnyZxx57jN27dxcYPPrBBx+wYsUKTp48Weg1M2bM4J133im0X9ZyEuYk15oQQtyf+13LyfzpXAncOahIVdViBxpNnTqVlJQU03bhwoWyCFEIIYQQZlSubzm5ubmh1WpJSEgosD8xMRFPT88iX6PX69HrZXEzIYQQoiop1z00lpaWNG/enC1bthTYv2XLFpm/RAghhBAm5bqHBmDSpEmEhobSokUL2rRpwxdffMH58+d56aWXzB2aEEIIIcqJcp/QPPfcc1y7do13332X+Ph4AgIC2LhxIzVr1jR3aEIIIYQoJ8p9QgMwduxY03pBj0JxM9sKUVrkGhNCiEerQiQ0j4qlpSUajYbLly/j7u6OpaVlmU7TLCo/VVXJycnh6tWraDSaCjcLtRBCVBRVOqHRaDT4+voSHx/P5cuXzR2OqMRsbGzw8fFBoynX4/CFEKLCqtIJDRh7aXx8fMjLy5N1hMQjodVq0el00vsnhBCPUJVPaMA4cZ+FhcUDr3gthBBCCPOS/m8hhBBCVHiS0AghhBCiwpOERgghhBAVXqUfQ3N7MfHU1FQzRyKEEEKIkrr9vX37e/xeKn1Cc/PmTQC8vb3NHIkQQggh7tfNmzdxdHS8ZzlFLWnqU0EZDAb8/Pw4ePDgQz02+8QTT/DHH3+Y7fUPW0dqaire3t5cuHABBwcHs8RQGq8vDzGURltWhnZ42DrKyzVZGnWYO4by0pbmbofSeL38/y6dOkqjHVVVpXnz5pw6dapEc3hV+h6a27OzliS7uxutVvtQHxQP+/rSqsPBwcGs76M8tENpxAAP15aVpR0qwzVZGnWUhxjA/G1ZHtpB/n+Xnxjg4a/J2zP6l0SVGBQ8btw4s9dRHmIoDZWhHSpDO5ZGHeUhhtJQHt5HeYihNFSGdqgM7VgadZSHGErD/cRQ6W85CaPU1FQcHR1JSUkpld9eqjJpy9Ih7Vh6pC1Lj7Rl6TBHO1aJHhoBer2e6dOno9frzR1KhSdtWTqkHUuPtGXpkbYsHeZoR+mhEUIIIUSFJz00QgghhKjwJKERQgghRIUnCY0QQgghKjxJaIQQQghR4UlCI4QQQogKTxKaCmTnzp0EBwdTvXp1FEVh3bp1BY5fuXKFYcOGUb16dWxsbOjVqxenT582HY+NjUVRlCK3NWvWmMrduHGD0NBQHB0dcXR0JDQ0lOTk5DJ6l2XjYdsS4OzZs/Tv3x93d3ccHBz4xz/+wZUrVwqUqVWrVqG2fv311x/12yszM2fO5IknnsDe3h4PDw/69evHyZMnC5RRVZUZM2ZQvXp1rK2t6dSpE8eOHTMdv379OuPHj6devXrY2Njg4+PDyy+/TEpKSoF6KvN1WRrteGfZ3r17F3ltyzV577aUz0qj0rouy+qzUhKaCiQ9PZ3GjRuzcOHCQsdUVaVfv36cO3eOH3/8kcjISGrWrEm3bt1IT08HjAt0xsfHF9jeeecdbG1t6d27t6muwYMHExUVxaZNm9i0aRNRUVGEhoaW2fssCw/blunp6fTo0QNFUdi+fTu7d+8mJyeH4OBgDAZDgfrefffdAm3+5ptvlsl7LAsRERGMGzeOffv2sWXLFvLy8ujRo4epnQBmz57N3LlzWbhwIX/88QdeXl50797dtHDs5cuXuXz5Mh999BFHjhwhLCyMTZs2MWLEiALnqszXZWm049/Nnz//rmvXyTV597aUz0qj0mjLMv2sVEWFBKhr1641/Xzy5EkVUI8ePWral5eXp7q4uKhffvllsfU0adJEHT58uOnn48ePq4C6b98+0769e/eqgHrixInSfRPlxIO05ebNm1WNRqOmpKSYyly/fl0F1C1btpj21axZU503b94jfw/lRWJiogqoERERqqqqqsFgUL28vNRZs2aZymRlZamOjo7q559/Xmw9q1evVi0tLdXc3FxVVavedfkw7RgVFaXWqFFDjY+PL3Rtq6pckw96Tcpn5YO1ZVl+VkoPTSWRnZ0NgJWVlWmfVqvF0tKSXbt2FfmagwcPEhUVVeA34b179+Lo6EirVq1M+1q3bo2joyN79ux5RNGXLyVpy+zsbBRFKTALppWVFRqNplB7f/jhh7i6utKkSRPef/99cnJyyuBdmMft20QuLi4AxMTEkJCQQI8ePUxl9Ho9HTt2vOv1dHu6dJ3OuH5uVbsuH7QdMzIyGDRoEAsXLsTLy6vY+uWavL9rUj4rjR6kLcvys1ISmkqifv361KxZk6lTp3Ljxg1ycnKYNWsWCQkJxMfHF/mapUuX0qBBA9q2bWval5CQgIeHR6GyHh4eJCQkPLL4y5OStGXr1q2xtbVlypQpZGRkkJ6ezquvvorBYCjQ3q+88gqrVq1ix44d/Otf/2L+/PmMHTvWXG/tkVJVlUmTJtG+fXsCAgIATNeMp6dngbKenp7FXk/Xrl3jvffeY/To0aZ9Vem6fJh2nDhxIm3btuXpp58utn65Ju//mpTPygdvy7L8rNQ9zBsU5YeFhQXff/89I0aMwMXFBa1WS7du3Qrc7/27zMxMvv76a956661Cx4q6966q6l3vyVcmJWlLd3d31qxZw5gxY1iwYAEajYZBgwbRrFkztFqtqdzEiRNNfw8MDMTZ2ZkBAwaYfhOpTP71r39x+PDhInsE77x2irueUlNT6du3L/7+/kyfPv2uddytnorsQdtx/fr1bN++ncjIyLvWL9ekUUmvSfmsNHrQtizLz0pJaCqR5s2bExUVRUpKCjk5Obi7u9OqVStatGhRqOx3331HRkYGL7zwQoH9Xl5ehUafA1y9erVQFl6ZlaQte/TowdmzZ0lKSkKn0+Hk5ISXlxe+vr7F1tu6dWsAzpw5U6m+PMaPH8/69evZuXMnNWrUMO2/fdsjISGBatWqmfYnJiYWup5u3rxJr169sLOzY+3atVhYWBSopypclw/Tjtu3b+fs2bM4OTkVqDMkJIQOHToQHh5e5DnlmjQq6poE+ayEh2/LMvusfKgROMJsKGKw351OnTqlajQadfPmzYWOdezYUQ0JCSm0//ZAt/3795v27du3r1IPdHvYtrxt27ZtqqIod22nDRs2qIAaFxf3oOGWKwaDQR03bpxavXp19dSpU0Ue9/LyUj/88EPTvuzs7EIDMFNSUtTWrVurHTt2VNPT0wvVU9mvy9Jox/j4ePXIkSMFNkD95JNP1HPnzhV7brkmi74mb6vKn5Wl3Za3ParPSkloKpCbN2+qkZGRamRkpAqoc+fOVSMjI03/4KtXr1Z37Nihnj17Vl23bp1as2ZN9ZlnnilUz+nTp1VFUdRffvmlyPP06tVLDQwMVPfu3avu3btXbdSokfrkk08+0vdW1kqjLZctW6bu3btXPXPmjPq///1PdXFxUSdNmmQ6vmfPHlO9586dU7/99lu1evXq6lNPPVWm7/VRGjNmjOro6KiGh4er8fHxpi0jI8NUZtasWaqjo6P6ww8/qEeOHFEHDRqkVqtWTU1NTVVVVVVTU1PVVq1aqY0aNVLPnDlToJ68vDxTPZX5uiyNdizKncm6XJNGJW3Lqv5ZWVptWVaflZLQVCA7duxQgULb0KFDVVVV1U8++UStUaOGamFhofr4+Khvvvmmmp2dXaieqVOnqjVq1FDz8/OLPM+1a9fUIUOGqPb29qq9vb06ZMgQ9caNG4/wnZW90mjLKVOmqJ6enqqFhYVat25d9eOPP1YNBoPp+MGDB9VWrVqpjo6OqpWVlVqvXj11+vTpRfZAVFRFtSGgLl++3FTGYDCo06dPV728vFS9Xq8GBQWpR44cMR0v7t8CUGNiYkzlKvN1WRrtWFy9f09o5Jo0KmlbVvXPytJqy7L6rFRuBS2EEEIIUWHJY9tCCCGEqPAkoRFCCCFEhScJjRBCCCEqPElohBBCCFHhSUIjhBBCiApPEhohhBBCVHiS0AghhBCiwpOERgghhBAVniQ0QgghhKjwJKERQgghRIUnCY0QQgghKrz/B+pH5cbGruBBAAAAAElFTkSuQmCC",
+      "text/plain": [
+       "<Figure size 640x480 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "ax = ceds_data.plot()\n",
+    "cams_data.plot(ax=ax)\n",
+    "emissions_NOx_road.plot(ax=ax)\n",
+    "NOx_hist_emissions[220:].plot(ax= ax)\n",
+    "ax.set_title('Yearly total road emissions of NOx')\n",
+    "ax.set_ylabel('Tg(N)/a')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "f2459ede-c166-4b93-bbf1-d2871e951910",
+   "metadata": {},
+   "source": [
+    "## NH3"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 115,
+   "id": "febfd5ef-20f2-46ad-a352-0206af7e59ee",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "cams_nh3_file = '/home/b/b309253/data-exploration/emissions/cams-glob-ant-anthro-nh3.csv'\n",
+    "cams_nh3_data = pd.read_csv(cams_nh3_file, sep=',')\n",
+    "cams_nh3_data.columns = ['Date', 'CAMS Road']\n",
+    "cams_nh3_data = cams_nh3_data.set_index(pd.date_range(\"1/1/2000\", periods=24, freq='Y')).drop(columns = ['Date'])"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 120,
+   "id": "31f6de82-eca3-4ed3-aabc-b6124d6033c6",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "ceds_nh3_file = '/home/b/b309253/data-exploration/emissions/ceds-anthro-nh3-yearly.csv'\n",
+    "ceds_nh3_data = pd.read_csv(ceds_nh3_file, sep=',')\n",
+    "ceds_nh3_data.columns = ['Date', 'CEDS tranport']\n",
+    "ceds_nh3_data = ceds_nh3_data.set_index(pd.date_range(\"1/1/1950\", periods=70, freq='Y')).drop(columns = ['Date'])"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 152,
+   "id": "f0c7b549-97d3-4f6e-bdcb-cb03896d2799",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "Text(0, 0.5, 'Tg(N)/a')"
+      ]
+     },
+     "execution_count": 152,
+     "metadata": {},
+     "output_type": "execute_result"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGxCAYAAABvIsx7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACkJUlEQVR4nOzdd1hT59vA8W/CCBtk7yEqDtxb6967tq7aOuqoVtu3VbvUttqptUPtcNVdrVpr9eeqSrXuvfcGQUQREJA9ct4/IqkIKCgYxv25rlwk5zznnDshkDvPVCmKoiCEEEIIUYqoDR2AEEIIIURhkwRHCCGEEKWOJDhCCCGEKHUkwRFCCCFEqSMJjhBCCCFKHUlwhBBCCFHqSIIjhBBCiFJHEhwhhBBClDqS4AghhBCi1JEERxRbXbt2xc7OjrCwsBz7YmJicHNzo2nTpmi12iKPJSQkBJVKxeLFiwvlfOfPn2fy5MmEhIQ89Tk2b97M5MmTnymOwYMH4+vr+0zneF58fX0ZPHiwocPQmzx5MiqVqtDPu3PnTlQqFTt37iz0cz9PaWlpjBw5Ejc3N4yMjKhVq1aeZQcPHoxKpaJatWpkZmbm2K9SqXjrrbf0j7P+Hr/77rtcz/fdd9+hUqmy/X2tWLGC5s2b4+Ligkajwd3dnW7durF///6nfo6ieJMERxRb8+fPx9jYmGHDhuXY99Zbb3H//n2WLFmCWl3y3sbnz5/ns88+e+YE57PPPiu8oESBDBs2jAMHDhT6eevUqcOBAweoU6dOoZ/7eZo9ezZz585l4sSJ7N27l99+++2Jx5w/f77QvkQ8Kjo6mqZNmzJr1iy2bdvGDz/8wJ07d2jevDm7du0qkmsKwzI2dABC5MXV1ZVZs2bRt29f5s6dy4gRIwBYu3YtK1asYNasWVSoUKFIY8jMzCQjI6NIr1FSJSUlYWFhYegwDMbT0xNPT89CP6+NjQ2NGjUq9PM+b2fPnsXc3DxbzcvjWFpaUqdOHSZNmkT//v0xNzcv1Hhyi6NTp044OTmxYMECWrRoUajXE4ZX8r76ijKlT58+9OvXj/fee4+QkBCio6MZOXIk7dq148033+To0aN0794de3t7zMzMqF27Nn/88Ue2c9y9e5dRo0ZRtWpVrKyscHZ2pnXr1uzZsydbuaxq72nTpvHll1/i5+eHRqPh33//zRHXnj17UKlUrFixIse+pUuXolKpOHLkSK7PafHixfTu3RuAVq1aoVKpcjR/LVy4kJo1a2JmZoa9vT09e/bkwoUL+v2DBw/ml19+AdAf/3CV/C+//ELz5s1xdnbG0tKS6tWrM23aNNLT05/8oueiZcuWBAYGsnv3bpo0aYKFhQVDhgwBIDQ0lNdeew1nZ2c0Gg1VqlTh+++/z9F0+Nlnn9GwYUPs7e2xsbGhTp06LFiwgEfX+01PT+eDDz7A1dUVCwsLXnjhBQ4fPpzvWNPS0vjyyy+pXLkyGo0GJycnXn/9de7evZutnK+vL127dmXjxo3Url0bc3NzqlSpwsaNGwHd76lKlSpYWlrSoEEDjh49mu343JqoduzYQcuWLXFwcMDc3Bxvb29efvllkpKS9GVmz55NzZo1sbKywtramsqVKzNhwgT9/ryaqNavX0/jxo2xsLDA2tqadu3a5ahByorp3LlzvPLKK9ja2uLi4sKQIUOIi4vLVnb16tU0bNgQW1tbLCwsKF++vP53+jgpKSmMHz8ePz8/TE1N8fDwYPTo0cTGxurLqFQq5s+fT3Jycq7v77x88803hIeHM3PmzCeWLQzW1taYmZlhbCzf9UslRYhiLjo6WnFzc1NatWql9OnTR7Gzs1PCwsKUHTt2KKampkqzZs2UVatWKVu2bFEGDx6sAMqiRYv0x1+8eFF58803lZUrVyo7d+5UNm7cqAwdOlRRq9XKv//+qy8XHBysAIqHh4fSqlUr5c8//1S2bdumBAcH6/c9fN7atWsrTZs2zRFv/fr1lfr16+f5fCIjI5Wvv/5aAZRffvlFOXDggHLgwAElMjJSURRFv++VV15RNm3apCxdulQpX768Ymtrq1y+fFlRFEW5evWq0qtXLwXQH3/gwAElJSVFURRFGTNmjDJ79mxly5Ytyo4dO5Tp06crjo6Oyuuvv54tlkGDBik+Pj5P/B20aNFCsbe3V7y8vJSffvpJ+ffff5Vdu3YpkZGRioeHh+Lk5KTMmTNH2bJli/LWW28pgPLmm29mO8fgwYOVBQsWKEFBQUpQUJDyxRdfKObm5spnn32WIyaVSqW8//77yrZt25QffvhB8fDwUGxsbJRBgwY9Ns7MzEylY8eOiqWlpfLZZ58pQUFByvz58xUPDw+latWqSlJSkr6sj4+P4unpqQQGBiorVqxQNm/erDRs2FAxMTFRPv30U6Vp06bKX3/9paxdu1apVKmS4uLiku34SZMmKQ//Cw0ODlbMzMyUdu3aKevWrVN27typLF++XBkwYIBy7949RVEUZcWKFQqgvP3228q2bduUf/75R5kzZ47yf//3f/rz/PvvvwqQ7b25fPlyBVDat2+vrFu3Tlm1apVSt25dxdTUVNmzZ0+OmAICApRPP/1UCQoKUn744QdFo9Fk+93v379fUalUSr9+/ZTNmzcrO3bsUBYtWqQMGDDgsa+vVqtVOnTooBgbGyuffPKJsm3bNuW7775TLC0tldq1a+vffwcOHFA6d+6smJub53h/52bQoEGKpaWloiiK0rNnT8XOzk6Jjo7W7weU0aNHZ3utAeWbb75R0tPTc9y++eYbBVCCg4NzXCsjI0NJS0tTgoODlTfeeEOxsrJSjh49+tjnLUomSXBEibB582YFUADlt99+UxRFUSpXrqzUrl1bSU9Pz1a2a9euipubm5KZmZnruTIyMpT09HSlTZs2Ss+ePfXbs/5p+vv7K2lpadmOyS3BWbRokQIoJ06c0G87fPiwAihLlix57PNZvXp1jg8xRVGUe/fuKebm5krnzp2zbQ8NDVU0Go3Sv39//bbRo0cr+fmOkpmZqaSnpytLly5VjIyMlJiYGP2+giQ4gLJ9+/Zs2z/66CMFUA4dOpRt+5tvvqmoVCrl0qVLj43p888/VxwcHBStVqsoiqJcuHBBAZQxY8ZkK5/1Af+kBCcrgVizZk227UeOHFEAZdasWfptPj4+irm5uXLz5k39tpMnTyqA4ubmpiQmJuq3r1u3TgGU9evX67c9muD8+eefCqCcPHkyz/jeeustxc7O7rHP4dEEJzMzU3F3d1eqV6+e7T19//59xdnZWWnSpEmOmKZNm5btnKNGjVLMzMz0r/N3332nAEpsbOxjY3nUli1bcj3/qlWrFECZN2+eftvDScuTPFz24sWLipGRkTJu3Dj9/rwSnCfdcktwAgIC9Pvd3NyUvXv3FuQlECWINFGJEqFTp040atSIihUr8tprr3H16lUuXrzIq6++CkBGRob+1rlzZyIiIrh06ZL++Dlz5lCnTh19dbSJiQnbt2/P1uyTpXv37piYmDwxpldeeQVnZ2d9UxHATz/9hJOTE3379n2q53ngwAGSk5NzjBby8vKidevWbN++PV/nOXHiBN27d8fBwQEjIyNMTEwYOHAgmZmZXL58+aliK1euHK1bt862bceOHVStWpUGDRpk2z548GAURWHHjh3ZyrZt2xZbW1t9TJ9++inR0dFERkYC6JsDs36vWfr06ZOvZoSNGzdiZ2dHt27dsr0natWqhaura45mn1q1auHh4aF/XKVKFUDXJPdw/6Ks7Tdu3Mjz2rVq1cLU1JQ33niDJUuWcP369RxlGjRoQGxsLK+88gr/+9//iIqKeuJzunTpErdu3WLAgAHZOtRbWVnx8ssvc/DgwWxNYKB7Dz+sRo0apKSk6F/n+vXrA7rX9Y8//iA8PPyJcQD63+ej78/evXtjaWmZ7/fn4wQEBDB06FB+/vlnQkNDH1v2nXfe4ciRIzlu77zzTp7HrFmzhkOHDrF69WqqVq1Kp06dSvyINZE7SXBEiaHRaDA1NQXgzp07ALz33nuYmJhku40aNQpA/+Hxww8/8Oabb9KwYUPWrFnDwYMHOXLkCB07diQ5OTnHddzc3PIdz4gRI/j999+JjY3l7t27/PHHHwwbNgyNRvNUzzE6OjrPGNzd3fX7Hyc0NJRmzZrp+zLs2bOHI0eO6BOx3J5zfuQWU3R0dJ6xZu0HOHz4MO3btwfg119/Zd++fRw5coSJEydmiymrvKura7bzGRsb4+Dg8MQY79y5Q2xsLKampjneF7dv386RUNjb22d7nPX+ymt7SkpKntf29/fnn3/+wdnZmdGjR+Pv74+/v3+2/iQDBgxg4cKF3Lhxg5dffhlnZ2caNmxIUFBQnud90ntCq9Vy7969bNsffa2y3o9Zr3Pz5s1Zt24dGRkZDBw4EE9PTwIDA3PtU/ZoLMbGxjg5OWXbrlKpcHV1zdf7Mz8mT56MkZERn3zyyWPLeXp6Uq9evRy3x3X+rlatGg0aNKBXr15s2bIFHx+fxyZEouSSnlWiRHJ0dARg/PjxvPTSS7mWCQgIAGDZsmW0bNmS2bNnZ9t///79XI8ryNwmb775JlOnTmXhwoWkpKSQkZHByJEj8338o7I+mCIiInLsu3Xrlv55P866detITEzkr7/+wsfHR7/95MmTTx0X5P66ODg45Bkr/Pd7WrlyJSYmJmzcuBEzM7NssT56PoDbt29nq1nJyMjI14eno6MjDg4ObNmyJdf91tbWTzzHs2jWrBnNmjUjMzOTo0eP8tNPP/Huu+/i4uJCv379AHj99dd5/fXXSUxMZPfu3UyaNImuXbty+fLlbL+vLE96T6jVasqVK1fgWHv06EGPHj1ITU3l4MGDTJkyhf79++Pr60vjxo1zPcbBwYGMjAzu3r2bLclRFIXbt2/ra4aelZubG++++y5Tp05l3LhxhXLO3BgbG1OnTp0cAxNE6SA1OKJECggIoGLFipw6dSrXb3D16tXTf5ipVKocNSqnT58ulDlM3Nzc6N27N7NmzWLOnDl069YNb2/vJx736DfqLI0bN8bc3Jxly5Zl237z5k127NhBmzZtnniOrETk4eesKAq//vprAZ5Z/rRp04bz589z/PjxbNuzRpK1atVKH5OxsTFGRkb6MsnJyTnmRmnZsiUAy5cvz7b9jz/+yNdw/a5duxIdHU1mZmau74mspLeoGRkZ0bBhQ32t2aOvD+iGRXfq1ImJEyeSlpbGuXPncj1XQEAAHh4e/P7779lGnCUmJrJmzRr9yKqnpdFoaNGiBd988w2ga97MS9b779H355o1a0hMTMz2/nxWH374Ifb29nz00UeFds5HpaSkcPDgwSKfbkIYhtTgiBJr7ty5dOrUiQ4dOjB48GA8PDyIiYnhwoULHD9+nNWrVwO6D70vvviCSZMm0aJFCy5dusTnn3+On59focxx884779CwYUMAFi1alK9jAgMDAZg3b55+qKqfnx8ODg588sknTJgwgYEDB/LKK68QHR3NZ599hpmZGZMmTdKfo3r16oBuaG2nTp0wMjKiRo0atGvXDlNTU1555RU++OADUlJSmD17do5mjMIwZswYli5dSpcuXfj888/x8fFh06ZNzJo1izfffJNKlSoB0KVLF3744Qf69+/PG2+8QXR0NN99912OxLNKlSq89tprzJgxAxMTE9q2bcvZs2f57rvvsLGxeWI8/fr1Y/ny5XTu3Jl33nmHBg0aYGJiws2bN/n333/p0aMHPXv2LPTXAXT9vHbs2EGXLl3w9vYmJSWFhQsXAtC2bVsAhg8fjrm5OU2bNsXNzY3bt28zZcoUbG1t86z9UKvVTJs2jVdffZWuXbsyYsQIUlNT+fbbb4mNjWXq1KkFjvXTTz/l5s2btGnTBk9PT2JjY5k5cyYmJiaPnQ+mXbt2dOjQgQ8//JD4+HiaNm3K6dOnmTRpErVr12bAgAEFjiUvNjY2TJw4kTFjxhTK+Zo0aUL37t2pUqUKtra2hISEMHv2bK5du8batWsL5RqimDFsH2ch8q9FixZKtWrVsm07deqU0qdPH8XZ2VkxMTFRXF1dldatWytz5szRl0lNTVXee+89xcPDQzEzM1Pq1KmjrFu3LscIoqyRGd9++22Oa+c2iuphvr6+SpUqVQr0fGbMmKH4+fkpRkZGOc49f/58pUaNGoqpqalia2ur9OjRQzl37ly241NTU5Vhw4YpTk5OikqlyjZqZMOGDUrNmjUVMzMzxcPDQ3n//feVv//+O8fIrYKMonr0tc9y48YNpX///oqDg4NiYmKiBAQEKN9++22OUWwLFy5UAgICFI1Go5QvX16ZMmWKsmDBghyjXVJTU5Vx48Ypzs7OipmZmdKoUSPlwIEDio+PzxNHUSmKoqSnpyvfffed/vlbWVkplStXVkaMGKFcuXJFX87Hx0fp0qVLjuN5ZMSOouT+3nh0FNWBAweUnj17Kj4+PopGo1EcHByUFi1aZBt5tWTJEqVVq1aKi4uLYmpqqri7uyt9+vRRTp8+rS+T2zBxRdGN5GrYsKFiZmamWFpaKm3atFH27duXrUxWTHfv3s22PWvEX9brvHHjRqVTp06Kh4eHYmpqqjg7OyudO3fONuQ8L8nJycqHH36o+Pj4KCYmJoqbm5vy5ptv6ofCZ3naUVQPS01NVfz8/PIcRZXb36qiKMq3336b4301btw4pWbNmoqtra1ibGysuLq6Kj179szxGorSQ6Uoj8yyJYQokNOnT1OzZk1++eUXfQdnIYQQhiUJjhBP6dq1a9y4cYMJEyYQGhrK1atXy/TSBUIIUZxIJ2MhntIXX3xBu3btSEhIYPXq1ZLcCCFEMSI1OEIIIYQodaQGRwghhBCljiQ4QgghhCh1JMERQgghRKlT5ib602q13Lp1C2tr6wJNyS+EEEIIw1EUhfv37+Pu7p5t4dm8lLkE59atW3h5eRk6DCGEEEI8hbCwsMcuqJqlzCU4WesThYWF5WvqdyGEEEIYXnx8PF5eXvleNLfMJThZzVI2NjaS4AghhBAlTH67l0gnYyGEEEKUOpLgCCGEEKLUkQRHCCGEEKVOmeuDkx+KopCRkUFmZqahQxElnJGREcbGxjIlgRBCPGeS4DwiLS2NiIgIkpKSDB2KKCUsLCxwc3PD1NTU0KEIIUSZIQnOQ7RaLcHBwRgZGeHu7o6pqal88xZPTVEU0tLSuHv3LsHBwVSsWDFfk1MJIYR4dpLgPCQtLQ2tVouXlxcWFhaGDkeUAubm5piYmHDjxg3S0tIwMzMzdEhCCFEmyNfJXMi3bFGY5P0khBDPn/znFUIIIUSpIwmOEEIIIUodSXCEEEIIUepIglOK3L59m7fffpvy5cuj0Wjw8vKiW7dubN++XV/G19cXlUqV4zZ16lQAQkJCsm23tramWrVqjB49mitXrmS7XmZmJlOmTKFy5cqYm5tjb29Po0aNWLRoUZ4xLl68GDs7uyJ5/oYwePBgXnzxRUOHIYQQ4hEyiqqUCAkJoWnTptjZ2TFt2jRq1KhBeno6W7duZfTo0Vy8eFFf9vPPP2f48OHZjn90ddZ//vmHatWqkZSUxJkzZ5g5cyY1a9Zkw4YNtGnTBoDJkyczb948fv75Z+rVq0d8fDxHjx7l3r17z/x80tLSivW8MZmZmTKFwKPuXoaza8C5Cng1BBs3Q0ckhCjLlDImLi5OAZS4uLgc+5KTk5Xz588rycnJ+m1arVZJTE03yE2r1eb7eXXq1Enx8PBQEhIScuy7d++e/r6Pj48yffr0PM8THBysAMqJEyeybc/MzFRatmyp+Pj4KBkZGYqiKErNmjWVyZMn5zvGf//9VwGy3SZNmqSP64svvlAGDRqk2NjYKAMHDlQURVE++OADpWLFioq5ubni5+enfPzxx0paWpr+nJMmTVJq1qypLF26VPHx8VFsbGyUvn37KvHx8foyLVq0UEaPHq2MHj1asbW1Vezt7ZWJEydme31jYmKUAQMGKHZ2doq5ubnSsWNH5fLly/r9ixYtUmxtbZUNGzYoVapUUYyMjJSBAwfmeD7//vtvjued2/uq1NFqFWVOM0WZZPPfbXqgohyco9snhBDP6HGf37mRGpwnSE7PpOqnWw1y7fOfd8DC9Mm/opiYGLZs2cJXX32FpaVljv2F0SSkVqt555136NmzJ8eOHaNBgwa4urqyY8cORo0ahZOT0xPP0aRJE2bMmMGnn37KpUuXALCystLv//bbb/nkk0/4+OOP9dusra1ZvHgx7u7unDlzhuHDh2Ntbc0HH3ygL3Pt2jXWrVvHxo0buXfvHn369GHq1Kl89dVX+jJLlixh6NChHDp0iKNHj/LGG2/g4+Ojr8kaPHgwV65cYf369djY2PDhhx/SuXNnzp8/j4mJCQBJSUlMmTKF+fPn4+DggKurKykpKcTHx+ub5ezt7Z/hVS7Bbh2HiFNgZAqOARB5DmJD4e8P4Op2eHEWWDoaOkohRBkifXBKgatXr6IoCpUrV85X+Q8//BArK6tst507dz7xuKzzh4SEAPDDDz9w9+5dXF1dqVGjBiNHjuTvv//O83hTU1NsbW1RqVS4urri6uqaLcFp3bo17733HhUqVKBChQoAfPzxxzRp0gRfX1+6devGuHHj+OOPP7KdV6vVsnjxYgIDA2nWrBkDBgzI1u8IwMvLi+nTpxMQEMCrr77K22+/zfTp0wH0ic38+fNp1qwZNWvWZPny5YSHh7Nu3Tr9OdLT05k1axZNmjQhICAAW1tbzM3N0Wg0+udTnJvVitSRhbqf1V6CN/fChzeg0zQw0sCVrTC7KVzeCopi2DiFEGWG1OA8gbmJEec/72Cwa+eH8uBDI799Qt5//30GDx6cbZuHh0eBr1O1alXOnj3LsWPH2Lt3L7t376Zbt24MHjyY+fPn5yuWh9WrVy/Htj///JMZM2Zw9epVEhISyMjIwMbGJlsZX1/fbH2I3NzciIyMzFamUaNG2V6fxo0b8/3335OZmcmFCxcwNjamYcOG+v0ODg4EBARw4cIF/TZTU1Nq1KhR4OdV6iXf0/W9Aag3RPfTzAYajgDfF+DPIXD3IvzeB5yrQqM3oXpvMDE3XMxCiFJPanCeQKVSYWFqbJBbfhOWihUrolKpsn0YP46jo6O+liTrZm7+5A+brPP7+fnpt6nVaurXr8+YMWNYu3YtixcvZsGCBQQHB+crloc92rx28OBB+vXrR6dOndi4cSMnTpxg4sSJpKWlZSuX1YSURaVSodVq831dJY9aBUVRsv0OzM3NpWNxbk6tgoxkcAkErwbZ97lUg+H/QuO3wMQSIs/D+rfhh6qw7ROIKfj7RAgh8kMSnFLA3t6eDh068Msvv5CYmJhjf2xs7DNfQ6vV8uOPP+Ln50ft2rXzLFe1alWAXOMAXS1IZmZmvq65b98+fHx8mDhxIvXq1aNixYrcuHGj4MGjS5YefVyxYkWMjIyoWrUqGRkZHDp0SL8/Ojqay5cvU6VKlceetyDPp1RSFDj6oHmq3uuQWwJoagEdvoKx56H9l2DrDckxsP9H+LE2/PYS7PwGTq2EGwcgLff3jhBCFIQ0UZUSWX1DGjRowOeff06NGjXIyMggKCiI2bNnZ6vduX//Prdv3852vIWFRbamn+joaG7fvk1SUhJnz55lxowZHD58mE2bNmFkpGs669WrF02bNqVJkya4uroSHBzM+PHjqVSpUp79gXx9fUlISGD79u3UrFkTCwuLPBc2rVChAqGhoaxcuZL69euzadMm1q5d+1SvT1hYGGPHjmXEiBEcP36cn376ie+//x7Q1YD16NGD4cOHM3fuXKytrfnoo4/w8PCgR48ejz2vr68vW7du5dKlSzg4OGBra5ujRqlUu7EPoi6BqRXU6Pv4suZ20ORtaPimrl/OkQVwbft/tyyWTtBhClTvlXvCJIQQ+SA1OKWEn58fx48fp1WrVowbN47AwEDatWvH9u3bmT17drayn376KW5ubtluD49KAmjbti1ubm5Ur16djz76iCpVqnD69GlatWqlL9OhQwc2bNhAt27dqFSpEoMGDaJy5cps27YNY+Pcc+cmTZowcuRI+vbti5OTE9OmTcvzOfXo0YMxY8bw1ltvUatWLfbv388nn3zyVK/PwIEDSU5OpkGDBowePZq3336bN954Q79/0aJF1K1bl65du9K4cWMURWHz5s1PTFaGDx9OQEAA9erVw8nJiX379j1VfCXWkQW6n9V7g8b68WWzGBlD5S4w4C94+zi0+RRqvwa+zcDSGRLvwl/D4LeeEH2t6GIXQpRqKiWvDgilVHx8PLa2tsTFxeXorJqSkkJwcDB+fn6YmZkZKEJR2Fq2bEmtWrWYMWOGQa5fKt9XaYmwZTwcX6J7PGIPuBVCB+yMVNj3I+z+FjJTQaXWdVSu1hOqdJeh5kKUYY/7/M6NNFEJIQom4hT8ORSirwAqaDm+cJIbAGMNtHgfAl+Cvz+Eq0EQvFt32zQO3GqCT1NdbY93I12zlxBC5EISHCFE/oXsg99ehMw0sHaDnnOhfIvCv46DP7z2J9wLgXPr4NxaiDgJt07obgd+BjM7+CAY1NLSLoTISRIcUerlZxJDkQ9JMfDXcF1yU6EtvPQrWBTxzM3lfOGFd3W3uHBdp+aQvbqbQwVJboQQeZIERwjxZIqim78mPlyXWPReAhqrJx9XmGw9oEYf3Q0gPeX5Xl8IUaLI1x8hxJMdXQAXN+rWmuq18PknN7kxKSUdtoUQRUJqcIQQkJkBOz4HtTFU6QZutXRz0KTEwZUg2DpRV67tZ7qOvkIIUcwZvAZn1qxZ+uGzdevWZc+ePXmWHTx4MCqVKsetWrVqzzFiIUqhixth30zY8z3Mawkza8D8dvCNH6wZChkpULG9bh0pIYQoAQya4KxatYp3332XiRMncuLECZo1a0anTp0IDQ3NtfzMmTOJiIjQ38LCwrC3t6d3797POXIhSpnLW3U/y/mBiQXEhsLNw6BkgkNF3VpSL/0qMwsLIUoMgzZR/fDDDwwdOpRhw4YBMGPGDLZu3crs2bOZMmVKjvK2trbY2trqH69bt4579+7x+uuv53mN1NRUUlNT9Y/j4+ML8RkIUQpotbr5ZgC6/wge9XRLJ6TEg18zsPM2bHxCCPEUDFaDk5aWxrFjx2jfvn227e3bt2f//v35OseCBQto27YtPj4+eZaZMmWKPjGytbXFy8vrmeIWJV9ISAgqlYqTJ08aOpTi4dYJ3fIIGhvwbqxbHLNKN6j9qiQ3QogSy2AJTlRUFJmZmbi4uGTb7uLikmMhyNxERETw999/62t/8jJ+/Hji4uL0t7CwsGeKuzi7ffs2b7/9NuXLl0ej0eDl5UW3bt3Yvn17jrJff/01RkZGTJ06Nce+xYsXo1Kpcl1J+48//kClUuHr66vflpmZyZQpU6hcuTLm5ubY29vTqFEjFi1alGesO3fuzNaPysHBgdatW5e9tZyKgysPmqf8W4FRGVooVAhRqhm8k7HqkTZ9RVFybMvN4sWLsbOz48UXX3xsOY1Gg42NTbZbaRQSEkLdunXZsWMH06ZN48yZM2zZsoVWrVoxevToHOUXLVrEBx98wMKFC3M9n6WlJZGRkRw4cCDb9oULF+Ltnf1b/eTJk5kxYwZffPEF58+f599//2X48OHcu3fviXFfunSJiIgIdu7ciZOTE126dCEyMrIAz1w8s8tbdD8rdjBsHEIIUYgMluA4OjpiZGSUo7YmMjIyR63OoxRFYeHChQwYMABTU9OiDFM3wVlaomFuBVgHddSoUahUKg4fPkyvXr2oVKkS1apVY+zYsRw8eDBb2V27dpGcnMznn39OYmIiu3fvznE+Y2Nj+vfvny0BunnzJjt37qR///7Zym7YsIFRo0bRu3dv/Pz8qFmzJkOHDmXs2LFPjNvZ2RlXV1eqV6/Oxx9/TFxcHIcOHcoWa4MGDdBoNLi5ufHRRx+RkZGh379lyxZeeOEF7OzscHBwoGvXrly7ln0F6sOHD1O7dm3MzMyoV68eJ06ceGJcZcb927q1pQAqtjNsLEIIUYgM1snY1NSUunXrEhQURM+ePfXbg4KC6NGjx2OP3bVrF1evXmXo0KFFHSakJ8HX7kV/ndxMuAWmlk8sFhMTw5YtW/jqq6+wtMxZ3s7OLtvjBQsW8Morr2BiYsIrr7zCggULaN68eY7jhg4dSvPmzZk5cyYWFhYsXryYjh075khAXV1d2bFjB6NGjcLJyalgz/GBpKQkfZOWiYmumSQ8PJzOnTszePBgli5dysWLFxk+fDhmZmZMnjwZgMTERMaOHUv16tVJTEzk008/pWfPnpw8eRK1Wk1iYiJdu3aldevWLFu2jODgYN55552nirFUurJN99O9Dlg5GzYWIYQoRAYdRTV27FgGDBhAvXr1aNy4MfPmzSM0NJSRI0cCuv4z4eHhLF26NNtxCxYsoGHDhgQGBhoi7GLn6tWrKIpC5cqVn1g2Pj6eNWvW6Dtyv/baazRt2pSffvopR/NdrVq18Pf3588//2TAgAEsXryYH374gevXr2cr98MPP9CrVy9cXV2pVq0aTZo0oUePHnTq1OmJ8Xh6egK6BEdRFOrWrUubNm0A3RxJXl5e/Pzzz6hUKipXrsytW7f48MMP+fTTT1Gr1bz88svZzrdgwQKcnZ05f/48gYGBLF++nMzMTBYuXIiFhQXVqlXj5s2bvPmmzOcC/Dc8vJI0TwkhSheDJjh9+/YlOjqazz//nIiICAIDA9m8ebN+VFRERESOOXHi4uJYs2YNM2fOfD5BmljoalIMwcQiX8WUB01Z+em79Pvvv1O+fHlq1tTNRlurVi3Kly/PypUreeONN3KUHzJkCIsWLcLb25uEhAQ6d+7Mzz//nK1M1apVOXv2LMeOHWPv3r3s3r2bbt26MXjwYObPn//YePbs2YOlpSUnTpzgww8/ZPHixfoanAsXLtC4ceNsz6tp06YkJCRw8+ZNvL29uXbtGp988gkHDx4kKioKrVYLQGhoKIGBgVy4cIGaNWtiYfHfa9m4ceMnvk5lQkYqXN+pu1+x/WOLCiFESWPwpRpGjRrFqFGjct23ePHiHNtsbW1JSkoq4qgeolLlq5nIkCpWrIhKpeLChQtP7HS9cOFCzp07h7Hxf796rVbLggULck1wXn31VT744AMmT57MwIEDsx33MLVaTf369alfvz5jxoxh2bJlDBgwgIkTJ+Ln55dnPH5+ftjZ2VGpUiVSUlLo2bMnZ8+eRaPR5Nrh/NFkrlu3bnh5efHrr7/i7u6OVqslMDCQtLS0bOVFLm7sh7QEsHTWLc0ghBCliMFHUYlnZ29vT4cOHfjll19ITEzMsT82NhaAM2fOcPToUXbu3MnJkyf1t927d3PkyBHOnj2b67m7d+/Orl27GDJkSL5jqlq1KkCu8eRlwIABaLVaZs2apT/H/v37syUp+/fvx9raGg8PD6Kjo7lw4QIff/wxbdq0oUqVKjlGblWtWpVTp06RnJys3/Zop+sy6+Tvup8V24Na/hUIIUoX+a9WSsyaNYvMzEwaNGjAmjVruHLlChcuXODHH3/UN8ksWLCABg0a0Lx5cwIDA/W3F154gcaNG7NgwYJcz7148WKioqLy7OPTq1cvpk+fzqFDh7hx4wY7d+5k9OjRVKpUKV/9grKo1Wreffddpk6dSlJSEqNGjSIsLIy3336bixcv8r///Y9JkyYxduxY1Go15cqVw8HBgXnz5nH16lV27NiRY+RW//79UavVDB06lPPnz7N582a+++67fMdUakWcgjN/6O7Xfw6d9YUQ4jmTBKeU8PPz4/jx47Rq1Ypx48YRGBhIu3bt2L59O7NnzyYtLY1ly5bl6JSb5eWXX2bZsmX6pp2HmZub4+DgkOe1O3TowIYNG+jWrRuVKlVi0KBBVK5cmW3btuXZpJWXIUOGkJ6ezs8//4yHhwebN2/m8OHD1KxZk5EjRzJ06FA+/vhjQJcQrVy5kmPHjhEYGMiYMWP49ttvs53PysqKDRs2cP78eWrXrs3EiRP55ptvChRTqaMosO0T3f3AXuBRx7DxCCFEEVApZayTQnx8PLa2tsTFxeUYNZSSkkJwcLB+dXMhCkOxe19dCYLlvcDIFN46CuXyXupECCGKi8d9fudGanCEKEu0mRD0qe5+gzckuRFClFqS4AhRlpxcDpHnwcwOmr9n6GiEEKLISIIjRFkRdeW/vjfN3wfzcoaNRwghipAkOEKUBYnRsLw3pMSCZ31oMNzQEQkhRJGSBEeI0i49BVb2h3vBYOcD/VaAscbQUQkhRJGSBEeI0kxRYP3bEHYQNLbw6mqweroFUYUQoiSRBEeI0iz0oG5CP7Ux9F0KTgGGjkgIIZ4LSXCEKM1OLtf9rNEPyrc0aChCCPE8SYIjRGmVlgTn1unu1+pv0FCEEOJ5kwRHiNLq4kZIuw/lfMG7saGjEUKI50oSnFIkMjKSESNG4O3tjUajwdXVlQ4dOnDgwAEATpw4QdeuXXF2dsbMzAxfX1/69u1LVFQUACEhIahUKv2tXLlyNG/enF27dumvsXv3brp164a7uzsqlYp169bliOOvv/6iQ4cOODo6olKpOHnyZI4y165do2fPnjg5OWFjY0OfPn24c+dOkbwuZVZW81TNV2S1cCFEmSP/9UqRl19+mVOnTrFkyRIuX77M+vXradmyJTExMURGRtK2bVscHR3ZunUrFy5cYOHChbi5uZGUlJTtPP/88w8RERHs2rULGxsbOnfuTHBwMACJiYnUrFmTn3/+Oc84EhMTadq0KVOnTs1zf/v27VGpVOzYsYN9+/aRlpZGt27d0Gq1hfeClGVxN+H6g8S0Zj/DxiKEEAZQsKWeyyBFUUjOSDbItc2NzVGpVPkqGxsby969e9m5cyctWrQAwMfHhwYNGgCwbt064uPjmT9/vn6Fbz8/P1q3bp3jXA4ODri6uuLq6srcuXPx9PRk27ZtjBgxgk6dOtGpU6fHxjJgwABAVyOUm3379hESEsKJEyf0C6YtWrQIe3t7duzYQdu2bfP1nMVjnFoJKODzgq6JSgghyhhJcJ4gOSOZhr83NMi1D/U/hIWJRb7KWllZYWVlxbp162jUqBEaTfaJ3FxdXcnIyGDt2rX06tUr34mThYXu+unp6QUL/jFSU1NRqVTZYjQzM0OtVrN3715JcJ6VosCpFbr70rlYCFFGSRNVKWFsbMzixYtZsmQJdnZ2NG3alAkTJnD69GkAGjVqxIQJE+jfvz+Ojo506tSJb7/99rH9XhITExk/fjxGRkb6WqHC0KhRIywtLfnwww9JSkoiMTGR999/H61WS0RERKFdp8y6eQSir4KJBVTtbuhohBDCIKQG5wnMjc051P+Qwa5dEC+//DJdunRhz549HDhwgC1btjBt2jTmz5/P4MGD+eqrrxg7diw7duzg4MGDzJkzh6+//prdu3dTvXp1/XmaNGmCWq0mKSkJNzc3Fi9enG3/s3JycmL16tW8+eab/Pjjj6jVal555RXq1KmDkZFRoV2nzDr8q+5n1R6gsTZsLEIIYSCS4DyBSqXKdzNRcWBmZka7du1o164dn376KcOGDWPSpEkMHjwY0PWv6d27N71792bKlCnUrl2b7777jiVLlujPsWrVKqpWrYqdnR0ODg5FEmf79u25du0aUVFRGBsbY2dnh6urK35+fkVyvTIjNgzOrtHdbzjSsLEIIYQBSRNVKVe1alUSExNz3Wdqaoq/v3+O/V5eXvj7+xdZcvMwR0dH7Ozs2LFjB5GRkXTvLk0qz+TQHFAywa85uNcydDRCCGEwUoNTSkRHR9O7d2+GDBlCjRo1sLa25ujRo0ybNo0ePXqwceNGVq5cSb9+/ahUqRKKorBhwwY2b97MokWL8n2dhIQErl69qn8cHBzMyZMnsbe3x9vbG4CYmBhCQ0O5desWAJcuXQLQj8wC3aipKlWq4OTkxIEDB3jnnXcYM2YMAQGyVtJTS46FY4t195v8nyEjEUIIg5MEp5SwsrKiYcOGTJ8+nWvXrpGeno6XlxfDhw9nwoQJREREYGFhwbhx4wgLC0Oj0VCxYkXmz5+vH9adH0ePHqVVq1b6x2PHjgVg0KBBLF68GID169fz+uuv68v066ebh2XSpElMnjwZ0CU948ePJyYmBl9fXyZOnMiYMWOe8VUo444thrQEcK4KFWQkmhCibFMpiqIYOojnKT4+HltbW+Li4vRzsGRJSUkhODgYPz8/zMzMDBShKG2ey/sqIw1m1oD7EdBjFtR+tWiuI4QQBvK4z+/cSB8cIUqDM6t1yY21G1TvbehohBDC4CTBEaI0OPagH1XDEWBsathYhBCiGJAER4iSLikGwo/p7lfvY9hYhBCimJAER4iSLng3KFpwqgy2HoaORgghigVJcIQo6a7t0P30z7lwqhBClFWS4AhRkikKXPtXd18SHCGE0JMER4iSLPoaxIWCkSn4NDF0NEIIUWxIgiNESZbVPOXdCEwtDRuLEEIUI5LgCFGSXZfmKSGEyI0kOEKUVJnpuhFUIAmOEEI8QhKcUiQyMpIRI0bg7e2NRqPB1dWVDh06cODAAQBOnDhB165dcXZ2xszMDF9fX/r27UtUVBQAISEhqFQq/a1cuXI0b96cXbt26a8xZcoU6tevj7W1Nc7Ozrz44ov6xTRzM2LECFQqFTNmzMi2vWXLltmupVKp9GtWiXy6eUS39pSFI7hUN3Q0QghRrBg8wZk1a5Z+jZ66deuyZ8+ex5ZPTU1l4sSJ+Pj4oNFo8Pf3Z+HChc8p2uLt5Zdf5tSpUyxZsoTLly+zfv16WrZsSUxMDJGRkbRt2xZHR0e2bt3KhQsXWLhwIW5ubiQlJWU7zz///ENERAS7du3CxsaGzp07ExwcDMCuXbsYPXo0Bw8eJCgoiIyMDNq3b09iYmKOeNatW8ehQ4dwd3fPNd7hw4cTERGhv82dO7fwX5TSTD88vBWoDf6nLIQQxYpBVxNftWoV7777LrNmzaJp06bMnTuXTp06cf78eby9vXM9pk+fPty5c4cFCxZQoUIFIiMjycjIKLIYFUVBSU4usvM/jsrcHJVKla+ysbGx7N27l507d9KiRQsAfHx8aNCgAaBLNuLj45k/fz7Gxrpfu5+fH61b52zacHBwwNXVFVdXV+bOnYunpyfbtm1jxIgRbNmyJVvZRYsW4ezszLFjx2jevLl+e3h4OG+99RZbt26lS5cuucZsYWGBq6trvp6fyIXMfyOEEHkyaILzww8/MHToUIYNGwbAjBkz2Lp1K7Nnz2bKlCk5ym/ZsoVdu3Zx/fp17O3tAfD19S3SGJXkZC7VqVuk18hLwPFjqCws8lXWysoKKysr1q1bR6NGjdBoNNn2u7q6kpGRwdq1a+nVq1e+EyeLB9dPT0/PdX9cXByA/vcBoNVqGTBgAO+//z7VqlXL89zLly9n2bJluLi40KlTJyZNmoS1tXW+4irzkmMh/LjufvlWBg1FCCGKI4PVa6elpXHs2DHat2+fbXv79u3Zv39/rsesX7+eevXqMW3aNDw8PKhUqRLvvfceyY+pYUlNTSU+Pj7brTQyNjZm8eLFLFmyBDs7O5o2bcqECRM4ffo0AI0aNWLChAn0798fR0dHOnXqxLfffsudO3fyPGdiYiLjx4/HyMhIXyv0MEVRGDt2LC+88AKBgYH67d988w3Gxsb83//9X57nfvXVV1mxYgU7d+7kk08+Yc2aNbz00kvP8AqUMTePAgrYlwcbN0NHI4QQxY7BanCioqLIzMzExcUl23YXFxdu376d6zHXr19n7969mJmZsXbtWqKiohg1ahQxMTF59sOZMmUKn3322VPHqTI3J+D4sac+/lmozM0LVP7ll1+mS5cu7NmzhwMHDrBlyxamTZvG/PnzGTx4MF999RVjx45lx44dHDx4kDlz5vD111+ze/duqlf/r5NqkyZNUKvVJCUl4ebmxuLFi7Ptz/LWW29x+vRp9u7dq9927NgxZs6cyfHjxx9bSzR8+HD9/cDAQCpWrEi9evU4fvw4derUKdDzLpNuHtb99Gxg2DiEEKK4UgwkPDxcAZT9+/dn2/7ll18qAQEBuR7Trl07xczMTImNjdVvW7NmjaJSqZSkpKRcj0lJSVHi4uL0t7CwMAVQ4uLicpRNTk5Wzp8/ryQnJz/DMytehg4dqnh7e+e6LzU1ValataoycOBARVEUJTg4WAGU9evXK1evXlWioqLyPO9bb72leHp6KtevX8+2ffr06YpKpVKMjIz0N0BRq9WKj49PnufTarWKiYmJsnLlyoI/yWKuSN5XS3ooyiQbRTn8a+GdUwghirG4uLg8P79zY7AaHEdHR4yMjHLU1kRGRuao1cni5uaGh4cHtra2+m1VqlRBURRu3rxJxYoVcxyj0Why9EcpS6pWrcq6dety3Wdqaoq/v3+OEVBeXl74+/vneoyiKLz99tusXbuWnTt34ufnl23/gAEDaNu2bbZtHTp0YMCAAbz++ut5xnnu3DnS09Nxc5PmlifSaiH8Qa2i1OAIIUSuDJbgmJqaUrduXYKCgujZs6d+e1BQED169Mj1mKZNm7J69WoSEhKwsrIC4PLly6jVajw9PZ9L3MVVdHQ0vXv3ZsiQIdSoUQNra2uOHj3KtGnT6NGjBxs3bmTlypX069ePSpUqoSgKGzZsYPPmzSxatCjf1xk9ejS///47//vf/7C2ttYnqLa2tpibm+Pg4ICDg0O2Y0xMTHB1dSUgIACAa9eusXz5cjp37oyjoyPnz59n3Lhx1K5dm6ZNmxbei1Ja3b0IqfFgYgnOVQ0djRBCFEsGHUU1duxYBgwYQL169WjcuDHz5s0jNDSUkSNHAjB+/HjCw8NZunQpAP379+eLL77g9ddf57PPPiMqKor333+fIUOGYF7A/iqljZWVFQ0bNmT69Olcu3aN9PR0vLy8GD58OBMmTCAiIgILCwvGjRtHWFgYGo2GihUrMn/+fAYMGJDv68yePRvQTdT3sEWLFjF48OB8ncPU1JTt27czc+ZMEhIS8PLyokuXLkyaNAkjI6N8x1Jm3Tyi++lRB4wM+icshBDFlkH/O/bt25fo6Gg+//xzIiIiCAwMZPPmzfj4+AAQERFBaGiovryVlRVBQUG8/fbb1KtXDwcHB/r06cOXX35pqKdQbGg0GqZMmZLr8HqA8uXLM2/evMeew9fXF0VRHlvmSftzExISku2xl5dXttmRRQHpOxjXN2wcolTLzNCCCoyMZBJJUTKplKf5xCrB4uPjsbW1JS4uDhsbm2z7UlJSCA4O1s+sLERhKPT31c8NIOoSvLISAjo9+/lEmZSWksH9mBTuR6eQEJPC/ZgU4qP/e5wYn4axsRrPKvb41XTEJ9ABS9uy259RGN7jPr9zI/XbQpQkyfd0yQ1IDY7Ik6IopCSk6xKYB0nMoz9Tk548A3xGupaQ01GEnNatV+fiZ4NvdUf8ajpi726Z7wlDhTAESXCEKEluPhg9ZV8eLB0NG4swGK1WITE29b8amHs5k5iMNO0Tz6OxMMbK3gxrezOsHR78fOh+Unwqwad0CU7kjfvcCY7nTnA8h9Zfx9reDN8ajvjVcMS9kh1GxtKUJYoXSXCEKEmk/02ZoM3U6pqLshKWh5qR7sekkBCTilb75N4FFjamuSYuWT9NzR//EWBhY4qjpzX1u/iRGJtKyBldshN28R73Y1I4s/MmZ3bexMTMCO+qDvjVcMAn0BEzK5PCeimEeGqS4AhRkoRJglPahV++x/bFF7gfk/LYcmq1CstymlwTF2t7M6zsNRibFN6oREs7DdWaeVCtmQfpaZncvBBDyOkogs9EkxyfxrXjkVw7HolKBa7+tvjVcMKvpiN2LvlbT0+IwiYJjhAlxcMT/HnJBH+lTWamlsMbgjm+9QYoYGyi1icsVrnUwljaaVCrDdMHxsTUCL+aTvjVdKKlVuHOjXh9X53o8EQirsYRcTWO/X9dxc7F4kFTlgOu5W1Ry6gs8ZxIgiNESZFtgr+8V2kXJU/snSSCFp4j8sZ9AKo0deOF3hUxNSv+/6JVahWufra4+tnSqIc/8VHJhJyJJuT0XcIvxxJ7J4mTQaGcDApFY2mMT6ADvtUd8anm8MQmMiGehby7hCgpQg/ofsoEf6WGoihc2B/Bnj+ukJGaicbCmFavVca/jrOhQ3tqNo7m1GjlSY1WnqQlZxB6XteUFXI2itTEDC4fusPlQ3dQG6lwr2iHX01HfKs7YuNYtidrFYVP/ksKUVJc3a776dfCsHGIQpGSmM7O5Ze4djwSAI9KdrQZXBVr+9IzB5epuTEV6jpToa4z2kwtt6/HE/ygKSv2ThI3L97j5sV77Fl1BQcPS3xrOOJbwxEXHxtUBmp+E6WHJDhClAQZaRD8YPbnim0fX1YUe+GX7/HPovMk3EtFrVbRoLsftdv7GKxPzfOgNlLjXtEO94p2NH25AvduJxJyOpqQM1FEXI0lOjyR6PBEjv19A3MbU3yrO+BXwxHPKvaYmMoSLqLgpLdXKRIZGcmIESPw9vZGo9Hg6upKhw4dOHBA17Rx4sQJunbtirOzM2ZmZvj6+tK3b1+ionSTeIWEhKBSqfS3cuXK0bx582zLKsyePZsaNWpgY2ODjY0NjRs35u+//84Wx8PnePj27bff6sukpqby9ttv4+joiKWlJd27d+fmzZvP4VUqoUIPQFoCWDqBa01DRyOeUmamloPrrrFu+gkS7qVi62TOSx/UpW5H31Kd3OSmnKsltdt703NcHYZ824y2r1elQl1nTMyMSI5P48K+CDbPPsOi9/eyc/lF7obdN3TIooSRGpxS5OWXXyY9PZ0lS5ZQvnx57ty5w/bt24mJiSEyMpK2bdvSrVs3tm7dip2dHcHBwaxfv56kpKRs5/nnn3+oVq0akZGRTJgwgc6dO3P27Fn8/Pzw9PRk6tSpVKhQAYAlS5bQo0cPTpw4QbVquo6vERER2c73999/M3ToUF5++WX9tnfffZcNGzawcuVKHBwcGDduHF27duXYsWOy4GZurgbpflZoC2r5XlISxUYmEbTgoY7ETdx4oU/J6Ehc1MysTAho6EpAQ1cyM7TcuhKra8o6FcX9mBTO7bnFuT23cPGzoVozDyrUc5ZaHfFEshbVQ3JbM0hRlHzNCFoUjE3V+Z4KPTY2lnLlyrFz505atMjZR2PdunX07t2b5ORkjI1z/4caEhKCn58fJ06coFatWgCEh4fj6enJnDlzGDFiRK7H2dvb8+233zJ06NBc97/44ovcv3+f7dt1fUji4uJwcnLit99+o2/fvgDcunULLy8vNm/eTIcOHfL1nEuKQlmL6pdGcPcCvLwAqvcq3ABFkVIUhYsHIti96r+OxC1frUyFuiW3I/HzoigKty7HcnZPONdP3EWbqfu40lgYE9DIlWrNPLB3szRwlOJ5kbWoCllGmpZ57xhm5es3ZrbARJO/bylWVlZYWVmxbt06GjVqhEaTfVE8V1dXMjIyWLt2Lb169cp34mRhoZukKz09Pce+zMxMVq9eTWJiIo0bN871+Dt37rBp0yaWLFmi33bs2DHS09Np3769fpu7uzuBgYHs37+/1CU4zyzupi65UanBv7WhoxEFkJKYzq7fL3H1mK4jsXtFO9q+Xro6EhcllUqFR0A5PALKkRSfxoX9tzi/9xbxUSmc3nGT0ztu4l7RjsDmHpSv7STLRYhsJMEpJYyNjVm8eDHDhw9nzpw51KlThxYtWtCvXz9q1KhBo0aNmDBhAv3792fkyJE0aNCA1q1bM3DgQFxcXHI9Z2JiIuPHj8fIyChbrdCZM2do3LgxKSkpWFlZsXbtWqpWrZrrOZYsWYK1tTUvvfSSftvt27cxNTWlXLly2cq6uLhw+/btQng1SpkrD5qnPOuDhb1hYxH5duvKPYIWlq2OxEXJwsaUuh19qdPeh9ALMZzdFc6NM1HcuhLLrSuxmFubUKWJO9WaucuQcwFIgvNExqZq3phpmGG5xqYF+zby8ssv06VLF/bs2cOBAwfYsmUL06ZNY/78+QwePJivvvqKsWPHsmPHDg4ePMicOXP4+uuv2b17N9WrV9efp0mTJqjVapKSknBzc2Px4sXZ9gcEBHDy5EliY2NZs2YNgwYNYteuXbkmOQsXLuTVV1/NV9OMoiiyOnFushKcCu0MG4fIl8xMLUc2BHPswYzEtk7mtBtSDRe/J1epiydTqVX4VHPAp5oDCfdSOL9XV6uTGJfG8a03OL7tBt5V7anWzAPf6g4yc3IZJn1wHlIofSWKmWHDhhEUFMSNGzdy7EtLS6N27drUq1ePJUuW6PvgrF+/nqpVq2JnZ4eDg8MTr9G2bVv8/f2ZO3dutu179uyhefPmnDx5kpo1/xv5s2PHDtq0aUNMTEy2WpyaNWvy4osv8tlnnz3DMy5+nul9lZEG0/x0I6je2AnutYskRlE44u4msW3BeSJD4gGo3MSNZtKRuMhlZmq5cTqas3vCCTsfo99uaaeh6gvuVG3qjlU5zWPOIEoC6YMjsqlatSrr1q3LdZ+pqSn+/v4kJiZm2+7l5YW/v3++r6EoCqmpqTm2L1iwgLp162ZLbgDq1q2LiYkJQUFB9OnTB9CNvDp79izTpk3L93XLBBkeXiIoisKlg7fZvfIy6Q86ErfoH0DFerk3/4rCZWSkpnxtJ8rXdiLubhLn9tziwv4IEmNTObIxmKObQ/Ct7kBgcw+8qtjLJIJlhCQ4pUR0dDS9e/dmyJAh1KhRA2tra44ePcq0adPo0aMHGzduZOXKlfTr149KlSqhKAobNmxg8+bNLFq0KN/XmTBhAp06dcLLy4v79++zcuVKdu7cyZYtW7KVi4+PZ/Xq1Xz//fc5zmFra8vQoUMZN24cDg4O2Nvb895771G9enXatpVJ7LKR4eHFXkpiOrtWXOLqUelIXBzYOlnQ5KUKNOxWnmsnIzm7K5yIq3EEn4oi+FQUNo5mVGvmQeXGbljYmBo6XFGEJMEpJaysrGjYsCHTp0/n2rVrpKen4+XlxfDhw5kwYQIRERFYWFgwbtw4wsLC0Gg0VKxYkfnz5zNgwIB8X+fOnTsMGDCAiIgIbG1tqVGjBlu2bKFdu+z9Q1auXImiKLzyyiu5nmf69OkYGxvTp08fkpOTadOmDYsXL5Y5cB51fafuZwVJ/IqjhzsSq9QqGnTzo04H6UhcHBiZqKlU35VK9V2JuZXIuT3hXDx4m/ioFA6svcah9dfxr+1EteYeuFe0k/5/pZD0wXlIaeyDIwzvqd9XSTEwrTygwLjLYC3NHcVFZqaWIxuDOb7lBooCNk7mtJeOxMVeelomV4/e4ezuW/p+UgDlXC2o1tyDgIaumFmaGDBC8TjSB0eI0iJkL6CAY4AkN8VI3N0kghae507wg47EjV1p1reSdCQuAUxMjajSxJ0qTdy5G3qfs3vCuXz4DvduJ7H3jyscXHuNCvVdCGzmgbOvtdTqlHDyFylEcRWyR/fTr5lh4xBAzo7EpubGtHxVOhKXVE7e1rR6tTJNXqrA5UO3Obs7nJhbiVzcH8HF/RE4elkR2NyDivVdJHktoeS3JkRxFZyV4DQ3bByC1CTdjMRXHnQkdqtgS7sh1aQjcSmgMTemektPAlt4cPt6POd2h3P1WCRRYQnsXH6JfWuuUrmhK7U7+Mjvu4SRBEeI4ijhrm55BgCfFwwbSxl360osQYvOkRDzoCNxVz/qdJSOxKWNSqXCzd8WN39bXuhdkYsHIzi7O5y4yGTO7Arn3L5bVHvBg7qdfLC0lTl1SgJJcIQojrKap1wCwfLJky2KwpeZqeXophCO/R2i70jcbkhVXP1sDR2aKGJmVibUautNzTZe3Lx0j2N/hxB+KZYzO29yft8tAlt4UKe9jwwzL+YkwRGiOArerfvpK/1vDEE6EgvQ1ep4VbbHq7I9Ny/GcGh9MLevx3HqnzDO7blFjZae1G7vLSOviin5axWiOJIOxgZz6dBtdv1+SToSi2w8K9vjEVCO0PMxHF5/ncgb9zm+9QZnd92kZhsvarb1RmMuH6nFifw2hChu4iMg+iqgAp8mho6mTLl85Db/LDoPSEdikZNKpVvo07uqPcGnoji8IZjo8ASObArh9L83qdXOmxqtPKWmr5iQ34IQxU1W7Y1bTTAv9/iyotDcDo5jx5KLAFRv6ckLfSpKR2KRK5VKRflaTvjVcOTaibsc3nCde7eTOPS/65zeEUbt9j4EtvDAxFRmZjckWdxGFKqWLVvy7rvvPraMSqXKcwFQAQTv0v2U5qnn5n5MCn/PPkNmhhbf6g6S3Ih8UalVVKjrTL9PG9L29arYOpmTfD+d/WuusuzjA5z+N4zMdK2hwyyzJMEpJQYPHoxKpWLq1KnZtq9bty7bbJw7d+5EpVIRGxub4xy+vr7MmDFD/3jEiBH4+/tjbm6Ok5MTPXr04OLFi88ca0REBJ06dcpX2TKZDGXNf+Mr8988D+mpmWyefZqk+DQcPCxpN7SaJDeiQNRqFQENXek/uSGtBlTG2t6MpPg09qy6wrJPD3BuTziZmZLoPG+S4JQiZmZmfPPNN9y7d69Qzle3bl0WLVrEhQsX2Lp1K4qi0L59ezIzM5/pvK6urmg0Mo9ErmLDIPYGqIzAu5Ghoyn1FK1C0MJzRIUlYG5tQudRNaT/hHhqaiM1VZu68+rnjWjxSiUs7TQk3Etl5/JL/D7pIBf2R6CVROe5kQTnCRRFIT0lxSC3gq6D2rZtW1xdXZkyZUqhPPc33niD5s2b4+vrS506dfjyyy8JCwsjJCTkscdptVo++OAD7O3tcXV1ZfLkydn2P1wrk5aWxltvvYWbmxtmZmb4+vrq4/f19QWgZ8+eqFQq/eNS7cY+3U+3mmAmCzcWtYP/u07wqSjUxio6jayBjYO5oUMSpYCRsZrAFp689kUjXuhdEXMbU+KjUtix9AIrPj/M5SO3UbRlap1rg5CvKk+QkZrKj4N6GeTa/7fkT0wKsPq0kZERX3/9Nf379+f//u//8PT0LLRYEhMTWbRoEX5+fnh5eT227JIlSxg7diyHDh3iwIEDDB48mKZNm9KuXbscZX/88UfWr1/PH3/8gbe3N2FhYYSFhQFw5MgRnJ2dWbRoER07dsTIqAx02AvZq/vp29SwcZQBFw9EcHzrDQBaD6iCm79M4CcKl7GJETXbeFH1BXfO7LrJia2hxN5JImjBeY79fYMG3fwoX8tJFvUsIpLglDI9e/akVq1aTJo0iQULFuRZLrfkJykpKce2WbNm8cEHH5CYmEjlypUJCgrC1PTxs3fWqFGDSZMmAVCxYkV+/vlntm/fnmuCExoaSsWKFXnhhRd0QzB9fPT7nJycALCzs8PV1fWx1yw1smpwZHmGInXraiz/LtP1J6vbyYeAhmXk/SUMwkRjRJ32PgQ29+D0jpuc/CeUmFuJbJl7FkcvKxp2K49PdQdJdAqZJDhPYKzR8H9L/jTYtZ/GN998Q+vWrRk3blyeZfbs2YO1tXW2bS1btsxR7tVXX6Vdu3ZERETw3Xff0adPH/bt24fZY2qWatSoke2xm5sbkZGRuZYdPHgw7dq1IyAggI4dO9K1a1fat2//mGdXisVHQMx1QCX9b4pQfFQyf885gzZTwb+2Ew27lTd0SKKMMDUzpl5nX6q39ODkP2Gc2hFGVFgCm2adxsXPhgbd/PCqYi+JTiExeB+cWbNm4efnh5mZGXXr1mXPnj15ls0aAfTorTBG9uRFpVJhYmZmkNvTvsmbN29Ohw4dmDBhQp5l/Pz8qFChQrabsXHOfNfW1paKFSvSvHlz/vzzTy5evMjatWsfe30Tk+zTlqtUKrTa3DvW1alTh+DgYL744guSk5Pp06cPvXoZpknQ4LJqb1yrg7mdQUMprdKSM9g06zQpCek4eVvTZnBVVDJiSjxnGgsTGnYvz8Avm1CngzfGpmruBMez4cdTrP3+OOGXC2egSFln0BqcVatW8e677zJr1iyaNm3K3Llz6dSpE+fPn8fb2zvP4y5duoSNzX8dMLOaMsR/pk6dSq1atahUqVKhnldRFFJTUwv1nDY2NvTt25e+ffvSq1cvOnbsSExMDPb29piYmDzzqK0SQ9//RpqnioJWq7BtwTlibiViYWtK5zdrYKIpA/26RLFlZmVC454VqNnGm+NbbnB2dzgRV+NY98MJPCuXo2H38riWl75hT8ugCc4PP/zA0KFDGTZsGAAzZsxg69atzJ49+7EjgZydnbGzs3tOUZZM1atX59VXX+Wnn356quOvX7/OqlWraN++PU5OToSHh/PNN99gbm5O586dCy3O6dOn4+bmRq1atVCr1axevRpXV1f979fX15ft27fTtGlTNBoN5cqV4pl99f1vpINxUdi/5io3zkZjZKKmy6gaWJWTqQpE8WBhY8oLfSpSq503x7aEcH7vLW5evMfNi8fwruZAw+5+OPvIqMqCMlgTVVpaGseOHcvR36J9+/bs37//scfWrl0bNzc32rRpw7///vvYsqmpqcTHx2e7lRVffPFFgYeaZzEzM2PPnj107tyZChUq0KdPHywtLdm/fz/Ozs6FFqOVlRXffPMN9erVo379+oSEhLB582bUat1b8/vvvycoKAgvLy9q165daNctdhIiIeqy7r6sP1Xozu0J59R23ei8NoOqyIeFKJasymlo8UoAr37eiCpN3VCpVYSei2b1lKNsmnWaayciyUgrIzXahUClPO0n4DO6desWHh4e7Nu3jyZN/vuH/vXXX7NkyRIuXbqU45hLly6xe/du6tatS2pqKr/99htz5sxh586dNG+e+6yvkydP5rPPPsuxPS4uLlszF0BKSgrBwcH6PkFCFIZ8va/OrYXVg8G5Gox6fIIvCubmpXtsmHkSrVahQTc/6nfxM3RIQuRLbGQSRzeFcOnwbXjwSW2sMcKvugP+dZ3xqeaAcRla7yo+Ph5bW9tcP79zY/BRVI92pFUUJc/OtQEBAQQEBOgfN27cmLCwML777rs8E5zx48czduxY/eP4+PgnzuMixHMX8qB5Sua/KVSxd5LYMvcMWq1Cxfou1Ovsa+iQhMg3O2cL2r5elTodfbiw7xZXj0eSEJPKlaORXDkaWaaTnfwwWILj6OiIkZERt2/fzrY9MjISFxeXfJ+nUaNGLFu2LM/9Go1GlgUQxZ/0vyl0KYnpbJp1mtSkDFz8bGg9oLIMvxUlkr2bJU17VaTJyxWIDLnP1WN3ck12fKs7UEGSHT2DJTimpqbUrVuXoKAgevbsqd8eFBREjx498n2eEydO4ObmVhQhCvF8JEZD5HndfUlwCkVmppatv54l9k4SVuU0dBpZXf7hixJPpVLh4meDi59NtmTn2vG73I9J4erRSK4+VLNToa4L3tXsy+x736BNVGPHjmXAgAHUq1ePxo0bM2/ePEJDQxk5ciSga14KDw9n6dKlgG6Ula+vL9WqVSMtLY1ly5axZs0a1qxZY8inIcSzCX3Q58apMljJlAfPSlEU9q66ws2L9zDWGNF5VA0sbaUWV5QueSU7j9bsmDyo2SmLzVgGTXD69u1LdHQ0n3/+OREREQQGBrJ582b9dP0RERGEhobqy6elpfHee+8RHh6Oubk51apVY9OmTYU6bBnIc1I6IZ7GE99PNu5QewDY5T33k8i/MzvDObs7HFTQ7vWqOHlZP/kgIUqw/CY7Za3PjsFGURnK43pha7Varly5gpGREU5OTpiamkqbvXhqiqKQlpbG3bt3yczMpGLFivrh76JohJ6LZuPPp1AUaNzTnzodfJ58kBCllKIo3AmJ59qxSH2yk6UkJjsFHUUlCc4j0tLSiIiIyHXhSSGehoWFBW5ubk9cpFQ8m5iIRNZ8c5S0lEwqN3Kl9aAq8gVFiAcURclRs5OlpPTZkQTnCfLzAimKQkZGRtlZIkAUGSMjI4yNjQv0QRty6jgZaWlUqC8LbuZXckIaf049SnxUCm4VbOnxTm2MTKS2TIjcPC7ZMdEY4VvDkQp1nItdsiMJzhMU9AUS4nm6eyOY3z58B5VaxZvzlmNmZWXokIq9zAwt62ee5NaVWGwczej1YT3MraW2TIj8eFwzlol+6HnxqNkpcRP9CSF0FEXh3yW/oihalExIio+VBOcJFEVh1++XuHUlFlMz3YgpSW6EyD+VSoWrny2ufrb/dVA+HsnVY3dyjsaq4UjVpm54BJQrEc2/kuAIUUxcPXyAsHOn9Y9TEu4bMJqS4eQ/YVzYH4FKBe2HBeLgLgmhEE8r22isl/xz1OxcOXKHK0fuYOdiQbVm7lRu7IaZpYmhw86TJDhCFAMZaWnsWrYg27aUxAQDRVMyBJ+OYv9fVwFo2qsiPoEOBo5IiNLj0ZqdOyHxXDpwm0uHbhN7J4l9f17l4P+uU7GuM9VaeODia1PsanUkwRGiGDi2aR1xkXewsnfA2sGRiCuXSE2QBCcvUTcTCFpwDhSo1sydGq09DR2SEKXWw8lO45f8uXz4Dmd3hxN9M4GLB29z8eBtHL2sCGzuQcX6LpiaFY/UonhEIUQZlhh7j0Nr/wCgef/BXD1ykAguSQ1OHpLi09g06xTpqZl4BJSjWb9Kxe6boxCllamZMYHNPajWzJ07wfGc3R3O1aORRIUlsHP5JfatuUpAQ1cCm3vg4GHYJmNJcIQwsBtnTpKemoKTjx+VX2hJ2IWzAKRIDU4OGemZ/D3nNAkxqdg6m9PxjUCMjGQ4uBDPm0qlwrW8La7lbXmhV0UuHozg7O5w4iKTObsrnLO7wnHzt6Vacw/86zhhbPL8R2BJgiOEgcWE3wTArWIAKpUKMyvd0gJSg5Odoij8+9tFbl+PR2NhTNfRNYt1B0chygozKxNqtfWmZmsvbl66x7nd4Vw/FUXEtTgirsWx9w8TqjRxo1pzd2ydLJ5bXJLgCGFg927pEhx7d10/EjNLXbVuqiQ42RzbcoPLh++gVqvo+EYgdi7P7x+lEOLJVGoVXlXs8apiT2JsKuf33eL83lsk3EvlRFAoJ4JC8apqT2BzD3yrO6Au4tpXSXCEMLCYiHAAyrl7AP8lOFKD859rxyM59L/rADTrVwnPyvYGjkgI8TiWdhrqd/GjbkcfbpyN5uzuW4SejybsfAxh52OwtDWl6gvuVH3BA6tymiKJQRIcIQxI0WqJjbgFgL2brgZHk5XgyDw4ANwNvc8/i84DUKOVJ4HNPQwckRAiv9RGavxqOuFX04n4qGTO7bnFhf23SIxL48imEI7+fQPf6g4EtvDAq7I9KnXhDRiQBEcIA4qPuktGehpGxsbYODsD6Gcvlk7GkBibyqZfTpGRrsW7mj1Ne1UwdEhCiKdk42hO457+NOjqx7WTkZzbfYtbV2IJPhVF8KkobJzMqdbMnSpN3DC3evYZySXBEcKAsvrf2Lm6o1brRhlIHxyd9LRMNs8+TWJcGuXcLGk/LLDI2+yFEEXPyERNpfquVKrvSvStBM7tucWlAxHE303mwF/XOLT+OhXqOBPY3ANXf9unngZCEhwhDEjf/8btv2YXfQ1OYqJBYioOFK3C9sUXiLxxHzMrE7qMqoHGXP5dCVHaOLhb0bxvJRq/6M+VI7oJBO+G3ufy4TtcPnwHBw9LqjXzIKCha4HPLf8xhDCgmFu6BMfe/b8EJ6sPTkZaKhlpaRiblr3FIw9vCuba8UjURio6jaiOrZO5oUMSQhQhE43Rg07H7twJiefc7nCuHLlDdHgiu1deZv/aa3gEWhbonJLgCGFA926FAVDO/b+lBjTmFqhUahRFS0piAlamZWvE0OUjtzm6KQSAlq9Wxr2inUHjEUI8Xy6+Nrj42tC0VwUuHrzNud3h3LudxMUDEQU6jyQ4QhhQbjU4KrUajaUlKQn3SU1MwKpc2Ulwbl+PY8eSiwDUbu9NlSZuBo5ICGEoGgsTarb2okYrT25dieXQ1kuwKP/HS489IQwkLSWZhJhoIHsNDjw0F04ZGkmVfD+NzXPOkJmhxbeGI41e9Dd0SEKIYkClUuFRqRxtB1Ut0HGS4AhhIPce1N6YW9tg/mB5hiz6uXASy85cOAfWXSM5Pg17d0vaDamKuhDnwxBClD2S4AhhIP/NYOyZY19Zmwvn9vU4LuzTta+3fLUypmbSei6EeDaS4AhhIP+tQZVzZt6yNBeOVquwe+VlACo3dsXN39bAEQkhSgNJcIQwkKwOxg/PgZPlv7lwSn+Cc36Pbt4LU3NjGveUmYqFEIVDEhwhDOSefgRVziYqTRnpZJx8P42DDxbRbNi9PBY2ZW/OHyFE0Xiqhu4jR46wevVqQkNDSUtLy7bvr7/+KpTAhCjNFEXh3iOriD/M7EGn49Jeg3Ng3TVSkzJw9LIisLm7ocMRQpQiBa7BWblyJU2bNuX8+fOsXbuW9PR0zp8/z44dO7C1lbZzIfIjISaa9NQUVGo1di45pyAvC31wHu5Y3LxvJVlnSghRqAr8H+Xrr79m+vTpbNy4EVNTU2bOnMmFCxfo06cP3t7eRRGjEKVOTNYimy6uGBmb5Nhf2ufBydGxuIKdYQMSQpQ6BU5wrl27RpcuXQDQaDQkJiaiUqkYM2YM8+bNK/QAhSiNshKc3DoYw8N9cErnPDjSsVgIUdQKnODY29tz/77un66Hhwdnz54FIDY2lqSkpMKNTohSKib8QYKTSwdjKN2jqKRjsRDieShwJ+NmzZoRFBRE9erV6dOnD++88w47duwgKCiINm3aFEWMQpQ64RfPAeDil/tyBFkJTmpiAoqioFKVnll9pWOxEOJ5KHCC8/PPP5OSkgLA+PHjMTExYe/evbz00kt88sknhR6gEKVNUnwcd28EA+AdWDPXMll9cDIzMshIS8VEY/bc4itK2ToW9wuQjsVCiCKT7wRn27ZttGrVCnv7/1Y2VqvVfPDBB3zwwQdFEpwQpVHo2VMAOHr7YmlXLtcyJmbmqNRqFK2WlMSEUpHgyIzFQojnKd9fn0aOHImTkxN9+/bl999/JzY2tgjDEqL0ykpwfKrnXnsDutVz9XPhlJKRVNKxWAjxPOU7wbl+/Tq7d++mevXqzJgxA1dXV9q0acOPP/5ISEhIEYYoROkSeuYkAN6BtR5bTj8XTilIcKRjsRDieStQA3iNGjX4+OOPOXz4MNevX6d3795s2bKFKlWqULNmTT799FOOHj1aVLEKUeLF3rlNXOQd1EZGeFap9tiy+rlwSsFIqgNrpWOxEOL5euoefu7u7owcOZLNmzcTFRXFp59+SkhICB07duTrr78uzBiFKDVCz54EwLVCAKbmFo8tqymEoeLpqSnsWDyXY5v+h6IoT32eZ3H7ehwX9kvHYiHE81Uo/2ksLS15+eWXWbp0KZGRkQwfPjzfx86aNQs/Pz/MzMyoW7cue/bsyddx+/btw9jYmFq1aj1l1EI8f6Fnntz/JovZM072l5Gezv+++4oTf29g59Jf2b/696c6z7PI1rG4kXQsFkI8PwUeJh4SEsKePXsICQkhKSkJJycnateuTePGjTEzM0OtVuPk5JSvc61atYp3332XWbNm0bRpU+bOnUunTp04f/78Y5d9iIuLY+DAgbRp04Y7d+4U9CkIYRCKVqvvYOxdvdYTyz88F05BaTMz2TRzGjdOn8DI2JjMjAwOrlmBxtycet1eKvD5nla2jsUvScdiIcTzk+8anN9//51GjRpRvnx53n//fdatW8eePXuYP38+HTt2xMXFhVGjRnHjxo18X/yHH35g6NChDBs2jCpVqjBjxgy8vLyYPXv2Y48bMWIE/fv3p3Hjxvm+lhCGdjc0hOT78ZhozHCrUOmJ5Z+2D46i1bJ19gyuHjmAkbExPT+czAv9BgKwa9lCTm7b/Fyaq6RjsRDCkPJVg1OnTh3UajWDBw/mjz/+yFG7kpqayoEDB1i5ciX16tVj1qxZ9O7d+7HnTEtL49ixY3z00UfZtrdv3579+/fnedyiRYu4du0ay5Yt48svv3xi7KmpqaSmpuofx8fHP/EYIYpC1ugpz6qBuS6w+SjNUyy4mRQfx5ZZ0wk+cRSVWk3XMePxqVELnxq1SEtO4vD//mT7glkcWvcH/nUbUqFeQ3yq10KlLvx+MTJjsRDCkPKV4HzxxRf6BTZzo9FoaNmyJS1btuTLL78kODj4ieeMiooiMzMTFxeXbNtdXFy4fft2rsdcuXKFjz76iD179mBsnL/WtSlTpvDZZ5/lq6wQRUnfPJXH7MWPKmgNzs3zZ9n04zQS7sVgbGJKx9FjqFCvoX7/C68MQqU24vjm/5EQHcWpbZs4tW0T7pWq0H7k/+Hg4VXAZ5Q3mbFYCGFo+coSHpfcPMrR0RFHR8d8l390jZ281t3JzMykf//+fPbZZ1Sq9OTq/Szjx49n7Nix+sfx8fF4eRXeP3Ih8uPW5YuEnD4BgG+N2vk6Jmuiv/zMg3N041p2L1uEomixd/ek65iPcPL2zVZGpVLxQr8BNHqpL6HnTnHtyCEu7NvFrcsX+O3D/6Nxr/7U7/YSaiOjgj25R8iMxUKI4qDAnYwLi6OjI0ZGRjlqayIjI3PU6gDcv3+fo0ePcuLECd566y0AtFotiqJgbGzMtm3baN26dY7jNBoNGo2maJ6EEPmQlpLM3z9/j6LVUrlpCxwfSTzykp8aHEVROLhmJftXLwegWou2tBkyEhOzvJd2MDY1pXzt+pSvXZ+GL/Uh6NdfCDl5jL0rlnBp3y5avz4Sz6qB+X+Cj8jqWKyxkBmLhRCGk+96Y7VajZGR0WNv+W02AjA1NaVu3boEBQVl2x4UFESTJk1ylLexseHMmTOcPHlSfxs5ciQBAQGcPHmShg0b5jhGiOJg55Jfib0TgbWDE22Gvpnv4540D46iKOxb9Zs+uXnhlUF0HPXuY5ObR9k4OvPSR5PpOGoMZpZW3A0NYdVnH7Hpx2+5Hx2V7/NkkY7FQojiIt8Zydq1a/Pct3//fn766acCj8wYO3YsAwYMoF69ejRu3Jh58+YRGhrKyJEjAV3zUnh4OEuXLkWtVhMYmP1bpbOzM2ZmZjm2C1FcXDlygDM7toFKRafRY/S1Mvnx8Dw4jzbdKorCrmULObZR93fZcuAw6nZ58aliVKlUVGvRBr/a9dj/xzJO/bOFi/t2cenAHjwrV8O/XkP86zXCzsX1ied6eMbias09nioeIYQoDPlOcHr06JFj28WLFxk/fjwbNmzg1Vdf5YsvvijQxfv27Ut0dDSff/45ERERBAYGsnnzZnx8fACIiIggNDS0QOcUorhISUwgaO5PANTv9hJe1WoU6PiseXAUrZb0lGT9zMfazEy2zfuJczv/AaDNkDep1SH//eTyYmFjS9tho6nepiM7l/7KzfNnCTt/hrDzZ9i5dD7Ovv4ENGlGQONm2DrnbEbesn4N1/brVkdPaRTCiktXsu1XkbNvXW5y64NXVuX3NROPV9pfx7LyN5OUkFSg8irlKSbEuHXrFpMmTWLJkiV06NCBKVOmlJhalPj4eGxtbYmLi8PGxsbQ4YhS7PrxI6z95jNsnFx4ffocjE2ePDT8YYqiMPO1nmRmZDD8l4XYODqTnprCxpnTuH7sMCq1mvZvvE1gq3ZFEn9c5G2uHT3E1aOHuHnhLIpWq9/nX68RrQYNw9ZZV6uTmZHJkqHLSTb3JJED/NZ4ZZHEJIQouzKTM7nw5oV8f34XqJNxXFwcX3/9NT/99BO1atVi+/btNGvW7KmDFaI0uxcRDoCrf8UCJzeg+1amsbQiKS6WlIQE1EbGbJwxlfCL5zE2MaXLux9mGwZe2GydXanTuQd1OvcgKT6OK4f2c+nAHsLOn+Ha0YPcOHWchj37UK/7yxgZG2NZIQL1JRX1rmwi9sU2pJnn79+LodbIehoKJSdWUTKUpPf/wwzxt5CamMoFLuS7fL4TnGnTpvHNN9/g6urKihUrcm2yEkL8J+bWTQDKuT19XxSzBwnOya0buXxwH6lJiWgsLHnxg0/wrPL8ak0tbGyp2a4TNdt1IvpmKNsXzCbs/Bn2/bGMc7u3033cRPqMH8e1rt1Ij7vHmGsVcRo9+rnFJ4Qo/eLj45nDnHyXz3eC89FHH2Fubk6FChVYsmQJS5YsybXcX3/9le+LC1Ga3Yu4BYC9+zMkOA/mwjmzYxsALuUr0mn0GBw8816rrag5eHrT+9Ovubh/N7t+W0BqUhLW9o6ojI1x/r+3CR87jphFiynXvz/G5coZLE4hRNmW7wRn4MCBZaYjkxCFIauJ6llqcCztdAmCiZk5L/QbQK0OXVCrn20ivsKgUqmo0rQF5WvXJyY8TN8h2rpjRzTzfiX14kViFizA+b33DBypEKKsyneCs3jx4iIMQ4jSJS0lmYSYaADs3J5+HaYmvfvj4OlF9TYdsXF0KqzwCo3GwgK3igH6xyq1Gqd3/o+bb44iZtlyyg0ciImzswEjFEKUVbJAjBBFIPa2bh0mc2sbzB80Mz0NR29fmvYdUCyTm7xYtWyJec2aKCkpRM+Za+hwhBBlVL4SnJEjRxIWFpavE65atYrly5c/U1BClHSF0cG4pFKpVDiNGQPAvdWrSbsZbuCIhBBlUb6aqJycnAgMDKRJkyZ0796devXq4e7ujpmZGffu3eP8+fPs3buXlStX4uHhwbx584o6biGKtcLof1OSWTZqiEXjRiQdOEjUrFm4f/2VoUMSQpQx+arB+eKLL7hy5QrNmzdnzpw5NGrUCG9vb5ydnQkICGDgwIFcv36d+fPnc+DAAapXr17UcQtRrGWNoCr3DCOoSjrnd98FIG7dOlKvXzdsMEKIMiffnYydnZ0ZP34848ePJzY2lhs3bpCcnIyjoyP+/v4ywkqIh2TV4NiX0RocAPOaNbFq3ZqEHTu4+9NPeE6fbuiQhBBlSIFmMs5iZ2eHnZ1dIYciROmgKMpDTVRPP4KqNHB65/9I+Pdf7v+9hZThwzGrWtXQIQkhyogCJzinT5/OdbtKpcLMzAxvb280Gs0zByZESZUcH0dqYiKoVNi6uhk6HIMyCwjApnNn4jdt4u7MH/Gam/9ZSIUQ4lkUOMGpVavWY5ujTExM6Nu3L3PnzsXMzOyZghOiJIp5UHtj4+iEiakk+05vv0X8li0k7NpF0vETWNSpbeiQcqUoCve3BRH188+k3byJytgYlZERmBijMjZBZWSEytgYjI10jx/eb2Scc5+xMSpjIzD+b7/KxBiy7ud4nL2splJFzKU/oxBPrcAJztq1a/nwww95//33adCgAYqicOTIEb7//nsmTZpERkYGH330ER9//DHfffddUcQsRLFW1kdQPcrU1xe7l3oSu/pP7s6YgfeSxcWuz17SiRNETvuW5BMn9NuKwxKI1u3b4/zB+5h6eho6FCFKnAInOF999RUzZ86kQ4cO+m01atTA09OTTz75hMOHD2Npacm4ceMkwRFlkn4EVRnvf/MwxzffJG7d/0g6fJikAwewbNLE0CEBkBYaSuQP07m/ZQsAKjMzHIa8jm2PHihaLWRmomRkoKRnQGaG7n7Gg20Z6br96RnZH2dk6u4/XDYzI/vjrP3pGSiZmbpzZ50nMxMlOYnEg4e4v20bCf/+i/3gwTiMGIGRlaWBXzEhSo4CJzhnzpzBx8cnx3YfHx/OnDkD6JqxIiIinj06IUqge7eyanDkW3cWE3d37Pr1495vvxE5fQa+jRsbtBYn4949oufMIeb3FZCerusv9VJPnP7v/zBxcTFYXA9LuXSZO1OnkHTgING//krs2rU4j3kX2549UallEnohnqTAfyWVK1dm6tSppKWl6belp6czdepUKleuDEB4eDguxeSfhBDP239DxKUG52GOI95AZW5OypkzJOzYYZAYtKmpRC9YwLX2HYhZshTS07F84QX81q3F/auvik1yA2AWUAnvhQvx/OVnTHy8yYyKImLix4T06k3S0aOGDk+IYq/ANTi//PIL3bt3x9PTkxo1aqBSqTh9+jSZmZls3LgRgOvXrzNq1KhCD1aI4k6rzST2jq72sixP8pcbY0dH7AcMIHrePO7OmIlVq1bPrSZC0WqJ37SZu9Onk35L14SoCQjA+f33sXqh6XOJ4WmoVCqs27TBslkz7i1bTtSsWaScP8+N1wZg3bEjzu+Nk/45QuRBpShKgfvSJSQksGzZMi5fvoyiKFSuXJn+/ftjbf30iwo+L/Hx8dja2hIXF4eNjY2hwxGlTFzkbea/PQwjY2P+77c1qNVGhg6pWMmMi+Nq23Zo79/H/dtvse3WtcivmXjoMJHTppFy7hwAxi4uOL3zDrY9uutGQZUgGdHR3P3xJ2JXrwatFpWpqa5/zhtvSP8cUeoV9PM73wnOkCFDmDlzZolIYh5HEhxRlEJOHmPNlEk4eHoz+PtZhg6nWIqaM4e7M2Zi4uON/8aNqExMiuQ6qdevE/nd9/rmMLWFBQ5vDMd+0CDU5uZFcs3nJeXSJe5MmUrSwYMAGDk54jxmLLYv9pD+OaLUKujnd77/EpYsWUJycvIzBSdEaRcjI6ieyH7AAIzs7Um/EUrsunWFfv6MqCgiJk/merfuuuTGyAi7V/rhv20rjiNHlvjkBnQTKHovetA/x9ubzLtRREyYQEjvPiQdO2bo8IQoFvKd4DxFS5YQZU5UaDAA9h5eBo6k+FJbWuI44g0Aon6ZhTY1tVDOq01OJmr2bK6170DsylWQmYlV69aU37Aet0mTMHZ0LJTrFBdZ/XPKb9yA8/vvo7ayIuXcOW68+ho3x4whPTzc0CEKYVAFqsssbpNzCVHc3Lp8EQC3CgEGjqR4s+vXD2NXVzJu3yZ21apnOpeSmUnsmr+41qEjd2f+iDYpCbPq1fFeugSvWb+gKV++kKIuntSmpjgMHYL/lr+x69MHVCru/72Fa506EzljBtrEREOHKIRB5LsPjlqtxtbW9olJTkxMTKEEVlSkD44oKimJCfwypB8Ab85bhoWtnWEDKubu/fEHtz+dhJG9PRWCtqG2LHgn2YS9+4j89ltSL10CdPPtOI0Zg02XzmW2L0rKxYvc+XoKSYcPA2Ds5ITT2LG6TtVl9DURpUNBP78LNEz8s88+w9bW9qmDE6I0i7ii+5C1c3GT5CYf7Hr2JHr+AtJDQ4n57TccR47M97Eply4ROe1bEvftA0BtY4PjiBGUe+1V1GV8sV+zypXxXrKY+//8Q+S0b0kPCyNi/HjuLV+Oy4TxWNSpY+gQhXguCpTg9OvXD2dn56KKRYgSLat5yr1SZQNHUjKoTExwevttbr3/PtELFlLulVcwesIXqPQ7d7g780fi1q4FRQETE+z798dh5AiMy5V7TpEXfyqVCpt27bBq0YJ7v/1G1KzZpJw9y43+r2LTuTPO48Zi4iHzNInSLd/1ldL/RojHu3X5AgBulaoYOJKSw6ZLZzQVK6K9f5/ohYvyLJeZkMjdH3/kWoeOxP31FygK1h074r9pIy7jP5LkJg+6/jlD8d+6BbvevUGlIn7zZq517kLkzJnSP0eUajKKSohCoNVmcvuqrolKanDyT6VW4/TO/wEQ89tvZERFZduvZGRwb+VKrnXoQNSs2SgpKZjXqYPvyhV4zpiOqbe3IcIucYwdHXH74nP8/lqDRf36KKmpRM+ew7VOnYldt063sKgQpUy+ExytVivNU0LkIToslLTkZEzMzHH0zrkYrcibVZs2mFWvjpKURNS8eYDuC9X9HTu43r0Htyd/RmZ0NCY+3nj8OBOf5cswr1XLsEGXUGZVquC9dAkeP87ExNOTjMhIIj4aT0i/V0g6ccLQ4QlRqKRLvRCFQN88VaGSLM9QQCqVCqd33wEgdsVK7m/fTujAQdwcNZq069cxsrPDZeJE/DdswKZ9e2kuf0YqlQqb9u0pv2kjTuPGorawIOX0aW680p/wce/p1+oSoqSTBEeIQqDvYBwg/W+ehmWTJrqmk/R0bo5+i6QjR1CZmuIwfBj+QduwH/AaKlNTQ4dZqqg1GhyHD8d/6xZse72s65+zaRPXOnfh7o8/oU1KMnSIQjwTSXCEKARZNTjuFaX/zdNQqVQ4jRkDD2pnbHt0x3/L3ziPG4dRCV//rrgzdnLC/csv8f1zNRb16qGkpBA1axbXOnUmbtMmQ4cnxFMr0DBxIUROSfFxxN6OAMBNEpynZlGnNr6rVqK2sEBToYKhwylzzKtVw/u3pdzfuo3Ib78lPTycW+PeI+16MI5vjZamQVHiSA2OEM8oq3nK3sMLMysrA0dTspnXqCHJjQGpVCpsOnag/OZNOLyRtV7YL9z56msZaSVKHElwhHhGEVnNUzL/jSgl1BoNzmPH4PLxxwDcW7aMWx99hJKebuDIhMg/SXCEeEYyg7EorexfexX3b6eBkRHx6zdw8//eQZuSYuiwhMgXgyc4s2bNws/PDzMzM+rWrcuePXvyLLt3716aNm2Kg4MD5ubmVK5cmenTpz/HaIXILiM9nQj9BH9SgyNKH9tu3fD8+SdUGg0J//5L2PA3yExIMHRYQjyRQROcVatW8e677zJx4kROnDhBs2bN6NSpE6GhobmWt7S05K233mL37t1cuHCBjz/+mI8//ph5DyYHE+J5u33tMpnp6VjY2mHv4WnocIQoEtatWuE9/1fUVlYkHTlC6MBBZMTEGDosIR5LpRhwDYaGDRtSp04dZs+erd9WpUoVXnzxRaZMmZKvc7z00ktYWlry22+/5at8QZdbF+JxDq39g70rl1KpYVO6jR1v6HCEKFLJ587panBiYjD188N74QJM3NwMHZYoIwr6+W2wGpy0tDSOHTtG+/bts21v3749+/fvz9c5Tpw4wf79+2nRokWeZVJTU4mPj892E6KwhJ0/A4BHlUADRyJE0TOvVg2fZcswdnMjLTiYkP6vkno92NBhCZErgyU4UVFRZGZm4uLikm27i4sLt2/ffuyxnp6eaDQa6tWrx+jRoxk2bFieZadMmYKtra3+5uXlVSjxC6HNzOTWJd0IKs8q1QwcjRDPh6a8H76/L8e0fHkyIiK48eqrJJ87Z+iwhMjB4J2MH508SlGUJ04otWfPHo4ePcqcOXOYMWMGK1asyLPs+PHjiYuL09/CwsIKJW4hIoOvkZ6agsbSEidvX0OHI8RzY+Lmhs+y3zCrVo3Me/cIHTiIxMOHDR2WENkYLMFxdHTEyMgoR21NZGRkjlqdR/n5+VG9enWGDx/OmDFjmDx5cp5lNRoNNjY22W5CFIawC2cB8KhcDZXa4N8VhHiujO3t8V6yGIv69dEmJhI2/A3u7/jX0GEJoWew/8qmpqbUrVuXoKCgbNuDgoJo0qRJvs+jKAqpqamFHZ4QT3TzQYLjKf1vRBllZGWF16/zsGrVCiU1lZtvv03c+vWGDksIwMBrUY0dO5YBAwZQr149GjduzLx58wgNDWXkyJGArnkpPDycpUuXAvDLL7/g7e1N5cq6CdX27t3Ld999x9tvv22w5yDKJkWrJfyirt+BlyQ4ogxTm5nh+eNMIj7+mLj/refWBx+SGReP/YDXDB2aKOMMmuD07duX6OhoPv/8cyIiIggMDGTz5s34+PgAEBERkW1OHK1Wy/jx4wkODsbY2Bh/f3+mTp3KiBEjDPUURBkVFXaD1MRETDRmOPv5GzocIQxKZWKC25QpqG1suffbb9z56isy4+NwHDVKFukUBmPQeXAMQebBEYXh+N8b+HfxXHxq1KbXxC8MHY4QxYKiKETNmkXUTz8DUG7AAFzGfyR91EShKDHz4AhRkoVL/xshclCpVDiNHo3LxIkA3PvtNyLGT0DJyDBwZKIskgRHiAJSFIWbD/rfeFaVBEeIR9kPeA33ad+AkRFx//ufbpFOGQwinjNJcIQooJjwmyTFxWJkYoKrfyVDhyNEsWTbvTuePz1YpHPHDlmkUzx3kuAIUUA3zpwAdPPfGJuYGDgaIYov69at8Pp1HmpLS5IOHyZ00GBZpFM8N5LgCFFAN07rEhyf6rUMG4gQJYBlgwZ4L1mCUblypJw7x43XBpAeEWHosEQZIAmOEAWQmZFO2DndApu+NesYOBohSgbzwGr4LH+wSOf167JIp3guJMERogBuXb5IemoK5ja2sv6UEAWgKV8e3+XLMPX11S3S+dprskinKFKS4AhRADdOnwR0zVMyt4cQBWPi7o7P78sxq1qVzJgYQgcNJunIEUOHJUop+Q8tRAFkdTD2qVHbwJEIUTIZ29vjvXSJbpHOhARChw3n/s6dhg5LlEKS4AiRT8kJ97l97QoAPjVqGTYYIUqwHIt0vvU2cRs2GjosUcpIgiNEPoWdPQWKgoOnN9b2joYOR4gSLWuRTpvu3SAjg1sffEDM8uWGDkuUIpLgCJFPITI8XIhCpTIxwX3qVMq99hooCne++JK7s2ZRxpZIFEVEEhwh8kFRlP86GEv/GyEKjUqtxmXiBBxHjwYg6sefuDNlCopWa+DIREknCY4Q+RB7J4L4u3dQGxnL+lNCFDKVSoXT22/hMmE8APeW/kbEhImySKd4JpLgCJEPIaeOA+AeUBlTM3MDRyNE6WQ/cCDu30zVLdK5bh0333lXFukUT00SHCHy4fpx3VwdfrXqGTgSIUo32x498PzpR1SmpiRs307o0KGkXLxo6LBECSQJjhBPkJaSrBtBBfjXbWDgaIQo/axbt8br119RW1qSfPQYwS/25Obbb5Ny4YKhQxMliCQ4QjzBjTMnyczIwNbZBXsPL0OHI0SZYNmwAb5/rsamc2dQqbgf9A/BPV8ibPRbssSDyBdJcIR4guvHDgNQvm4DVCqVgaMRouzQ+Pnh8cP3lN+wHpsuXUClImH7dkJe7kXYm6NIPiuJjsibJDhCPIai1er73/jXaWjgaIQomzQVKuDx/XeU37QRm27dQK0m4d9/CenVi7ARI0k+c8bQIYpiSBIcIR7j9rUrJMXFYmpugWfVaoYOR4gyTVO+PB7fTqP8xo3Y9uiuS3R27SKkdx9C33iD5FOnDB2iKEYkwRHiMa49aJ7yrVkHI2MTA0cjhADQlPfD/Ztv8N+8CdsXXwQjIxJ37yGkbz9Chw0n6cQJQ4coigFJcIR4jOvHDgEyekqI4sjU1xf3qVN0ic5LL+kSnb17ufFKf0KHDCXp+HFDhygMSBIcIfIQfzeSu6EhqFRq/GrL/DdCFFemPj64f/0V/lv+xrbXy2BsTOL+/dzo/yo3Xn+dpKNHDR2iMABJcITIw7XjuuYp94DKmFvbGDgaIcSTmHp54f7ll/hv+Ru73r3B2JikAwe58doAbgwaTOLhw4YOUTxHkuAIkYdrR3XNU+XrSPOUECWJqacnbl98ToWtW7Dr2xdMTEg6dIjQgYO4MWAgiQcPyYrlZYBKKWO/5fj4eGxtbYmLi8PGRr6Vi9wlxt5j7shBKIqWITPmUs7N47lc93ZcCt9tu4SxWsWUl6rLvDtCFIL0W7eI+vVXYv9cA+npAJjXq4vT6NFYNGpUbP/OMhMSSAsOJu36dTJjYzF2c8PU0xMTT0+MyuDnV0E/v42fQ0xClDiX9u9GUbS4VQh4LslNplZh2cEbfLv1EgmpuhWUR7WsgLeDRZFfW4jSzsTdHbdJk3B84w2if/2V2NV/knz0GKGvD8G8bl2cRo/ConFjgyQ6ilZLRkQEqdeDSQu+TmpwMGnXdUlNxt27eR6ntrHRJzu6m8d/jz08UGs0z/FZFE+S4AiRiwt7dwJQ+YWWRX6t+JR0Bi88zPHQ2GzbQ6ITJcERohCZuLnh+umnOLzxBtG/zid29WqSjx0jdMhQzGvXxnH0aCybNimSREebnEzajRukXb+uS2auP0hmgoNRUlLyPM7YyQlTPz+M7O1Jj7hFethNMmNi0MbHk3L+PCnnz+d+nLPzI4mPl/6+sYsLKiOjQn+OxY0kOEI8IuZWOLevXUGlVlO5SbMiv97vh0I5HhqLtcaYDzoG8O+lu+y4GMmNmKQiv7YQZZGJqyuun3ysS3Tmzyf2jz9IPnGCsGHDMK9ZE8e3RmP5wgsFTnQURSEzKuq/2pjr1/W1Mem3bj0mIBNMfbzR+PlhWt4fTXk/TMuXx9TXFyNr6xzFtYmJpIWHk34znPSbN0kPv0la1v2wMLRJSWRERpIRGUlybkPlTUwwcXfD1OO/GiBTr//uG9nZFdtmu4KQBEeIR2TV3vjUqI2FrV2RXktRFP44GgbAxC5V6NfAmxvRSewAbkQlFum1hSjrTFyccZ04AYfhw4hZsIB7K1eRfOoUYcPfwKxmDZxGjcKyefMcH/ZKWhppoaHZmpNSQ3T3tffv53k9I1tbXeLi54fGvzymfuUx9fPF1MsLlXH+P47VlpaYVaqEWaVKOfYpikJmbKw+2dEnPjcf3L91C9LTSb8RSvqN0DzPr098PD30tT+a8uUx9fHJd5yGJgmOEA9RFIWLDxKcqs+heep4aCzX7yZiZqKmSw03AHweNEuFREsNjhDPg4mzMy7jx+MwbBjRCxZyb+VKUk6dJmzESMyqV8e2e3fSb0fok5m0mzchMzP3k6nVusTAzxdNeX9My/vpamb8/TEuV67In4tKpcK4XDmMy5XDvHr1HPuVzEwy7twh7eZN0sOyan9u6mqDwsLIuHsXbWIiqZcukXrpUo7jzevVxWHwYKxatSr2zVyS4AjxkNtXLxN7JwJjjQb/+o2K/Hp/HtPV3nSu7oa1mW4pCB8HSwBuREsNjhDPk7GTEy4ffYjDsKFEL1zEvRUrSDlzhpRcFvNUW1pi6uenS2DKl8fU10/32NenWHfwVRkZYeLujom7OzTIOQWGNiWF9Fu3SL95k7SwMH0zWNrNm6ReuULy0WPcPHoMEx9v7AcOxK5nT9QWxbOvoCQ4Qjzk/J5/AahQrxGmZuZFeq2ktAw2nIoAoHddL/1236wEJyYJrVZBrS75beFClCTGjo64fPA+DkOHELNkKSmXLmLq5f1fbUx5f4ydnUpFP5VHqc3M0JQvj6Z8+Rz70u/c4d6y5dxbtYr0G6Hc+eJL7v74E+X69KHca69i4uJigIjzJgmOEA9kZmRw6cAeAKo2a1Xk19ty9jYJqRl421vQ0M9ev93dzgxjtYq0DC137qfgZlu0iZYQInfGDg44jx1j6DCKDRMXF5zHjcVx5Ahi164j5relpN8IJfrXX4letAibzp1wGDwYs6pVDR0qIDMZC6F3/fhhkuPjsLC1w7t6rSK/3uqjNwHoVdczWy2NsZEaz3K6pCYkSvrhCCGKF7WlJfavvYr/5s14/vIz5vXqQkYG8es3EPzSy9wYNJj7//6LotUaNk6DXh2YNWsWfn5+mJmZUbduXfbs2ZNn2b/++ot27drh5OSEjY0NjRs3ZuvWrc8xWlGandmuey9Va9EGowKMaHgaodFJHLgejUoFL9f1zLFf+uEIIYo7lZER1m3a4LtsGb6rV2PTtSsYGZF06BA33xzF9S5dubdyFdrkZIPEZ9AEZ9WqVbz77rtMnDiREydO0KxZMzp16kRoaO5D13bv3k27du3YvHkzx44do1WrVnTr1o0TJ04858hFaRMfFUnwKd18EdVbty/y6604onuPv1DBEQ+7nE1QvjKSSghRgphXD8Tju2+p8E8Q9kOHoLa2Ji04mNuTJ3O1VWsiZ8587MzMRcGga1E1bNiQOnXqMHv2bP22KlWq8OKLLzJlypR8naNatWr07duXTz/9NF/lZS0qkZv9q5dz4M8VeFWrQZ9Pvy7Sa4XFJNH2h12kZmiZ81pdOga65iizcG8wn288T6dAV2a/VrdI4xFCiMKWmZBI3F9riFmylPTwcABUJibYdOuG/aBBmAXknMPnSQr6+W2wGpy0tDSOHTtG+/bZvy23b9+e/fv35+scWq2W+/fvY29vn2eZ1NRU4uPjs92EeJhWm8nZf/8BoHqbDkV+vS83nSc1Q0vj8g50qJb7qIOsuXBuSA2OEKIEMrKyxH7gQPy3bsFjxgzMa9VCSU8n7q+/CO7Rg9Chw0jYs7dIV3U3WIITFRVFZmYmLo8MK3NxceH27dv5Osf3339PYmIiffr0ybPMlClTsLW11d+8vLzyLCvKppBTx7kffRczK2sq1m9cpNfac+UuW8/dwUit4rMe1fIcZvpwHxwDVrIKIcQzURkbY9OxA74rV+Cz4nesO3YEtZrEffsIGz6c4O7dif3zT7SpqYV+bYN3Ms4xBbai5GtugRUrVjB58mRWrVqFs7NznuXGjx9PXFyc/hYWFvbMMYvSJatzcdXmrTE2NS2y66RlaJm8/hwAAxv7UMkl5xozWbzszVGpIDEtk6iEtCKLSQghnheL2rXxnDEd/21bKTdwAGoLC1KvXCXi40+42roNd3/5hYyYmEK7nsHmwXF0dMTIyChHbU1kZGSOWp1HrVq1iqFDh7J69Wratm372LIajQZNMZ5VUjxfGenpXDt6kJsXzqJotSiKwrVjhwGoUcTNU/P3Xufa3UQcrUx5t+3j2581xka425oTHpvMjehEnKzlPSyEKB1MPT1xnTABp7ffJvaP1cT89hsZt28T9dPPRM/7FdsePbAfPCjXyQYLwmAJjqmpKXXr1iUoKIiePXvqtwcFBdGjR488j1uxYgVDhgxhxYoVdOnS5XmEKkqBexHhnNy6ifN7d5JyP2c/LPeAqjh4ehfJte/Ep/DFxvNsPK2btfiDjpWxNTd54nE+DhaExyYTEp1EPd+8+5kJIURJZGRtjcPQIdgPHED81m3ELF5MytmzxP7xB7F//IFVixbYvz4Yi4YNn2rWaIPOZDx27FgGDBhAvXr1aNy4MfPmzSM0NJSRI0cCuual8PBwli5dCuiSm4EDBzJz5kwaNWqkr/0xNzfH1tbWYM9DFG+hZ0+xdtrnZDxo47WydyCg8QtoLKwAUBsZUblp8yK59rKDN5j690USUjNQq2BIUz961ck5701ufBws2X8tmlCZC0cIUYqpTEyw7doFmy6dST52jOhFi0nYsYOEXbtI2LULTeXK2A8ehOqFFwp0XoMmOH379iU6OprPP/+ciIgIAgMD2bx5Mz4PlmOPiIjINifO3LlzycjIYPTo0YwePVq/fdCgQSxevPh5hy9KgOCTx1j/3VdkpKfhUbkqDV7sjW/NOqjVRb8K7tGQGD5edxaAml52fPViIIEe+U/EZS4cIURZolKpsKhXD4t69UgLCSFm6W/Erl1L6sWLRHw0npQCrsZu0HlwDEHmwXm+MjMyOPjXKgAa9uyDscmTm2YKy5UjB9g4/Ru0mRmUr9uAbmPGP9frT/rfWZYcuEHn6q789EodjAq4aOaWs7cZuewYNT1t+d9bBfvmkiU9U8uBa9G42ZpR8TGdmoUQojjKjI3l3h+rubdsGbERETS4eiXfn9+y2KYoMumpKWyc8Q3Xjx8B4Mbp43QfOwEre4civ/blQ/vYOOMbFK2WSg2b0vn/3sPI+PklN1qtwt9ndU2ovet6FTi5gf/mwiloDY6iKJy7Fc9fx8P538lwohPTMFareLdtRUa28MfYyOCDJ4UQIl+M7OxwfGM4DoMHcXPNGujfP9/HSoIjikRywn3WfvMZEZcvYmyqwcjEmIgrl1g2/l26jRmPR+WiW2324eSmygst6ThqDGqjom+Setix0HtE3k/F2syYJhWeLqHLSnDiktOJTUrDziL7EHatViEm6f/bu/ewqKqFf+DfuQ+XYZDrMIKIN8R7goEWoidDzfJyLMs6Vk+9/TItM3+VmXbs8iutU6b+rDx1urx23tPRLpqd0uKkkinewTQV5CbI/T4wwAwzs94/0DkRoAgjMwzfz/PM88Setddee7XcfNl77b3NKDWYUFZnQlZpHY7mVuJITiUqjP+5tdxbJUedyYI3f8jAj+dK8fa8Megf4NX5nSMi6mYSpRLaa7yxiAGHHM5QXoqv1ryIiot5UHt5Y/by1fDUarHzzVdRnn8B215+HrOeXokBY8c5fNu/DTfD4idj6qKl3TLf5ve+O9V8x9StUcFQyTu3fU+lHEEaFUprTfjh1xIEalSoqjfjbJEBJy/W4NeCGhjN1jbXVcmlmBIVjLnRfTFxcCB2nizE6q9/RWpeNW5Zl4zRoVrcNCgA4wf6Y0iwBv5eyk7dpUBE5Ko4B4ccqjDjLL5+81XU11TD288fc59/GQFhzZPGzY0N2P3O2zh/5CDkKhXm/fk1hAyKdMh2rRYL0r7/F5L//pHTw43NJnDT63tQVNOIv90fgynDrvxcpyuZtzkFR3Lbf/CVRAL4eykR4K1CX18PjA3vg9gIP4wM1bYKVgXVDVj+xS/4ObO8VT1eShnC/DwRFeKDMWG+uKGfL4bqfKCU83IWEbmGa/39zYBDDnNm/178sHkDrBYLAsMjMPvZF+AT0PIp01aLBTveeBm5J0/AQ+OD+f/vTfTR6bu03dxfUrH3k/dRWdD8lGpnhhsAOJFXhT++exDeKjmOrZoCtaLz7fjqxEX85ft0KOVSaNRyaFQKDAryxqhQLUaH+SIiwAuKa5xTU1DdgAOZ5TiQWY5juVUorGlAW0cBpVyKYSE+GB2qxchQXwwK8kZEgFeHnuFDRORoDDhXwYBzfRz713Ykf/ohAGBgTBxue+L/Qqn2aLOsubEBW198DqU5WdAG6xA//0Eo1CooVGrI5ArI5HJIZTKY6o0ou5CDsgs5qCy8CJvVCkgkkEACq8UCi9mEJlMjDGWlAAAPjQ9uvud+jPxDIiRS5515ePXbM/hgfw5mjdFjwz03OK0dHWWyWHGxqvmJyacuGpCaX4W0/GpU1ze1Wd7fS4n4wQG4e1w/xA3ws1/aslhtaGiyQqNmACIix2PAuQoGHMfL/SUVX722GkLYMG7mXMTPf+CqAcNYXYXPXngaNaUlXd6+RCrFDVNvx/g774Xa27vL9XWFEAI3v74XBdUN2PynaEwboXNqezpLCIG8ynqcvFiDk/nV+LWwBjnlRpQYWr4Qr7+/J4bpfZBVakROuRFmqw3xgwNw7439MGVYMBQyKRqbrCioboDWQ4EAb75ygog6hwHnKhhwHMtQXopPn1uKxloDRkxOxNSFSzq8bnVxEX7e+inqKsvRZDKhyWSCtakJNqsFNqsVMoUCgf36IzB8AALC+kGuVEFAAEJAJldArlRBrlTCJyCwW24974iT+dWY9c4BeCplOPHCrV26POWK6kwWnCsy4MsTBdiZVtDuJGeg+UyPTCpBae1/QtHIvlpMjgzEML0WRTUNuFBRj9wKI24ZGoQF4/t3wx4QUU91rb+/eRcVdZrFbMbOt9agsdaA4AGDcMtDC69pfV9dCG5/8tnr1Drn2J5aAACYHBnkduEGaL7lPKa/H2L6+2HVjCjsPl2MqnozBgZ5Y3CQN6w2ga1H87Ht2EWU1/0n2HgqZag3W3GqoAanCmpa1dvHU4kF47tzT4jI3THgUKdYLU1I+mATSrLPQ+2taX5KsFJ59RXdWHW9GduONU90vntcmJNbc/15qeSYG936vVrPThuKpVOG4EReFTyVMoT18YSvpwJldSYkp5dhb3op8isb0NfXA+EBngj388KIvjybSkSOxYBDV2SqNyL7+BH0HTocPoHNd0RVlxTj241voDgzA5BIMOOJp6EN6vyt0O7i74cuoN5sRVSID+IHBzi7OU6llEsRN6DlZcMgjRp3xYThrhj3D39E5HwMONQuc0M9Pn9lFUqyzwMAQoYMRdiwkUj7/luYG+qh8vLC1MeWov+YaCe31Pkam6z45OAFAMCjEwfwoXlERE7GgENtsjQ14eu3XkNJ9nnIlSpYmswoyjiHooxzAAB95DDMWPJ0q+fc9FbbUwtQXmeCXqvGjFEhzm4OEVGvx4BDrdhsVux+Zx3yTqVBoVJj3p9fg7efPzIOH0DW8SMIHTocsXPmdfv7nVyVzSbwwU/ZAICH4wdc84P3iIjI8RhwqJXkLR8iPWU/pDI5Zj69ErpBQwAAY6fPxNjpM53cOteTdLYE2eVG+KjluKcXTC4mIuoJ+KcmtZBx+ABO7NoJAJi++Cn0H+X6T+J1JiEENidnAQAWjA+Hl4p/MxARuQIGHLIzlJXih79uBADcOOtODL0pwcktcn3JGWVIzauGWiHFAxP6O7s5RER0CQMOAQBsViu+3fgXmIxGhAyOxIR5f3J2k1yeEAJvJ2UAABbEhSNIo3Zyi4iI6DIGHAIAHPz8HyjMOAulhydmLHkGMjkvtVzN3vRSnLxYAw+FDI8mDHR2c4iI6DcYcAhn9u/F4R3bAACJjz4BbVDPfEFkdxJCYN2lszf3TwjnSySJiFwMA04vd2b/Xux6Zx0gBG6Yfgcix8c7u0k9QtKZEpwuMMBLKcOjE3n2hojI1TDg9GK/DTejb52Oyfc/4uwm9Qg2m8D6fzc/3fnBm/rDz6t3v4OLiMgVMeD0Ur8NN6OmTMMtDz0GiZTDoSO+PlmAM0UGeKvkeCR+gLObQ0REbeBvtF6q4mKePdxMeXgRw00H1ZsteH1XOgBg0eSB8PXk2RsiIlfEW2V6qZvvuR+6gYMxKCaO4eYabN6XhWJDI8L8PPDQTRHObg4REbWDAaeXkkgkGHzjBGc3o0e5WFWPv15659TK26KgVvBdXERErop/uhN10Ou702Gy2BAb4Yepw3krPRGRK2PAIeqAo7mV+OZkISQS4M93DINEInF2k4iI6AoYcIiuoslqw6rtpwEA94wLw3C91sktIiKiq2HAIbqKv+3PQXpJLfy8lHh26lBnN4eIiDqAAYfoCvIr67Hhx+ZXMjx/WxT68KF+REQ9AgMOUTuEEPjz16fR2NQ8sXju2L7ObhIREXUQAw5RO3adLsbe9DIoZBK8OmckJxYTEfUgDDhEbSirNeGFHc0TixcmDMSgIG8nt4iIiK4FAw7R7wgh8OwXJ1FhNCMyWIPFkwc5u0lERHSNGHCIfufTQxewN70MSrkUG+ffwCcWExH1QAw4RL+RUVKLV789CwB4fvpQROo0Tm4RERF1htMDzrvvvouIiAio1WpER0dj//797ZYtKirCvffei8jISEilUixdurT7Gkpur7axCUs+S4XJYkPCkEA8MKG/s5tERESd5NSAs3XrVixduhQrV65Eamoq4uPjMX36dOTl5bVZ3mQyITAwECtXrsTo0aO7ubXkzhqbrHhkyzGcK65FgLcSf7lrFO+aIiLqwSRCCOGsjcfGxmLs2LF477337MuioqIwe/ZsrFmz5orrTpo0CWPGjMH69euvaZsGgwFarRY1NTXw8fHpTLPJzTRZbXjs7yfw77Ml8FbJ8dkjcRgZytcxEBG5kmv9/S3vhja1yWw24/jx43juuedaLE9MTMTBgwcdth2TyQSTyWT/2WAwOKxu6rlsNoHyOhMKqhvw8YFc/PtsCVRyKf72QAzDDRGRG3BawCkvL4fVakVwcHCL5cHBwSguLnbYdtasWYOXXnrJYfVRz2Q0WXAkpxKHcipwOLsSZwoNMFtt9u9lUgnevW8s4gb4O7GVRETkKE4LOJf9fp6DEMKhcx9WrFiBZcuW2X82GAwICwtzWP3k2qrrzfjoQC4+PpCD2kZLi+9kUgmCNSr07eOB/zNxIG6JCm6nFiIi6mmcFnACAgIgk8lana0pLS1tdVanK1QqFVQqlcPqo56hpqEJ7/+Uhf8+eAF1puZg09fXAzcN8kdshD9i+vdBX18PyGVOv5GQiIiuA6cFHKVSiejoaCQlJWHOnDn25UlJSZg1a5azmkUOlllah/85fAFWm8BtI0NwY38/SKXX7+4ks8WGvx+6gI17zqO6vgkAMFSnwZO3DMbU4brrum0iInIdTr1EtWzZMixYsAAxMTEYP3483n//feTl5WHhwoUAmi8vFRQUYMuWLfZ10tLSAAB1dXUoKytDWloalEolhg0b5oxdoDYIIXAkpxIf7M/Gv8+W2pdvSbmAEK0as8b0xcM3RyBQ47gza6WGRvzrlyL8d0ouLlTUAwAGB3nj6amRuDUqmMGGiKiXcept4kDzg/7eeOMNFBUVYcSIEXj77bcxceJEAMCDDz6I3Nxc7Nu3z16+rfk54eHhyM3N7dD2eJv49WM0WbAjrQCfplzAueJaAIBEAkyJCkYfTwV2nS62z4PxVMrwSPwAPDJxALxV7efsxiYrLlbVo7C6EfVmK0wWK0wWGxrMVtSZLDCaLEjLr8ah7ArYLo3kQI0Ky24dgruiQ3kJiojITVzr72+nB5zuxoDjeGaLDX9NzsL7P2Wj9tJ8F7VCijk3hOK/4iMwMLD5TdyNTVbsSy/Fe/uycPJiDQDA30uJSJ0GCpkUCpkUTVYbjCYL6kwWVBrNKK01tbvd3xvbzxczR+txV0wYvK4QmoiIqOdhwLkKBhzHOpJTiee3n0JmaR0AoL+/J/4UF467osOg9VS0uY4QArtOF+Mv36cjp9x41W14q+To6+sBb7UcKrkUKrkUnko5PJUyeKnk0PuqMX1ECML8PB26b0RE5Dp6zIP+qGcQQqDCaEYfTyVkl+ax2GwCh3Iq8NmRfHxzshAAEOCtxKoZwzBztP6q810kEgluGxmCW4cF40BmOQyNFpgtNpgtNihkEnip5PBSyeHroUCYnyf6eCr42gQiIromDDjUriM5lVi76yxO5FVDrZAiUueDgYFeOJxdiYLqBnu5+TeG4blpUe2esWmPQibFpMggRzebiIiIAYdayyytxdpd51rcAdXYZMPJ/GqczK8GAGjUctwxWo/54/rx1QZERORyGHDIrslqw+Z9Wdi45zyarAIyqQR3jwvDE38YhAazFWeKDMgsrUNEgBemDtdBrZA5u8lERERtYsAhAMCZQgOe+eIkfi1sfhnp5MhArJwxDIOCvO1lBgR6t7c6ERGRS2HA6eV+uViNzclZ2HW6GEIAvp4KvHjHcMwao+fEXiIi6rEYcHqpw9kV2PDjeRzMqrAvmzEyBKtnDkOQRu3ElhEREXUdA04vk5pXhXVJGdh/vhwAIJdKMHO0Ho8mDESkTuPk1hERETkGA04vkZpXhf+/JxN7zjXfGaWQSTAvJgyLJg9CX18PJ7eOiIjIsRhw3Nyx3Eps+PG8/YyNVALMHRuKJbcM5pN/iYjIbTHguKlSQyNe++4sdqQ1P2lYJpVgzg19sWjSQN4NRUREbo8Bx80YTRb882g+1idloNZkgUQCzIsOw+N/GMQzNkRE1Gsw4LiBBrMVSWdL8O0vhdiXXgaTxQYAGB2qxSuzR2BUqK9zG0hERNTNGHB6sNxyIz49dAHbjuWjttFiXx4R4IVH4gfgnnFhV33xJRERkTtiwOlhssvqsOdcKfacK23xDJvQPh6YNUaPGSP1iArR8CF9RETUqzHguLgGsxWHsiuQnFGGfemlyK2ot38nkQCThgTi/vH9kTAkkGdriIiILmHAcTFWm8CvhTX4ObMcBzLLcTS3CuZLc2qA5ufX3Bjhh8mRQZg6XMeJw0RERG1gwHEym02goLoBKVkVSD5fhgOZ5aiub2pRpq+vBxIiAzFxcCBuGuQPjVrhpNYSERH1DAw43aC2sQlnCg3IKTeirNaEsjoTimsakVthxIWKevtdT5dpVHLEDfTHzYMCcNOgAAwM9OKcGiIiomvAgNMFFqsNvxYakFthhEImhfzSHJgSQyMuVjXgYlUDzhYZkF1uvGI9cqkEw/tqkTA4ABOHBGJMmC/kMml37AIREZFbYsC5RpVGM746cRE/nS/H8dxKGM3WDq2n16oxRKdBsEaNQI0KQT4q9PPzRESAF/r6ejDQEBERORADzlVYbQKVRjOyyuqw9Wg+vj1V1GLSr0YtR1SIDyCAJpsNNptAkI8aoX08ENrHEwMDvTCirxYB3ion7gUREVHvwoBziRACZbUm/HKxBmn51UjLr0ZGSS0qjGZYbaJF2RF9fTDnhlCMH+CPSJ0GMt6eTURE5FJ6bcBpstpwMKscyellOF1Yg7NFtag0mtssK5EAAd4qTBoSiD/FhWN0mG/3NpaIiIiuSa8NOBPf2AOjaHnZSCoBBgZ6Y0yYL8b088UIvRYhWjX8vJScI0NERNSD9NqAU9toRYCfEpMjgxAb4YehIRoMCdZArZA5u2lERETURb024Gx5aBzih4dz/gwREZEb6rXXXcaG+zHcEBERualeG3CIiIjIfTHgEBERkdthwCEiIiK3w4BDREREbocBh4iIiNwOAw4RERG5HQYcIiIicjtODzjvvvsuIiIioFarER0djf3791+xfHJyMqKjo6FWqzFgwABs3ry5m1pKREREPYVTA87WrVuxdOlSrFy5EqmpqYiPj8f06dORl5fXZvmcnBzcdtttiI+PR2pqKp5//nksWbIEX375ZTe3nIiIiFyZRAghnLXx2NhYjB07Fu+99559WVRUFGbPno01a9a0Kr98+XLs3LkTZ8+etS9buHAhTp48iZSUlA5t02AwQKvVoqamBj4+Pl3fCSIiIrrurvX3t9PO4JjNZhw/fhyJiYktlicmJuLgwYNtrpOSktKq/NSpU3Hs2DE0NTW1uY7JZILBYGjxISIiIvfmtIBTXl4Oq9WK4ODgFsuDg4NRXFzc5jrFxcVtlrdYLCgvL29znTVr1kCr1do/YWFhjtkBIiIicllOn2QskbR84aUQotWyq5Vva/llK1asQE1Njf2Tn5/fxRYTERGRq5M7a8MBAQGQyWStztaUlpa2OktzmU6na7O8XC6Hv79/m+uoVCqoVCr7z5cDES9VERER9RyXf293dOqw0wKOUqlEdHQ0kpKSMGfOHPvypKQkzJo1q811xo8fj2+++abFsh9++AExMTFQKBQd2m5tbS0A8FIVERFRD1RbWwutVnvVck4LOACwbNkyLFiwADExMRg/fjzef/995OXlYeHChQCaLy8VFBRgy5YtAJrvmNq0aROWLVuGRx55BCkpKfjwww/x2WefdXiber0eAwcOxPHjx694Kexqxo0bh6NHjzptfUfUYTAYEBYWhvz8/E7fUeYK++HsNjiiH7vaBkes7wpt4Jh0XB3sS8fUwX/fjlu/q30phEB0dDT0en2Hyjs14Nx9992oqKjAyy+/jKKiIowYMQLfffcdwsPDAQBFRUUtnokTERGB7777Dk899RTeeecd6PV6bNy4EXPnzu3wNqVSKZRKZYfS35XIZLIuDfauru+oOgDAx8en0/W4wn64QhuArvWjI9rgCv3AMek6bbiMfcl/367UBqBrfalUKiGVdmz6sFMDDgAsWrQIixYtavO7Tz75pNWyhIQEnDhxokvbXLx4cZfWd0QdrtAGR3CF/XCFNjiCO/SDO/SjI+pwhTY4givshyu0wRHcoR96Wj869UF/5Fx86KFjsB8dh33pOOxLx2A/Ok5396XTbxMn51GpVFi9enWLu8zo2rEfHYd96TjsS8dgPzpOd/clz+AQERGR2+EZHCIiInI7DDhERETkdhhwiIiIyO0w4BAREZHbYcAhIiIit8OA04P99NNPuOOOO6DX6yGRSLBjx44W35eUlODBBx+EXq+Hp6cnpk2bhvPnz9u/z83NhUQiafPz+eef28tVVVVhwYIF0Gq10Gq1WLBgAaqrq7tpL7tHV/sSALKysjBnzhwEBgbCx8cH8+bNQ0lJSYsy/fv3b9XXzz333PXevW6zZs0ajBs3DhqNBkFBQZg9ezbS09NblBFC4MUXX4Rer4eHhwcmTZqEX3/91f59ZWUlnnjiCURGRsLT0xP9+vXDkiVLUFNT06Iedx+XjujL35edPn16m+PbncelI/qRx8pmjhqT3XWsZMDpwYxGI0aPHo1Nmza1+k4IgdmzZyM7Oxtff/01UlNTER4ejilTpsBoNAJofuFoUVFRi89LL70ELy8vTJ8+3V7Xvffei7S0NOzevRu7d+9GWloaFixY0G372R262pdGoxGJiYmQSCTYs2cPDhw4ALPZjDvuuAM2m61FfZdfTXL5s2rVqm7Zx+6QnJyMxYsX49ChQ0hKSoLFYkFiYqK9nwDgjTfewLp167Bp0yYcPXoUOp0Ot956q/1FuIWFhSgsLMSbb76JU6dO4ZNPPsHu3bvx8MMPt9iWu49LR/Tlb61fv/6K799z13HpiH7ksbKZI/qyW4+VgtwCALF9+3b7z+np6QKAOH36tH2ZxWIRfn5+4oMPPmi3njFjxoiHHnrI/vOZM2cEAHHo0CH7spSUFAFAnDt3zrE74SI605fff/+9kEqloqamxl6msrJSABBJSUn2ZeHh4eLtt9++7vvgKkpLSwUAkZycLIQQwmazCZ1OJ9auXWsv09jYKLRardi8eXO79Wzbtk0olUrR1NQkhOid47IrfZmWliZCQ0NFUVFRq/EtRO8al44akzxWdq4vu/NYyTM4bspkMgEA1Gq1fZlMJoNSqcTPP//c5jrHjx9HWlpai7+UU1JSoNVqERsba18WFxcHrVaLgwcPXqfWu5aO9KXJZIJEImnxhE61Wg2pVNqqv19//XX4+/tjzJgxePXVV2E2m7thL5zj8mUlPz8/AEBOTg6Ki4uRmJhoL6NSqZCQkHDF8XT50e5yefPr83rjuOxsX9bX12P+/PnYtGkTdDpdu/X3lnHpiDHJY2WzzvRldx4rGXDc1NChQxEeHo4VK1agqqoKZrMZa9euRXFxMYqKitpc58MPP0RUVBQmTJhgX1ZcXIygoKBWZYOCglBcXHzd2u9KOtKXcXFx8PLywvLly1FfXw+j0YhnnnkGNputRX8/+eST+Oc//4m9e/fi8ccfx/r169t92WxPJ4TAsmXLcPPNN2PEiBEAYB8zwcHBLcoGBwe3O54qKirwyiuv4NFHH7Uv623jsit9+dRTT2HChAmYNWtWu/X3lnHpqDHJY2Xn+7I7j5VOf5s4XR8KhQJffvklHn74Yfj5+UEmk2HKlCktrhf/VkNDA/7xj3/ghRdeaPVdW9fthRBXvJ7vTjrSl4GBgfj888/x2GOPYePGjZBKpZg/fz7Gjh0LmUxmL/fUU0/Z/3vUqFHo06cP7rzzTvtfKu7k8ccfxy+//NLmGcPfj532xpPBYMCMGTMwbNgwrF69+op1XKmenq6zfblz507s2bMHqampV6y/t4xLR4xJHiubdbYvu/NYyYDjxqKjo5GWloaamhqYzWYEBgYiNjYWMTExrcp+8cUXqK+vx/33399iuU6nazW7HQDKyspapXR31pG+TExMRFZWFsrLyyGXy+Hr6wudToeIiIh2642LiwMAZGZmutUvkieeeAI7d+7ETz/9hNDQUPvyy5dIiouLERISYl9eWlraajzV1tZi2rRp8Pb2xvbt26FQKFrU01vGZVf6cs+ePcjKyoKvr2+LOufOnYv4+Hjs27evzW2647h0xJgEeKwEut6X3Xas7NIMHnIZaGPi4O9lZGQIqVQqvv/++1bfJSQkiLlz57Zafnni3OHDh+3LDh065NYT57ral5f9+OOPQiKRXLGfvvnmGwFAXLhwobPNdSk2m00sXrxY6PV6kZGR0eb3Op1OvP766/ZlJpOp1YTOmpoaERcXJxISEoTRaGxVT28Yl47oy6KiInHq1KkWHwBiw4YNIjs7u91tu9O4dNSYvKw3Hysd3ZeXXa9jJQNOD1ZbWytSU1NFamqqACDWrVsnUlNT7QNg27ZtYu/evSIrK0vs2LFDhIeHiz/+8Y+t6jl//ryQSCRi165dbW5n2rRpYtSoUSIlJUWkpKSIkSNHittvv/267lt3c0RffvTRRyIlJUVkZmaKTz/9VPj5+Ylly5bZvz948KC93uzsbLF161ah1+vFzJkzu3Vfr6fHHntMaLVasW/fPlFUVGT/1NfX28usXbtWaLVa8dVXX4lTp06J+fPni5CQEGEwGIQQQhgMBhEbGytGjhwpMjMzW9RjsVjs9bj7uHREX7bl9wHe3celI/uxtx8rHdWX3XWsZMDpwfbu3SsAtPo88MADQgghNmzYIEJDQ4VCoRD9+vUTq1atEiaTqVU9K1asEKGhocJqtba5nYqKCnHfffcJjUYjNBqNuO+++0RVVdV13LPu54i+XL58uQgODhYKhUIMHjxYvPXWW8Jms9m/P378uIiNjRVarVao1WoRGRkpVq9e3eYZip6qrT4EID7++GN7GZvNJlavXi10Op1QqVRi4sSJ4tSpU/bv2/t/AUDk5OTYy7n7uHREX7ZX728DjruPS0f2Y28/VjqqL7vrWCm51GgiIiIit8HbxImIiMjtMOAQERGR22HAISIiIrfDgENERERuhwGHiIiI3A4DDhEREbkdBhwiIiJyOww4RERE5HYYcIiIiMjtMOAQERGR22HAISIiIrfzv5S0JsoJHCAqAAAAAElFTkSuQmCC",
+      "text/plain": [
+       "<Figure size 640x480 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "ax = ceds_nh3_data.plot()\n",
+    "cams_nh3_data.plot(ax=ax)\n",
+    "emissions_NH3_road.plot(ax=ax)\n",
+    "NH3_hist_emissions[220:].plot(ax= ax)\n",
+    "ax.set_title('Yearly total road emissions of NH3')\n",
+    "ax.set_ylabel('Tg(N)/a')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "a2d0e357-86d3-44aa-a8ec-b42e93b958ce",
+   "metadata": {},
+   "source": [
+    "# SO2"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 153,
+   "id": "ea3c0a21-9aa3-48b4-a018-de01399de37a",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [
+    {
+     "ename": "NameError",
+     "evalue": "name 'cams_so2_data' is not defined",
+     "output_type": "error",
+     "traceback": [
+      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[0;31mNameError\u001b[0m                                 Traceback (most recent call last)",
+      "Cell \u001b[0;32mIn[153], line 3\u001b[0m\n\u001b[1;32m      1\u001b[0m cams_so2_file \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m/home/b/b309253/data-exploration/emissions/cams-glob-ant-anthro-so2.csv\u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m      2\u001b[0m cams_sos_data \u001b[38;5;241m=\u001b[39m pd\u001b[38;5;241m.\u001b[39mread_csv(cams_so2_file, sep\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m,\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m----> 3\u001b[0m \u001b[43mcams_so2_data\u001b[49m\u001b[38;5;241m.\u001b[39mcolumns \u001b[38;5;241m=\u001b[39m [\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mDate\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mCAMS Road\u001b[39m\u001b[38;5;124m'\u001b[39m]\n\u001b[1;32m      4\u001b[0m cams_so2_data \u001b[38;5;241m=\u001b[39m cams_so2_data\u001b[38;5;241m.\u001b[39mset_index(pd\u001b[38;5;241m.\u001b[39mdate_range(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m1/1/2000\u001b[39m\u001b[38;5;124m\"\u001b[39m, periods\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m24\u001b[39m, freq\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mY\u001b[39m\u001b[38;5;124m'\u001b[39m))\u001b[38;5;241m.\u001b[39mdrop(columns \u001b[38;5;241m=\u001b[39m [\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mDate\u001b[39m\u001b[38;5;124m'\u001b[39m])\n",
+      "\u001b[0;31mNameError\u001b[0m: name 'cams_so2_data' is not defined"
+     ]
+    }
+   ],
+   "source": [
+    "cams_so2_file = '/home/b/b309253/data-exploration/emissions/cams-glob-ant-anthro-so2.csv'\n",
+    "cams_sos_data = pd.read_csv(cams_so2_file, sep=',')\n",
+    "cams_so2_data.columns = ['Date', 'CAMS Road']\n",
+    "cams_so2_data = cams_so2_data.set_index(pd.date_range(\"1/1/2000\", periods=24, freq='Y')).drop(columns = ['Date'])"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "bc450025-f98f-4e40-ae97-f7ac5dd030c9",
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "6e785052-c044-43ab-b11a-991c1c17e1bb",
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "fd6e547c-cf24-421f-b7dd-a00b533990d6",
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "9418d4bb-e785-4203-b76f-f8f0de4f501b",
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "dfeae6d9-ab74-4b98-95aa-8c7609b7abad",
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 129,
+   "id": "4375409e-3a29-4e3b-82d0-2eb6449c4b08",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAHWCAYAAACmMzqDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUxf/A8ffd5XKXS+8JENKAQAKhhdCkN2mCAgooiiiCgEpRUPgJWFH0i2ABREpQLIAIAiLSDEVACCC9EwglhfSeXJnfH0fOHKkgnXk9zz2Q3dnduc3uZe6zM59RCCEEkiRJkiRJkiRJkiRJknQHKe92BSRJkiRJkiRJkiRJkqSHjwxKSZIkSZIkSZIkSZIkSXecDEpJkiRJkiRJkiRJkiRJd5wMSkmSJEmSJEmSJEmSJEl3nAxKSZIkSZIkSZIkSZIkSXecDEpJkiRJkiRJkiRJkiRJd5wMSkmSJEmSJEmSJEmSJEl3nAxKSZIkSZIkSZIkSZIkSXecDEpJkiRJkiRJkiRJkiRJd5wMSj3AevTogYuLCxcvXiyxLjU1FV9fX1q2bInJZLrtdTl//jwKhYKoqKhbsr9jx44xdepUzp8/f9P7WLduHVOnTv1P9Rg8eDABAQH/aR93SkBAAIMHD77b1bCYOnUqCoXilu83OjoahUJBdHT0Ld/3nVRYWMjw4cPx9fVFpVLRoEGDMssOHjwYhUJBWFgYRqOxxHqFQsGoUaNKLL948SKjRo0iODgYrVaLq6srbdu25fvvv0cIcSvfjvSAuF33rSTdTrI9VD7ZHrq7ZHuofLezPVR0P3766ael7u/TTz9FoVBY3V8//vgjrVu3xtvbG41GQ5UqVejZsyc7d+686fco3X8elPvrXiGDUg+w+fPnY2Njw4svvlhi3ahRo8jKymLx4sUolfffZXDs2DHeeeed/9wIe+edd25dpaQb8uKLL7Jr165bvt9GjRqxa9cuGjVqdMv3fSfNmTOHr7/+mkmTJrFjxw6+++67Crc5duxYpb/o/PXXX4SHh/Prr7/y2muvsX79eqKioqhatSrPPPMMAwYMuCNf0KT7y+26byXpdpLtofLJ9tDdJdtD5bvd7aEblZKSQsuWLZk9ezYbNmxgxowZJCYm0rp1a7Zu3Xpbjindex6U++teYXO3KyDdPj4+PsyePZunnnqKr7/+mmHDhgGwcuVKfvzxR2bPnk2NGjVuax2MRiMGg+G2HuN+lZubi06nu9vVuGuqVatGtWrVbvl+nZycaNas2S3f75125MgR7OzsSu3hVBp7e3saNWrElClTGDhwIHZ2dmWWTU9P54knnsDZ2Zm///4bb29vy7pevXoRHh7Om2++SYMGDXjzzTf/83u5Ex72++l2Kzq/t+u+laTbSbaH7m0P++e3bA+V73a2h25GafXo2rUrnp6eLFiwgDZt2tzS492oh/1+ut30ej0KheKBub/uFfffIyHphjz55JP079+f119/nfPnz5OSksLw4cPp1KkTL7/8MjExMTz22GO4ubmh1Wpp2LAhy5Yts9rH1atXGTFiBKGhoTg4OODl5UX79u3Zvn27VbmiLrDTp0/n/fffJzAwEI1Gw59//lmiXtu3b0ehUPDjjz+WWPftt9+iUCjYu3dvqe8pKiqKfv36AdCuXTsUCkWJrvALFy6kfv36aLVa3NzcePzxxzl+/Lhl/eDBg/nqq68ALNsX75771Vdf0bp1a7y8vLC3t6devXpMnz4dvV5f8UkvRdu2balbty7btm2jRYsW6HQ6hgwZAkBcXBzPPPMMXl5eaDQa6tSpw//+978SvVTeeecdmjZtipubG05OTjRq1IgFCxaUGGal1+sZP348Pj4+6HQ6HnnkEfbs2VPpuhYWFvL+++9Tu3ZtNBoNnp6ePP/881y9etWqXEBAAD169GDt2rU0bNgQOzs76tSpw9q1awHz76lOnTrY29sTGRlJTEyM1faldVffsmULbdu2xd3dHTs7O6pXr06fPn3Izc21lJkzZw7169fHwcEBR0dHateuzcSJEy3ry+pOu3r1apo3b45Op8PR0ZFOnTqVeDJZVKejR48yYMAAnJ2d8fb2ZsiQIWRkZFiVXb58OU2bNsXZ2RmdTkdQUJDld1qe/Px83nrrLQIDA7G1taVq1aqMHDmS9PR0SxmFQsH8+fPJy8sr9fouy8cff8zly5eZNWtWueXmz59PUlISH330kVVAqsj48eOpXbs2n3zyieWaHz58OFqtln379lnKmUwmOnTogLe3N/Hx8eUes7LXL8APP/xA8+bNcXBwwMHBgQYNGrBgwQLL+ltxP1V0HeXm5vL6668TGBho+RyJiIgo9TOruMpu9/fff9OzZ0/c3d3RarUEBwczevRoqzKnT59m4MCBVu+l6HOrSNH1/uOPPzJp0iSqVKmCk5MTHTt25OTJk1ZlN27cSK9evahWrRparZYaNWowbNgwkpOTrcoV3Qf79++nb9++uLq6EhwcbLWuOJPJxPTp0y2fGV5eXjz77LNcunTJqtyBAwfo0aOH5f1UqVKF7t27lygnSbeDbA/J9pBsD5nJ9tCt5+joiFarxcam4v4eS5cupXPnzvj6+lqulTfffJOcnJwSZStqK5T397oy5xduzbVWlspsd/nyZV566SX8/PywtbWlSpUq9O3bl8TEREuZzMxMS9uq6L2MHj26xDkrGp753XffUadOHXQ6HfXr17fci0XOnDnD888/T82aNdHpdFStWpWePXty+PBhq3JF99B3333HuHHjqFq1KhqNhjNnzvyn++vq1auW91z02dKyZUs2bdpU4Tl9YAnpgZeSkiJ8fX1Fu3btxJNPPilcXFzExYsXxZYtW4Stra1o1aqVWLp0qVi/fr0YPHiwAMSiRYss2584cUK8/PLL4qeffhLR0dFi7dq14oUXXhBKpVL8+eeflnKxsbECEFWrVhXt2rUTP//8s9iwYYOIjY21rCu+34YNG4qWLVuWqG+TJk1EkyZNynw/SUlJ4sMPPxSA+Oqrr8SuXbvErl27RFJSkhBCWNYNGDBA/Pbbb+Lbb78VQUFBwtnZWZw6dUoIIcSZM2dE3759BWDZfteuXSI/P18IIcSYMWPEnDlzxPr168WWLVvEZ599Jjw8PMTzzz9vVZfnnntO+Pv7V/g7aNOmjXBzcxN+fn7iiy++EH/++afYunWrSEpKElWrVhWenp5i7ty5Yv369WLUqFECEC+//LLVPgYPHiwWLFggNm7cKDZu3Cjee+89YWdnJ955550SdVIoFOKNN94QGzZsEDNmzBBVq1YVTk5O4rnnniu3nkajUTz66KPC3t5evPPOO2Ljxo1i/vz5omrVqiI0NFTk5uZayvr7+4tq1aqJunXrih9//FGsW7dONG3aVKjVajF58mTRsmVL8csvv4iVK1eKWrVqCW9vb6vtp0yZIop/BMXGxgqtVis6deokVq1aJaKjo8X3338vBg0aJNLS0oQQQvz4448CEK+88orYsGGD2LRpk5g7d6549dVXLfv5888/BWB1bX7//fcCEJ07dxarVq0SS5cuFY0bNxa2trZi+/btJeoUEhIiJk+eLDZu3ChmzJghNBqN1e9+586dQqFQiP79+4t169aJLVu2iEWLFolBgwaVe35NJpPo0qWLsLGxEW+//bbYsGGD+PTTT4W9vb1o2LCh5frbtWuX6Natm7CzsytxfZfmueeeE/b29kIIIR5//HHh4uIiUlJSLOsBMXLkSMvPnTt3FiqVSmRnZ5e5z/Hjx1vuDyGEyMvLEw0aNBBBQUGW38fkyZOFUqkUGzZsKPd9C1H56/ftt98WgHjiiSfE8uXLLdfw22+/bSnzX++nylxHw4YNEzqdTsyYMUP8+eefYu3ateKjjz4SX3zxRbnvszLbrV+/XqjVahEeHi6ioqLEli1bxMKFC0X//v0tZY4ePSqcnZ1FvXr1xLfffis2bNggxo0bJ5RKpZg6daqlXNH1HhAQIJ5++mnx22+/iR9//FFUr15d1KxZUxgMBkvZOXPmiGnTponVq1eLrVu3isWLF4v69euLkJAQUVhYaClXdB/4+/uLCRMmiI0bN4pVq1ZZrSvupZdeEoAYNWqUWL9+vZg7d67w9PQUfn5+4urVq0IIIbKzs4W7u7uIiIgQy5YtE1u3bhVLly4Vw4cPF8eOHSv3nErSrSLbQ7I9JNtDsj1UvD1UdD9+/PHHQq/Xl3h9/PHHAhCxsbEljmUwGERhYaGIjY0VL730knBwcBAxMTHlvm8hhHjvvffEZ599Jn777TcRHR0t5s6dKwIDA0W7du2sylWmrVDW3+vKnt9bda2VpjLbXbp0Sfj6+goPDw8xY8YMsWnTJrF06VIxZMgQcfz4cSGEEDk5OaJBgwZWZWbNmiWcnZ1F+/bthclksvr9BgQEiMjISLFs2TKxbt060bZtW2FjYyPOnj1rKbd161Yxbtw48fPPP4utW7eKlStXit69ews7Oztx4sQJS7mie6hq1aqib9++YvXq1WLt2rUiJSXlP91fXbp0EZ6enmLevHkiOjparFq1SkyePFn89NNPFV0+DywZlHpIrFu3TgACEN99950QQojatWuLhg0bCr1eb1W2R48ewtfXVxiNxlL3ZTAYhF6vFx06dBCPP/64ZXnRB3twcLDVF5zi64o3whYtWiQAceDAAcuyPXv2CEAsXry43PezfPnyEh8EQgiRlpYm7OzsRLdu3ayWx8XFCY1GIwYOHGhZNnLkyBJfrkpjNBqFXq8X3377rVCpVCI1NdWy7kYaYYDYvHmz1fI333xTAOLvv/+2Wv7yyy8LhUIhTp48WW6d3n33XeHu7m75QD5+/LgAxJgxY6zKF31IVtQIK/oDsmLFCqvle/fuFYCYPXu2ZZm/v7+ws7MTly5dsiz7559/BCB8fX1FTk6OZfmqVasEIFavXm1Zdn0j7OeffxaA+Oeff8qs36hRo4SLi0u57+H6PxJGo1FUqVJF1KtXz+qazsrKEl5eXqJFixYl6jR9+nSrfY4YMUJotVrLef70008FINLT08uty/XWr19f6v6XLl0qADFv3jzLsuINq4oUL3vixAmhUqnEuHHjLOuvb4TVrl1b+Pj4lLvPOXPmCEAsXbrUsuz06dPCyclJ9O7dW2zatEkolUrxf//3f5WqY3FlXb/nzp0TKpVKPP300+Vu/1/vp8pcR3Xr1hW9e/e+0bdWqe2Cg4NFcHCwyMvLK7NMly5dRLVq1URGRobV8lGjRgmtVmv5HCq63q//zFu2bJlVUPF6JpNJ6PV6ceHCBQGIX3/91bKu6D6YPHlyie2uv2+LPnNGjBhhVe7vv/8WgJg4caIQQoiYmBgBWIJbknS3yPaQbA/J9pBsDxUpuh8repUWlAoJCbGs9/X1FTt27LiRUyCE+Pdv8datWwUgDh48aFlXmbZCWX+vK3t+b9W1drPbDRkyRKjV6nIfTk2bNk0olUqxd+9eq+VFdV+3bp1lGSC8vb1FZmamZVlCQoJQKpVi2rRpZR6jKMBYs2ZNq8+MonuodevWJbb5L/eXg4ODGD16dJn1eRjJ4XsPia5du9KsWTNq1qzJM888w5kzZzhx4gRPP/00AAaDwfLq1q0b8fHxVkM/5s6dS6NGjSxdU9VqNZs3b7bqAl7kscceQ61WV1inAQMG4OXlZTUc5YsvvsDT05Onnnrqpt7nrl27yMvLKzGrip+fH+3bt2fz5s2V2s+BAwd47LHHcHd3R6VSoVarefbZZzEajZw6deqm6ubq6kr79u2tlm3ZsoXQ0FAiIyOtlg8ePBghBFu2bLEq27FjR5ydnS11mjx5MikpKSQlJQFYhgYU/V6LPPnkk5XqUrx27VpcXFzo2bOn1TXRoEEDfHx8SnRRbdCgAVWrVrX8XKdOHcDcPb/4ePai5RcuXCjz2A0aNMDW1paXXnqJxYsXc+7cuRJlIiMjSU9PZ8CAAfz6668lhh2V5uTJk1y5coVBgwZZJbF1cHCgT58+7N6926qLMpiv4eLCw8PJz8+3nOcmTZoA5vO6bNkyLl++XGE9AMvv8/rrs1+/ftjb21f6+ixPSEgIL7zwAl9++SVxcXE3vR9xbRhE8SEFNWrU4JtvvmHVqlX06NGDVq1aVXrGpspcvxs3bsRoNDJy5MgK9/df7qfKXEeRkZH8/vvvvPnmm0RHR5OXl1ep91nRdqdOneLs2bO88MILaLXaUveRn5/P5s2befzxx9HpdCU+n/Pz89m9e7fVNqVds2B9zyUlJTF8+HD8/Pwsn+P+/v4ApX6W9+nTp8L3W/SZc/01HRkZSZ06dSzXdI0aNXB1dWXChAnMnTuXY8eOVbhvSbodZHtItodke0i2h6732muvsXfv3hKv1157rcxtVqxYwd9//83y5csJDQ2la9eulZqJ7dy5cwwcOBAfHx/L9VuUh6roc6QybYXirv97Xdnze7uutcpu9/vvv9OuXTvLfVGatWvXUrduXRo0aGB1L3bp0qXU4XPt2rXD0dHR8rO3tzdeXl5W95zBYODDDz8kNDQUW1tbbGxssLW15fTp0zfdHrqR+ysyMpKoqCjef/99du/efdPDoR8kMij1ENFoNNja2gJYxum+/vrrqNVqq9eIESMALB8eM2bM4OWXX6Zp06asWLGC3bt3s3fvXh599NFSv6j5+vpWuj7Dhg3jhx9+ID09natXr7Js2TJefPFFNBrNTb3HlJSUMutQpUoVy/ryxMXF0apVK8tY9O3bt7N3715LY7GyX06vV1qdUlJSyqxr0XqAPXv20LlzZwC++eYb/vrrL/bu3cukSZOs6lRU3sfHx2p/NjY2uLu7V1jHxMRE0tPTsbW1LXFdJCQklPiD4ubmZvVz0fVV1vL8/Pwyjx0cHMymTZvw8vJi5MiRBAcHExwcbJUPYNCgQSxcuJALFy7Qp08fvLy8aNq0KRs3bixzvxVdEyaTibS0NKvl15+rouux6Dy3bt2aVatWYTAYePbZZ6lWrRp169atMN9QSkoKNjY2eHp6Wi1XKBT4+PhU6vqsjKlTp6JSqXj77bdLXV+9enWuXr1aav6CIkX5RPz8/KyWd+/eHW9vb/Lz8xk7diwqlarC+lT2+i3K01GZhK//5X6qzHX0+eefM2HCBFatWkW7du1wc3Ojd+/enD59utx6VbRdZd5jSkoKBoOBL774osR92K1bN4AS92JF16zJZKJz58788ssvjB8/ns2bN7Nnzx5LcOtmP8sr+5nr7OzM1q1badCgARMnTiQsLIwqVaowZcoU2RiT7jjZHpLtoYrI9pDZg94eKlKtWjUiIiJKvMr7Wx0WFkZkZCR9+/Zl/fr1+Pv7lxvEAsjOzqZVq1b8/fffvP/++0RHR7N3715++eUX4ObaQ1Dyd1rZ83u7rrXKbnf16tUK32NiYiKHDh0qcR86OjoihKiwPQTm67b459XYsWN5++236d27N2vWrOHvv/9m79691K9f/7a1h4rfX0uXLuW5555j/vz5NG/eHDc3N5599lkSEhIqPM6DSs6+95Dy8PAA4K233uKJJ54otUxISAgAS5YsoW3btsyZM8dqfVZWVqnbXZ+ssTwvv/wyH330EQsXLiQ/Px+DwcDw4cMrvf31ij6ISku6fOXKFcv7Ls+qVavIycnhl19+sfQiAPjnn39uul5Q+nlxd3cvs67w7+/pp59+Qq1Ws3btWqsnJqtWrSqxP4CEhASrJ3YGg6FSf+A9PDxwd3dn/fr1pa4v/uThdmjVqhWtWrXCaDQSExPDF198wejRo/H29qZ///4APP/88zz//PPk5OSwbds2pkyZQo8ePTh16pTV76tIRdeEUqnE1dX1huvaq1cvevXqRUFBAbt372batGkMHDiQgIAAmjdvXuo27u7uGAwGrl69atVQEEKQkJBgeeL4X/n6+jJ69Gg++ugjxo0bV2J9p06d2LBhA2vWrLGc1+KEEKxevRo3NzcaN25stW748OFkZWURFhbGq6++SqtWrSo8f5W9fovOyaVLl0oEw673X+4nqPg6sre355133uGdd94hMTHR0vupZ8+enDhxosx6VbRd8fdYFldXV1QqFYMGDSqz11hgYGCZ25fmyJEjHDx4kKioKJ577jnL8jNnzpS5TWU+y4vfX9c3LK//zK1Xrx4//fQTQggOHTpEVFQU7777LnZ2dvfNLI/Sg0e2h8om20OyPVQZ93N76FaxsbGhUaNGJSZHuN6WLVu4cuUK0dHRVrP0XZ98vDJtheKuv6du5PzejmutSEXbeXp6VvgePTw8sLOzY+HChWWuv1FLlizh2Wef5cMPP7RanpycjIuLS4nyN9oeut7195eHhwczZ85k5syZxMXFsXr1at58802SkpLK/Mx50MmeUg+pkJAQatasycGDB0t9MhAREWH5g6tQKEo8qTt06FCJmQRuhq+vL/369WP27NnMnTuXnj17Ur169Qq3u/5JTZHmzZtjZ2fHkiVLrJZfunSJLVu20KFDhwr3UfTBU/w9CyH45ptvbuCdVU6HDh04duwY+/fvt1peNONOu3btLHWysbGx6pWSl5fHd999Z7Vd27ZtAfj++++tli9btqxSU1H36NGDlJQUjEZjqddEUcP8dlOpVDRt2tTyNPb68wPmL/9du3Zl0qRJFBYWcvTo0VL3FRISQtWqVfnhhx+sZubJyclhxYoVlhkybpZGo6FNmzZ8/PHHgHmoQ1mKrr/rr88VK1aQk5NjdX3+VxMmTMDNza3UL/svvvgiXl5evPXWW5Yu+MVNnz6dEydOMH78eKuhJ/Pnz2fJkiV8+eWXrF69mvT0dJ5//vkK61LZ67dz586oVKoSX/gqq7L3U3GVuY68vb0ZPHgwAwYM4OTJkyWGN5SltO1q1apFcHAwCxcupKCgoNTtdDod7dq148CBA4SHh5d6L1bmSX9xpX2uAXz99dc3tJ/rFQ3Buf6a3rt3L8ePHy/1mlYoFNSvX5/PPvsMFxeXUu9vSbpTZHtItodKI9tDN+5+bA/dKkXD6mvUqFFuucr+La5MW6E8N3N+b+W1Vtntunbtyp9//llituDievTowdmzZ3F3dy/1XgwICKhUHYor7bP8t99+q/Tw09Lc7P1VvXp1Ro0aRadOnR7q9pDsKfUQ+/rrr+natStdunRh8ODBVK1aldTUVI4fP87+/ftZvnw5YP4weO+995gyZQpt2rTh5MmTvPvuuwQGBlbqD3tFXnvtNZo2bQrAokWLKrVN3bp1AZg3b55lGtbAwEDc3d15++23mThxIs8++ywDBgwgJSWFd955B61Wy5QpUyz7qFevHmCeNrZr166oVCrCw8Pp1KkTtra2DBgwgPHjx5Ofn8+cOXNKdGm+FcaMGcO3335L9+7deffdd/H39+e3335j9uzZvPzyy9SqVQswD5maMWMGAwcO5KWXXiIlJYVPP/20xAdqnTp1eOaZZ5g5cyZqtZqOHTty5MgRPv30U5ycnCqsT//+/fn+++/p1q0br732GpGRkajVai5dusSff/5Jr169ePzxx2/5eQBzno4tW7bQvXt3qlevTn5+vuWpSMeOHQEYOnQodnZ2tGzZEl9fXxISEpg2bRrOzs5lPlVTKpVMnz6dp59+mh49ejBs2DAKCgr45JNPSE9P56OPPrrhuk6ePJlLly7RoUMHqlWrRnp6OrNmzbLKC1CaTp060aVLFyZMmEBmZiYtW7bk0KFDTJkyhYYNGzJo0KAbrktZnJycmDRpEmPGjCmxzsXFhV9++YUePXrQuHFj3njjDerXr09mZiZLly7l+++/56mnnuKNN96wbHP48GFeffVVnnvuOUsgasGCBfTt25eZM2daTVF8vcpevwEBAUycOJH33nuPvLw8yzTUx44dIzk5mXfeeafc91zZ+6ky11HTpk3p0aMH4eHhuLq6cvz4cb777rsKG+2V2e6rr76iZ8+eNGvWjDFjxlC9enXi4uL4448/LF+gZs2axSOPPEKrVq14+eWXCQgIICsrizNnzrBmzRqr/CqVUbt2bYKDg3nzzTcRQuDm5saaNWsq7H5fkZCQEF566SW++OILlEolXbt25fz587z99tv4+flZrr+1a9cye/ZsevfuTVBQEEIIfvnlF9LT0+nUqdN/qoMk/VeyPSTbQ9eT7aHKud/bQzejRYsWPPbYY9SpUwdnZ2fOnz/PnDlzOHv2LCtXrqxwW1dXV4YPH86UKVNQq9V8//33HDx4sETZyrQVylLZ83u7rrXKbvfuu+/y+++/07p1ayZOnEi9evVIT09n/fr1jB07ltq1azN69GhWrFhB69atGTNmDOHh4ZhMJuLi4tiwYQPjxo2zfG5WVo8ePYiKiqJ27dqEh4ezb98+Pvnkk0oPlyxNZe+vjIwM2rVrx8CBA6lduzaOjo7s3buX9evXl9lb96Fwx1OrS3dNmzZtRFhYmNWygwcPiieffFJ4eXkJtVotfHx8RPv27cXcuXMtZQoKCsTrr78uqlatKrRarWjUqJFYtWpViZlWimaw+OSTT0ocu7TZZooLCAgQderUuaH3M3PmTBEYGChUKlWJfc+fP1+Eh4cLW1tb4ezsLHr16iWOHj1qtX1BQYF48cUXhaenp1AoFFaza6xZs0bUr19faLVaUbVqVfHGG2+I33//vcQMNzcy28z1577IhQsXxMCBA4W7u7tQq9UiJCREfPLJJyVm+1m4cKEICQkRGo1GBAUFiWnTpokFCxaUmBWkoKBAjBs3Tnh5eQmtViuaNWsmdu3aJfz9/SucbUYIIfR6vfj0008t79/BwUHUrl1bDBs2TJw+fdpSzt/fX3Tv3r3E9lw3s4kQpV8b1882s2vXLvH4448Lf39/odFohLu7u2jTpo3VDDWLFy8W7dq1E97e3sLW1lZUqVJFPPnkk+LQoUOWMqVN0SqEecabpk2bCq1WK+zt7UWHDh3EX3/9ZVWmqE5F09gXKZoZqeg8r127VnTt2lVUrVpV2NraCi8vL9GtWzer6V7LkpeXJyZMmCD8/f2FWq0Wvr6+4uWXX7ZMvVvkZmebKa6goEAEBgaW+jsRwjwL08iRI0VQUJDlXmndurVYsmSJ1RS72dnZonbt2iI0NNRqFiEhzLM2qdXqEjMmXa+y168QQnz77beiSZMmluuvYcOGVvf3f72fKnMdvfnmmyIiIkK4urpa6jxmzBiRnJxc7vus7Ha7du0SXbt2Fc7OzkKj0Yjg4OASs0TFxsaKIUOGiKpVqwq1Wi08PT1FixYtxPvvv28pU3S9L1++vMS2138uHjt2THTq1Ek4OjoKV1dX0a9fPxEXFycAMWXKFEu5su6D4uuKMxqN4uOPPxa1atUSarVaeHh4iGeeeUZcvHjRUubEiRNiwIABIjg4WNjZ2QlnZ2cRGRkpoqKiyj2fknQ7yPaQbA/J9pBsDwlR/r0qhBCffPJJietq3Lhxon79+sLZ2VnY2NgIHx8f8fjjj5c4h2XZuXOnaN68udDpdMLT01O8+OKLYv/+/aV+LlTUVijv73Vlzu+tutZKU9ntLl68KIYMGSJ8fHyEWq22lEtMTLSUyc7OFv/3f/8nQkJCLJ9l9erVE2PGjBEJCQmWcmW1d6+/59PS0sQLL7wgvLy8hE6nE4888ojYvn27aNOmjWjTpo2lXFltrOLrbvT+ys/PF8OHDxfh4eHCyclJ2NnZiZCQEDFlypQSbeyHiUKIYv3LJOkuOHToEPXr1+err76yJBWVJEmSJEl6mMj2kCRJkvQwkkEp6a45e/YsFy5cYOLEicTFxXHmzJn/NJZdkiRJkiTpfiPbQ5IkSdLDTCY6l+6a9957j06dOpGdnc3y5ctlA0ySJEmSpIeObA9JkiRJDzPZU0qSJEmSJEmSJEmSJEm642RPKUmSJEmSJEmSJEmSJOmOk0EpSZIkSZIkSZIkSZIk6Y6TQSlJkiRJkqR70OzZswkMDESr1dK4cWO2b99ebvmCggImTZqEv78/Go2G4OBgFi5ceIdqK0mSJEmSdONs7nYF7gUmk4krV67g6OiIQqG429WRJEmSJOk+JoQgKyuLKlWqoFTe3PO/pUuXMnr0aGbPnk3Lli35+uuv6dq1K8eOHaN69eqlbvPkk0+SmJjIggULqFGjBklJSRgMhkofU7aHJEmSJEm6VSrbHpKJzoFLly7h5+d3t6shSZIkSdID5OLFi1SrVu2mtm3atCmNGjVizpw5lmV16tShd+/eTJs2rUT59evX079/f86dO4ebm9tNHVO2hyRJkiRJutUqag/JnlKAo6MjYD5ZTk5Od7k2kiRJkiTdzzIzM/Hz87O0L25UYWEh+/bt480337Ra3rlzZ3bu3FnqNqtXryYiIoLp06fz3XffYW9vz2OPPcZ7772HnZ1dpY4r20OSJEmSJN0qlW0PyaAUWLqoOzk5yUaYJEmSJEm3xM0OgUtOTsZoNOLt7W213Nvbm4SEhFK3OXfuHDt27ECr1bJy5UqSk5MZMWIEqampZeaVKigooKCgwPJzVlYWINtDkiRJkiTdOhW1h2Sic0mSJEmSpHvQ9Y04IUSZDTuTyYRCoeD7778nMjKSbt26MWPGDKKiosjLyyt1m2nTpuHs7Gx5yaF7kiRJkiTdaTIoJUmSJEmSdA/x8PBApVKV6BWVlJRUovdUEV9fX6pWrYqzs7NlWZ06dRBCcOnSpVK3eeutt8jIyLC8Ll68eOvehCRJkiRJUiXIoJQkSZIkSdI9xNbWlsaNG7Nx40ar5Rs3bqRFixalbtOyZUuuXLlCdna2ZdmpU6dQKpVlJhfVaDSWoXpyyJ4kSZIkSXeDzCl1A4xGI3q9/m5XQ3oAqdVqVCrV3a6GJN1yBQUFpKenW15ZWVnodDrLcCEXFxfs7e3l9POSdJ2xY8cyaNAgIiIiaN68OfPmzSMuLo7hw4cD5l5Oly9f5ttvvwVg4MCBvPfeezz//PO88847JCcn88YbbzBkyJBKJzqvLNkeunfI9oMk3RxhMmHKzMSYkYExPf3ff9PN/6JUoqlZE23tENR+fijKmc5ekqT/RgalKkEIQUJCAunp6Xe7KtIDzMXFBR8fH/nlXLqvFBYWWgWdir/S0tLKzGVTnEqlssprUzxg5ezsjJOTE2q1+g68G0m6dzz11FOkpKTw7rvvEh8fT926dVm3bh3+/v4AxMfHExcXZynv4ODAxo0beeWVV4iIiMDd3Z0nn3yS999//5bVSbaH7k2y/SA9zIQQmHJyLMEkY0a6VZDJdO1fQ3o6pqIy6ekYMzNBiEodQ6HToa1ZE01ICJqQWmhr10ZTqxaqm5xhVZIkawohKnk3PsAyMzNxdnYmIyOj1K7r8fHxpKen4+XlhU6nk3/0pVtKCEFubi5JSUm4uLjg6+t7t6skSRblBZ3S09PJzc2tcB9arRYXFxdcXFxwdHQkNzfXksOmaLavitjb25cIVhV/yc9m6V5SUbviXiXbQ/cX2X6QHiRCCER+fqm9lqyXpVv3bsrIAIPhpo+r1OlQubigdHHGxsUFpbMzKhcXREEhBadOUXD6NKLYLKXFqatUQVO7tjlQFWL+17Z6dRSy96IkAZVvD8meUhUwGo2WBpi7u/vdro70gCoaWpGUlISXl5fsii/dMYWFhWRkZFh6Nv3XoFNpL61WW+a2BoOBrKws0tPTyczMtASr0tPTLf/X6/Xk5OSQk5PDlStXSt2PjY1NmT2tinpb2djIP3mSdLNke+jeJNsP0v3KVFhI1vr1pC9bTmFcHMb0dERh4U3vT6HRoLoWUFK5uFz7v/XPSmdz4Kn4MoWtbbn7FQYDhRcuUHDqFPknTlJw8iT5J09iiI9Hf+UK+itXyN6y5d962NmZh/2F1EJTKwRt7RA0ISGo7qMHFJJ0p8kWegWKcibodLq7XBPpQVd0jen1etmolG6pwsJCrl69SlJSEsnJyVZBp5ycnAq312g0VkEmV1dXS8DHxcXlP+WrsbGxwdXVFVdX11LXCyHIy8uzClZlZmZaBa2ys7MxGAykpKSQkpJS5rEcHBwsdS46ZvH3Iu87SSqbbA/du2T7Qbqf6BOTSF/6E2lLl2Es7W+2jU2xoJKLdaCpxPJ/1ynLeQD2XyhsbNAEB6MJDsapa1fLcmNGhjlQdfIUBSdPmP89dQqRl0f+oUPkHzpk/bZ8fdGGmANU2pBaaGrXxtbfX/aqkiRkUKrSZBd16XaT15j0XxUFZpKSkqxeaWlp5W53fdDp+tetTpJ8IxQKBTqdDp1OV+bQFIPBYAlUXR+wKnoZDAays7PJzs7m8uXLpR7n+oBV8f/LZOySZCbvg3uP/J1I9zohBHn//EPad0vI3LDBMtzOxssL1wH9sW/V+t/gkv39MTRY5eyMrkkTdE2aWJYJo5HCC3HXglUnKDh5ioITJ9BfuYIhPp7s+Hiyo6Mt5RUaDZoaNdDUDrkWsKqNNqQWKheXO/+GJOkukkEpSZKk+4zJZCI9PZ2kpCQSExMtwaeUlBRMJlOp29jb2+Pl5YWnp6cl4HIvBJ1uBRsbG9zc3HBzcyt1fVHelaJgVdFQxaJXenq6ZWhSeno658+fL7EPtVpdag+rov/bVtD9X5IkSZIeNqbCQjLXrSNtyffkHzliWW7XqBFug57BsWNHFA/QRCYKlQpNUCCaoECcHu1iWW7MyrIM+ys4cZL8UycpOHXa3Kvq6FHyjx4lo9h+bLy9zYGqWiGWgJVtQAAKmYZAekDJK1uSJOkeJYQgKyurRM+nq1evljkdu0ajwdPTE29vb7y8vCwve3v7O1z7e4dCocDe3h57e3uqVq1aYr3JZCI7O9sSoCoerEpLSyMzMxO9Xs/Vq1e5evVqqcewt7cvs5eVk5OTHFIjSZIkPTRKG6KnsLXFqUcP3J55Gm1o6F2u4Z2lcnREFxGBLiLCskyYTOjj4sx5qk6duhawOoH+8mUMiYkYEhPJ2brNUl5ha4umRg3sGjY099CKaIyNh8fdeDuSdMvJoNQDLCEhgQ8++IDffvuNy5cv4+XlRYMGDRg9ejQdOnQAICAggAsXLpTYdtq0abz55pucP3+ewMBAy3IHBweqV69O27ZtGT16NDVr1rSsMxqNTJ8+ncWLF3PhwgXs7OyoVasWw4YN4/nnny+1jlFRUYwePfqBmV568ODBpKens2rVqrtdFek+k5eXZxV4KuoBlZ+fX2p5lUqFp6enVeDJy8sLZ2fn+6Lb+71EqVTi5OSEk5MT/v7+JdYbDAYyMjJKBKuKXvn5+ZZE7OUNDSzey8rT0xMPDw9cXV1lwEqS7oCkpCTefvttfv/9dxITE3F1daV+/fpMnTqV5s2bc+DAAd5++2327NlDZmYmPj4+NG3alK+++goPD48S7SEXFxfq1avHe++9R5s2bQDYtm0bn3zyCfv27SM+Pp6VK1fSu3dvq3r88ssvfP311+zbt4+UlBQOHDhAgwYNrMqcPXuW119/nR07dlBQUMCjjz7KF198gbe39+0+TZJ004QQ5B34h7Ql1w3R8/HBtX9/XJ7sh00ZPZofRgqlEtuAAGwDAuD6XlWnT5t7Vl1LrF5w6hSm3Fzyjx0j/9gx0r7/HgDboCBzsKuJOeClljNwSvcpGZR6QJ0/f56WLVvi4uLC9OnTCQ8PR6/X88cffzBy5EhOnDhhKfvuu+8ydOhQq+0dHR2tft60aRNhYWHk5uZy+PBhZs2aRf369VmzZo0lwDV16lTmzZvHl19+SUREBJmZmcTExFSYz6YyCgsL7+nhMUajUQYCpEopnnS8+CsrK6vU8gqFAjc3N0vPp6JeUDKYcefY2Njg7u5e5oxjeXl5pfawKm1oYGxsrNW2KpUKNzc3S5Cq6F8PDw/UD9CQBkm62/r06YNer2fx4sUEBQWRmJjI5s2bSU1NJSkpiY4dO9KzZ0/++OMPXFxciI2NZfXq1SVmIC1qDyUlJTFx4kS6devGkSNHCAwMJCcnh/r16/P888/Tp0+fUuuRk5NDy5Yt6devX4m2V9H6zp07U79+fbZcm9Hr7bffpmfPnuzevRulUnnrT44k/QemggIy1/1O2nffkX/smGW5XePGuA0ahGPHDnLY2Q1QOTqia9QIXaNGlmXCZEJ/+TL5R4+SuzeG3JgYCk6epPDcOQrPnSN92TIA1NWqWQepqleX30+k+4L8hHhAjRgxAoVCwZ49e6yG7YSFhTFkyBCrso6Ojvj4+JS7P3d3d0uZoKAgevbsSYcOHXjhhRc4e/YsKpWKNWvWMGLECPr162fZrn79+mXuMzo62tKDqugDc8qUKUydOpWAgABefPFFzpw5Y3nSuHjxYiZMmMDKlSu5dOkSPj4+PP3000yePNny5W3q1KmsWrWKcePG8fbbb5OWlkbXrl355ptvLIG2tm3bUrduXQCWLFmCSqXi5Zdf5r333rPUIy0tjddee401a9ZQUFBAmzZt+Pzzzy09w4p6eC1ZsoTx48dz6tQpnn76ab799lur9/Pnn3/Stm3bcs+tdP8yGAzk5eWRm5tLXl5eua+iMpmZmWXuz9nZuUTPJxmcuPfZ2dlhZ2dXaiL24kMDi4JUKSkpJCcnk5ycXO6wQFdXV6tAVdG/93sOMEm609LT09mxYwfR0dGWXk3+/v5ERkYCsGrVKjIzM5k/fz421748BwYG0r59+xL7KmoP+fj48PXXX1OtWjU2bNjAsGHD6Nq1K12Lzc5VmkGDBgGUmrsO4K+//uL8+fMcOHAAp2tTyC9atAg3Nze2bNlCx44db+ocSNKtpk9IIO2nn0hfugzjtQfQCltbnHr2wO2ZZ9DWqXOXa/jgUCiV2Pr5Yevnh9OjjwJgTE8nd/9+S5Aq/9gx9JcukXHpEhnXRmzYeHlZBalsa9SQQSrpniSDUjdKCNDnVlzudlDroBIfJKmpqaxfv54PPvig1DwyLrdgRgelUslrr73G448/zr59+4iMjMTHx4ctW7YwYsQIPD09K9xHixYtmDlzJpMnT+bkyZOAeXhgkU8++YS3336b//u//7Msc3R0JCoqiipVqnD48GGGDh2Ko6Mj48ePt5Q5e/Ysq1atYu3ataSlpfHkk0/y0Ucf8cEHH1jKLF68mBdeeIG///6bmJgYXnrpJfz9/S1PLQcPHszp06dZvXo1Tk5OTJgwgW7dunHs2DFLgCA3N5dp06Yxf/58SyM1Pz+fzMxMFi1aBFBm4mXp3qLX6ysdVCr+KiuvU0V0Op0l6FS8B5T2Nk1nLN095Q0NNJlMZGZmcvXqVZKTky3BqeTkZPLy8iyBrNOnT1tt5+DgUGqwytHRUTY2pTvrPmgTgfmecXBwYNWqVTRr1gyNRmO13sfHB4PBwMqVK+nbt2+l7yOdTgdw038LSlNQUIBCobCqo1arRalUsmPHDhmUku4qIQR5+/eT+t0SsjZuBKMRuDZEb8AA8xA9V9e7XMuHg8rFBcf27XG8Fjw3ZueQd+AAuTEx5O7dS97hwxiSkshct47MdevM27i6ootojC4iAruICLS1a6OQve6le4AMSt0ofS58WOXuHHviFbCtOFnxmTNnEEJQu3btSu12woQJVoEfgLVr11bYw6do/+fPnycyMpIZM2bQt29ffHx8CAsLo0WLFvTq1avMp4a2traW/Del9dRq3749r7/+utWy4vUMCAhg3LhxLF261CooZTKZiIqKsvSMGjRoEJs3b7YKSvn5+fHZZ5+hUCgICQnh8OHDfPbZZwwdOtQSjPrrr79o0aIFAN9//z1+fn6sWrXK0hNMr9cze/Zsq95gdnZ2FBQUVNjzTLrzkpOT2bNnD1lZWbcsuATmXnF2dnZotVp0Op2l18z1L51Oh1arxcXFxSr4Kj28lEqlZQbE4vn5hBDk5ORYAlXFA1ZZWVlkZ2eTnZ1doqeFRqMpEazy9PTExcVFDvmRbo/7oE0E5iG4UVFRDB06lLlz59KoUSPatGlD//79CQ8Pp1mzZkycOJGBAwcyfPhwIiMjad++Pc8++2yZeZxycnJ46623UKlUlt5Xt0KzZs2wt7dnwoQJfPjhhwghmDBhAiaTifj4+Ft2HEm6Eab8fDJ/W0fqkiUUHD9uWa5r0gTXZ57BsUN7OUTvLlM52OPQ6hEcWj0CmH9neQcPkRuzl9yYGPIO/IMxLY2sjZvI2rgJAKWDA3aNG2HfpAm6iAi0YWEP1GyI0v3jnv70mDNnDnPmzLE0vMPCwpg8ebIlyCGE4J133mHevHmkpaVZElKGhYXdxVrffUIIgEo/6XvjjTcYPHiw1bLSZqiq6DihoaEcOXKEffv2sWPHDrZt20bPnj0ZPHgw8+fPv4F3YBZRbIaKIj///DMzZ87kzJkzZGdnYzAYLN3biwQEBFjlxPL19SUpKcmqTLNmzazOT/Pmzfnf//6H0Wjk+PHj2NjY0LRpU8t6d3d3QkJCOF7sD7GtrS3h4eE3/L6kO0sIQUxMDH/88QeGa0k3S1MUXKooqHR94Emj0cgv/NItpVAoLD07AgICrNbl5+dbhv4VD1ilpaVRUFDA5cuXSyRbL8qJVTxg5eTkZDnGvZyvT5JulT59+tC9e3e2b9/Orl27WL9+PdOnT2f+/PkMHjyYDz74gLFjx7JlyxZ2797N3Llz+fDDD9m2bRv16tWz7KdFixYolUpyc3Px9fUlKirKav1/5enpyfLly3n55Zf5/PPPUSqVDBgwgEaNGsk8gtIdp4+PJ+3Hn0hftgzjtUmJFBoNzo/1xPWZZ9CGhNzdCkplUmq12DeNxL6peZiyKCwk/9gxcvbuNfek2n8AU3Y2OVu3WWb5U9jZoWvYALtrMwXa1a+P8rqepZJ0O9zTQalq1arx0UcfUaNGDcA85KpXr14cOHCAsLAwpk+fzowZM4iKiqJWrVq8//77dOrUiZMnT5ZI1H3LqHXmp3N3g1pXqWI1a9ZEoVBw/PjxErO+lMbDw8Nyjm9EUYCm+Gw0SqWSJk2a0KRJE8aMGcOSJUsYNGgQkyZNsipXGdcPPdy9ezf9+/fnnXfeoUuXLjg7O/PTTz/xv//9z6rc9fl3FAoFJpOp0sctCraVtrx4IMvOzk4OlbnHZWVl8euvv3LmzBnAfK3WqVOn1ICTra2tDC5J9zytVku1atWoVq2a1XK9Xk9qaqpVoKooeGUwGEhMTCQxMbHUfarVakuAyt7e3vL/63+2t7eXASzJ2n3QJipOq9XSqVMnOnXqxOTJk3nxxReZMmWK5cGcu7s7/fr1o1+/fkybNo2GDRvy6aefsnjxYss+li5dSmhoKC4uLmVOfvBfde7cmbNnz5KcnIyNjQ0uLi74+PjccDtKkm6GEIK8ffvMQ/Q2bfp3iF4VX9wGDsS5Tx85RO8+pLC1xa5BA+waNIChQxFGI/knTpAXE0PO3r3k7Y3BmJFBzs5d5OzcZd5GrUZbP9yclyqiCbqGDVCWkhpGkv6rezoo1bNnT6ufP/jgA+bMmcPu3bsJDQ1l5syZTJo0iSeeeAIwB628vb354YcfGDZs2O2plEJR6e7id4ubmxtdunThq6++4tVXXy0R3ElPT//PeaVMJhOff/45gYGBNGzYsMxyoaGhgLmbe2lsbW0xXvtjV5G//voLf39/Jk2aZFl24cKFG6j1v3bv3l3i55o1a6JSqQgNDcVgMPD3339bhu+lpKRw6tQp6lSQtPFG3o90ex09epS1a9eSl5eHSqWiU6dOREZGysCT9EBSq9V4e3uXGGpkMplIT0+3ClalpKRYhgEaDAb0er0lf1VFbG1tKxW8cnBwkAn6Hwb3QZuoPKGhoay6lhD4era2tgQHB5dov/j5+REcHHwHamd+aAiwZcsWkpKSeOyxx+7IcaWHkyk/n8y1a0ld8j0FxWbp1kVG4jroGRzbtZND9B4gCpUKu7Aw7MLCcHvuOYTJROHZs5acVDl792K8mkxezD7yYvaRwtegUqENC7sWpIpA17gRKmfnu/1WpAfAffPJYjQaWb58OTk5OTRv3pzY2FgSEhLo3LmzpYxGo6FNmzbs3Lmz3KBUQUEBBQUFlp/Lmw3rfjV79mxatGhBZGQk7777LuHh4RgMBjZu3MicOXOshqFlZWWRkJBgtb1Op7MaFpeSkkJCQgK5ubkcOXKEmTNnsmfPHn777TdLd/K+ffvSsmVLWrRogY+PD7Gxsbz11lvUqlWrzPxWAQEBZGdns3nzZurXr49Op7MkDr1ejRo1iIuL46effqJJkyb89ttvrFy58qbOz8WLFxk7dizDhg1j//79fPHFF5YeVzVr1qRXr14MHTqUr7/+GkdHR958802qVq1Kr169yt1vQEAAf/zxBydPnsTd3R1nZ2f5xewOy8/PZ926dRw6dAgwJ7B94okn8PLyuss1k6Q7T6lU4ubmhpubGyHXDbMQQlBQUEBOTg7Z2dmWf6//f9HLaDRSWFhIamoqqampFR5bo9GUGbxycnLCzc0NFxcXOSRJuu1SUlLo168fQ4YMITw8HEdHR2JiYpg+fTq9evVi7dq1/PTTT/Tv359atWohhGDNmjWsW7fOMnFJZWRnZ1t65gLExsbyzz//4ObmRvXq1QHzZDRxcXFcuWLuYVY00UvRjH5gnm2vTp06eHp6smvXLl577TXGjBlT4h6WpFtBf+UKaT/+SPryn/8doqfV4tyzJ67PPC2H6D0kFEolmpo10dSsieuAAQgh0MfFkXttuF9uzD70ly+Tf+gQ+YcOkbpwISgUaEJCsG/RAsf27bBr2FAmTpduyj0flDp8+DDNmzcnPz8fBwcHVq5cSWhoKDt37gQo8VTY29u7wt4z06ZN45133rltdb4XBAYGsn//fj744APGjRtHfHw8np6eNG7cmDlz5liVnTx5MpMnT7ZaNmzYMObOnWv5uWi2F51Oh7+/P+3atWPevHlWw/66dOnCjz/+yLRp08jIyMDHx4f27dszdepUyxTL12vRogXDhw/nqaeeIiUlhSlTpjB16tRSy/bq1YsxY8YwatQoCgoK6N69O2+//XaZ5cvz7LPPkpeXR2RkJCqVildeeYWXXnrJsn7RokW89tpr9OjRg8LCQlq3bs26desqDDANHTqU6OhoIiIiyM7O5s8//6wwYbx068TGxrJq1SoyMjJQKBQ88sgjtGnTpszrT5IeZgqFAq1Wi1arrXAYUlEAq7SAVWk/G41GywOg8gJYCoUCFxcXS+DM1dXV6v8yqC/dCg4ODjRt2pTPPvuMs2fPotfr8fPzY+jQoUycOJH4+Hh0Oh3jxo3j4sWLaDQaatasyfz58xk0aFCljxMTE0O7du0sP48dOxaA5557jqioKABWr17N888/bynTv39/AKv2z8mTJ3nrrbdITU0lICCASZMmMWbMmP94FiTpX0IIcvfsJW3JErI2b4ZraS7UVarg+vRAXPr0QXULZuuW7l8KhQJbf39s/f1x6dsXMAcwzT2pYsiNiaEwNpaCEycoOHGC1IULUbm64tC2LY4d2mPfogXKMjoaSNL1FKKsBDr3iMLCQuLi4khPT2fFihXMnz+frVu3kp6eTsuWLbly5Qq+vr6W8kOHDuXixYusX7++zH2W1lPKz8+PjIyMEkmz8/PziY2NJTAwUE7X/oBo27YtDRo0YObMmXe7KlbktXbz9Ho9W7ZsYdcu8xh4V1dXHn/8ccuTaUmS7hwhBPn5+eX2vsrIyCA1NbXcyQcAS4+q0oJWmns4+WpmZibOzs6ltivuZeXVW/6NunfJ341UWaa8PDLWrCFtyfcUnDplWa5r1gy3Z57GoV072dNFqjTD1avk7NlD9tatZG/dhikjw7JOYWuLffPmOHRoj0PbtqjliIWHUmXbQ/d89wFbW1tLb5yIiAj27t3LrFmzmDBhAgAJCQlWQamkpKQyp+8totFo7unGrCQ9bK6k5+HtpEWlvPHE8QkJCfzyyy+WGRYbNWpEly5d5D0uSXdJ8ZksPT09yyxnMpnIzs62DAcseqWlpZGamkpBQQGZmZlkZmZaZuEtzt7evtRglZubW5nDwCVJkh5GQggyVqwg6ZNPMV4LHCjs7HB+7DFcnx6Itlatu1xD6X5k4+mJc/fuOHfvjtDryd1/gOwtm8navAX9pUvXglVbAdDWD8exXXscO7THtkYNOVmUZOWeD0pdr2gIQWBgID4+PmzcuNGSaLuwsJCtW7fy8ccf3+VaSpJUGXmFRt5de5Qf91ykvp8LC5+LwN2hcsEkk8nEzp072bJlCyaTCXt7ex577DGZc0OS7hNKpRInJyecnJwICAiwWieEIDc3t9RgVUpKCnl5eeTk5JCTk8PFixdL7Fur1ZYZsHJwcJCNYUmSHhrG9HTiJ08ha8MGANTVquH69NO4PPG4TFIt3TIKtRr7ppHYN43E6803KTxzhqzNW8j6cwv5Bw9ZXldnzkRdvTqO7drh0KE9ukaNZAJ96d4OSk2cOJGuXbvi5+dHVlYWP/30E9HR0axfvx6FQsHo0aP58MMPqVmzJjVr1uTDDz9Ep9MxcODAu1116R4WHR19t6vwwDCaBD/8fYGVBy4zsKk/fRpVrfSXvRMJmYz64QBnkrIBOHgxnb5zd/HtkEj83Mrv5ZCWlsbKlSuJi4sDoHbt2vTs2bPETJOSJN2fFAoF9vb22Nvb4+fnV2J9fn5+qQGr1NRUsrKyyM/P58qVK5Zk0sWp1WpcXV3p2LEjtWTvAEmSHmA5u//myoQJGBITQa3Ga/RruA0eLIfoSbeVQqGwJE33GD4MfVIS2dHRZG/eQs6uXejj4khdvJjUxYtROTvj0LYNDu3aY//II6gcZFv+YXRPB6USExMZNGgQ8fHxODs7Ex4ezvr16+nUqRMA48ePJy8vjxEjRpCWlkbTpk3ZsGEDjo6Od7nmkvTg++diOm+vOsLhy+Zu4Pvj0tlyIpEPH6+Hi8623G3XHLzCuOUHKTSY8HTU8EaXEGZtOk1scg5PzNnJosFNqFu15NM7IQQHDhxg/fr1FBYWYmtrS9euXWnQoIHs+SBJDxGtVkuVKlWoUqVKiXWFhYWWIFXxYFVqaioZGRno9XqSkpLkZ4YkSQ8sUVjI1S++IGX+AhAC24AAqnz6KXZ1w+521aSHkNrLC9cnn8T1yScx5eaS/ddfZG/5k+w//8SYnk7Gr6vJ+HU1CrUaXbNmOHZoj0O7dqgrSMkjPTju+UTnd4JM7CndC+6Xay0pM58ZG0+xNOYiQoCj1oZudX1Zsf8SBpPAx0nLrP4NaBpU+mxe6w7H88qPBzCaBG1DPPm0X308HDQkZOTz3MI9nEzMQqVU8ETDqoxqXwN/d/MTk0tHT7Ju5e9cMaQDUL16dXr37o2bm9udeuuSJN3nDAYD6enppKWlUbVq1duWe0omOpfuJPm7kYoriI3lyutvkH/0KAAu/fri/dZbciY06Z4jjEbyDhwga8ufZG/eTOGFC1brtXXr4tC+HY7t26MJCZEPk+5DlW0PKe9gnSRJuo9lFxiYsfEUbT6J5qe95oDUEw2rsmVcWz7uG84vI1oQ5GFPQmY+zyz4m5UHLpXYx4ajCbx6LSDVt3E1Fj7XBI9rOaR8nLUsG96cjnW8MZoEy/ddov3/tvLG8oNcSMxk2dKVXDGkoxDQrHEjBg8eLANSkiTdEBsbGzw8PKhZs+Z9kQx99uzZlkBD48aN2b59e5llo6OjUSgUJV4nTpy4gzWWJOluEUKQ/vPPxD7Rh/yjR1E6O1P181n4vveeDEhJ9ySFSoUuIgLv8W8QtP53gn5bi+e4sdg1bAgKBflHjpD8+RfE9n6csx06kvD+B+Ts2oXQ6+921aVb7J4evidJ0t1jNAl+OxzP7nMpHLqUzon4LAwmc8fKRtVdmNitDhEB/waFwqu5sPbVR3jj50P8diieMUsPcik1j1HtaxCXmkv0yat88NtxDCZBrwZV+LhPOMrrZttztlMz/7kIDsSlMWvzaaJPXmX5vkv0aVSV+oE1OBIbS1t9GHFr97I7P4umjz+JykZ9R8+LJEnSnbB06VJGjx7N7NmzadmyJV9//TVdu3bl2LFjVK9evcztTp48afU0srwZECVJejBcn8xc17QpVT7+CLWPz12umSRVjkKhQBMcjCY4GI+hQzGkpJAdHU3W5i3k7NyJ/soV0pYsIW3JEpSOjji0bo1jh/bYt2qFSqbuue/J4XvI7urSveFeutZOJ2YxfsUhDsSlWy0P8rDn9S4hdK3rU2YXWpNJ8PEfJ/h66zkAXHRq0nP/faLRrZ4Pn/dviI2q4o6a++PS2HQskfGP1gbg6oaTFGxJwiRM7EhcgcFL8OiIMXgFBN3kO5UkSbr1bsXwvaZNm9KoUSPmzJljWVanTh169+7NtGnTSpSPjo6mXbt2pKWl4eLicsvrfS/9jZKsyd/Nwy1n926uTHjTnMzcxgbP117FfcgQmcxcemCY8vLI2bWLrC1byP4zGmNKyr8r1WrsmzTBoUN7HNu1Q11Krknp7qlse0j2lJKkh4DBaOKrP89iEoLOYd6E+jqVGlTKLjAwf/s5vvrzDHqjwEFjw4BIPxpWdyW8mjNVXewqHM+tVCp4q2sdqrnqmPLrEdJz9ahVCupXc6FdbS9eah1UqYAUQKPqrjSq7mr52aNTLdKyFOTuTaSFVy82XVnC9xPH0PTxp671mpIfaZIk3f8KCwvZt28fb775ptXyzp07s3PnznK3bdiwIfn5+YSGhvJ///d/tGvX7nZWVZKku0QUFnL1889JWbBQJjOXHmhKOzsc27fHsX17cx6qQ4fI3rKFrC1/Unj2LDk7d5KzcyeJ772PJrQOju3a49C6FZratVFqNHe7+lIlyG9w0n1p3rx5vPfee1y+fJkZM2YwevToUpfdSwICAhg9evRdqddXf57ls02nAJi1+TR+bna0reVFiI8jIT7mLq8/x1xizaEr5BYaAehQ24v3H6+Lr7PdTR1zUDN/GlV3ITPPQAM/F+xs//sTO4VCgWvvGhhT8+FsBu2qD2T9+fns+vkHzsTs5tGXR8teU5Ik3feSk5MxGo14XzfzkLe3NwkJCaVu4+vry7x582jcuDEFBQV89913dOjQgejoaFq3bl3qNgUFBRQUFFh+zszMvHVvQpKk26bgXCxX3iiWzPzJJ/F+c4LMHSU98BQqFbqGDdE1bIjXuHEUnj9P1pY/ydqymbz9Byg4dpyCY8dJ/uorsLFBU7Mm2rBQ7MLC0IaFoQkJkYGqe5BMdP4AS0hI4JVXXiEoKAiNRoOfnx89e/Zk8+bNJcp++OGHqFQqPvrooxLroqKiUCgU1KlTp8S6ZcuWoVAoCAgIsCwzGo1MmzaN2rVrY2dnh5ubG82aNWPRokXl1tdoNPLZZ58RHh6OVqvFxcWFrl278tdff1mVy8zMZNSoUUyYMIHLly/z0ksvlbqsNMWTvzo4OFC/fn2ioqLKrdetZDQJCg0mCvRG9EYTpjswenbfhTQ+33IagKaBbmhslFxMzeO73Rf4v1VH6Dd3F/3m7mJpzEVyC40Eedjz+YCGzH8u4qYDUkXCqjjTPNj9lgSkiihUStyfroONhx0ak5Ye9Ueic3Tl6vlzfD9xLLtW/IjRYLhlx5MkSbpbru+ZKoQos7dqSEgIQ4cOpVGjRjRv3pzZs2fTvXt3Pv300zL3P23aNJydnS0vPz+/W1r/e0lSUhLDhg2jevXqaDQafHx86NKlC7t27QLgwIED9OjRAy8vL7RaLQEBATz11FMkJycDcP78eas2hKurK61bt2br1q2WY0ybNo0mTZrg6OiIl5cXvXv35uTJk2XWadiwYSgUCmbOnGm1vG3btiUS1vfv3//WnxTpviOEIG35cmL7mJOZq5ydqfrF5/i++44MSEkPJduAANyHPE/AkiXU/GsHvtOm4dipEypXVzAYKDh+nIyfV5Dwzrucf/IpTjaO4Fzvx7kyaRKpP/xA3sGDmIo9nJHuDtlT6gF1/vx5WrZsiYuLC9OnTyc8PBy9Xs8ff/zByJEjS8zGs2jRIsaPH8/ChQtLDBcAsLe3JykpiV27dtG8eXPL8oULF5ZIuDp16lTmzZvHl19+SUREBJmZmcTExJCWllZmfYUQ9O/fn02bNvHJJ5/QoUMHMjMz+eqrr2jbti3Lly+nd+/eAMTFxaHX6+nevTu+vr4AHDlypMSysixatIhHH32UnJwcli5dyvPPP4+vry9dunQpd7sbUWgwkZmvJ7fASKHRSIHBhN5oIjEznxMJ1k+iVQoFahslamEgu8DA2aRswqrfmpwQmfl6XvvJPNtd7wZVmNm/IbmFBradusr+uHROJWZxOjGbzDw9ncN86B/pR4S/6z0/5apSp8Z9cBhJX/2DKs3AE63eYHfSGs7E7GLnsu85s2c3j44Yjad/4N2uqiRJ0g3z8PBApVKV6BWVlJRUovdUeZo1a8aSJUvKXP/WW28xduxYy8+ZmZkPbGCqT58+6PV6Fi9eTFBQEImJiWzevJnU1FSSkpLo2LEjPXv25I8//sDFxYXY2FhWr15Nbm6u1X42bdpEWFgYSUlJTJw4kW7dunHkyBECAwPZunUrI0eOpEmTJhgMBiZNmkTnzp05duwY9vb2VvtZtWoVf//9N1XKyH8ydOhQ3n33XcvPdnb/7SGRdP8zpKWRMHkyWRs3AaBr3owqH32M2tvrLtdMku4NNq6uuDzeG5fHeyOEwBAfT97Ro+QfOUr+UfPLmJZGwYkTFJw4QcaKX8wbqlRoatRAGxZm6VWlqV0bpczRd8fIoNQDasSIESgUCvbs2WPVEAoLC2PIkCFWZbdu3UpeXh7vvvsu3377Ldu2bSvR1d/GxoaBAweycOFCS1Dq0qVLREdHM2bMGH788UdL2TVr1jBixAj69etnWVa/fv1y67ts2TJ+/vlnVq9eTc+ePS3L582bR0pKCi+++CKdOnVi+fLlPP/88wAEBZmHaS1atKjEstjYWKveW8W5uLjgc202kokTJ/K///2PDRs2WIJScXFxvPLKK2zevBmlUsmjjz7KF198YfkicPbsWcaOHcvu3bvJycmhTp06TJs2jQ4dOpCWW0hKTiGXriQw9Y1X+Hv7Vty9vBj1xiTL8RUKBUrAJAQCMAqBUW8kz6AnPVfP6N9iCPf3ZGK3Ovi5mZ96peUU8tfZZFJzCskpMJJbaCDY04Fu9XyxtSm7w+PkVUe4lJaHn5sd7/auC4DO1oZH6/ryaN3yg3d3zKHlEP0h2DqAfwvzK6AV6NzK3UztYYf7M3VIXnAE/fEM2nZ4mlotHmHLwrkknT/LkrfG0KzPU0T26idzTUmSdF+xtbWlcePGbNy4kccff9yyfOPGjfTq1avS+zlw4EC5D2o0Gg2ah2AYQ3p6Ojt27CA6Opo2bdoA4O/vT2RkJGAOEGVmZjJ//nxsrv29CAwMpH379iX25e7ujo+PDz4+Pnz99ddUq1aNDRs2MGzYMNavX29VdtGiRXh5ebFv3z6rdtXly5cZNWoUf/zxB927dy+1zjqdztJWkSSrZOZqNV6jX8Pt+edRKOWgF0kqjUKhQF2lCuoqVXDq1Akwd4IwJCSQd+TItSDVMXOgKjWVgpMnKTh5koxfigWqgoOvBarMwSpt7doo5QOC20J+U7tBQgjyDHl35dh2NhUnmQZITU1l/fr1fPDBByWezAElZuVZsGABAwYMQK1WM2DAABYsWFBq/okXXniB1q1bM2vWLHQ6HVFRUTz66KMlntr6+PiwZcsWRowYUempqH/44Qdq1aplFZAqMm7cOH755Rc2btzIU089hZ+fHx07dmTPnj34+fnh6OhYYllljms0GlmxYgWpqamo1WrA/Pvt3bs39vb2bN26FYPBwIgRI3jqqaeIjo4GIDs7m27duvH++++j1WpZvHgxPXv2ZOuef9C6ms/F5LEjSIq/woq1v+NgZ8ebb4whLSUZX2ct9ao6W45lNAkMJkGBwURmtoJMtRKFAn4/ksDmE0n0bVyNs0nZ7D2fiqmUkX7Tfj/O8y0DeaJhVdQqJQaTIDEzn43HEvnjaAInErJQKRXMfKohTlp1pX4XN6QwB7Z+DAe+h9DHoPUb4FTJWS8Kc2H9BNj/7b/LEg7B33NBoYKAR6BOT/PLsfSGuTbYBdfHa5C24jRZmy/i378Og/83m43ffMXZmN3mXlN7d/PoiDF4Vg/47+9XkiTpDhk7diyDBg0iIiKC5s2bM2/ePOLi4hg+fDhg7uV0+fJlvv3W/Bk6c+ZMAgICCAsLo7CwkCVLlrBixQpWrFhx2+p4P7SJABwcHHBwcGDVqlU0a9asRCDOx8cHg8HAypUr6du3b6X3q7s2XEqv15e6PiMjAwA3t38fsphMJgYNGsQbb7xBWFjZCam///57lixZgre3N127dmXKlCk4ymnPHzqlJjP/36fYlXPtSJJUOoVCgdrXF7Wvb4lAVf7Ro+ZeVdeCVcaUFApOnaLg1CkyVq4070ClQhMUhLZuXRmousVkUOoG5RnyaPpD07ty7L8H/o1OXfF48TNnziCEoHbt2hWWzczMZMWKFZbZfJ555hlatmzJF198UWLaxgYNGhAcHMzPP//MoEGDiIqKYsaMGZw7d86q3IwZM+jbty8+Pj6EhYXRokULevXqRdeuXcusx6lTp0rNWQVYlp86dYrevXvj7u4OgKenp+UpYmnLyjJgwABUKhX5+fkYjUbc3Nx48cUXAXO3/EOHDhEbG2sZwvDdd98RFhbG3r17adKkCfXr17fq+fXOu++x7OcVrPz1VwYMfonspIvs+HMTu3fvpmlT87WyaOFC6tSpY9XQVSgU2KgU2KhAq1ahUWjIdtAwb1AE768/w86zKfzwd5ylfG0fR4I87dHZ2qBWKdlyIpHEzAI++v0EH/1uPRyziEqp4P+616Gxv2up6/+T0xvht7GQfq2OMQvhnx8gcig8Mrb8nk6p5+CnpyHpGKAwB7O8asOFXXB+B1w9DrFbza91b8DAZVCrc6m7sm/ig/5qLtnbLpP68yk8Xwqn1+uTOLEjmi2LviYp9ixL3hxN874DaPJYH9lrSpKk+8JTTz1FSkoK7777LvHx8dStW5d169bh7+8PQHx8PHFx//6NKCws5PXXX+fy5cvY2dkRFhbGb7/9Rrdu3W5bHe+HNhGYe3tHRUUxdOhQ5s6dS6NGjWjTpg39+/cnPDycZs2aMXHiRAYOHMjw4cOJjIykffv2PPvss2UOl8zJyeGtt95CpVJZel8VJ4Rg7NixPPLII9StW9ey/OOPP8bGxoZXX321zPo+/fTTBAYG4uPjw5EjR3jrrbc4ePAgGzdurNT7vZMKDEY0Nrcub6T0r4LYWK68LpOZS9LtVDxQ5dixI3AtUJWYaBnyl1cUqEpOpuD0aQpOny4ZqLL0qApDW0cGqm6U/Hb2ABLXkmdX5knfDz/8QFBQkCXI0qBBA4KCgvjpp59KTRY+ZMgQFi1aRPXq1S09hr788kurMqGhoRw5coR9+/axY8cOtm3bRs+ePRk8eDDz58+/6fd1I3mOhBBk5htQKsDxuh5Cn332GR07duTixYuMHTuWMWPGUKNGDQCOHz+On5+fVU6N0NBQXFxcOH78OE2aNCEnJ4d33nmHtWvXcuXKFfR6A/n5eSRevoy/uz3R+85hY2NDRESEZR+1a9cu0UOtLEGeDnz/YlM2HEtk07FE6vg60SnU2zKUr0ihIYzVB68wf/s5TiRkWZbbqVU8UtODR8N86FDHCxedbaXPW4WMeji1HvbOh3PR5mXOftDyNTj8M1zcDTu/gBPr4Pl1pfdwKsiCH56C5FNg7wV9voGgtuZ1dfuY/009B8fXmF/xB8EvstxqOT8aiOFqHvnHU0n59hheoxpQp1U7/OrWZ+M3X3Ju3x7+Wvodp/fs5LGxE3H2qnxOFkmSpLtlxIgRjBgxotR110/SMX78eMaPH38HanV/6tOnD927d2f79u3s2rWL9evXM336dObPn8/gwYP54IMPGDt2LFu2bGH37t3MnTuXDz/8kG3btlGvXj3Lflq0aIFSqSQ3NxdfX1+ioqKs1hcZNWoUhw4dYseOHZZl+/btY9asWezfv7/cNs3QoUMt/69bty41a9YkIiKC/fv306hRo1t0Rv4bvdHE6KX/sPFYIr+ObEkdX6eKN5IqRQhB+s8/k/jhNEReHipnZ3zef8/Ss0OSpNtLoVCg9vFB7eODY4cOwLVAVVKSOVB15Ch5R4+UDFStWmXegVKJJjgIbWjYv72qZKCqXDIodYPsbOz4e+Dfd+3YlVGzZk0UCgXHjx+3JAcvy8KFCzl69KglhwKYu5YvWLCg1KDU008/zfjx45k6dSrPPvus1XbFKZVKmjRpQpMmTRgzZgxLlixh0KBBTJo0icDAksmna9WqxbFjx0rd1/Hjxy3vqzJMQnAlPY/UnEIAXHW2+Lposbk27t7Hx4caNWpQo0YNli9fTsOGDYmIiCA0NLTMmY2KL3/jjTf4448/+Gj6dDRuVVHa2PL68MHY2Qic7dQ3FBQsi0KhoEuYD13CSgnqCAH7FmFr50rfxo/Tt3E19EYTSoUCpeK/HddK8mlY9TJkJYKDJ9h7mgNEWfHXKqmEZiOg7VugcYAmL8KZTbB2DKSehageMPg3cCwWABICVr9qDkg5VoGhW8CplHwnbkHmQFfL1yA3Fexcyq2qQqnArX9trs49iD4+h5SoY3i+HI6Dqxu933ib4zui+fNar6lNC2bT5613bs05kiRJeojdD22i4rRaLZ06daJTp05MnjyZF198kSlTpjB48GDA3Ou6X79+9OvXj2nTptGwYUM+/fRTFi9ebNnH0qVLLQ+rinppX++VV15h9erVbNu2jWrVqlmWb9++naSkJKsJYoxGI+PGjWPmzJmcP3++1P01atQItVrN6dOn74mglOFaQOq3Q+b2wN/nUmRQ6hYxpqcTP3kKWRs2AKBr1owqH3+E+gYmOJAk6dZTKBSovb1Re3vjeC3f4PWBqvyjR8k7dhTj1WQKTp+h4PQZMn791bwDpRJNcDB2jRuhi2iCrkkTOUlBMTIodYMUCkWlu4vfLW5ubnTp0oWvvvqKV199tUReqfT0dFxcXDh8+DAxMTFER0db5TtIT0+ndevWHDlyxKrLedG+H3vsMZYtW8bcuXMrXafQ0FDA3N29NP3792fgwIGsWbOmRF6p//3vf7i7u9OpEk+IDEYTsVdzyCk0UBSaScstJLvAgK+zeQaFrDw9qTkFONvZUqNGDfr06cNbb73Fr7/+SmhoKHFxccTFxWHv7k1eoZGzp06QkZFBtcAaFBqMbN++nUHPPkd4y84UGIwU5ueScDkOtcoc9KpTpw4Gg4GYmBhLEtWTJ0+Snp5e6fNVrv3fmgM/ADnJEDnUcuxyXdwDdm7gUaPisilnYXHPfwNQGf8OEUHnAY0GQePB4Brw73KFAmp2gsFrYVF3SDlt3sfgteBw7UN3zzw4+gsobaBfVOkBqetVkPC8iFKjwv25MJK+OoA+IYfUH0/i/mwoCqWC0Fbt8AmuSdTYEZz/Zx9J58/hFRBUqf1KkiRJpbsf2kTlCQ0NZVXRk+3r2NraEhwcXKLd4ufnR3BwcKnbCCF45ZVXWLlyJdHR0SUewg0aNIiO14aHFOnSpQuDBg2yTNhSmqNHj6LX6yucXfhOMJkE438+ZAlIAcRn5N/FGj04ZDJzSbq/lBaoAtAnJlmG/pmH/x25Fqgy96hK/2kpAGr/6ugiItA1aYIuognqqlXu+RnQbxcZlHpAzZ49mxYtWhAZGcm7775LeHg4BoOBjRs3MmfOHI4fP86CBQuIjIwsNal58+bNWbBgAZ999lmJdVFRUcyePbvMJ4R9+/alZcuWtGjRAh8fH2JjY3nrrbeoVatWmXmu+vfvz/Lly3nuuef45JNP6NChA5mZmXz11VesXr2a5cuXl5q0/XoXUnLw1BhQKRT4uetQKRRcTMul0GAiLtU8rXNKTiGX0vK4mlWIv7uOcePGUb9+fWJiYujYsSN164XT56kBvD75QwwGAx9Oep2IZi1xD6jDiYQsvKsFsHT5z4Q2a4etSsn8WR9hMpksdQgJCeHRRx9l6NChzJs3DxsbG0aPfs08nbNRD0YDKK/lXxAChAkq2+BIPQfr3/r353VvgM4d6j5R9jaGAvM2MQvMvZsaPw/tJoK9R+nl087D4sfMASmvUOj2KeSnQ3aiOSBV61GwKWdIoGsADF5jDkwln4QvI6BqBHjWNgelADq9B9VvfR4SGxcNHs+GkfT1IfJPpJLxeywu3c3BJ7cq1ajV/BFO7tzGnlXL6TF6wi0/viRJknTvSUlJoV+/fgwZMoTw8HAcHR2JiYlh+vTp9OrVi7Vr1/LTTz/Rv39/atWqhRCCNWvWsG7dOhYtWlTp44wcOZIffviBX3/9FUdHRxISEgBwdnbGzs4Od3f3Em0ntVqNj48PISEhgHmG3++//55u3brh4eHBsWPHGDduHA0bNqRly5a37qTcBCEEk1Yd4ZcDl1EpFbQIdmf76WSuyKDUfyIKC0maNYvUhYv+TWb+6afY1ZXJzCXpfqT29kLt7YVj+3aWZfrEJPIOHSQvJobcvTHknziB/kIcGRfiyFhhnvHPxtcXXZOiIFUEtgEBD02QSgalHlCBgYHs37+fDz74gHHjxhEfH4+npyeNGzdmzpw5lpl5Jkwo/Yt5nz59mDZtGh9//HGJdXZ2duYASxm6dOnCjz/+yLRp08jIyMDHx4f27dszderUMof7KRQKli1bxqxZs/jss88YOXIkGo2G5s2b8+eff/LII4+U+36LhswVGgW2NkoC3O3Rqs2Bn5pejiRm5pNdYABAZ6tCrVJSYDByNikb/xq16dChAxMnvU3U0l+YPvdbpr09nuf7dkelUtK2QyemfvgJdrYq8gtNjJv8AVNeH8Vzvbvg6enBhAkTyM66ltOpMBcKs1n0+TReHDWONm1a4+3hzvvjX+bt8+fMgZ3Ew6WdARC25qFqRw9Cg76guu5cGQ3wyzDQ54D/I+AZYg40/fIS2LlCcLuSu007D8ueg/h/rp0ok3mbwz9DxGBw9AWNE6hsIecq5CSZ12VeAo8QeHa1eejejXILMveQ+q63ORH62c3mF0Bob2j28o3vs5Js/Rxxe7IWqT+cIHv7ZWw87XCIND9djuzVl5M7t3Fq91+kJVzB1aeSMwVKkiRJ9y0HBweaNm3KZ599xtmzZ9Hr9fj5+TF06FAmTpxIfHw8Op35IdXFixfRaDTUrFmT+fPnM2jQoEofZ86cOQC0bdvWavmiRYssQwQrYmtry+bNm5k1axbZ2dn4+fnRvXt3pkyZgkp1dxOKrzxwmR/3xKFUwGdPNUCpgO2nk4lPvzszMD4ICs7FcuX118m/lsJCJjOXpAeT2tsLdadOltxwxsxM8g4cIHfvXnL3xpB39CiG+HgyV68hc/UaAGw8PdE1icAuIgL7Jk2wDQ5+YHtOKkTRt/mHWGZmJs7OzmRkZJSYcS4/P5/Y2FgCAwPRarV3qYZSRa5mFRCfkYdSoaCmlwMadfkNN73RRFxKLjmFhlLXO9upqeJsh9rG+sY3mQS5eiMFeiNOdup/h80JAdkJkJVQ9kGVNtd6RhlLXZ1vEMRevkrgX+PQuvjAE9+AW7Gu/9s+gS3vm4NIL/8FTlXh5yFwbJU5qFSjozngU70pXIqBs3+aE4UXZJiDVk98A2o7WP8mJJQWGCvGLbjsROU3wlBoDsJdOQCXD5iXPToNtLc/90TmpgtkbooDpQKPIXXR1nAB4JePphJ7IIbwDo/S6aVRt70ekiQ9fMprV9zLZHvo/nSnfjcjvt/HusMJvNw2mAmP1mbfhTT6zNlJVRc7/nqzfcU7kCyEEKQvX07itI9kMnNJkjDl5pL3zz/k7N1L3t4Y8g4eROj1VmVUrq7oIhpbelJpQkJQ3OWHFRWpbHtI9pSS7nv5eiMJmeau477O2goDUgBqlZJAT3viM/JJyS4AQGujws5WhbOdGic7danbKZUKHDQ2OGiK3TrGQki7AIXZ5p81jmCjMQehlGqw0YJaa/4ZzL2VTNcCUwql+WXUQ3Y6pBSC2hEu7YW5raDjFPPwu/M74My1qaC7fQIu15KkPjEPDPnmGfFOrjO/rle1MfRbDC7XZhR8aSscXg5xuyA/0zwbniHfPJzPwdsc7GowsOzhfTfCxtZ8/KqNocl/392NcOxQHX1yHnn/XCVlyXG8RtZH7akjsldfYg/EcHTrJpr3HYCDW+nDUCVJkiRJMjOZBLvPpQLQobY5T2RRrs7EzHyMJoFK+XAMM/mvDGlpJEyeQtZGc7tO17wZVT76WCY9lqSHmFKnw75FC+xbtADAVFBA3sGD5MbEmIf8HfgHY1oaWRs3kbVxk3kbR0d0jRqhizQHqbShoSjUpX+HvdfJoJR0XzMJwcXUXIQQOGrVuNmXk+voOkqFgqoudng5alAqQHUz3SHzMyH9ApgM5uCSs1/FibkVSrg+MbmNrbn3kNYZBnwPa0eYg0brXrcuF94fwp8qtp0GBvwEScfg6Cpzr6nkU+Bd1zycL6gdBLaxHgqoVEH9/ubXA0yhUODWpxZXU/MpjMsiJeooniMaUK1OXaqEhHLl5DH2rfuVNs8MudtVlSRJkqR72qmkLFJzCtHZqgiv5gJgaT8ZTILk7AK8nWQPuork7NplTmaelCSTmUuSVCalRoN9ZCT21ybNEoWF5B09Su7eGHL37iVv/35MWVlkb91K9tatACh0OnQNGljyUmnDw1HaVv678d0kg1LSfUsIQXx6Pnl6IyqlgmqudtbJ4PT55gBQeUm5oXIz15U8uHmoXva14Xo2duYE3+pb0CBzqgKDf4MdM+DgUnN+poCWEPAIVGlknuWuOIUCvMPMr3YTzT23bDT/vR4PAIVaifugUJK++gdDSj4pS47j/kwdmvbqy8rp73Jw4+807f0kWgeHu11VSZIkSbpn7TyTAkBEgBu211Ib2KiUeDtpic/I50p6ngxKlaNEMvPAQKp8+gl2YTKZuSRJFVPY2qJr2BBdw4bw0lCEwUD+iZPkxphzUuXGxGDKyCBn505ydu60bGNXv755uF9kE+zq10dZTl7ou0kGpaT7VmJWASk55qF31Vx1/waXCnPNAaOCDEBhDvLYe5YM5twsfR5kXIbCa8nNde7gVK3yM+hVhlIFrd8wv26EQiEDUtdROdriMTiMpDkHKYzNIP693Wi0KroGvERGbhKx87fh16whNm5abNy0qFw1KG4mUClJkiRJD6hd58xBqRbB1kPefZ3NQan4jHwa3o2K3QdkMnNJkm41hY0NdnXDsKsbhvvgwQiTiYLTZ64lTt9LbkwMxpQUy8/MBtRq7OrWRRcRYQ5SNWyI6h55MC+DUtJ9KTm7gKRreaSqutjhbKc2D6FLj4P8jGIlBWReNi9z8TMnBEdRcYBKCCjINOdaUqrN2wmjeYa6gmvBqMoO15PuOrWPPe7P1CFt5RmMqfmIfCNOClec7F0hAdJXnfm3sAJUzhpzgMpNi4279lrAyg6Vmxalzua+mZ5VmASmXD2mXIP53xwDqBRogpxR2t7biRElSZKke4PRJNh9LSjVPOi6oJSLHcSlc0XOwFeCTGYuSdKdolAq0YbUQhtSC7dnnkYIQWFsrGW4X+7evRgSE8k7cIC8AwdI+eYbUCrRhoZi37w5nmPH3NXvNzIoJd130nILLY0fbyct7g4acxAp7YI5kATm2eYcfMzJxzMvm/9NOv7vThQqczDJ3tO6Z1FRMCozHgzlNLC0zuDoa57NTrojrsZlkRibQfUwd5w8bvy8a2u64ju+CaZCI8a0fPRXc/lrwWJU+Sr8A+tjr3Y2B6z0JozpBRjTC+BcRon9KDSqfwNWRS93c8DKxkWDwub29LISRoEpT48p51qQ6dq/xly9JeBk/vfa8hw9It8ApcyvqlAr0dZ2w66uB9rabig1MkAlSZIkle7YlUyy8g04amwIq2I9e5LvtSF7CRn5d6Nq9yxzMvPJloTEMpm5JEl3kkKhQBMUhCYoCNennkQIgf7SJXL3mHtR5cbEoL94kfwjR1CoVHf9gbsMSkn3lXy9kctp5mCRh4MGL8drAaWshGsBKQV41ARbe/NytRY0DpB+8d/Z8eDfXk85V0HrCioVGArNM90ZzUMCUShB42TugWUsNM+aZ+daMpAl3VYpV7LZsyaWcweuAuZOboH1PQlvX40qNV1u+ENUaatC6W2P2tsez66hbF4wmzPKQ7ww6xuUKhWmbD2GlDwMaQUYU/IwpOZjSM3HmJqPMbMQUWBEH5+DPj6n5M4VoHLSXBew+jeApbRXo1AoEEZTscCSHmNRQKm04NK1ZSLfcNPnUKFVobRXo9SpMWUXYkwrIO9wMnmHk8FGiTbEFV29awEqrfyzIEmSJP1r59lkAJoGuWFz3fB2XxfzQ6J4GZSy0CcmEvfscxReuCCTmUuSdE9QKBTY+vlh6+eHS58nANDHx5MbE4NCc/e/18pvH9J9wyQEcam5mITAQWODr7PWHJDIz/g34biL378BqSI2WnOgymQCTObeUPo8yE40B6ry06zLK5Rg7wH23taz1kl3VGZyHnvWxHJyT4K5t48CPP0cuRqXxbl/rnLun6t4BzrR9LEgqtV2vakIf922Hdn18w9kJV/lxF9bCWvTAZWjLSpHWzQBJcsLvQlD2rUg1bXAlTlgZQ5eiUITxowCjBkFFMaW0svKVgkKBaLAeOMnpGgfdjao7NUodTYodeprwSbz/62X25jX2alRqP49N0II9FdyyDt8ldzDyRhT8sk/mkL+0RSwUaCt6YpduCd2dWSASpIkSfo3n1Sz64buAVRxNveUupIhh+8B6BMSuPDcc+gvxGFTxZdqX3whk5lLknRPUvv64tyz592uBiCDUtJ9JCEjn3y9ERulEj83nTkIYcg3D9sD0HmYk46XRakErj2lUqlB62ROip6Xau5+o7I1v9T2Mhh1F+VkFLBv3XmO7riCyWgeexbU0JPInoG4V3EgNT6HQ39e4uSueBJjM1k96x+q1HSh8aP++NVxQ6GsfHDKxtaWxt17s/2HKPauXkFoq3blPslUqJWovXSovUomJxVCYMrRXwtY5Vt6WBlS8zCmFmDMLEAUmortDJR2NpYeTEqd9f9VRf+3t/l3/XUBppuhUCiwreqAbVUHnLoEoI/PsfSaMiTnkX88lfzjqaSprgWo6nmYA1Q69X86riRJknT/0RtN7I1NBaBFsEeJ9ZaeUumyp5Q+IYELzz6HPi4OddWqVF+8GNtqVe92tSRJku558pu3dF/IyteTnF00056deaY9Qz4knzEPxVPrwPkm/vDb6jh/JYnAwEAOHDhAgwYNbm3FpUoRQpB4PpMjWy9zJiYJo8EcvPGr40qz3sF4+f+bw8LN1562A0No0j2A/X9c4Oi2K1w5nc6V0+k4ummp09KX2s19cXSr3NTU9Tt1Zc+q5aRciuPsvj3UaNLspt6DQqFA5WCLysEWqjuVWC8M5l5WgDnIZGdzQwG020GhUGBbxQHbKg44dfbHkJhL7uFk8g5fxZCUR/6JVPJPpJKmVKCp4WIe4hfqjspeBqgkSZIeBocuZZBTaMRVp6a2j2OJ9UU9pZKy8jEYTSWG9z0srg9I+X+7GHVVGZCSJEmqjNvyl6OgoIDt27fz3Xff8fXXX/PLL78QGxt7Ow4llSMhIYFXXnmFoKAgNBoNfn5+9OzZk82bN5co++GHH6JSqfjoo49KrIuKikKhUFCnTp0S65YtW4ZCoSAgIMCyzGg0Mm3aNGrXro2dnR1ubm40a9aMRYsWlVnX6OhoFAqF5eXu7k779u35c+s2LqfncSElFwB3Bw1OdmrQXwtImfTm/E5uQeZhd9J9J+NqLj9/vI8VH+/j5O4EjAYT3oFO9BrTkMdea2gVkCrO3llDqydr8cx7zQhvXw2Nzoas1Hz2rInl20k7WfXZfo7vvEJhXvm5mDQ6e+p37gbAnlXLEaKUzOC3gMJGidpTh9pTh8pefdcDUtdTKBSofexx7uSPz9gIvMc0wqmTP2ofHZgEBafSSFtxmvgPdnN1wWGy/47HmF14t6stSZJUKUlJSQwbNozq1auj0Wjw8fGhS5cu7Nq1C4ADBw7Qo0cPvLy80Gq1BAQE8NRTT5GcbM6ndP78eat2iqurK61bt2br1q2WY8yZM4fw8HCcnJxwcnKiefPm/P7771b1KL6P4q9PPvnEUqagoIBXXnkFDw8P7O3teeyxx7h06dIdOEslFc261zTQHWUpf7fcHTTYKBWYBCRlFdzp6t0T9PHx/wakqlXD/7tvZUBKkiTpBtzSnlI7d+7kiy++YNWqVRQWFuLi4oKdnR2pqakUFBQQFBTESy+9xPDhw3F0LPm0Rbp1zp8/T8uWLXFxcWH69OmEh4ej1+v5448/GDlyJCdOnLAqv2jRIsaPH8/ChQt58803S+zP3t6epKQkdu3aRfPmzS3LFy5cSPXq1a3KTp06lXnz5vHll18SERFBZmYmMTExpKWlXb/bEtZui8HB0YnMtBTmzvyEXo/15NetMbh7eGJva2Oe5UWfBylnzAnIbbTgXsM8HE8ql0FvxEZ9b82ylptZyOpZ/5CZnI/KRkmNCC/qtqmKd4BTiRxR+ceOkbv/ALrGjdDUrm1Z7+CqpdWTtWjeO5izB65ybIe559Tlk+bX1h9O4RPsjF8dV6rVdsOrumOJgFCjro+x/7dfiT9zkkvHDuMXFn7HzsG9Sn0tGbxTh+ror+Zahvjp43MoOJ1Owel00ledQRPkbB7iF+aBytH2bldbkiSpVH369EGv17N48WKCgoJITExk8+bNpKamkpSURMeOHenZsyd//PEHLi4uxMbGsnr1anJzc632s2nTJsLCwkhKSmLixIl069aNI0eOEBgYSLVq1fjoo4+oUaMGAIsXL6ZXr14cOHCAsGt5heLj46329/vvv/PCCy/Qp08fy7LRo0ezZs0afvrpJ9zd3Rk3bhw9evRg3759qFR39u94UZLzFjVKT4+gUirwdtJyOT2P+Iw8qrg8XLMSWwJSFy+i9vPDf3EU6ipV7na1JEmS7iu3LCjVq1cv9u7dy8CBA/njjz+IiIhAp/s378q5c+fYvn07P/74IzNmzODbb7+lU6dOt+rw0nVGjBiBQqFgz5492Nv/m/g7LCyMIUOGWJXdunUreXl5vPvuu3z77bds27aN1q1bW5WxsbFh4MCBLFy40BKUunTpEtHR0YwZM4Yff/zRUnbNmjWMGDGCfv36WZbVr1+/3PoajObhWs5uHjg5O+Pq4cmQUWNZt/oXzh79h4g+vXHQ2LDtzy28MW40B4+dxM3Fmeeee573P/zQciGvX7+e999/nyNHjqBSqWjevDmzZs0iODjYcqw9e/YwbNgwjh8/Tt26dZk0aVLlT+x9ylBo5Pspu6lWx42Gnarj5mtf4Tb6QiPn9idhMgmcPe1w8rDD3lljFdDRFxi5ejGLzKt5ePk74eqrq3TC8cJ8A2u/PEhmcj5OHloeH9cIB9eSQ+7yT50i+Ysvydq40bLM1t8fx66P4tKnD7Z+fgDY2KoIaepDSFMfMpPzOLU3kVN/J5CWkMvlk2lcPpkGnMPJQ0udFlWo3dwXB1fzbBP2Lq6EtevEwQ2/sefXn2VQ6jpqTx3q9tVxal8dfXIeeUeuBaguZ1NwNoOCsxmk/3oW2wBndOHXAlROMkAlSdK9IT09nR07dhAdHU2bNm0A8Pf3JzIyEoBVq1aRmZnJ/PnzsbExtygCAwNp3759iX25u7vj4+ODj48PX3/9NdWqVWPDhg0MGzaMntcljP3ggw+YM2cOu3fvtgSlfHx8rMr8+uuvtGvXjqCgIAAyMjJYsGAB3333HR07dgRgyZIl+Pn5sWnTJrp06XILz0z5CgxGYs6bHyg2LyXJeZEqLuag1JX0fBr736na3X0yICVJknRr3LKgVOfOnVm+fDm2tqV/EQkKCiIoKIjnnnuOo0ePcuXKlVt16DtKCIHIuzszjCjs7Cr1hT81NZX169fzwQcfWAWkiri4uFj9vGDBAgYMGIBarWbAgAEsWLCgRFAK4IUXXqB169bMmjULnU5HVFQUjz76KN7e3lblfHx82LJlCyNGjMDT07PC+gohuHotX5SdrZKaXo5kZWfz9eplAFRzd8RRq+bypYt069mTwf168O2XH3EiMZ+hw4aj1emYOnUqADk5OYwdO5Z69eqRk5PD5MmTefzxx/nnn39QKpXk5OTQo0cP2rdvz5IlS4iNjeW1116rsI73uwtHU8hOK+DEznhO7IwnsL4HYa2r4uqtw8FVg7JYDoiCXD2Ht17m4OaL5GfrrfajUCrQOqjROaoRAtLicyg+2s3RXUtAPQ/qta2Kq0/ZgS+jwcTvcw9zNS4LO0c1PV9pUCIgVXAuluSvviJz3TrzjIkKBXYNG5J/9CiFFy6QMvdrUuZ9g2Pnzri/MAS7evUs2zp52BHRNYDGj/qTnpjLpRNpXDqRxsUTqWQm5/P36nPsWXOOKrVcCajnTkA9D5r0fJxDm37n/MH9JJ47g3dQjf941h9Mag871G39cGrrhyElj7wjKeQevor+UjaFsRkUxmaQvvostv5O2NX1wK6eBzbOd3+qWUmSbr37oU0E4ODggIODA6tWraJZs2Zorpv+2sfHB4PBwMqVK+nbt2+l91v08FWv15dYZzQaWb58OTk5OVY9zItLTEzkt99+Y/HixZZl+/btQ6/X07lzZ8uyKlWqULduXXbu3HlHg1J/nrhKgcGEp6OGGl4OZZbzdbYD0oh/iGbg01+5woXnBv8bkPp2MWpf37tdLUmSpPvSLQtKjRw5stJlw8LCLE+M7jciL4+TjRrflWOH7N+HQldy1q/rnTlzBiEEtWvXrrBsZmYmK1asYOfOnQA888wztGzZki+++AInJ+tcPg0aNCA4OJiff/6ZQYMGERUVxYwZMzh37pxVuRkzZtC3b198fHwICwujRYsW9OrVi65du5Zah9ScQnILjQC0aWjOW5Wbm4sQgsaNG9OhQwcAZn82HT9fb778cBIKzxBqq7VcSUhkwoQJTJ48GaVSadX9HcwBNy8vL44dO0bdunX5/vvvMRqNLFy4EJ1OR1hYGJcuXeLll1+u8Fzdz4IbetFnfGP2/3GB2IPJlheAUqnAzskWhMAkoDDPgFFv7rnm5KHF2dOOjKt5ZKUWIEyCvMxC8jL/zSVk72yLk4cdSReyyErJ53D0JU7tTeDxsY1wr1qyEZubWciGBUe5fDING42KHqPq4+L973VdGBdH8lezyVizBkzmejh26YLnqJFoatbElJND1p/RZKxcSc5ff5G1fj1Z69djV78+Tr0ew6lrV2xcXQFz7g5XH3tcfeyp17Ya+gIjZ/cnceyvK8SfybD0oPrr5zO4eOtw92tI8oV97Pn1Z3qOKTmMVbJm426HY5tqOLaphiE1n7yj5h5UhXFZFJ7PpPB8Jhlrz2Fb3dE8xK+uBzal9IaTJOn+dD+0icDc2zsqKoqhQ4cyd+5cGjVqRJs2bejfvz/h4eE0a9aMiRMnMnDgQIYPH05kZCTt27fn2WefLfHgrUhOTg5vvfUWKpXK0vsK4PDhwzRv3pz8/HwcHBxYuXIloaGhpe5j8eLFODo68sQTT1iWJSQkYGtri+u1v2NFvL29SUhIqNT7vVUW7jDng+3XuFq5gTpfF/Pn+pWHZAY+/ZUr5h5Sly7JgJQkSdItcFtm38vLy2Pjxo2cOnUKhUJBzZo16dSpE3Z2NzbOfNq0afzyyy+cOHECOzs7WrRowccff0xISIiljBCCd955h3nz5pGWlkbTpk356quv7tug161QlKi5Mk/6fvjhB4KCgizD6xo0aEBQUBA//fQTL730UonyQ4YMYdGiRVSvXp3s7Gy6devGl19+aVUmNDSUI0eOsG/fPnbs2MG2bdvo2bMngwcPZv78+VZlC/RG4jP+bcRsj96CvaMTB/45yIQJE4iKijLPtJedyPHjR2neuB4KtwBQmxtALVu2JDs7m0uXLlG9enXOnj3L22+/ze7du0lOTsZ0LagRFxdH3bp1OX78OPXr17caWlrWE8wHjU+QM91eDic1Pod/NsURfyaDzJQ8TAZBTrp1clK3KvY06uJPzQgvSy8qk9FEXpae3KxC8rP0GI0mPP0csXcxP3HWFxi5dDKNmN9iSbqQxa+z/uGJcY2sAk4J5zJYP+8IOekF2GhUdBtWz5LIPP/4cVK+mU/m+vWWYJRDu3Z4vjIKbbEGvdLeHuce3XHu0Z38kydJXbiQjN/WkXfwIHkHD5I47SMcWrXCqVs3HNu1RVmst6Bao6J2c/PsfOlJuVw4nML5w8lcOZ1OemIuJmMosI9Tu3dwaMthwtv/2/tKKp+NmxbHVtVwbFUNQ0aBOQfVkWQKL2Sag1RxWWT8FovazxGH5r7o6nuhUN1byd4lSXpw9enTh+7du7N9+3Z27drF+vXrmT59OvPnz2fw4MF88MEHjB07li1btrB7927mzp3Lhx9+yLZt26hXrCduixYtUCqV5Obm4uvrS1RUlNX6kJAQ/vnnH9LT01mxYgXPPfccW7duLTUwtXDhQp5++mm02oqD9UKISvfguhUOX8pgz/lUbJQKnm0eUG5ZXydz/RMyHvyglP7yZXMPqUuXUFevbh6yJwNSkiRJ/8ktD0qtXr2aF1980TJbSREPDw8WLFhQYrx9ebZu3crIkSNp0qQJBoOBSZMm0blzZ44dO2YZljZ9+nRmzJhBVFQUtWrV4v3336dTp06cPHnytiRTV9jZEbJ/3y3fb2WPXRk1a9ZEoVBw/PhxevfuXW7ZhQsXcvToUUsOBQCTycSCBQtKDUo9/fTTjB8/nqlTp/Lss89abVecUqmkSZMmNGnShDFjxrBkyRIGDRrEpEmTCAwMvHYcQVxqLiYhsLuWgDvQPh8XR1tqtQsn/42RPP5Yd45sXoZGY2sewWVrD1pny3GuD8D17NkTPz8/vvnmG6pUqYLJZKJu3boUFhZalX+Yufna036QuUeaMAlyMgrIzSw0zwCkVGCjVuLsaVciGbhSpcTeRWMJQl1PrVERGO6Bb7Azqz47QMqlbH6deYCOg0PJTMkn6Xwmx/66gskocPHW0XVYPdyq2GO4epUrkyaRs227ZV/2rVrh+coo7MLLz+2kDQmhyscf4zluHJm/rSNj9WoKjh8ne8sWsrdsQaHV4tC6NfYtWqCLjMQ2MMByrbh46XDpoKN+Bz8K8wxcOJrCuQNXOb49GGPBWc7t/0MGpW6SjbMGx0eq4vhIVYyZ5gBV7pFkCs9nor+YRdrFLLI2x+HYvjq6BjI4JUllmT17Np988gnx8fGEhYUxc+ZMWrVqVeF2f/31F23atKFu3br8888/t61+90ObqDitVkunTp3o1KkTkydP5sUXX2TKlCkMHjwYMOeL6tevH/369WPatGk0bNiQTz/91Gp43dKlSwkNDcXFxQV395J5lmxtbS2JziMiIti7dy+zZs3i66+/tiq3fft2Tp48ydKlS62W+/j4UFhYSFpamlVvqaSkJFq0aHHD7/lmLdhh7gXfI9wXH+fyg2a+15KbP+jD90oEpL5djPq6HGGSJEnSjVNWXKTydu7cSd++fWndujV//fUXqamppKamsmPHDlq1akXfvn0tU+9Wxvr16xk8eDBhYWHUr1+fRYsWERcXx7595gaQEIKZM2cyadIknnjiCerWrcvixYvJzc3lhx9+uJVvzUKhUKDU6e7Kq7JPyNzc3OjSpQtfffUVOTk5Jdanp6cD5i7mMTExREdH888//1he27ZtY+/evRw5cqTUfT/22GNs3bq1RML08hQ9ISxenysZeeTpjaiUCrzsigeLBBjyGdSrPSaTidmLl4HKltCweuzce8AqsLRz504cHR2pWrUqKSkpHD9+nP/7v/+jQ4cO1KlTp8SMf6GhoRw8eJC8Yjkwdu/eXen3cT9LXbyYgnOxVssUSgUOrlq8/J3wrO6IRzUHXLx1JQJSN0Jrr+axVxvg4q0jO62AVZ8dYMu3xzmy7TImoyC4oSf93ozArYo9xsxM4oa+ZA5IKZU4detG4C8rqP7NvAoDUsWpvbxwf34wQSt/IXD1r7gPH4bavzoiP5+sDRtImDqVc926caZ1GxLee5+8w4etriNbOxtqRnjTZWhdnpgwFIDY/TvISk0u65BSJamcNDi0rIrXsPr4TmyKU5cAlDobDCn5pC0/RcKMGHJiEhDXJjuQJMls6dKljB49mkmTJnHgwAFatWpF165diYuLK3e7jIwMnn32WcvQ99vpfmgTlSc0NLTUdhKYg0vBwcEl1vv5+REcHFxqQKo0QggKCgpKLF+wYAGNGzcuMRFM48aNUavVbCw2uUd8fDxHjhy5Y0GpxMx81h4yzxL4wiNBFZav4mwOSl25RT2lkrLymbHhJNtOXb0l+7sV9Jcv/ztkTwakJEmSbqlbGpR6//33ef755/n5559p3rw5Li4uuLi40KJFC1asWMHgwYN57733bnr/GRkZgDkwAhAbG0tCQoJVMkiNRkObNm0sOZIeVrNnz8ZoNBIZGcmKFSs4ffo0x48f5/PPP7cMV1uwYAGRkZG0bt2aunXrWl6PPPIIzZs3Z8GCBaXuOyoqiuTk5DJzVvXt25fPPvuMv//+mwsXLhAdHc3IkSOpVauWZZvUnEJSc8y9l/xdNNjkJJo31rqAVyi4BaF08WP0KyP5aM4Sch0DGTFmPBcvXuSVV17hxIkT/Prrr0yZMoWxY8eiVCpxdXXF3d2defPmcebMGbZs2cLYsWOt6jZw4ECUSiUvvPACx44dY926dXz66ae34Izf2/JPnCBx2kec696di6NGkbv/QIXbGNLSSF/xC5nr/8CQknJDx9M52dJrdANcfXTYalVUqelC/Q5+dB1Wjy4v1cXWzgZTfj4XR4yg4MQJVB4eBK3+laoz/mc1VO9maGvVwmv0aILXryfg55/xGDUKXZMmKNRqDFevkvb995zv9yTnevTk6udfkHvgAMJotGxfPawuVWuHYTIa2Ld21X+qi2RN5WiLUzs/fCZE4tw1EKW9GmNKPmk/nybhf/vI2SODU5JUZMaMGbzwwgu8+OKL1KlTh5kzZ+Ln58ecOXPK3W7YsGEMHDjwoRmaXhkpKSmWCU4OHTpEbGwsy5cvZ/r06fTq1Yu1a9fyzDPPsHbtWk6dOsXJkyf59NNPWbduHb169ar0cSZOnMj27ds5f/48hw8fZtKkSURHR/P0009blcvMzGT58uW8+OKLJfbh7OzMCy+8wLhx49i8eTMHDhzgmWeeoV69epbZ+G63b3edx2ASRAa4Ua+ac4Xli3JKJWcXUGi4+c9wk0nww99xdPjfVj7fcoZnF+7h1R8PcDWrZFDvTrIEpC5flgEpSZKk2+CWDt/btWsXH3/8cZnrR44caZUM8kYIIRg7diyPPPIIdevWBbAkfLw+CaW3tzcXLlwoc18FBQVWT60yMzNvqk73ssDAQPbv388HH3zAuHHjiI+Px9PTk8aNGzNnzhwKCwtZsmQJEyZMKHX7Pn36MG3atFJ/n3Z2duXmB+vSpQs//vgj06ZNIyMjAx8fH9q3b8/UqVOxsbEhr9DAlXRzTyVvJy0OeZfBZDBv7FwVbDTmFzBk+CtM+WA6X375JePHj2fdunW88cYb1K9fHzc3N1544QX+7//+DzAPGfzpp5949dVXqVu3LiEhIXz++ee0bdvWUjcHBwfWrFnD8OHDadiwIaGhoXz88cclEqQ/aBQqFQ7t25uHtW3aTPamzWhq1sA2KBjb6n7Y+PqicnREqdMhCgv5f/buO76m+/8D+Ovcmb33kEXsiJlEEDO2UlWrRpVa1SptlX5bdNCt/dWqaq3WqNYuIYSgttpbJESm7J3c8f79ceVyJbhIcpPc9/Px8CDnnHvO+3yce+4n7/s570/Ozp3IPRANPDSjkLxeXZg0DYDUwx0yd3cIUikKz19A4fnzKImJgcTFBTJfH8h9fGHVtw8sfHwwbE5wuXUwSKlEwrTpKDx1GiILC9T5ZRnkdSt2tjtBEGDapDFMmzQG3poMdVERCk6cQPbWbcjduxclMTFIW7wYaYsXQ2RtDYvQUFh06QyLDh0Q1H8QNn15Cef3RiBowKswtbR6+gGZ3kRyMSzDPGAe4or8Y0nIPXgXqowiZG66gZyoO7Ds7AnzFs4QJBX6vQljNUZJSQlOnz6NDz/UnXAhPDz8iV+6rVixAjExMfj999/x+eefV3aYNYaFhQWCgoKwYMECxMTEQKFQwNPTE+PGjcOsWbOQlJQEMzMzTJ8+HfHx8ZDL5ahXrx6WL1+OESNG6H2clJQUjBgxAklJSbC2tkZAQAAiIiLQrVs3ne3Wr18PIsLQoUPL3c+CBQsgkUjw6quvorCwEF26dMHKlSshFotfqB30UViiwh/HNaPxxrTz0es19uYyyCQilCjVSMkpgqedfgXoH3Y9JRezNl3AqduaEe4+Dua4nZ6PbecSEX39Hj7s2QC9mrrC2lT6zPt+EToJKa868FrFCSnGGKtoAlVgkR1TU1NcvXoVXl5e5a6/ffs2GjZsiIKCgmfe9+TJk/HPP//g8OHD8PDwAKB5dCs0NBSJiYlwfajI4Lhx4xAfH4+IiIhy9zVnzhzMnTu3zPLs7OwyM84VFRUhNjYWPj4+ehWiZE+mJsKNlDwUK1WwMpHCS54LITcJgAA41gekz14joraoimutOCYG6StWIGfrNlA5U1g/St6oIaBUofj69Wc6jsjcHB6LFsI8OLjMuqIrVzSP0P33HwSZDHV+XQ6z1q2faf8vSpWbi9zIvcg7dBD5/x6B+uHEtFQKs9atccBcQFpqMkJeGYa2g4ZVaXzGRl2iQv7xZOQejIc6V3Ndim3ksOzkCfOWnJxiNU9OTg6sra3L7VfoIzExEe7u7vj33391HtmaN28eVq1ahWvXrpV5zY0bN9CuXTscOnQI/v7+mDNnDrZs2fLEmlLlfUnn6enJ/aEapiL/b/44fhsfbb6IOnZm2P9eR4j1fJw/7Jv9uJ1egD/Hh6CNj51eryEiHI/NwK+HY7H3SgqIADOZGO+F18eott64nJiDDzedx6XEB5/R7jamaOhqheZ1bNC/uTvcbSqv31gmIbV6NaSPmY2RMcZYWfr2hyp0pJS/vz+ioqLw+uuvl7t+37592uKPz2LKlCnYtm0bDh48qE1IAZpikIBmxNTDSanU1NTHTuELADNnztR5rKu0E8YqX3peMYqVKkjFIniaFkPI1tQsgLWHUSekqorczw9un38Op6lTUXj+PBTx8SiJvwtFchKooADq/AKoFSUwDwqGdf/+MKnvD0DzKF/ByZMovnkTioQEKBISoS4sgGnjxjBt1gxyf38oU1NRHHMLubt3o/DcOcSPexNuX38Fq549AQCKpCSk//ILMtdvANRqCKamcP/u2ypPSAGA2NISNi8PgM3LA0BKJQrPX0De/v3IjYpCSUwMCo4cQbMPpmHf7q04E7EdrfoOgMyEr8/KIpKJYdneHRbBLsg7nozc6LtQZRUja/NN5EbFw7KTB8xbuXByihmdMqNMHzMDm0qlwrBhwzB37lz4+/vrvf/58+eX+yUdM04x9/KwMOomAGB0W2+9E1IA4GJlgtvpBXoVOyci7L6UgoX7b+BiwoOEU/fGzvikb2NtoqmphzW2Tg7Fin/jsPJIHBKyCrV/9l5Jwbd7rqFDPUcMae2JLg2dIavAz4iSuwm4M3IkFImJnJBijLFKVqFJqdGjR+O9996Ds7MzevXqpbPun3/+wQcffICPPvpI7/0REaZMmYLNmzfjwIED2lnbSvn4+MDFxQWRkZFo3rw5AM2Q9+jo6Cc+RiiXyyGXlz+DGKs8SpUaqffrAribqSHOvl+s1dwRMNOvYCirGBIHB1h27qz/9ra2sAoPBx6q31ZGw4awCAuD7fBhSHz/A+Tu2YOEadOR9fcmFF+/DmVqqnZTq1494fT++9ViGmVBIoFZi+Ywa9EcTtOnoTg2FnlR+2EzbChOnzuBrOQkXNi3Gy179zd0qLWeIBXDsp07LIJckH8iGTkH7kKVXYysLTHI3R8Py46emuSUlJNTrHZzcHCAWCzWliko9bgv3XJzc3Hq1CmcOXMGb731FgDNTLpEBIlEgj179qBzOfd8/pKOlToSk4YJa04jp0gJL3szvNr62a4Dt/uJpMSsJxc7v5aci7nbL+FIjKZWpVwiwsCWHhgT6oO6ThZltpeIRRjXwRfjOvgiu0CBK8k5uJyYg8jLKTh6Kx3R1+8h+vo92JpJ0aupK14KdEcrL1uIXmDClocTUjIvL9RZvYoTUowxVokqNCn1zjvv4MiRI+jTpw/q16+Phg01085fvnwZN27cQP/+/fHOO+/ovb/Jkydj7dq12Lp1KywtLbWdM2tra5iamkIQBEydOhXz5s1DvXr1UK9ePcybNw9mZmYYNowft6luUnKLoVITrKRqWBbcBUCA3BqwcgcqYBYdVj2I5HK4L/geKV98gcy165B/+LBmhVgM06ZN4Th1KsyDgwwb5BPIfXwgf0OTAG/dbyAily3EqR2bEdi9N8SSqq1lYawEqRgWoe4wb+OK/JPJyD0QD1V2CbK2xiBnfzyswjxg3saVk1Os1pLJZGjZsiUiIyMxYMAA7fLIyMhyC29bWVnhwoULOssWL16MqKgo/PXXX2W+1CvFX9IxAPjzVDxmbboApZrQoo4Nlo1sBQv5s/2K4GqteWzwcSOlMvNL8OO+G1hz7DZUaoJMIsK49j54o50v7Mxleh3D2kyKYF97BPvaY0w7H8Sl5ePPU/HYePou7uUW44/jd/DH8TtwszZBGx87NHS1QkNXKzRys4KDhX7XeXF8PO6MGgVlYhJk3t6os2olJ6QYY6ySVWhSSiQSYePGjdiwYQPWrVuHq1evAgAaNGiAOXPmYMiQIc+0v9IZZh4uVA1oCnmOHj0aAPDBBx+gsLAQkyZNQmZmJoKCgrBnzx5YWlq+8PmwilOkUCEjrwQyKFGHUiCQCpCaAbZenJCqhQSxGM4ffwyTgACo0jNg2iwAJo0aQWT27MVPDalRhy44snEt8jLScfnQfjTt9ISRYqzCCVIRLNq6wby1C/JPPZSc2n4LOQfuwjLMAxZBLhCklV/8l7GqNm3aNIwYMQKtWrVCSEgIli1bhjt37mDChAkANKOcEhISsHr1aohEIu0kMKWcnJxgYmJSZjljD9tw8g5m/K1JaPZt5oZvXgmAyXPcU10fM1KqSKHCin/jsPjATeQWaSa16dHYBR/1bvhcBdEf5u1gjg96NMC0bv44disDW88mIOJiMhKzi7DlbCK2nE18EJ+1CZq6WyPAwxqtve3Q2tuuzGiquN0/Iunjn2GTQ5A5mKLOUBdIj8x+oRgB7uPWaPw7Si3C/5c6Hm4OG28g7H1DRQKggpNSpQYPHozBgwe/8H70qcEuCALmzJmDOXPmvPDxWOVJzi6CFAr4iZIgUisBsQyw8wVE/MtkbSUIAmz69zd0GC9EIpWiZe/+OPj7bzi5bRMah3WBiK/ZKidIRbAIKU1OpSB3fzxU2cXI3nELudHxsOzgCfMgF4hk/H/Dao/BgwcjPT0dn376KZKSktCkSRPs3LlTO5lMUlIS7ty5U+VxVeD8OKyCvMj/ydr7M+29HuqNj3s3eu7H3tzuj5RKztGMlCpSqLD1bAJ+2HsDSdmaRFVDVyv8r3dDhNZ1eO54yyMRi9CungPa1XPAZ/2b4GhMOi4mZONKcg6uJOUiLj0fSdlFSMouwp7LKQA0SaqXAt3xcgt3+Dtrvsi+vGwNfHIIyXaAf4c7kMbGVGicjDFWLbm3NHhSqkJn36upnlQVnmebeXF5RQrcTcuCr5AMmaAExHLAvi4g0W+4trHga616KikswLLJr6M4Px99p82Ef1CooUMyeqRUI//0/eRUlqZOnchCCssOHjAPduXkFDO4F519z1CeFLdKpcL169fh5OQEe3uuA1mdpKenIzU1Ff7+/hCL9b//5RYp0GzuHqgJOPJhZ21dqOdxKTEbvf/vMCxNJOjbzA3bzyVqR0a525hierg/+ge6v1Ctp+eVV6zEpYRsXEjIxtn4LERfv6eNDQAau1lh44QQKK5HYsenM7E0TAkHOzuscu8LK/GTHvsz+l+h9Me/bjIA/J55AZX5HrJ0AQIrp/SRQWbfE4lE5c4K8zBBEKBUKp+4DatdZFCgrigZEigByf2ElJgTUqxmkJmaoXn3Pji2aQNObPkL9dq0fep9jlUuQSKCRZArzFs6o+C/VOTsvwNVZjGyd8YiN/quJjkVwskpxiqSWCyGjY0NUu9PWmFmZsb3QgMjIhQUFCA1NRU2NjbPlJACgFNxmVATUMfO7IUSUgDgZq15fW6RUjv6yt3GFKPbemNEiNdzPRJYUSzkEgT52iPIV5NMLVKosP9qKjadScCBa6mQS0Qwk0mAJj3RZUVz/PbPcNwsTMW0wmtY0nUJpGKuJ8kYY5WpQpNSmzdvfuy6I0eO4KeffuJh38amJB+yzBgAKpDEBIJ9XYA/3FkN07xnP5zasQUpt27gzoVz8AoINHRIDJrklHkbF5i1dLqfnIqHKqMI2btikXvwLiw7uMM82A0iOSenGKsILi4uAKBNTLHqwcbGRvt/8yyOxWpmwAv2tXvxGMykaF7HBleSctCziSsGtfRAsK+9QUZGPY2JVIyeTV3Rs6krMvNLcC+vWLvOxdwFi7ouwqhdo3A8+TjmHJ2Dz0M/5wQsY4xVogpNSpU3I8zVq1cxc+ZMbN++HcOHD8dnn31WkYdk1VlxLpBxCyA1IDWDYOcHiCuljBljlcrMyhpNO4fjTMR2nNj6JyelqhlBLIJ5axeYtXBCwZn7yan0ImTvikPuwbuwaO8BixBXiJ5xNinGmC5BEODq6gonJycoFApDh8MASKXSZx4hVerYrQwAQLDviz+OKQgCNk1sC5WaIBHXnJlRbc1lsH1k9r8Gdg3wXcfv8Na+t7AtZhvcLNwwOXCygSJkjLHar9J66ImJiZg9ezZWrVqF7t274+zZszwDjDEpzgXSYwAQILPgouasxmvVdwDORe7EnYvnkXzzOlzq+hs6JPYIQSyCeSsXmDV3RsHZVORG3YEyvQg5EXHIO3gXFu3dYRHiBpEJJ6cYexFisfi5EyGsesgtUuBiQjYAaB9re1GCIEAirh0jitq5t8P/gv+HuUfnYum5pXAzd8OAegMMHRZjjNVKFf5VRnZ2NmbMmIG6devi0qVL2LdvH7Zv384JKQNITk7GlClT4OvrC7lcDk9PT/Tt2xf79u0rs+28efMgFovx5Zdfllm3cuVKCIKAhg0blln3559/QhAEeHt7a5epigswf+7/0KDDAJj6hcDOPwjBbUOxYsWKJ8b7888/o1mzZjA3N4eNjQ2aN2+Or7766tlPnLFKYOXghAahYQCAE1v/MnA07EkEsQDzls5wntYKtoP8IXEwhbpAiZzdt5H01Unk7I+HukRl6DAZY8xgTt3OhEpNqGNnBvcXrCdVW73i/wrGNh0LAPj06Kc4mnjUwBExxljtVKFJqa+//hq+vr7YsWMH1q1bhyNHjqB9+/YVeQimp7i4OLRs2RJRUVH4+uuvceHCBURERKBTp06YPLnsEOQVK1bggw8+wG+//Vbu/szNzZGamoqjR3U/kH/77TfUqVPnwQK1CnNmTscPv/yOz2ZOxeWLl7B//36MGzcOmZmZj433119/xbRp0/D222/j3Llz+Pfff/HBBx8gLy/v+RqAsUrQ5qVXAAA3Th5FekK8gaNhT6NNTr3bEnaD60PiaAoqVCJndxxSvjuF/NMpIDXXOWSMGZ/j9x/dC/J58XpStdmU5lPQ06cnlKTEtAPTcD3zuqFDYoyxWkegCqw8LhKJYGpqiq5duz5xWPemTZsq6pAV4klTFRYVFSE2NhY+Pj4wMTExUITPrlevXjh//jyuXbsGc3NznXVZWVmwsbHR/hwdHY3hw4cjNjYW3t7eWLduHTp06KBdv3LlSkydOhUjRoxAUVERfvnlFwDA3bt3UbduXbz77rtYt24d4mJjgcw4BLbvgQG9umD2/B8AiX6z7PXv3x+2trZPHE3VsWNHBAYG4ocfftB5nY2NDVauXAkA8Pb2xtixY3H9+nVs2rQJ9vb2+L//+z+0bdsWY8eOxb59++Dj44MVK1agVatWesVWVWrqtWZstnzzOWJOHUPjsK7oMWmqocNhz4DUhMJz95C9Ow6qLE1hW6mbOax7+8LEz8awwbFaRd8pkKubmho3e3b9F/2Ls/FZ+G5QMwxs6WHocKq1ElUJ3ox8E6dTTsPZzBlre6+Fk5mTocN6Jkq1EqdTTuN40nGoSAWRIIJIEEEsiCEIAsSCWGfZo/9+eNnj1olFYgi4vy+RCCKIyl1e5nWCGM7mzpCL5YZuJsZYBdO3X1GhhTVGjhxZ62enICIoS9QGObZEJtKrfTMyMhAREYEvvviiTEIKgE5CCtCMUho6dCikUimGDh2KX3/9VScpVeqNN95Ahw4d8OOPP8LMzAwrV65Ejx494OzsrNkg/x5QlAUXJwdEHTuPSZnZcHR01OvcXFxcEB0djdu3b8PLy0uv1zzOggULMG/ePHz88cdYsGABRowYgdDQUIwZMwbffPMNZsyYgZEjR+LSpUu1/nplFS+o/yDEnDqGK4f3o+2rw2HloN81zgxPEAkwa+4E0yYOyDuSgJyoeCgS85H2ywWYNLCDdS8fSJ3MDB0mY4xVqrxiJS5o60nxSKmnkYll+LHTjxixawRis2Mxed9krOyxEubSsn3s6kSpVuJk8knsub0HUXeikFGUYeiQHstcao5Onp3Q06cnQlxDIOWZuhkzKhWalCodrVKbKUvUWPZOtEGO/eaPYZDqMbX5zZs3QURo0KDBU7fNycnB33//jSNHjgAAXnvtNYSGhuKnn34qk80MDAyEn58f/vrrL4wYMQIrV67E999/j1u3bmk2yE0CAHz/zVd4ZeSbcHFxQePGjdG2bVu89NJL6Nmz52PjmD17Nl5++WV4e3vD398fISEh6NWrF1555RWIRM/2lGmvXr0wfvx4AMAnn3yCJUuWoHXr1hg0aBAAYMaMGQgJCUFKSspzTaHMjJtrvfrwbByA+EvncXrHZnQa/aahQ2LPSJCKYBnmCbOWzsjZdwf5x5NQdDUDRdczYN7GFVZd60Bsod8oT8YYq2lOxWVApSZ42pnCw5YT8fqwlltjcZfFGL5zOK5mXMX06OlY2HkhJKLqNXGGQq3AySRNImrfnX3IKs7SrrOWWyPMIwzWcmsQEVSkgprUD/5Wq0C4v1ytWU4gqNQqqKF+sK1arfO6h/88vM9yj1HOcqVaiXxFPnbc2oEdt3bASmaFrl5d0cO7B1q7tK52bcwYq3j8Lq+FSp/I1GcU0Nq1a+Hr64tmzZoB0CSefH19sX79erz5ZtlftseMGYMVK1agTp06yMvLQ69evbBw4UJArQRIDcjM0ahlIC5evIjTp0/j8OHDOHjwIPr27YvRo0dj+fLl5cbh6uqKo0eP4uLFi4iOjsaRI0cwatQoLF++HBEREc+UmAoICND+u3QUV9OmTcssS01N5aQUey5tXnoF8ZfO43zUbgS9PBhmVtaGDok9B7GFDLYv1YVFWzdk74pD0eV05B9LQsGZVFh29IBFqDtEMp5hjDFWuxzT1pOqmFn3jIWHpQcWdVmE1yNex78J/+KL41/gk+BPDD7qXqFS4HjyceyJ24Oo+ChkF2dr19nKbdG5TmeEe4ejtUtrSEXVbwSSmtQ4f+88dsXuwp7be5BWmIZNNzZh041NsDOxQ7hXOHr69ESgUyBEQoXP0cUYqwYqLCk1YcIEfPTRR/D09Hzqths2bIBSqcTw4cMr6vBVRiIT4c0fwwx2bH3Uq1cPgiDgypUr6N+//xO3/e2333Dp0iVIJA8uBbVajV9//bXcpNTw4cPxwQcfYM6cORg5cqTmdYoiTUIKAKw9AUGASBDQunVrtG7dGu+++y5+//13jBgxAh999BF8fHweG0+TJk3QpEkTTJ48GYcPH0b79u0RHR2NTp06QSQS4dESaAqFosw+pNIHH7ilHYXylqnVhnkMk9V8XgHN4eTjh9TYGJyJ2IHQV2vevYw9IHU0g8PIRii+lYWsf2KhSMhDzu7byD+WBKtwb5g1d4Ig4kd9GWO1w/HYdABAsC8npZ5VE4cm+KrDV5i6fyr+uv4X3C3ctTP0VSWFSoGjSUexJ24P9sfvR05JjnadnYkdutTpgnDvcLRyblXtRxqJBBECnQIR6BSID1p/gFMppxARF4HI25HIKMrA+mvrsf7aejibOaO7d3f09OmJxvaNDZ4MZIxVnAq7Szk6OqJJkyZo27Yt+vXrh1atWsHNzQ0mJibIzMzE5cuXcfjwYaxfvx7u7u5YtmxZRR26SgmCoNcjdIZkZ2eH7t27Y9GiRXj77bcfW+j8woULOHXqFA4cOAA7Ozud9R06dMDFixfRpEmTMvvu168f/vzzTyxdulSTjCrK0qw0dwSk5U8r3KhRIwBAfn6+3ufx6GscHR2RlJSkXa9SqXDx4kV06tRJ730yVhEEQUCblwZhxw9f4mzEdrTuOwAyU34EoqaT+9rAaXKgTjH0zI3XkXc4QVMMva6NoUNkjLEXkl+sxPm79+tJ8cx7z6Vznc6Y0WYGvjzxJX7870e4W7ijp8/jS1RUlGJVMY4mahJRB+IPIFeRq11nb2KPrl5dEe4VjpbOLSEWVe/fVR5HLBIjyDUIQa5BmBU0C8cSjyEiLgJRd6KQUpCC1ZdXY/Xl1fCw8EAPnx7o4d0D/rb+nKBirIarsKTUZ599hilTpuDXX3/F0qVLcfHiRZ31lpaW6Nq1K5YvX47w8PCKOix7jMWLF6Nt27Zo06YNPv30UwQEBECpVCIyMhJLlizBlStX8Ouvv6JNmzblFjUPCQnBr7/+igULFpRZt3LlSixevBj29vZAbrLm0T0IgKXmUbhXXnkFoaGhaNu2LVxcXBAbG4uZM2fC39//sXWuJk6cCDc3N3Tu3BkeHh5ISkrC559/DkdHR4SEhAAAOnfujGnTpuGff/6Bn58fFixYgKysrAprM8aeRb2gENi6uiMzKQHn9+1Gqz4DDB0SqwAPiqHbI/ffROTuj4ciKR9py7kYOmOs5jt5v56Uh60pPO34Xva8hjccjru5d/H7ld/x0eGP4GTmhJbOLSv8OMWqYvyb8C/23NYkovIVD77cdTR1RFevrujm1Q0tnFrU2ETU40hFUrT3aI/2Hu217bArdhei70bjbt5dLL+wHMsvLIePtQ96evdEd5/u8LX2NXTYjLHnUKHjOZ2cnDBz5kzMnDkTWVlZuH37NgoLC+Hg4AA/Pz/OYlchHx8f/Pfff/jiiy8wffp0JCUlwdHRES1btsSSJUtQUlKC33//HTNmzCj39QMHDsT8+fPx1VdflVlnamoKUxMTTULqfnFziMTA/eHB3bt3x7p16zB//nxkZ2fDxcUFnTt3xpw5c3QeE3xY165d8dtvv2HJkiVIT0+Hg4MDQkJCsG/fPk3yC5p6VufOndM+Nvjuu+/yKClmMCKRGK37DcSen/8Pp3dsRmD3PpBIq1+tBvZ8BKkYVh09Yd6qtBh68oNi6K1dYNXVC2JLLobOGKtZdpzX9Nva1+OZY1/Ue63eQ1J+Evbd2Yd39r+DNT3XwMf68SUq9FWkLNImoqLvRuskopxMnTQjorzD0dypudHUWJKL5ehcpzM61+mMAkUBDiYcRERsBA7dPYTY7FgsPrcYi88tRn3b+toRVB6WHoYOmzGmJ4EeLdJjhHJycmBtbY3s7OwyM84VFRUhNjYWPj4+MDExMVCE1YxaBWTd0X1sz8od4KTjC+FrreZRKhT4dcobyMvMQPj4t9G0M48Cra0U9wq0xdABQJCJNcXQ23ExdFbWk/oV1VlNjZvpJ79YidZf7EVBiQp/TwxBSy9+fO9FFSoLMXb3WJxPOw8PCw/83ut32Js+e62uQmUhDiccRmRcJKLvRqNAWaBd52TmhHCvcIR7h6OZYzOjSUTpI68kD/vj9yMiLgJHEo5ASUrtuqYOTdHDuwfCvcPhYs4TGzFmCPr2KyolKXX+/PnyDyYIMDExQZ06dSCXyyv6sM+Nk1LPQKUEMmIARQEAAbD2AMwdDB1VrcDXWs10asdmRK/5Fbau7hj9/WKIatnweaar+FY2snbeguJuHgBAbC3jYuisjJqa3KmpcTP9bDwVj/f/Og9fB3Psmx7GTzBUkPTCdAzfORwJeQkIcAjA8u7LYSopv8bqwwoUBTiUcAh74vbgUMIhFCoLtetczV3Rzasbwr3D0dShKSei9JBdnI29t/ciIi4CJ5JPQE0PJjRq4dQCPX16optXt+dKGjLGno9Bk1IikeiJH3RSqRSDBw/Gzz//XC1++eaklJ7UKiD9piYhJZIAtj6A3MLQUdUafK3VTCVFhfhl8hgU5eWi77sfwj+4naFDYpWM1ITC8/eQHaEphg4AUjdzTTF0PxvDBseqhZqa3KmpcTP9vPrzUZyIzcD73etjcqe6hg6nVonNjsWIXSOQXZyNLnW64Luw78qt8VSgKMDBuwex5/YeHLp7CEWqIu06dwt3hHuFo5tXNzRxaMJJwxeQVpiGyNuRiIiNwH+p/2mXiwQR2ri0QQ/vHujq1RXWcmsDRslY7WfQpNTWrVsxY8YMvP/++2jTpg2ICCdPnsR3332H2bNnQ6lU4sMPP8TgwYPx7bffVvThnxknpfSgVmlGSJXkA4IYcKj32Jn22PPha63m+vfPP3Ds73Vw8vHDa/N/4I6kkSCFGnlHEpATFQ8qVgEAF0NnAGpucqemxs2e7nZ6PsK+OQBBAI582Bmu1tyHq2inU05j3J5xUKgVeK3ha5jRRlO3NV+RjwPxBxB5OxKHEw6jWFWsfY2HhQfCvcMR7hWORvaNuP9QCZLzk7E7bjd2xe7CpfRL2uUSQYIQtxD09OmJTp6dYCHjL9oZq2j69isqtNB5qS+++AI//vgjunfvrl0WEBAADw8PfPzxxzhx4gTMzc0xffr0apGUYk+hVgEZsQ8SUvZ1OSHF2ENa9OyLUzs2ITU2BrfPn4F3sxaGDolVAUEqgmWYJ8xaOiM3Kh55x5K4GDpjrFr6+/RdAEC7ug6ckKokLZ1bYl67eXj/4Pv4/crvUKqVSClIwb8J/6JEXaLdro5lHYR7a0ZENbRryImoSuZi7oJRjUdhVONRiM+Jx+7bmgTV9czrOJRwCIcSDkEmkqG9R3v08OmBMI8wvR6/ZIxVnEpJSl24cAFeXl5llnt5eeHChQsAgMDAQCQlJVXG4VlFUhZrElLKQkAQAfZ+gIxHADD2MFNLKwR06YH/dm7FiS0bOSllZMQWMtj084N5iKu2GHr+8WQUnLnHxdAZYwanVhP+/i8BADColaeBo6ndevj0QGJ+IhacXoD119Zrl3tZeWmLlde3rc+JKAPxtPLE2KZjMbbpWNzKuoWIuAjsit2FuJw47LuzD/vu7IOpxBQdPTqij18ftHdvz/9XjFWBSklKNWjQAF9++SWWLVsGmUzzLbFCocCXX36JBg0aAAASEhLg7OxcGYdnFaUoB8iMA0j1oIaUzNzQUTFWLbXqMwBnd/+D+MsXkHj9Ktz8Gxg6JFbFpI5mcBjZCMWx2cj6R1MMPWfPbeQfT+Ji6Iwxgzl6Kx0JWYWwNJEgvBH3vSvb641fR15JHv5N/Bft3Nsh3Csc/rb+nNyoZnxtfDEpcBImNpuI65nXsTN2J3bH7UZCXgJ2xe3CrrhdaO7UHO+1eg8BjgGGDpexWq1SpnJYtGgRduzYAQ8PD3Tt2hXdunWDh4cHduzYgSVLlgAAbt26hUmTJlXG4VlFyEvV1JAiFSA1Axzqc1Fzxp7A0t4BDdt3BACc2LrRsMEwg5L7WMNpUiDshtSH2EYOVXYJMjdeR+rCMyi6mWXo8FgNsnjxYm2dwZYtW+LQoUOP3fbw4cMIDQ2Fvb09TE1N0aBBAyxYsKAKo2XV1V/3H93r28wNJlIetVnZBEHA2y3exoY+GzCl+RTUt+ORUdWZIAiob1cf77Z8F7te3oW1vdbitYavwURsgjOpZzB853C8H/0+7ubeNXSojNValTJSqm3btoiLi8Pvv/+O69evg4jwyiuvYNiwYbC0tAQAjBgxojIOzV4UEZCbBOSlaH42swesPTSP7jHGnqjNS6/gUvQ+xJw6jrQ7cXCo423okJiBCCIBZoFOMG3soC2GrkjMR9ryC5DXtYHMywpSJzNInc0gcTCFIOF7LNO1YcMGTJ06FYsXL0ZoaCh+/vln9OzZE5cvX0adOnXKbG9ubo633noLAQEBMDc3x+HDhzF+/HiYm5vjzTffNMAZsOogp0iBXRc15TIGtfQwcDSMVW+CIKCpY1M0dWyK0Y1HY+HZhdh6cysi4iKw784+DGswDOMCxvGsfYxVsAqdfW/MmDH48ccftYmnmoJn37uPCMi5C+SnaX62dAUsnAH+dqdKGNW1Vott+34ebhw/gobtO6HXW9MNHQ6rJlT5CuTsvY3848mA+pGPXQGQ2JtC4mgKqZMZJE5m2r9Fch7VUBNVxCx2QUFBaNGihXaEOQA0bNgQ/fv3x/z58/Xax8svvwxzc3OsWbOmyuJm1cvqo3H4ZOsl1HWyQOS7HXjEDmPP6GrGVXx76lscTzoOALCSWWFCswkYUn8IpGKpgaNjrHrTt19RoV/Nrlq1CoWFhRW5S1ZVSA1k3X6QkLL2ACxdOCHF2DNq89IgAMDVf6ORnZpi4GhYdSE2l8L2pbpwntYS1r18YNbKGbI6lhBMxAAByrRCFF3JQG70Xc2jfovOInH2ESTNP4F7v11E1vYY5J1IQnFcNtQFCkOfDqtkJSUlOH36NMLDw3WWh4eH48iRI3rt48yZMzhy5AjCwsIqI0RWAxAR1h6/AwAYHlSHE1KMPYcGdg3wS7dfsLjLYtS1qYuckhx8ffJrvLT1JeyJ24MKHN/BmNGq0KQUvymrl9TUVIwfPx516tSBXC6Hi4sLunfvjqNHjwLQdFj79OkDJycnmJiawjugLQZPmIE0pQVg7oi4uDgIgqD9Y2triw4dOiA6Olp7jIMHD6Jv375wc3ODIAjYsmVLmTg2bdqE7t27w8HBAYIg4OzZs2W2iYmJwYABA+Do6AgrKyu8+uqrSEnhX+hZzePiVw91mgaC1Gqc2rHJ0OGwakbqYArLDh6we8UfTpMC4TY7BK6zguAwtqlmBr9gV8h9rSGy0Hz7qsouRvH1TOT9m4isTTdxb+l5JH56DImfH0Pqz+eRueUm8v5NQNGNTKhyivlzuJZIS0uDSqUqMyGMs7MzkpOTn/haDw8PyOVytGrVCpMnT8bYsWMfu21xcTFycnJ0/rDa4787mbianAsTqQgvN+dH9xh7XoIgoL1He2zsuxFzQubA3sQe8bnxmB49HSN3jcS5e+cMHSJjNVqF15Tib2Gqj4EDB0KhUGDVqlXw9fVFSkoK9u3bh4yMDKSmpqJr167o26cPdq//BTZmYsTeScS2g2dQALnOfvbu3YvGjRsjNTUVs2bNQq9evXDx4kX4+PggPz8fzZo1w+uvv46BAweWG0d+fj5CQ0MxaNAgjBs3rtz14eHhaNasGaKiogAAH3/8Mfr27Ytjx45BJOJaK6xmCeo/CHcunMXFqEiEDBwKM2sbQ4fEqilBECC2kkFsJQPq2uisUxcooEgtgDK1EIrUgvv/LoAqqxjqPAVK8rJREputuz8TsebRP8f79aruPwootpHzzH810KN9KiJ6aj/r0KFDyMvLw7Fjx/Dhhx+ibt26GDp0aLnbzp8/H3Pnzq2weFn18scxzSipvgFusDbjx4wYe1ESkQQD/Qeip09PrLi0AisvrsTZe2fx2s7X0N27O6a2mAoPS04AM/asKrSmlEgkgrW19VM7TBkZGRV1yApRG2tKZWVlwdbWFgcOHCh36P6WLVswaNAgFN45AwkpNIXM7XwB+YN6YHFxcfDx8cGZM2cQGBgIAEhISICHhweWLl2K8ePH6+xTEARs3rwZ/fv3Lzem8vYHAHv27EHPnj2RmZmpbf/MzEzY2dkhMjISXbt2fbHGqCFq6rXGyiIirP3fdCTfvI6gAa+i3ZCRhg6J1SLqYhWU9wqgSCnQ/J1aCGVqAZTphcBjPtEFqQgSR1NtkkrqZgGZuwXElrKqDd5IvGhtppKSEpiZmWHjxo0YMGCAdvk777yDs2fP6oxYfpLPP/8ca9aswbVr18pdX1xcjOLiYp24PT09uaZULZCZX4Kg+ftQolRjy+RQBHraGDokxmqdlPwU/HTmJ2yL2QYCQSqScjF0xh6ib3+owkdKzZ07F9bWtfdNSERQPtSBq0oSuVzvkWgWFhawsLDAli1bEBwcDLlcd/STi4MtlEolNm/biVf69YBgXxeQmT11v2Zmmm0UioqraVJcXAxBEHRiNDExgUgkwuHDh40mKcVqD0EQ0OalV7Dtu3k4u/sftO73CuRmT39/MaYPkVwMmYclZB66k4qQQg1l+v1RVaUJq5QCKNMKQQo1FIn5UCTm4+HKjyIrGWTuFtoklczDAmIr3c8LVvVkMhlatmyJyMhInaRUZGQkXnrpJb33Q0Q6SadHyeXyMv0DVjv8/d9dlCjVaOJuhWYetbdfzpghOZs74/N2n+O1Rq9pi6GvurwKW2K2YELABAyuP5iLoTOmhwpPSg0ZMgROTk4VvdtqQ1lcjP8b9YpBjv32qr8g1XMEjUQiwcqVKzFu3DgsXboULVq0QFhYGIYMGYKA+j4I9rPFrCljMOytjzBh1ldo06YNOnfujJEjR5apYVEqPz8fM2fOhFgsrtDCqcHBwTA3N8eMGTMwb948EBFmzJgBtVqNpKSkCjsOY1Wpbqtg2Ll7IiMhHucid6LNS4a5bzDjIUhFkLqYQ+pirrOcVARlRqHmMcB7BVCmFKAkIQ/KewVQ55SgKCcDRVcejGAWWUohc7eE1M1c87eHBcRWMn48v4pNmzYNI0aMQKtWrRASEoJly5bhzp07mDBhAgBg5syZSEhIwOrVqwEAixYtQp06ddCgQQMAwOHDh/Htt99iypQpBjsHZhhEhD+0Bc69+L3LWCUrLYZ+OOEwvjv1HWKyY/DVya+w7uo6vNvyXXSp04Xfh4w9QYUmpfjNVr0MHDgQvXv3xqFDh3D06FFE7NqFr7/+Gsu/+QSjB/fFFx/PwLT/zUNU9EEcO3YMS5cuxbx583Dw4EE0bdpUu5+2bdtCJBKhoKAArq6uWLlypc76F+Xo6IiNGzdi4sSJ+L//+z+IRCIMHToULVq0gFjM06GzmkkQidDmpVcQsXgB/tu5FS169oNExo9KsaoniAVIHc0gdTSDKey1y9XFKiiS8lCSkAdFguZvZWoB1LkKFF3NQNHVhxJVFtIHo6ncLTSJKmv9R++yZzd48GCkp6fj008/RVJSEpo0aYKdO3fCy8sLAJCUlIQ7d+5ot1er1Zg5cyZiY2MhkUjg5+eHL7/8ssyj9qz2OxqTjti0fFjIJejXzM3Q4TBmFEqLoYe4hWDzzc1YeGYh7uTewbsH3kVzp+Z4r9V7CHAMMHSYjFVLFV5TKjk5uUJHSh08eBDffPMNTp8+jaSkpDI1i4gIc+fOxbJly5CZmYmgoCAsWrQIjRs31vsYz1JTqqY8vqdDrQLy04C8FIydPhuRB4/h9vmjgE0d4KEi4iUlJWjevDlatWqFVatWaWtAbdu2DY0aNYKNjQ3s7e0fe5jnrSn1sLS0NEgkEtjY2MDFxQXTp0/H+++//+znXANxTanaR6VU4Ne330Ru+j10HTsZzbr1NHRIjD2RukQFRVK+NkmlSMiDIjUfUJfdVmQugdTdEjI3C0jvJ6vEtpyoAl68ppSh1NS4ma5Jf5zGzgvJGBHshc/6NzF0OIwZpXxFPn67+BtWX1qNIlURAKCHdw+80+IdLobOjIZBakqp1eX0Wl/Q02Z3+/rrr/H9999j5cqV8Pf3x+eff45u3brh2rVrsLS0LGePL0YQBL0foTM4ZZEmGVWQAZAKANCoQX1s2XMQsPMus7lMJoOfnx/y8/N1lnt6esLPz68qIoaDgwMAICoqCqmpqejXr1+VHJexyiCWSNGq7wDsX7kMJ7f/jaadwyHi0X+sGhPJxJB7WUHu9aDjQAoVSh5NVKUUQJ2vRPH1TBRfz3zwejOJdkSVNlFlZ8KJKsaqSHxGAXZfSgEADA+uY+BoGDNe5lJzTGk+BYP8B2HhmYXYFrMNEXER2HdnHxdDZ+wRFV5TqqL17NkTPXuWP7qAiPDDDz/go48+wssvvwwAWLVqFZydnbF27VrjHbKuKET67csYNGoCxgx5CQEN68HSyhanrt/F14tX4qWX+mPHjh1Yv349hgwZAn9/fxARtm/fjp07d2LFihV6HyovLw83b97U/hwbG4uzZ8/Czs4OdepoOkMZGRm4c+cOEhMTAUA7C5CLiwtcXFwAACtWrEDDhg3h6OiIo0eP4p133sG7776L+vXrV1SrMGYQTTuF4+jf65Gdkozrxw6jQWjF1WNjrCoIUjHkdawgr/NwokoNRXL+g0f/EvOgSM6HukCJ4ptZKL6Z9eD1JhLI3M01o6ruJ6skdiYQRJyoYqyirfg3Dio1oX09BzRw4dFujBmai7kLF0Nn7CmqfVLqSWJjY5GcnIzw8HDtMrlcjrCwMBw5csS4klJq1f2RUfeAwkxYiJUIatEUC5avR8ztu1AoFPD09MS4ceMwa9YsJCUlwczMDNOnT0d8fDzkcjnq1auH5cuXY8SIEXof9tSpU+jUqZP252nTpgEARo0ahZUrVwIAtm3bhtdff127zZAhQwAAs2fPxpw5cwBoElUzZ85ERkYGvL298dFHH+Hdd999wUZhzPCkJiZo0bMvjvz5B05s/Qv123bgUSOsxhOkIsg8LSHzfDAimZT3E1WJD2pUKZLyQUVKFMdkozgmW7utyFwCuZ8NTOrZQl7XBhLbGjICmbFqLLtQgQ0nNXXGxrb3NXA0jLGHlRZDP5RwCN+f+p6LoTP2kAqtKVXZHq1ZdOTIEYSGhiIhIQFubg8KOb755pu4ffs2du/eXe5+iouLdaZIzsnJgaenp141pQxKpQSKMoGiHIBKH5UkQFkCqBW625rYAJYugNS0qqNkz6laXWusQhXm5eKXyWOgKCrEgA9nw7d5a0OHxFiVIKUaipSC+0mqXJQk5kORlAcodbseEnsTyOvaQF7XFiZ+1hCZ1exvjWtqbaaaGjfTWBodgy93XUV9Z0tETG3Pv+AyVk0p1UptMfSMIs2kIi2cWuC9Vu+hqWPFTSbFmKEZpKaUoTz6oUtET/wgnj9/PubOnVvZYVWcknwgNxkozgXwhByiSALIzAELF0BmVmXhMcaezNTCEgFde+D0js2IXvMbzK1t4exb19BhMVbpBIlIO2OfOTSPa5NSjZK7uSi6oXnMryQ+B8r0IijTk5F/PBkQAKm7BUzq2mgSVV7WEKSipxyJMeNWolRjxb+xAIBxHXw5IcVYNSYRSTDIfxB6+fTSFkP/L/U/DNs5DD29e+LtFm9zMXRmVGp0Uqq0HlFycjJcXV21y1NTU+Hs7PzY182cOVP7mBnwYKRUtVSUDWTEQpuMkpoCpraASAqUdjhEUkBiAohr9H8nY7Vaq979cWl/JDIS4vH7rHfROKwL2g0ZCQtbO0OHxliVEiQiyL2tIfe2Brp5QV2kRHFsNopvZqHoRhaUqQVQ3M2D4m4ecg/cBSQiyL2tIK9rA5O6NpC6WXA9KsYesf1cIlJyiuFsJUe/Zm5PfwFjzODKK4a+K24X9t7Zi9cavoaxAWNhJeNRq6z2q9FZDB8fH7i4uCAyMhLNmzcHAJSUlCA6OhpfffXVY18nl8shl8urKsznV5AOZGlqA0BuBVi5A1J+rIuxmsjCzh4jvv4/HFq7Clf/jcalA3tx/ehhtOk/CC379IdUVgPuSYxVApGJBKYN7WHa0B4AoMopRlFMNopvZKLoZhbUOSXa4uk50MzwJ/ez0SapeHY/ZuyICL8cugUAGN3WBzIJjyxkrCYprxj6iksrsPnmZkxoNgGv+r/KxdBZrVbtk1JPm91t6tSpmDdvHurVq4d69eph3rx5MDMzw7BhwwwY9QtQqzSP6xXnaIqWA4CpHWDjCQjcyWCsJrNycELvt99H8x59cWDVL0i6eQ3/bliD8/si0GH466gfwjVAGBNbyWHe3AnmzZ1ARFDeK0TRjUxNYupWNtQFShReSEPhhTTN9rZymNS1vV+TygZic+64M+Ny6EYaribnwkwmxrA2dQwdDmPsOT1cDP27U9/hVvYtfHniS00x9BbvonOdztxPZLVStS90fuDAAZ3Z3UqVzu5GRJg7dy5+/vlnZGZmIigoCIsWLUKTJk30PsaTCnBVSfFplQIozNT8URTorjN3AqzcHjyqx2otLnRuXEitxtUjB3Fw7UrkpWt+uXbzb4iOo8bCtW59A0fHWPVEKjVK4nM1j/rdzEJJfC6g0u3GSN3MNQXT69pA5m0FkUxc5XHW1ILhNTVuY0ZEGLzsGE7EZuD1UG/M7tvY0CExxiqAUq3EphubsOjsIm0x9OZOzTHIfxDaubeDrYmtgSNk7On07VdU+6RUVTBIUkpZrJlFrygLKMnTXSeWATILwMRKM4seJ6SMAieljJOiuAindmzGia1/QXl/VtBG7Tuh3dBRsLR3MHB0jFVv6mKVth5V8c1MKJIf+WJHIkDuZaVNUkndq6YeVU1N7tTUuI3ZkZg0DPvlOGRiEaI/6AhXa551mbHaJF+Rry2GXqQqAgAIENDMsRnCPMPQwaMD6tnU4xFUrFripNQzqLKkFJFmNFReCqAs0l0nNQfMbAG5NSCRvdhxWI3ESSnjlpuRhn/Xr8Gl6H0AAIlcjtZ9B6J1v5chlfP1wJg+VLklKI7Juj+zXyZU2SU66wUTCUz8rCGvZwOThvaQWFdOLbeamtypqXEbKyLC4J+P4URcBkaFeGHuS/o/JcAYq1mS85Ox8fpGHLx7EFczruqsczV3RQePDgjzCEMb1zaQi7lOKaseOCn1DKokKaVSAtnxmpFRpR4eDSXhm4ex46QUA4Dkm9exf/VyJF67DACwsHdAh6Gj0CA0DIKI68oxpi8igjKtUDurX/GtLFCRSrve9pV6MG/lUinHrqnJnZoat7E6cjMNw5Yfh0wiwsH3O8HFmvsOjBmD5PxkRMdH42DCQRxPOo5iVbF2nanEFEGuQQjz0IyicjJzMmCkzNhxUuoZVHpSqihHM4ueWgFAACxdAHMHQFTt68yzKsRJKVaKiHD92GEc/GMFcu6lAgBc69ZHx1Hj4ObfwMDRMVYzkYqgSMzTFk23fdUfEpvKudfW1OROTY3bGBERXv35KE7GZWJ0W2/M6ce1pBgzRoXKQpxIOoHou9E4ePcgUgpSdNY3sm+kTVA1sm8EEU+cxaoQJ6WeQaUmpVQKIOUSANKMhrLxBmRmFRI3q104KcUepSgpxn//bMXxzX9CUax55LdBaBjaDxsNKwdHA0fHGHucmprcqalxG6PDN9Lw2q+aUVKHPugEZyvuNzBm7IgI1zKvITo+GtF3o3Ex7SIID37Vtzex1z7mF+wWDHOpuQGjZcZA334Fp0orm1iqmT3P3BFwqF+lCanU1FSMHz8ederUgVwuh4uLC7p3746jR48CAM6cOYM+ffrAyckJJiYm8Pb2xuDBg5GWppkJLC4uDoIgaP/Y2tqiQ4cOiI6O1h5j/vz5aN26NSwtLeHk5IT+/fvj2rVrj41p/PjxEAQBP/zwg87yjh076hxLEAQMGTKk4huFsRpEKpMjaMCrGPPjMjTp1A0QBFz9Nxorpo7Hv3/+jpKiQkOHyBhjrIoREX7Yex0AMKxNHU5IMcYAAIIgoIFdA4xvNh5re69F1KtR+Cz0M3Tz6gYziRnSi9Kx+eZmTD0wFe3Xt8f4yPH448ofuJt719ChMyPHz49VBQvDPMs7cOBAKBQKrFq1Cr6+vkhJScG+ffuQkZGB1NRUdO3aFX379sXu3bthY2OD2NhYbNu2DQUFurMX7d27F40bN0ZqaipmzZqFXr164eLFi/Dx8UF0dDQmT56M1q1bQ6lU4qOPPkJ4eDguX74Mc3Pd7PuWLVtw/PhxuLm5lRvvuHHj8Omnn2p/NjXlGWQYAwALWzt0n/AOAsN748Ca5bh7+SKO/b0eF6L2oP3QUWjUvhPXm2KMMSNx4No9nLqdCblEhIkd/QwdDmOsmnIwdUD/uv3Rv25/KFQKnEo5hYN3DyL6bjTic+NxJPEIjiQewZcnvkRdm7raUVQBjgGQ1OAyM6UPgvGMhDUHP76HKpx9rwplZWXB1tYWBw4cQFhYWJn1W7ZswaBBg1BYWAiJpPybTlxcHHx8fHDmzBkEBgYCABISEuDh4YGlS5di/PjxZV5z7949ODk5ITo6Gh06dNAuT0hIQFBQEHbv3o3evXtj6tSpmDp1qnZ9x44dERgYWGYElTGpqdcaq1pEhJsnjiL6j9+QnZIMAHD2rYuOo8bBowHXFGGsOqipj8HV1LiNSbFShe4LDiIuvQBvdvDFrF4NDR0SY6yGISLE5cRpH/M7k3oGKnowEYi13Brt3NshzCMMbd3awlpubcBoHyhWFSOtMA3phelIK0wr8++0ogc/K9QK2MhttH9sTWzL/1tuCxsTzTYWUgtOZFUwffsVNTcFaiBEBFKoDXJsQSrS+41iYWEBCwsLbNmyBcHBwZDLdWf3c3FxgVKpxObNm/HKK6/ovV8zM83jhwqFotz12dnZAAA7OzvtMrVajREjRuD9999H48aP/6X5jz/+wO+//w5nZ2f07NkTs2fPhqWlpV5xMWYsBEFAvaC28GnRGmd2bcOxTeuRcusmNsyeAf/gdugwfDSsnSpnRjHGGGOG9cvBW4hLL4CTpRxvd6ln6HAYYzWQIAjwsfaBj7UPRjcZjezibBxJPILou9E4dPcQsouz8c+tf/DPrX8gFsQIdApEmEcYwjzC4GPtU6GJG6VaicyizAeJpcI0pBel6yab7iefchW5z7TvjKIMZBRl6L29RJBoE1SlSavyklqliSxbuS1MJaacyKoAnJR6RqRQI/GTIwY5ttunbSHIxHptK5FIsHLlSowbNw5Lly5FixYtEBYWhiFDhiAgIADBwcGYNWsWhg0bhgkTJqBNmzbo3LkzRo4cCWdn53L3mZ+fj5kzZ0IsFpc7+oqIMG3aNLRr1w5NmjTRLv/qq68gkUjw9ttvPzbe4cOHw8fHBy4uLrh48SJmzpyJc+fOITIyUq/zZczYSKRStO43EI06dMaRP//Ahag9uH7sMGJOH0fL3v0R1H8QZKY8qQJjjNUWdzMLsHD/TQDAR70bwkLO3XjG2Iuzllujp09P9PTpCaVaiXP3zuHg3YM4ePcgbmbdxOmU0zidchrfn/4eHhYe6OjZER08OqCVcytIxdIy+yMiZBdnaxNMTxrVlFmUqVOM/WlkIhkcTB1gb2oPe1N7OJg6aH42sYejqaN2uUwkQ1ZxFrKKs5BZnInsomxkFmdqfi4q+3eRqghKUmrje5Z4ShNUNnKbMkmth5c7mDrAycwwZX2qO358D8/2+J66RGXQpJRIz6RUqaKiIhw6dAhHjx5FREQETpw4geXLl2P06NEAgPT0dERFReHYsWPYsmULMjIycPDgQTRt2lT7+J6pqSlEIhEKCgrg6uqKr776Cq+99lqZY02ePBn//PMPDh8+DA8PDwDA6dOn0bt3b/z333/aWlLe3t5lHt971OnTp9GqVSucPn0aLVq0eKZzrqn48T32IlLjbiF6zXLcuXgeAGBmbYN2Q0eicVgXiETPdt9gjL2YmvoYXE2N21hMWHMaEZeS0cbHDhveDOZv5xljle5u7l3tCKoTySegUD94WsZcao4Q1xBYya10kk7pRelQqpV6H0MkiGBnYgd7E3s4mDnAwcRBm3jSJp1M7WFvYg8rmVWl3PsKlYXILs7WJqpKk1WZxZnIKsrSrCvO1ElklahLnvk47hbuCHYNRohbCIJcgmBjYlPh51Kd6Nuv4KQUni0pVVMe33ucsWPHIjIyErdv3y6zrqSkBM2bN0erVq2watUqbVJq27ZtaNSoEWxsbGBvb1/ufqdMmYItW7bg4MGD8PHx0S7/4YcfMG3aNIgeKsKsUqkgEong6emJuLi4cvdHRJDL5VizZg0GDx78QudcU3BSir0oIkLM6ROIXrMcWclJAAAnbz90HDUWno2aGjg6xoxHTU3u1NS4jcHB6/cw8rcTEIsE/PN2OzRw4f8fxljVKlAU4GjiURxM0IyietqIImu5tXYEk52p3YMRTWaOcDB5kHSykdtAXMO+QCUiFCoLdRJYGUUZyC7O1i4r/bk0sZVRlKFTu0uAgIb2DRHsGoxg12A0d2oOE0nt+h2Qa0pVEkEQ9H6Erjpq1KgRtmzZUu46mUwGPz8/5Ofn6yz39PSEn1/5s7sQEaZMmYLNmzfjwIEDOgkpABgxYgS6du2qs6x79+4YMWIEXn/99cfGeenSJSgUCri6uupxVowxQHN/qtsqCD6BLXAmYgeO/b0eqXEx+HPuTNRtHYKw18bAxoXfU4zVFIsXL8Y333yDpKQkNG7cGD/88APat29f7rabNm3CkiVLcPbsWRQXF6Nx48aYM2cOunfvXsVRs4pWpFBhzrZLAICRIV6ckGKMGYSZ1AxdvLqgi1cXqEmNK+lX8G/ivyAinRFNDqYOsDOxg0wsM3TIlUYQBJhJzWAmNYObRfkzyz+qQFGAUymncCzpGI4mHsXNrJu4nH4Zl9Mv47eLv0EmkqG5c3OEuIYg2C0YDe0aQiQYx+zanJSqpdLT0zFo0CCMGTMGAQEBsLS0xKlTp/D111/jpZdewo4dO7B+/XoMGTIE/v7+ICJs374dO3fuxIoVK/Q+zuTJk7F27Vps3boVlpaWSE7WzAZmbW0NU1NT2NvblxldJZVK4eLigvr16wMAYmJi8Mcff6BXr15wcHDA5cuXMX36dDRv3hyhoaEV1yiMGQmxRIpWfQZo602d3xuBmyeP4tZ/J9G8R28079GXi6EzVs1t2LABU6dOxeLFixEaGoqff/4ZPXv2xOXLl1GnTp0y2x88eBDdunXDvHnzYGNjgxUrVqBv3744fvw4mjdvboAzYBXlx303cCstH46Wcrzbzd/Q4TDGGESCCI0dGqOxA8/8rC8zqRk6eHRABw/NDPX3Cu7hePJxHEs8hqNJR5FakIrjScdxPOk48J9mpFmQSxCC3YIR4hoCD0sPA59B5eHH9/Bsj+/VFMXFxZgzZw727NmDmJgYKBQKeHp6YtCgQZg1axaSkpLw5ZdfIjo6GvHx8ZDL5ahXrx4mTZqkrTdV+vjemTNnEBgYWO5xHvc44YoVK7T7edSjNaXi4+Px2muv4eLFi8jLy4Onpyd69+6N2bNn68ziV9vV1GuNVX9pd+JwYM2vuH3+jHZZnaaBaNqpG+q2DoFEVnu/yWLMECriMbigoCC0aNECS5Ys0S5r2LAh+vfvj/nz5+u1j8aNG2Pw4MH45JNPqixuVrHO383CgMVHoFITfh7REt0b8xcKjDFW2xARYnNitQmqk8knka/QfXrJw8JDm6AKcg2CtdzaQNHqj2tKPYPamJRiNQ9fa6wyERHizp7G6Z1bdZJTJhaWaNS+E5p0DodjHW/DBchYLfKiyZ2SkhKYmZlh48aNGDBggHb5O++8g7NnzyI6Ovqp+1Cr1fD29sYHH3yAt956q0riZhWrRKlGv4WHcTU5F32bueGnoTzijTHGjIFCrcCltEs4mngUx5KO4fy981DSg+LxAgQ0sm+kqUflpqlHJRfLDRhx+bimFGOMMS1BEODTvBV8mrdCdmoKLh7Yi4sHIpGXnob/dm3Df7u2waWuP5p2Ckf9th0gNzMzdMiMGa20tDSoVCo4OzvrLHd2dtY+Jv803333HfLz8/Hqq68+dpvi4mIUFxdrf87JyXm+gFmlWLj/Jq4m58LeXIY5fRsZOhzGGGNVRCqSItApEIFOgZgYOBF5JXk4nXJaW48qJjsGl9Iv4VL6Jfx68VfIxXK0cGqBELcQBLsGo75d/RpVj4qTUowxZmSsnZwR+upwhLwyBLfPn8WFqN2IOXUcyTevI/nmdexf/Qvqh7RH007hcKvfkKcdZ8xAHn3vEZFe78d169Zhzpw52Lp1K5ycnB673fz58zF37twXjpO9uPS8YlxOyoFSpXmAIauwBIv33wQAzH2pMewtqt834IwxxqqGhcwCYZ5hCPMMAwBt/anSJNW9wns4mnQUR5OOAgBs5bYIcg1CsGswQtxC9C7GbiiclGKMMSMlEonhE9gSPoEtUZCdhcsHo3Ahag8yEu/i0oG9uHRgL+zcPNCkczgad+gMM2sbQ4fMmFFwcHCAWCwuMyoqNTW1zOipR23YsAFvvPEGNm7cWGb220fNnDkT06ZN0/6ck5MDT0/P5w+c6U2pUmPH+SQcvpmG07czEZuWX+52PRq7oHdTnjWVMcbYA05mTujr1xd9/fqCiHAr+5Y2QXUy+SQyizMREReBiLgIAEAdyzraBFVrl9bVrh4V15QC15Ri1QNfa6w6ICIkXruCC/v34NrRQ1Def7RHJBbDt0UbNO0cDu9mLSASiw0cKWPVV0UVOm/ZsiUWL16sXdaoUSO89NJLjy10vm7dOowZMwbr1q1D//79DRI3e7rDN9Lw6Y5LuJ6Sp7Pc19EcFvIH3xfbm8vwzaBmcOBRUowxxvSkUCtw4d4FHEs6pq1HpSKVdr1IEKGxfWNNPSrXYAQ6BUImrpxJj7jQ+TPgpBSrDvhaY9VNcUEBrh09iItRkUi6eU273MLOHk06dkWTTt1g7cQzQTH2qIpI7mzYsAEjRozA0qVLERISgmXLluGXX37BpUuX4OXlhZkzZyIhIQGrV68GoElIjRw5Ej/++CNefvll7X5MTU1hba3fN6K1MSlFRIi+fg+7LiQjvLEzOjdwMtgjybfT8/H5P1cQeTkFAGBjJsWQ1nUQ5GOHFnVsYW0mNUhcjDHGaq+8kjycSjmFo4max/tis2N11ruau2L3wN2V8tnIhc4ZY4y9ELmZGQK69EBAlx5IuxOHC/sjcfnQfuRlpOPYpg04tmkD6jRphqadw1G3dQgkssr5loUxYzR48GCkp6fj008/RVJSEpo0aYKdO3fCy8sLAJCUlIQ7d+5ot//555+hVCoxefJkTJ48Wbt81KhRWLlyZVWHXy1cTMjG/F1X8O/NdADAhlPxaOBiiUmd6qJ3U1eIRVWTnCosUWHxgZv4OfoWSlRqiEUCRgR7YWrXerAx4/smY4yxymMhs0BHz47o6NkRAJCcn4zjScdxNOkojiUeQ4BjgMHrx/JIKfBIKVY98LXGagKlQoGYU8dwIWoPbl84C9z/CDExt0DDDp3QtFM4HL18DBskYwZWU0cc1dS4HxWblo8f9l7H1rOJAACZWIQuDZ1w8Po95JdoHmHwdTDHFwOaIsTPvtLiICLsuZyCT7dfRkJWIQCgfT0HfNKnEeo5W1bacRljjDF9EBHyFHmwlFXOZxKPlGKMMVbhJFIp6oe0R/2Q9shOTcHF+wXRc9Pv4cyu7TizazucfeuhaedwNAgNg9zMzNAhM8aMRGxaPn6KuoEtZxKgvv+Va/9AN0wPrw9POzNkFyiw6mgcfvs3FrfS8jH0l2MY3dYbH/SoDzNZxXWJE7IKsf1cIraeTcSVpBwAgLuNKT7u0xDdG7sY/BtpxhhjDNDM8ltZCalnioNHSvFIKVY98LXGaiq1WoXb58/iYtQe3Dx1HGqVEgAgkctRP7gdmnQOh3v9RvyLGDMaNXXEUU2Nu6BEic92XMGGk3e0yaguDZzwbjd/NHEvW08rt0iBeTuvYt0JzeOPXvZmGN/BD+ZyMeQSEaRiEUQiAWJBgFgkQKUmJOcUITm7CEnZhcgpVD7YmQCo1QSFSg2FipBZUILzd7O1q2ViEd7s4IvJnerCVMYTRDDGGDMePFKKITU1FR9//DF27dqFlJQU2NraolmzZpgzZw5CQkJw5swZfPzxxzhx4gRycnLg4uKCoKAgLFq0CA4ODoiLi4OPz4PHcGxsbNC0aVN89tlnCAsLAwAsWbIES5YsQVxcHACgcePG+OSTT9CzZ0/t6x73i+jXX3+N999/HwBQXFyM9957D+vWrUNhYSG6dOmCxYsXw8PDo5JahzFWUUQiMXwCW8InsCUKcrJx+WAULkTtQUZCPC5F78Ol6H2wdfNA007d0KhDZ5jb2Bo6ZMZYLXEzNRcTf/8PN1I1M9l1aeCEd7rWQ4CHzWNfY2kixfyXm6JnExd8+Pd53E4vwKzNFyosJkEAgn3s0S/QDT2buHDdKMYYY+wJOClViw0cOBAKhQKrVq2Cr68vUlJSsG/fPmRkZCA1NRVdu3ZF3759sXv3btjY2CA2Nhbbtm1DQUGBzn727t2Lxo0bIzU1FbNmzUKvXr1w8eJF+Pj4wMPDA19++SXq1q0LAFi1ahVeeuklnDlzBo0bNwagKcb6sF27duGNN97AwIEDtcumTp2K7du3Y/369bC3t8f06dPRp08fnD59GmKeep6xGsPMyhqt+gxAy979kXTjKi5E7cG1I4eQmXgXB/9YgUPrVsHJ2xfOvnXh7FsPLn71YO9RB2IJfxwxxp7N1rMJmLnpAgpKVHCylOP/hjZHsK/+NaI6+Dsi4t0OWBR1E9dSclGiVEOhUqNEqYaKCCq1ZhSUIABOViZwtTKBq40JbEyl2i/ciAhisQhSkQCpWAS5VIRWXnZwseYRz4wxxpg++PE91M7H97KysmBra4sDBw5oRzU9bMuWLRg0aBAKCwshecwvg6Ujpc6cOYPAwEAAQEJCAjw8PLB06VKMHz++3NfZ2dnhm2++wRtvvFHu+v79+yM3Nxf79u0DAGRnZ8PR0RFr1qzB4MGDAQCJiYnw9PTEzp070b1792c9/Rqppl5rjD1NSWEBrh45hIv79yDpxrUy68VSKZy8fOHkWxcuvnXh7FcP9u6eEHFCmtVQNfUxuOoWd2kX9eER10SE/+5k4peDsYi4lAwAaOtnjx+HNIejpdwgcTLGGGOsLH58z8hZWFjAwsICW7ZsQXBwMORy3Y6ai4sLlEolNm/ejFdeeUXvWi9m94sWKxSKMutUKhU2btyI/Px8hISElPv6lJQU/PPPP1i1apV22enTp6FQKBAeHq5d5ubmhiZNmuDIkSNGk5RirLaSmZohoEt3BHTpjpx7qUiOuY7kWzeREnMdKbdiUFyQj6Sb15B08xrO3X+NRCbXjKjyqwsX33pw9q0HWzc3iEScqGKstiMi/HX6Lr7efQ0KlRpN3a3RzMMGztYm+OtUPM7dr9kkCMCUTnXxTld/iEVcs44xxhiriTgp9YyIqNyETFWQSqV6J48kEglWrlyJcePGYenSpWjRogXCwsIwZMgQBAQEIDg4GLNmzcKwYcMwYcIEtGnTBp07d8bIkSPh7Oxc7j7z8/Mxc+ZMiMVindFXFy5cQEhICIqKimBhYYHNmzejUaNG5e5j1apVsLS0xMsvv6xdlpycDJlMBltb3Tozzs7OSE5O1ut8WeUjIijVShQoC1CkLIJCrYBIEEEsiCEVS2Ejt4FIEBk6TFbNWTk6wcrRCf7B7QBorquslCQkx9xAyq2bSLl1Aym3YqAoKkTi9StIvH5F+1qpiSmcffw0j/751YOLb13YOLtCEPF1x1htkZBViJmbLuDg9XvaZYdupOHQjTTtzzKJCAMC3fF6O280cDH8iC7GGGOMPT9OSj0jhUKBefPmGeTYs2bNgkymf7HMgQMHonfv3jh06BCOHj2KiIgIfP3111i+fDlGjx6NL774AtOmTUNUVBSOHTuGpUuXYt68eTh48CCaNm2q3U/btm0hEolQUFAAV1dXrFy5Umd9/fr1cfbsWWRlZeHvv//GqFGjEB0dXW5i6rfffsPw4cP1ejyNiHi2rgqiUCmQVpgGQRAgEkQQIEAQBBARCASVWoVcRS5yS3KRU5yDe4X3NH8K7iE5PxnJ+clIyk9CgbLgsccwEZvAw9IDHpYe8LbyhpeVF7ytvOFg6gCpWAqpSIq8kjxcy7yGqxlXcTvnNhRqBVSkglqthlwsh5nUDOZSc4gEEZRqpWYdqaEmNQgEsSCGvYk9HM0c4WjqCEuZJcyl5rCQWkAukUMulkMmkkEmlkEikkAiknCirJoTBAG2Lm6wdXFDw1BNspvUamQkJiAl9iZSYm4gOeYGUuNuQVFUiLtXLuLulYva18vNzOHs6wfn+6OpXPzqwsrRme8djNVAG07ewafbLyO/RAWZRITp3fwR4meP83ezceFuNuLS8xFa1wHDg+rA3oIf1WOMMcZqA64phWerKVVSUlJjklLlGTt2LCIjI3H79u0y60pKStC8eXO0atUKq1at0taU2rZtGxo1agQbGxvY2z+9gGjXrl3h5+eHn3/+WWf5oUOH0KFDB5w9exbNmjXTLo+KikKXLl2QkZGhM1qqWbNm6N+/P+bOnfsCZ1xzVGZNqeuZ1zFw28Cnb6gnsSCGTCyDSq1JGilJ+fQXGYhYEEMkiLQJKolIAokg0SatSpeXbleatPuwzYdo4dzC0OGz+9QqFTIS4jUjqmJvIiXmJlJv34KqnJGrJhaWcPatCxc/f+3jfxZ29pyoYlWmutVm0peh4i5RqjFn+yWsPX4HANDKyxZfvRIAP0eLKouBMcYYYxWLa0pVEqlUilmzZhns2C+qUaNG2LJlS7nrZDIZ/Pz8kJ+fr7Pc09MTfn5+eh+DiFBcXFxm+a+//oqWLVvqJKQAoGXLlpBKpYiMjMSrr74KQDNj38WLF/H111/rfVz2eAIEyEQyEAhEBDXU2pFoAjSjpyxllpo/Uks4mDnAydQJDmYOcDFzgYu5C1zNXWFrYgsziRmkYt1rUaFWICkvCfG58biTewe3c24jLicOcdlxyCnOgUKtgEKtgEwsQz3bemhg2wC+Nr4wk5hpE0HFqmLkK/JRoCiAGmqIBbE2YSSCCIIgQKlWIq0wDWmFabhXeA95JXnIU+QhX5GPYlUxilXFUJNaJzYVqaAiFRTqZ3vsNl+R//SNWJURicVwqOMNhzreaNKpGwBApVQi/e4d7WN/yTE3cO92HIrycnH7/BncPn9G+3ozaxvtjH82zi6Qm1tAbmYGuZm59o/MzJRrVjFWxdLzijHx9/9wIi4DggC8F14fE8P8IOIaUYwxxphRqDVJqcWLF+Obb75BUlISGjdujB9++AHt27ev8OMIgvDCo5WqQnp6OgYNGoQxY8YgICAAlpaWOHXqFL7++mu89NJL2LFjB9avX48hQ4bA398fRITt27dj586dWLFihd7HmTVrFnr27AlPT0/k5uZi/fr1OHDgACIiInS2y8nJwcaNG/Hdd9+V2Ye1tTXeeOMNTJ8+Hfb29rCzs8N7772Hpk2bomvXri/cFgyoZ1sPp0ecrrT9S0VS1LGqgzpWdRCK0Eo7jj6UaiUUaoXO32pSa5JTapXO8tKEVek2alJrk3aN7Muvi8aqD7FEAidvXzh5+6JpZ81ECUqFAunxt5Eccx0pt24i+dZNpN2JQ0F2FmLPnELsmVNP3KfM1BQyM3OYmJlDZmaum7gyL01gmT2UyDKHibk5ZGZmMDGzgEQu5xFZjOnpbHwWJv/xHxKyCmEpl+DHoYHo3KD8upaMMcYYq51qRVJqw4YNmDp1KhYvXozQ0FD8/PPP6NmzJy5fvow6deoYOjyDsLCwQFBQEBYsWICYmBgoFAp4enpi3LhxmDVrFpKSkmBmZobp06cjPj4ecrkc9erVw/LlyzFixAi9j5OSkoIRI0YgKSkJ1tbWCAgIQEREBLp166az3fr160FEGDp0aLn7WbBgASQSCV599VUUFhaiS5cuWLlyJcQ8JTx7RqWP5DHjJJFK74+IqqtdpigpRtrtOCTfuoGUmJvIy0xHSUEBigryUZyfh5KCAigVJQCAksJClBQWIi897XGHeCJBJHqQwDItTWSZQW6mGZklMzOHzMQEgkgEkUgEQSSCIBJDJBIBgvDQsvt/dJZpthMEQbte83PpeuH+MnHZfQkinZ9FIhFEYrHm32IxRKIH/y49LmOVJTO/BF/vvob1J++ACPC2N8PyUa1Q18nS0KExxhhjrIrVippSQUFBaNGiBZYsWaJd1rBhQ/Tv3x/z589/6uufpaYUY5WFrzXGDEepUKCkIB/FBfkozs9HcUEBigt1fy5dX5Sff//fBSguyNP8nZ8PeuTR0RpNECAqTYKJdf/WWXY/CSYSi8ss0ya8SpNfpYk1seZv4ZHEWZnk20MJuNLX6m730L+FR/ch6MRR3uucfevBwtauUpqPa0qVT6UmbDgZj693X0VWgeaR6gHN3TGnb2NYm714iQLGGGOMVR9GU1OqpKQEp0+fxocffqizPDw8HEeOHCn3NcXFxTo1j3Jycio1RsYYY9WbRCqFxNoGZtY2z/V6IoKiuAjFBfmaUVjaxFXpnwIU52sSWIqiQs1jomo16P4fzb9Vmhkx7/8MKl1O2u1Iu+yh1xFpXqvzs1rnj+5ylXYfTzghqFVKqFUAnq0cW43Rb/os1GvT1tBhGJXP/7mMFf/GAQAauFji05eaoI1P5SQGGWOMMVYz1PikVFpaGlQqFZyddWsQODs7Izk5udzXzJ8/32hmdGOMMVb5BEGAzMQUMhNToIb8jk1EILqftFKpoFapob6f3Cpdpl2nfvjfD79G+VBSTa27nUqtTZapVLr7fZBYe+jfDyXkyqx7XALuoddqE3vqsok70MMxav42tag5I5hqi+FBXth6NhFvdaqLkSFekIhFhg6JMcYYYwZW45NSpR6tf1E6s1h5Zs6ciWnTpml/zsnJgaenZ6XGxxhjjFUngiBAEMSASAyxhB+dYpWvrpMFjnzYGSZSrhfJGGOMMY0an5RycHCAWCwuMyoqNTW1zOipUnK5HHK5vCrCY4wxxhhj93FCijHGGGMPq/HjpmUyGVq2bInIyEid5ZGRkWjblmtFMMYYY4wxxhhjjFVHNX6kFABMmzYNI0aMQKtWrRASEoJly5bhzp07mDBhQoUdoxZMUsiqOb7GGGOMMcYYY4wZk1qRlBo8eDDS09Px6aefIikpCU2aNMHOnTvh5eX1wvuWSjV1NgoKCmBqavrC+2PscQoKCgA8uOYYY4wxxhhjjLHarFYkpQBg0qRJmDRp0nO9tnSESk5OTrnrTU1NkZycDLVaDVNT08cWUGfseRARCgsLkZqaCnNzc+Tn5xs6JMYYYy+gtD9R00bAPq0/xBhjjDGmL337Q7UmKfUicnNzAeCxM/AJgoDXX38d/fr1g0wm46QUq1BEhJKSEmzbtg0rVqyocb/EMMYYK19ubi6sra0NHYbentYfYowxxhh7Vk/rDwnEvwFDrVYjMTERlpaWT0w4qdVqKJXKKozs+eXl5aFjx444cOAALCwsDB2OQdSkNpBIJBCJKn7egZycHHh6eiI+Ph5WVlYVvv/qztjPH+A2ALgNjP38gapvAyJCbm4u3NzcKuXeXln07Q/VdPye0B+3lX64nfTHbaU/biv9cDvpr7r2h3ikFACRSAQPDw9Dh1GhZDIZbt++DTs7O6N9c3IbPGBlZWXUbWDs5w9wGwDcBsZ+/kDVtkFNGiFVqjb2h56E3xP647bSD7eT/rit9MdtpR9uJ/1Vt/5Qzfn6jjHGGGOMMcYYY4zVGpyUYowxxhhjjDHGGGNVjpNStZRcLsfs2bMhl8sNHYrBcBtwGxj7+QPcBgC3gbGfP8BtwHTx9aA/biv9cDvpj9tKf9xW+uF20l91bSsudM4YY4wxxhhjjDHGqhyPlGKMMcYYY4wxxhhjVY6TUowxxhhjjDHGGGOsynFSijHGGGOMMcYYY4xVOU5KMcYYY4wxxhhjjLEqx0kpxmoonqOA2wDgNjD28we4DQBuA8aeF7939MPtpD9uK/1xW+mH20l/NbWtOClVC9TUi6+iGOP5p6amIjc3V/sztwG3AWB8bWDs5w9wGwDcBuzJ+Hp4PH7v6IfbSX/cVvrjttIPt5P+anJbcVKqhikpKcFXX32FhQsXIjo6GgAgCIKBo6o6xn7+SqUSb7zxBtq0aYOuXbti+PDhSEtL4zbgNjCqNjD28we4DQBuA1aWsfcR9MXvHf1wO+mP20p/3Fb64XbSX21oK05K1SC7du2Cm5sbtmzZghUrVmDAgAH43//+h6KiIkOHViWM/fyVSiVGjx6Ny5cvY9WqVRg6dCjOnz+Pl19+GVeuXDF0eFWC24DbwNjPH+A2ALgNWFnG3kfQF7939MPtpD9uK/1xW+mH20l/taatiNUYgwYNovHjxxMRUUZGBm3cuJHkcjktWLCACgoKDBxd5TP2879z5w7Vq1eP1qxZo12WlJRE7u7uNGXKFEpOTjZgdFXD2NtArVYbdRsY+/kTcRuU4jZgjzL2PoK++L2jH24n/fBnkv64rfTD7fRsaktb8UipakylUmn/HRsbiyNHjqB9+/YAAFtbW7zyyit488038fvvv+Pw4cOGCrNK3Lp1y6jPHwDS09Nx9+5dBAcHAwCKi4vh4uKCmTNnYs+ePTh48KCBI6x8xtgGBQUFUCgUADSPoRhbG6SkpGi/6THG8wc0jySVEgQBaWlpRtcGjzLG64A9HvcR9MfvHf1wOz2esfdLngX3YfTD/ZznV1uuKU5KVVMff/wxPv74Y+3P3t7eUCqVyMnJAQAUFhYCAGbPno38/Hzs2rULeXl5Bom1MuzZswfnzp3TJuZ8fHygUCiM5vznzZuH2bNnY/369dplDRs2hJOTE37//XcAgEikeftOnjwZlpaW2LVrF4qLiw0Sb2VYtmwZfvnlF52bab169eDi4lLr24DuFyacP38+WrdujVOnTmnX+fv7G0UbAMC7776LJk2a4JdfftHeC+rXr2805w8AH330EYYPH44JEybgypUrUKvVaNy4MZydnY2mDfh+yB5l7H0EffF7Rz/G3N/QF/dLnh33YfTD/Rz91ep7uqGHajFdW7ZsIWdnZwoKCqKFCxdSRkYGEREplUqaMGECBQQEaLctKSkhIqIvv/ySPD09KTMz0xAhV6gVK1aQi4sLNW3alCwtLWnSpEmUkJBARETjx4+v9ed//PhxqlOnDrVo0YJ69uxJlpaWNHDgQIqJiSEiovfee4/8/f0pJSWFiIgKCwuJiGjVqlVkY2Oj/bkmW7t2LTk5OVFISAgFBgaSo6MjffHFF0RElJ2dTR988EGtbwMiIpVKRa1atSJBEOidd96hrKwsIiLKy8ur9W2Qk5NDvXr1osDAQIqOjqakpCRSKpVERJSfn1/rz5+IKDo6mnx9fSkkJIS++OIL8vLyog4dOlBiYiIVFBQYRRvw/ZA9ytj7CPri945+uL/xbIy5X/IsuA+jH+7n6M8Y7umclKpG8vLyqG/fvvTpp5+Wu/7vv/+m+vXr0w8//EBEREVFRUREdO/ePTI1NaVDhw5VWayVYfny5VS3bl1at24d3bt3j/744w8yNzens2fPEpHm/Bs0aFBrz5+IaNq0adS7d28i0nz4X7hwgby8vGjChAmUlZVFx44doxYtWtCkSZOISPPcNRHR/v37ycnJic6dO2ew2CvCH3/8Qc2aNaOlS5cSEVFCQgItXLiQzM3NKTs7m4iIIiMjqXXr1rW2DUrFx8fT+PHjacmSJSQIAkVERGg7NXv27KE2bdrU2jbYs2cPtW7dmlJTU4mIKC4ujtLT07UfqlFRUdSyZctae/5ERGPGjKFRo0Zpf7527RoJgkC3bt0iIuN4Hxj7/ZDp4j6C/vi983Tc33h2xtwveRbch9EP93P0Zwz3dH58rxo5cOAAjh07ho8++giZmZn48MMP8dVXX+GPP/4AAHTp0gXh4eH47rvvkJiYCLlcDgA4c+YMHB0dYWlpacjwnxsRQaVSISoqCiEhIRgyZAgcHBwwbNgwuLu7Q61WAwBCQ0Nr5fkDmjbIzs7GiRMn0LBhQ+3yJk2aYMaMGTh+/DjWr1+PoKAgjBgxAitXrsTmzZu1z/T/+++/aNSoEZo2bWqoU3ghdH9YuEKhQFBQEEaOHAkAcHNzQ2BgINzd3XH58mUAQLt27TBs2DCsWrWqVrXBo2QyGXbv3o0JEyagffv2+PLLL5GZmQkAaN++PYYOHVprr4MrV67A3t4eZmZmGDNmDDp16oSwsDD07t0b586dQ6dOnfDaa6/VuvMvFR8fjwMHDiAwMFC7LCEhAa+++ipkMhkAzTUwbNiwWtsGxnw/ZLq4j6A/Y+9L6IP7G8/PGPslz4L7MPrjfo7+jOaebrh8GCtVms389ddfqX///rR3717y8fGh7t27U79+/UgsFtNbb71FGRkZFBsbqx1m/Pvvv9ONGzdoyJAh1LVrV8rPzzfwmbyYwMBAGjt2rHaWgClTplD9+vVpzpw5dOTIESIiiomJqTXnf/r0ae3Q51KtWrXSzh5U+i1vSUkJvfzyy9SvXz9KSEigkpISev/998nS0pLCwsJo0KBBZGpqSosWLSKiB9dTTXD69GmdRyqysrK037qVOnv2LLm4uGgfZSXSDI3+4IMPak0bPHodEGm+3ejSpQsREZ0/f54EQaBVq1bR/Pnz6fTp00REteI6KO/8J02aRAMHDqSvvvqKevfuTQcPHqQdO3ZQUFAQde3alS5evEhERNOnT6/x509Ufhu0a9eOWrduTcuWLaOPPvqIJBIJNW7cmGxtbWnatGl08+ZNIqo9bfDo+56IqHXr1kZ1P2RPZmx9BH1xX0I/3N/Qn7H3S54F92H0w/0c/Rlrf4iTUgbw559/0tixY+mHH36g8+fPa5evW7eOrK2tadKkSfTJJ59o6yGsXLmSgoKC6NtvvyUiouTkZOrRowc1bNiQ3N3dKTQ0lGJjYw1xKs/lcee/fv168vLyovDwcLK3t6cGDRrQp59+Sp06daKAgAD68ssviajmn/9ff/1FHh4e5OfnR3Xq1KFPPvmE7t69S0REP/74I1lYWGg7z8XFxUSkeSzBw8OD/v33X+1+Nm7cSLNnz6YJEybQlStXqv5EXsCjbfDxxx/rTFmqUqm0//7+++8pNDSUiB60R6na1AaffPKJThvs37+funbtqv25U6dOJBaLyc/Pj06dOqVdXlPb4Envgz179pAgCOTi4kJbtmzRvubgwYMUGhqqrflBVHPPn6j8NoiPjycioqtXr9LcuXOpf//+5O7uTtu3b6fk5GRas2YNhYSE0HvvvafdT01ug7///pv8/f1p+/bt2mWlHbKffvrJKO6HTJex9xH0xX0J/XB/Q3/G3i95FtyH0Q/3c/Rn7P0hTkpVobS0NHrllVfIxcWFJkyYQO3atSM3NzdauXIlEWkymE2aNCFBEGjFihXa16nVaho4cCC98cYb2ouwqKiIkpKS6MKFC4Y4lefyuPN/+FxTU1Ppm2++obCwMMrJydEuHzduHA0YMECngFtNO38iopMnT2prXpw7d44WL15Mjo6ONHHiRMrKyqLbt2+Tn5+fNhtempgkIrK3t6dff/3VUKFXmCe1QXp6OhFpOokKhYKIiAYMGECTJ082ZMgVTp82WLBgAU2fPp3u3r1LrVu3Jmtra5LL5fTBBx9o26ametL5p6WlkVqtpt69e5NEIqGDBw/qvLZDhw709ttvGyjyivOkNrh37552uzFjxtCHH36o89pBgwbRyy+/TAUFBVUddoUpKCig+fPnU926dcnBwYFCQkIoNzdXZ5vLly+Tv79/rb4fsge4j6A/7kvoh/sb+jP2fsmz4D6Mfoy9n6Mv7g9pcFKqCm3cuJHatGmjzaQTEb300kvk4+NDmzdvJiKixYsXkyAItGjRIp0b/OjRoykkJET7c3UfgleeJ53/pk2biIhIoVDQkCFD6PPPPyeiB5ngadOmkZ+fH+Xl5RFRzTv/0niXLFlCHh4e2iKaREQLFy6kNm3a0Pz584mIaNGiRSQWiyk6Olq7TUxMDPn5+dHff/9dtYFXoKe1QXBwMH322WfaZSqVitRqNfn5+dGOHTuISFMEcciQIXTnzp2qDb6C6NMGc+fOJSJNUV9BEEgkEtGIESOouLiYfvrpJzI3N6+xBXufdv5BQUHa9/6uXbtIIpHQ//73P+03Q2q1msLDw2n27NlVHntF0ecaKJ3soqCggPz9/bXftJa+duDAgfT6669XceQVKzExkWbOnEkLFy6kc+fOkampKS1cuFBnm+LiYlqyZAlJJJJadz9kZRlzH0Ff3JfQD/c39Gfs/ZJnwX0Y/XA/59lwf0iDC51XobVr18LDwwPu7u7Iy8sDAAwYMABxcXFYuHAh0tPTMX78eHTr1g0//fQToqKiAADJyclITEzEmDFjtPsSBMEg5/AinnT+ixYtQmpqKiQSCdLT03Hq1CkAmqKKKSkpuH79OoYMGQJzc3MANe/8S+ONjY2Fv78/JBKJdt3o0aPRunVrbN26FdevX8fEiRMxZMgQDB48GJ9++inOnj2Lr7/+GmZmZggODjbUKbywp7VBy5YtsWvXLly6dAkAIBKJcPLkSZiZmaFFixaYOnUqAgICkJ6eDicnJ4Ocw4vSpw0iIiIQGxuLBg0aYOrUqTh06BBWr14NmUyGt956CzY2Nrh586ahTuGFPO38W7VqhX/++QeXL19Gjx49MH36dCxbtgzjx4/HgQMHMHXqVMTExODll1821Cm8MH2vgQsXLsDU1BTNmjXDzJkzsWPHDty8eRNTp07FiRMnMGzYMEOdQoVwdXXFa6+9hjfffBMBAQF477338NlnnyEhIUG7jUwmw9ChQzFs2LBadz9kZRlzH0Ff3JfQD/c39Gfs/ZJnwX0Y/XA/59lwf+g+Q2fFaqvo6GiKiIjQGe30wQcfUP369XW2+/DDD6lLly7Utm1bWrZsGRFppi/u0KED2dvbU8+ePcnZ2Zk6depEiYmJVXoOL+JZzz80NJR+/vlnItJMlSqVSqlt27Y0ceJE8vDwoA4dOtDt27er9BxexJ49e2jKlCn0ww8/0PHjx7XLt27dSiYmJhQTE0NEpDOVbtu2ben777/XbjtlyhQKDAykunXrUosWLXRqa9QEz9MGoaGhOm0we/ZsEgSBLC0tqVGjRjo1C2qC52mDkJAQ+r//+z8i0q11UfpeKh0JUBM87/vgu+++0267cOFCCgsLo5YtW1JwcDCdOXOmSs/hRb3ovSApKYkCAwPJ19eXfH19a1UblFKr1ZSTk0Oenp70zjvvlLuPmn4/ZLqMvY+gL+5L6If7G/oz9n7Js+A+jH64n6M/7g89HielKti9e/do5MiRJAgCNWvWTKe4ZkxMDDk6OlJYWBh99dVXFBISQj4+PrRv3z5q1qwZ/e9//9O+YVNSUmjPnj30zTffaB/tqwle9PxLbd68mWbMmEHDhg2jP//80wBn8nwSExOpT58+5OTkRMOHD6emTZuStbW19sZTWFhIDRo0oDfffJOIdD/c27dvTxMnTtT+rFKpKD8/n65evVq1J/GCXrQNJk2apP35888/J0dHxxo3LLWiroOHl9ckFXkNlK4vLYxZU1TkvSAjI4Nu3LhR435JelwbnDhxotzt16xZQzKZTDuLE9GDX3oUCkWNvB8yXcbeR9AX9yX0w/0N/Rl7v+RZcB9GP9zP0R/3h56Ok1IVSKFQ0OLFi6l79+60fv16MjMzo/nz52unbiQiOnz4MI0bN45atGhBb731lrbQ24gRI2jgwIGGCr1CGPv55+fn06hRo2jw4MF069Yt7fLWrVvT6NGjiUjzLcHq1atJJBLpzJRARDR8+HDq1KmT9ueaWBOjItqgY8eO2p9TU1OrJvAKVNHXQU1j7OdPxG1A9OQ2KK0TUd4vN+3ataNevXqRQqGgM2fO0MaNG43ilyBjYOx9BH1xX0I/3N/QH38m6Y/bSj/cTvrj/pB+OClVwY4dO6adynHu3Lnk6OhY7hDEh6eaTUlJoSZNmmiL49XkC87Yz//NN9+kXbt2EdGDjPbcuXMpKChIu01RURENGDCAGjZsSAcOHCC1Wk1JSUnUpk0bWr58uUHirkjcBtwGxn7+RNwGRI9vg+Dg4Me+5sSJEySVSqlTp04kCAJ9+OGHRjWrU21n7H0EffH9Qz/cTvrjttIft5V+uJ30x/2hp+OkVAV79BspNzc3evPNN7VTFz+8vrCwkEpKSmjx4sXUvHnzWvFMqLGf/8NTdJae62uvvUbjxo3TWVZYWEgdO3YkJycnCg8PJzc3NwoODq4Vs7xwG3AbGPv5E3EbEOnfBqVyc3NpwYIFJAgChYSE6Mwww2oHY+8j6IvvH/rhdtIft5X+uK30w+2kP+4PPR0npSpJ6bd8f/75J0kkEtqzZ4/O+rt379LixYupVatWZGdnR2vXrjVEmJXG2M//Ye3bt6cVK1YQkeamU1o3LDk5mfbs2UNffPEF/fHHHwaMsPJxG3AbGPv5E3EbEJVtg1LFxcX07bffkkwmo6VLlxooOlZVuI/w7Pj+oR9uJ/1xW+mP20o/3E764/6QLk5KVYGQkBDq2rUrpaSkENGD59bXrl1L3377rSFDqxLGfP4xMTHk7OysU7jv4ccSjAG3AbeBsZ8/EbcBUflt8PC3h6Uz9DDjYsx9BH3x/UM/3E7647bSH7eVfrid9Mf9obIkYJVGqVRCIpHgl19+QbNmzbB+/XrExMTg8OHDWLVqFYYOHWroECuVMZ8/EUEQBBw+fBgWFhZo2bIlAGDu3LlITk7G3Llz4eTkZOAoKxe3AbeBsZ8/wG0APL0N5syZA2dnZ/j6+ho4UlaVjLmPoC++f+iH20l/3Fb647bSD7eT/rg/9HiclKpEEommeRs3bowWLVpg6tSpqFOnDn7++Wc0adLEwNFVPmM+f0EQAAAnTpzAwIEDERkZiTfffBMFBQVYs2aNUdycuQ24DYz9/AFuA+DpbeDs7GzgCJkhGHMfQV98/9APt5P+uK30x22lH24n/XF/6AkMM0DLeNy8eZOaNGlCZmZmRjXLQCljPv/CwkKqW7cuCYJAcrmcvvzyS0OHVOW4DbgNjP38ibgNiLgNWPmMuY+gL37v6IfbSX/cVvrjttIPt5P+uK3KxyOlKplYLMbAgQMxY8YMmJqaGjqcKmfM529iYgJvb29069YN33//PUxMTAwdUpXjNuA2MPbzB7gNAG4DVj5j7iPoi987+uF20h+3lf64rfTD7aQ/bqvyCUREhg6CsdpKpVJBLBYbOgyD4jbgNjD28we4DQBuA8aeF7939MPtpD9uK/1xW+mH20l/3FZlcVKKMcYYY4wxxhhjjFU5kaEDYIwxxhhjjDHGGGPGh5NSjDHGGGOMMcYYY6zKcVKKMcYYY4wxxhhjjFU5TkoxxhhjjDHGGGOMsSrHSSnGGGOMMcYYY4wxVuU4KcUYY4wxxhhjjDHGqhwnpRhjjDHGGGOMMcZYleOkFGOMMcYYY4wxxhircpyUYowxxhhjjDHGGGNVjpNSjDHGGGOMMcYYY6zKcVKKMcYYY4wxxhhjjFU5TkoxxhhjjDHGGGOMsSrHSSnGGGOMMcYYY4wxVuU4KcUYY4wxxhhjjDHGqhwnpRhjjDHGGGOMMcZYleOkFGOMMcYYY4wxxhircpyUMjJ9+vSBjY0N4uPjy6zLyMiAq6srQkNDoVarKz2WuLg4CIKAlStXVsj+Ll++jDlz5iAuLu6597Fz507MmTPnheIYPXo0vL29X2gfVcXb2xujR482dBhac+bMgSAIFb7fAwcOQBAEHDhwoML3XZVKSkowYcIEuLq6QiwWIzAw8Kmv2b59O/r27QtnZ2fIZDLY2dmhS5cu+OOPP6BQKHS2TU9Px8yZM9GoUSOYmZnBysoKwcHBWLRoUZltWe1WW94zjJXi/s+Tcf/HsLj/82TP0v8hIqxfvx7t27eHk5MTTExM4OHhge7du2P58uVltn+Wvk9SUhL+97//ISQkBA4ODrCyskLLli2xbNkyqFSqij5tVo3VpPtdTcBJKSOzfPlySCQSjB07tsy6t956C7m5uVi1ahVEopp3aVy+fBlz58594U7Z3LlzKy4o9kzGjh2Lo0ePVvh+W7RogaNHj6JFixYVvu+qtGTJEvz888/46KOPcPjwYaxZs+ax2xIRXn/9dfTr1w9qtRrff/899u7di1WrVqFZs2aYNGkSFi9erN3+6tWraN68OX7++WcMHz4c//zzD9avX48WLVrgnXfeQbdu3VBQUFAVp8mqgdrynmGsFPd/noz7P4bF/Z8ne5b+z8yZMzF06FA0bNgQy5cvx65du/D555/D2dkZW7du1dn2Wfs+p0+fxurVq9GlSxesXr0af//9N8LCwjBx4kSMGzeu0s6fVT8ff/wxNm/ebOgwag9iRmfDhg0EgJYuXapdtmnTJgJAixcvrvTjK5VKKioqotjYWAJAK1asqJD9bty4kQDQ/v37n3sfkydPphd9W4waNYq8vLye67X5+fkvdOxn5eXlRaNGjarSY7LnN3bsWDI1NdVr26+++ooA0Ny5c8tdn5SURIcOHSIizXuyUaNGZG1tTdeuXSuz7fr16wkAjR8//vmDryBV/R4xNiUlJaRQKAwdBmOVgvs/j8f9H1ad6dv/KSgoILlcTiNHjix3vUql0v77efo+GRkZVFJSUmbb0vfPnTt39DmdSlVQUGDoEGo17odWDk5KGakhQ4aQhYUFxcbGUlpaGjk5OVG3bt2IiOjkyZPUt29fsrW1JblcToGBgbRhwwad16emptLEiROpYcOGZG5uTo6OjtSpUyc6ePCgznalHa+vvvqKPvvsM/L29iaxWEy7du0q0yk7ePAgAaC1a9eWiXfVqlUEgE6cOFHu+axYsYIAlPnzcIfv119/pYCAAJLL5WRra0v9+/eny5cva9ePGjWq3H3ExsYSEdHChQupffv25OjoSGZmZtSkSRP66quvynw46dspCwsLo8aNG1N0dDSFhISQqakpDR48mIiIbt++TcOHDydHR0eSyWTUoEED+vbbb3U+TImI5syZQ23atCFbW1uytLSk5s2b0/Lly0mtVutsV1JSQu+//z45OzuTqakphYaG0vHjx/XulBUXF9Nnn31G9evXJ5lMRg4ODjR69GhKTU3V2c7Ly4t69+5N27dvp8DAQDIxMaEGDRrQ9u3biUjz/9SgQQMyMzOj1q1b08mTJ3VeP3v27DKd4n379lFYWBjZ2dmRiYkJeXp60ssvv6zzobB48WIKCAggc3NzsrCwoPr169PMmTO16/fv319uh33r1q0UHBxMpqamZGFhQV27dqUjR46UG9PFixdpyJAhZGVlRU5OTvT6669TVlaWzrZ//vkntWnThqysrMjU1JR8fHzo9ddff2r7FhYW0ocffkje3t4klUrJzc2NJk2aRJmZmdptnnZ9P6ykpITs7OyoQYMGZa6F8pT+QjN//vzHbhMeHk4SiYSSkpKeuK/169dTt27dyMXFRfv/P2PGDMrLyyuz7bFjx6hPnz5kZ2dHcrmcfH196Z133tGuL23706dP08CBA8nGxoZcXFyISL82I6qY6+dx9Hnd3bt3ady4ceTh4UFSqZRcXV1p4MCBlCTEHgAAu/1JREFUlJycrN0mOzubpk+frnMu77zzTpk2A0CTJ0+m1atXU4MGDcjU1JQCAgK0769SN27coNGjR1PdunXJ1NSU3NzcqE+fPnT+/Hmd7UrfF6tXr6Zp06aRm5sbCYJAV65ceaH3TGpqqvacS+8Xbdu2pcjIyKe2KWOVjfs/3P/h/k/t7f/cu3ePANCMGTOeeuyK7PuUvk8fbcNHFRYW0rRp06hZs2ZkZWVFtra2FBwcTFu2bCmzrUqlov/7v/+jZs2akYmJCVlbW1NQUBBt3bpVu03pdff3339TYGAgyeVy7blfuHCB+vXrRzY2NiSXy6lZs2a0cuXKMsf47LPPyN/fX3uMpk2b0g8//KDd5nk/0/V93a5du6hz587aa6dBgwY0b948nW30uTeX3gujoqJowoQJZG9vT3Z2djRgwABKSEjQ2VbfvuqoUaPI3Nyczp8/T926dSMLCwsKDg7Wrnv0fleRfVNjw0kpI5Wenk6urq7UqVMnevXVV8nGxobi4+MpKiqKZDIZtW/fnjZs2EARERE0evToMh8AV69epYkTJ9L69evpwIEDtGPHDnrjjTdIJBLpfPCVdrzc3d2pU6dO9Ndff9GePXsoNja23G8KmzdvTqGhoWXibd26NbVu3fqx55Oamkrz5s0jALRo0SI6evQoHT16VNtpKF03dOhQ+ueff2j16tXk6+tL1tbWdP36dSIiunnzJr3yyisEQPv6o0ePUlFRERERvfvuu7RkyRKKiIigqKgoWrBgATk4OJT50H2WTpmdnR15enrSTz/9RPv376fo6GhKTU0ld3d3cnR0pKVLl1JERAS99dZbBIAmTpyos4/Ro0fTr7/+SpGRkRQZGUmfffYZmZqalhkdM2rUKBIEgd5//33as2cPff/99+Tu7k5WVlZP7ZSpVCrq0aMHmZub09y5cykyMpKWL19O7u7u1KhRI51vZLy8vMjDw4OaNGlC69ato507d1JQUBBJpVL65JNPKDQ0lDZt2kSbN28mf39/cnZ21nn9o52y2NhYMjExoW7dutGWLVvowIED9Mcff9CIESO0N/h169YRAJoyZQrt2bOH9u7dS0uXLqW3335bu5/yOmV//PEHAaDw8HDasmULbdiwgVq2bEkymUw7gujhmOrXr0+ffPIJRUZG0vfff09yuVzn//7IkSMkCAINGTKEdu7cSVFRUbRixQoaMWLEE9tXrVZT9+7dSSKR0Mcff0x79uyhb7/9lszNzal58+ba6+/o0aPUq1cvMjU1LXN9P+rIkSN6d8qIiN58800CQFeuXHnsNosXLyYAtG7duifu67PPPqMFCxbQP//8QwcOHKClS5eSj48PderUSWe7iIgIkkqlFBAQQCtXrqSoqCj67bffaMiQIdptStvey8uLZsyYQZGRkbRlyxa926yirp/y6PO6u3fvkqurKzk4OND3339Pe/fupQ0bNtCYMWO0bZ2fn0+BgYE62/z4449kbW1NnTt31vkFCwB5e3tTmzZt6M8//6SdO3dSx44dSSKRUExMjHa76Ohomj59Ov31118UHR1Nmzdvpv79+5OpqSldvXpVu13p+8Ld3Z1eeeUV2rZtG+3YsYPS09Nf6D3TvXt3cnR0pGXLltGBAwdoy5Yt9Mknn9D69euf2KaMVQXu/3D/h/s/tbf/Q0RUt25dsrS0pO+++46uXLny2C/nKrLvM2rUKJJIJJSWlvbE7bKysmj06NG0Zs0aioqKooiICHrvvfdIJBLRqlWrdLYdMWIECYJAY8eOpa1bt9KuXbvoiy++oB9//FG7jZeXF7m6upKvry/99ttvtH//fjpx4gRdvXqVLC0tyc/Pj1avXk3//PMPDR06VJsoLzV//nwSi8U0e/Zs2rdvH0VERNAPP/xAc+bM0W7zvJ/p+rxu+fLlJAgCdezYkdauXUt79+6lxYsX06RJk7Tb6HtvLk1K+fr60pQpU2j37t20fPlysrW1LdMH1bevOmrUKJJKpeTt7U3z58+nffv20e7du7XrHr7fVWTf1BhxUsqI7dy5U/uNw5o1a4iIqEGDBtS8efMyj2/06dOHXF1dy3xTVUqpVJJCoaAuXbrQgAEDtMtLO15+fn5lvlErr1NWekM5c+aMdtmJEycIQJmb9aMeN3w9MzOTTE1NqVevXjrL79y5Q3K5nIYNG6Zdpu/wdZVKRQqFglavXk1isZgyMjK0656lUwaA9u3bp7P8ww8/JAB0/PhxneUTJ04kQRDKHWL8cEyffvop2dvbaz+Er1y5QgDo3Xff1dm+tFPytE5Zaafn77//1ll+8uTJMo88eHl5kampKd29e1e77OzZswSAXF1ddb4B2LJlCwGgbdu2aZc92in766+/CACdPXv2sfG99dZbZGNj88RzeLRTplKpyM3NjZo2bapzTefm5pKTkxO1bdu2TExff/21zj4nTZpEJiYm2nb+9ttvCUCZbw+fJiIiotz9lz5msmzZMu2y0m9snqZ0yPnDj6g8SY8ePQiA9gOzPLt27SrTmXkatVpNCoWCoqOjCQCdO3dOu87Pz4/8/PyosLDwsa8vbftPPvlEZ7m+bVZR18/zvm7MmDEklUp1RiQ8av78+SQSicp8a14a+86dO7XLAJCzszPl5ORolyUnJ5NIJHriN71KpZJKSkqoXr16OveB0vdFhw4dyrzmRd4zFhYWNHXq1MfGw5ihcf+H+z/c/6md/R8izfumTp062ve4paUl9enTh1avXq2ToKqovs/u3btJJBKVuc70UXr/eOONN6h58+ba5aWjJz/66KMnvt7Ly4vEYnGZ98aQIUNILpeXeZywZ8+eZGZmpv2/6tOnDwUGBj7xGM/7mf601+Xm5pKVlRW1a9fuiaP69b03l95DH05oERF9/fXXBOCxo92e1FctHUX622+/lXndo/e7iuybGqOaV82RVZiePXsiODgY9erVw2uvvYabN2/i6tWrGD58OABAqVRq//Tq1QtJSUm4du2a9vVLly5FixYtYGJiAolEAqlUin379uHKlStljtWvXz9IpdKnxjR06FA4OTlh0aJF2mU//fQTHB0dMXjw4Oc6z6NHj6KwsLDMLCuenp7o3Lkz9u3bp9d+zpw5g379+sHe3h5isRhSqRQjR46ESqXC9evXnys2W1tbdO7cWWdZVFQUGjVqhDZt2ugsHz16NIgIUVFROtt27doV1tbW2pg++eQTpKenIzU1FQCwf/9+AND+v5Z69dVXIZFInhrjjh07YGNjg759++pcE4GBgXBxcSkzo0tgYCDc3d21Pzds2BAA0LFjR5iZmZVZfvv27cceOzAwEDKZDG+++SZWrVqFW7duldmmTZs2yMrKwtChQ7F161akpaU99ZyuXbuGxMREjBgxQqeorYWFBQYOHIhjx46VKerdr18/nZ8DAgJQVFSkbefWrVsD0LTrn3/+iYSEhKfGAUD7//no9Tlo0CCYm5vrfX1WNiICgKfODnTr1i0MGzYMLi4u2msyLCwMALT3huvXryMmJgZvvPEGTExMnnrsgQMH6vysb5tV1vWj7+t27dqFTp06aa/18uzYsQNNmjRBYGCgzvure/fu5c6Y1KlTJ1haWmp/dnZ2hpOTk877SKlUYt68eWjUqBFkMhkkEglkMhlu3LhR7v350fYtz7O8Z9q0aYOVK1fi888/x7Fjx3jmRlbtcP+H+z/c/6m9/Z/WrVvj5s2biIiIwKxZsxASEoJ9+/Zh5MiR6Nevn7Y/o4+n9X3+++8/vPrqqwgODsb8+fP12ufGjRsRGhoKCwsL7f3j119/1bl/7Nq1CwAwefLkp+4vICAA/v7+OsuioqLQpUsXeHp66iwfPXo0CgoKtEX127Rpg3PnzmHSpEnYvXs3cnJyyuz/eT/Tn/a6I0eOICcnB5MmTXps+z7rvRko/3oFdN9v+vRVH6ZPP6ki+6bGiJNSRk4ul0MmkwEAUlJSAADvvfcepFKpzp9JkyYBgPYD7/vvv8fEiRMRFBSEv//+G8eOHcPJkyfRo0cPFBYWljmOq6ur3vGMHz8ea9euRVZWFu7du4c///wTY8eOhVwuf65zTE9Pf2wMbm5u2vVPcufOHbRv3x4JCQn48ccfcejQIZw8eVLbeSzvnPVRXkzp6emPjbV0PQCcOHEC4eHhAIBffvkF//77L06ePImPPvpIJ6bS7V1cXHT2J5FIYG9v/9QYU1JSkJWVBZlMVua6SE5OLtMJsrOz0/m59Pp63PKioqLHHtvPzw979+6Fk5MTJk+eDD8/P/j5+eHHH3/UbjNixAj89ttvuH37NgYOHAgnJycEBQUhMjLysft92jWhVquRmZmps/zRtiq9HkvbuUOHDtiyZQuUSiVGjhwJDw8PNGnSBOvWrXtsHKWxSCQSODo66iwXhP9n777Do6rSB45/p2VSSe8JIQQINRTpSG9LV0FBFASURUVXBJUFfy6WFcSy6trQRQFFxXWFUBSQIr33DgIhhFRIJX3K/f0xZGBIgASSTMr7eZ55krn3zL3vzCSTk/ee8x4VAQEBpfr5vFndunUBiImJKbf2Ras63dzBuVF2djZdu3Zl9+7d/POf/2TTpk3s3buXpUuXAtdfq8uXLwMQEhJSqvhufp9K+5pV1M9PaR93+fLlOz7H5ORkjhw5Uux3y83NDUVRiv1+lfQ7q9frbT6Dpk6dymuvvcYDDzzAypUr2b17N3v37qVly5Z3/flclt+Zn376iSeeeIL58+fTqVMnvLy8GDt2LElJSXc8jxCVRfo/0v+5E+n/WFSn/k8RnU5H//79efvtt1m7di1xcXH06NGDVatWWRM+99r3OXjwIH379qVhw4b89ttvpfo9Xbp0KY888gjBwcEsXryYnTt3snfvXiZMmGDz83D58mU0Gk2xn92S3Mvv0owZM3j//ffZtWsXAwYMwNvbm969e7Nv3z7rY+72b/qdHleavmBZPpuL3OnntbR91SLOzs7UqVPnts8VyrdvWhvd+TKBqDV8fHwAywfUQw89VGKbyMhIABYvXkyPHj344osvbPZfvXq1xMfdaXTFjZ555hneeecdvvnmG/Lz8zEajTz99NOlfvzNij6cEhMTi+1LSEiwPu/biY6OJicnh6VLlxIWFmbdfujQobuOC0p+Xby9vW8ZK1x/n5YsWYJOp2PVqlU2o02io6OLHQ8gKSnJ5gqe0Wgs1R98Hx8fvL29WbNmTYn7bxy1URG6du1K165dMZlM7Nu3j08++YQpU6bg7+/PqFGjABg/fjzjx48nJyeHLVu2MGvWLAYPHsyZM2ds3q8id/qZUKvVeHp6ljnWYcOGMWzYMAoKCti1axdz5sxh9OjR1KtXj06dOpX4GG9vb4xGI5cvX7b5Q6YoCklJSdYrkGXRtm1bvLy8WL58OXPmzLnj71/fvn356quviI6O5u9//3uJbaKjo9FqtfTo0eOWx9m4cSMJCQls2rTJesUJICMjw6Zd0fO8dOlSqZ7PzfGX5TWriJ+fInd6nK+v7x2fo4+PD05OTnzzzTe33F9WixcvZuzYscyePdtm+5UrV/Dw8CjWvjSfz2X5nfHx8eGjjz7io48+4uLFi6xYsYK///3vpKSk3PJzRAh7kv7PrUn/R/o/pVFV+j+34u3tzZQpU9i0aRPHjh1j4MCB99T3OXjwIH369CEsLIzff/8dd3f3UsWxePFiwsPD+emnn2x+BwoKCmza+fr6YjKZSEpKumNi+15+l7RaLVOnTmXq1KlkZGSwfv16Zs6cSf/+/YmLi8PZ2fmu/6bf6XGl6QuW5bO5tErbVy1S2s/w8u6b1jYyUkpYRUZG0rBhQw4fPkzbtm1LvBX9AVapVMWuCBw5csQ6HPReBAYG8vDDD/P5558zb948hgwZYr2acTs3Z8KLdOrUCScnJxYvXmyz/dKlS9bhrXc6RtEH0o3PWVEU/vOf/5ThmZVO7969OXHiBAcOHLDZ/u2336JSqejZs6c1Jq1Wi0ajsbbJy8vju+++s3lc0R/S77//3mb7f//7X4xG4x3jGTx4MKmpqZhMphJ/Jsr6x+BuaTQaOnToYL06e/PrA+Di4sKAAQN49dVXKSws5Pjx4yUeKzIykuDgYH744QebYdw5OTn88ssvdOrUyWaofVnp9Xq6d+/O3LlzAUvn5VaKfv5u/vn85ZdfyMnJsfn5LC2dTsf06dM5deoUb731VoltUlJS2L59OwAPPvggTZs25Z133ilxKsZPP/3E77//zlNPPXXbq3Yl/Z4AfPnllzb3GzVqREREBN98802xjlhp3M1rVp4/P6V93IABA/jjjz+KDS2/0eDBgzl37hze3t4l/n7Vq1evVDHcqKTP519//bXUUypKcre/M3Xr1uW5556jb9++Jb7mQlQF0v+R/k9JpP9Tdvbu/xgMhlsmHIumZRWNFrrbvs+hQ4fo06cPISEhrFu3rkxJPJVKhYODg02iIykpieXLl9u0GzBgAECx5Hdp9e7d25p8udG3336Ls7MzHTt2LPYYDw8PRowYweTJk0lLS7OOErvR3f5NL+lxnTt3xt3dnXnz5t1ySmVZPptLq7R91bKqqL5pbSEjpYSNL7/8kgEDBtC/f3/GjRtHcHAwaWlpnDx5kgMHDvDzzz8Dlj/Ub731FrNmzaJ79+6cPn2aN998k/Dw8FL9ob+TF154gQ4dOgCwYMGCUj2mefPmAHz11Ve4ubnh6OhIeHg43t7evPbaa8ycOZOxY8fy6KOPkpqayhtvvIGjoyOzZs2yHqNFixYAzJ07lwEDBqDRaIiKiqJv3744ODjw6KOP8sorr5Cfn88XX3xRbIhzeXjxxRf59ttvGTRoEG+++SZhYWH8+uuvfP755zzzzDPWeeODBg3iX//6F6NHj+avf/0rqampvP/++8U+ZJs0acLjjz/ORx99hE6no0+fPhw7doz333+/VMNRR40axffff8/AgQN54YUXaN++PTqdjkuXLvHHH38wbNgwHnzwwXJ/HcBSt2Pjxo0MGjSIunXrkp+fbx1R0qdPHwAmTpyIk5MTXbp0ITAwkKSkJObMmYO7u/str7Kp1WreffddHnvsMQYPHsykSZMoKCjgvffeIyMjg3feeafMsf7jH//g0qVL9O7dm5CQEDIyMvj4449t5qmXpG/fvvTv35/p06eTlZVFly5dOHLkCLNmzaJ169aMGTOmzLEAvPzyy5w8eZJZs2axZ88eRo8eTWhoKJmZmWzZsoWvvvqKN954gy5duqDRaPjll1/o27cvnTp1Ytq0aXTq1ImCggJWrlzJV199Rffu3fnggw9ue87OnTvj6enJ008/zaxZs9DpdHz//fccPny4WNvPPvuMIUOG0LFjR1588UXq1q3LxYsXWbt2bbF/IO72Nauon5/SPu7NN99k9erVdOvWjZkzZ9KiRQsyMjJYs2YNU6dOpXHjxkyZMoVffvmFbt268eKLLxIVFYXZbObixYv8/vvvTJs2zfpZWFqDBw9m4cKFNG7cmKioKPbv3897771X6umSJSnt70xmZiY9e/Zk9OjRNG7cGDc3N/bu3cuaNWtueZVTiKpA+j/S/7mZ9H9Kpyr1fzIzM6lXrx4PP/wwffr0ITQ0lOzsbDZt2sTHH39MkyZNrH+L7qbvc/r0aevr//bbb/Pnn3/y559/WvdHREQUm751o8GDB7N06VKeffZZRowYQVxcHG+99RaBgYE2x+natStjxozhn//8J8nJyQwePBi9Xs/Bgwdxdnbm+eefv+3rMGvWLFatWkXPnj35xz/+gZeXF99//z2//vor7777rnVk15AhQ2jevDlt27bF19eX2NhYPvroI8LCwmjYsOFd/00vzeNcXV354IMPeOqpp+jTpw8TJ07E39+fs2fPcvjwYT799FOg9J/NpVWWvmpZlGfftFaq/Nrqoirp3r270qxZM5tthw8fVh555BHFz89P0el0SkBAgNKrVy+blbwKCgqUl156SQkODlYcHR2VNm3aKNHR0cVWIihaYea9994rdu6SVp+5Ub169ZQmTZqU6fl89NFHSnh4uKLRaIode/78+UpUVJTi4OCguLu7K8OGDVOOHz9u8/iCggLlqaeeUnx9fRWVSqUASkxMjKIoirJy5UqlZcuWiqOjoxIcHKy8/PLL1lU5blzxpiyrz9z82heJjY1VRo8erXh7eys6nU6JjIxU3nvvvWKr/3zzzTdKZGSkotfrlfr16ytz5sxRvv76a5u4i57XtGnTFD8/P8XR0VHp2LGjsnPnTiUsLOyOq88oiqIYDAbl/ffftz5/V1dXpXHjxsqkSZOUP//809ouLCxMGTRoULHHA8rkyZNttpX0s3Hz6jM7d+5UHnzwQSUsLEzR6/WKt7e30r17d5sVaxYtWqT07NlT8ff3VxwcHJSgoCDlkUceUY4cOWJtU9KSyIpiWQGnQ4cOiqOjo+Li4qL07t1b2b59u02bopguX75ss71olY+i13nVqlXKgAEDlODgYMXBwUHx8/NTBg4caLO88q3k5eUp06dPV8LCwhSdTqcEBgYqzzzzTLGlYcuy+kyR5cuXK4MGDVJ8fX0VrVZrXRp33rx5SkFBgU3bK1euKH//+9+Vxo0bW9/n9u3bK59++mmx1aNuZceOHUqnTp0UZ2dnxdfXV3nqqaeUAwcOlPi7vnPnTmXAgAGKu7u7otfrlYiICJvVa2712itK6V6z8vr5KUlpHxcXF6dMmDBBCQgIUHQ6nbVdcnKytU12drbyf//3f0pkZKT186lFixbKiy++qCQlJVnblfR7pChKsd/j9PR05cknn1T8/PwUZ2dn5f7771e2bt2qdO/eXenevbu1XdHvxc8//1zsmHf7O5Ofn688/fTTSlRUlFKnTh3FyclJiYyMVGbNmmWz+pQQ9ib9H+n/SP+n5vV/CgoKlPfff18ZMGCAUrduXUWv1yuOjo5KkyZNlFdeeUVJTU0t9piy9H2Knvutbrf6nb7RO++8o9SrV0/R6/VKkyZNlP/85z/F3n9FsayU+OGHHyrNmze3/u526tRJWblypbXNrX7uFEVRjh49qgwZMkRxd3dXHBwclJYtWxaL74MPPlA6d+6s+Pj4KA4ODkrdunWVJ598Urlw4YKiKHf/N70sj/vtt9+U7t27Ky4uLoqzs7PStGnTYqsdluazuei9uXk145J+B0rbV73dz11Jn3fl1TetjVSKUoYlCISoJEeOHKFly5Z89tln1kJ2QgghhBA1mfR/hBBC1DaSlBJVyrlz54iNjWXmzJlcvHiRs2fP3tPcdiGEEEKIqk76P0IIIWorKXQuqpS33nqLvn37kp2dzc8//ywdMiGEEELUeNL/EUIIUVvJSCkhhBBCCCGEEEIIUelkpJQQQgghRA0RHx/P448/jre3N87OzrRq1Yr9+/fbOywhhBBCiBLZNSn1xRdfEBUVRZ06dahTpw6dOnVi9erV1v2KovD6668TFBSEk5MTPXr04Pjx4zbHKCgo4Pnnn8fHxwcXFxeGDh3KpUuXKvupCCGEEELYVXp6Ol26dEGn07F69WpOnDjBBx98gIeHh71DE0IIIYQokV2n761cuRKNRkODBg0AWLRoEe+99x4HDx6kWbNmzJ07l7fffpuFCxfSqFEj/vnPf7JlyxZOnz6Nm5sbAM888wwrV65k4cKFeHt7M23aNNLS0ti/fz8ajcZeT00IIYQQolL9/e9/Z/v27WzdutXeoQghhBBClEqVqynl5eXFe++9x4QJEwgKCmLKlClMnz4dsIyK8vf3Z+7cuUyaNInMzEx8fX357rvvGDlyJAAJCQmEhoby22+/0b9//1Kd02w2k5CQgJubGyqVqsKemxBCCCFqPkVRuHr1KkFBQajVlTcovWnTpvTv359Lly6xefNmgoODefbZZ5k4cWKJ7QsKCigoKLDeN5vNpKWl4e3tLf0hIYQQQtyTUveHlCrCaDQqP/74o+Lg4KAcP35cOXfunAIoBw4csGk3dOhQZezYsYqiKMqGDRsUQElLS7NpExUVpfzjH/8o9bnj4uIUQG5yk5vc5CY3ucmt3G5xcXH33kEqA71er+j1emXGjBnKgQMHlHnz5imOjo7KokWLSmw/a9Ysu79GcpOb3OQmN7nJrWbf7tQf0mJnR48epVOnTuTn5+Pq6sqyZcto2rQpO3bsAMDf39+mvb+/P7GxsQAkJSXh4OCAp6dnsTZJSUm3POfNVwaVa4PF4uLiqFOnTrk8LyGEEELUTllZWYSGhlpLDVQWs9lM27ZtmT17NgCtW7fm+PHjfPHFF4wdO7ZY+xkzZjB16lTr/czMTOrWrSv9ISGEEELcs9L2h+yelIqMjOTQoUNkZGTwyy+/8MQTT7B582br/puHjyuKcsch5XdqM2fOHN54441i24sKrgshhBBC3KvKngIXGBhI06ZNbbY1adKEX375pcT2er0evV5fbLv0h4QQQghRXu7UH7Lr6nsADg4ONGjQgLZt2zJnzhxatmzJxx9/TEBAAECxEU8pKSnW0VMBAQEUFhaSnp5+yzYlmTFjBpmZmdZbXFxcOT8rIYQQQojK1aVLF06fPm2z7cyZM4SFhdkpIiGEEEKI27N7UupmiqJQUFBAeHg4AQEBrFu3zrqvsLCQzZs307lzZwDuu+8+dDqdTZvExESOHTtmbVMSvV5vvQooVwOFEEIIURO8+OKL7Nq1i9mzZ3P27Fl++OEHvvrqKyZPnmzv0IQQQgghSmTX6XszZ85kwIABhIaGcvXqVZYsWcKmTZtYs2YNKpWKKVOmMHv2bBo2bEjDhg2ZPXs2zs7OjB49GgB3d3eefPJJpk2bhre3N15eXrz00ku0aNGCPn362POpCSGEEEJUqnbt2rFs2TJmzJjBm2++SXh4OB999BGPPfaYvUOrcsxmBbVaVhgUQggh7M2uSank5GTGjBlDYmIi7u7uREVFsWbNGvr27QvAK6+8Ql5eHs8++yzp6el06NCB33//3aZQ1ocffohWq+WRRx4hLy+P3r17s3DhQjQajb2eVpWQbzAxYt4OEjPyGdIyiIfaBNMi2F2WeBZCiGrKZDJhMBjsHYYAdDpdle1nDB48mMGDB9s7jCpLURRe+vkI289e4ZPRrWlXz8veIQkhhBC1mkopWnquFsvKysLd3Z3MzMwaM5Xvkw1/8sG6MzbbInxdmNo3kkFRgXaKSgghRFkpikJSUhIZGRn2DkXcwMPDg4CAgBIv9lTXfkV1jbss/rs3jld+OQKAq17L4qc60CrUw75BCSGEEDVQafsVdl99T5S/pMx8Pt90DoBne0RwKT2PtceTOHc5h8k/HCAuvTGTutW3y6ipS+m57I+1FKZXq1Ro1CqaBNYh3Mel0mMRQojqoCgh5efnh7Ozs4x4tTNFUcjNzSUlJQWwrHgnqoeEjDzeWnUCAD83PSlXCxj79W5+/GtHmgW52zk6IYQQonaSpFQN9O6aU+QZTNwX5snL/SNRqVRczTfw0fo/+XpbDO+sPkVSZj6vDW6KphLqKRhMZjacTOaHPXFs/fMyN4/N06hVfDyqFYOjgio8FiGEqE5MJpM1IeXt7W3vcMQ1Tk5OgGW1Xz8/vyo7lU9cpygKf196lKsFRlrX9WDRhPaMX7CX/bHpPD5/N1+OaUsDP1fqOGrRaqrcOkBCCCFEjSVJqRrmwMV0lh6MB+Afg5tar6i7Oep4bXBTgjyceGvVCRbuuEByVj5T+jQiwtelQjpgV/MNfLcrlm+2XeBKdoF1e8tQD1wcNJjMCpl5Bk4lXeWFJYcwKzC0pSSmhBCiSFENKWdnZztHIm5W9J4YDAZJSlUDP+2NY8uZyzho1bw3oiV1HHUsGN+Ox+fv5silTB75cqe1rYezjuFtQnjlL5HotfLeCiGEEBVJklI1iNms8OZKy7D0EfeF0LKEGglP3h+On5ueaf89zOpjSaw+loSDVk2kvxvNg+twX5gX7et5EerldFdTRExmhdTsAhbvvsjC7TFk5RsB8HHV83DbEEa2DaXeDVP1TGaF6b8c4X/7LzFlyUHMZoUHWgff3QsghBA1lEzZq3rkPak+4jPy+OevJwF4uV8kDfxcAajjqOPbCe158adD7ItN5+q1PktGroGvt8Ww63wqn45uIyUGhBBCiAokSakaJPpQPIfiMnBx0PBK/8hbthvSMgg/Nz3/WneG4wlZZBcYORqfydH4TH7cEweAfx09vm56MvMMZOUZyS4wolGp0OvUOOo06LVqbuyPFxrNZOcbySk02ZwrwteFyT0bMKRlELoSRmNp1CreHR6FRqXip31xTP3vIc5dzuYvzQNoGlhHOv1CCCGEuGtGk5kpSw6SXWDkvjBPJtwfbrPfw9mBBePbW9tm5hnYeyGdGUuPcDwhi8H/3srsh1owrJVcMBNCCCEqgkyaryGOXsrktehjADzbswF+dRxv275DfW9+mtSJI7P6sfnlHnz+WBsmda9Pm7oe6DQqkrMKOBafRVxaHpl5BkxmhUKTmav5Ri5fLeBSeh5xaddvyVkFNgmp5sF1+PyxNqx7sTsPtQkpMSFVRK1WMeehFjzavi5mBT7ZeJZB/95Gh9kbeOV/h/kz+Wr5vEhCCCEqTUpKCpMmTaJu3bro9XoCAgLo378/O3dapkkdPHiQwYMH4+fnh6OjI/Xq1WPkyJFcuXIFgAsXLqBSqaw3T09PunXrxubNm63n2LJlC0OGDCEoKAiVSkV0dHSxOJYuXUr//v3x8fFBpVJx6NChYm3OnTvHgw8+iK+vL3Xq1OGRRx4hOTm5Ql4XUbk+XH+GvRfScdVr+eDhlretpanVqPF21fOX5gH89kJX2od7kVNo4oUlh3juhwOk3lCKQAghhBDlQ0ZK1QAXruQwfuEecgpNdI7wZmLX+qV+rFqtIszbhTBvFwa2sKwglG8wceRSJtkFBtyddLg76XDV6zApCgUGE/kGMwVG2xFRWrUaN0ctro5a3By1Za7BoFarePuB5rSp68GaY0nsOJdKytUC/rvvEksPxDOxW33+1qshTg5S20EIIaqD4cOHYzAYWLRoEfXr1yc5OZkNGzaQlpZGSkoKffr0YciQIaxduxYPDw9iYmJYsWIFubm5NsdZv349zZo1IyUlhZkzZzJw4ECOHTtGeHg4OTk5tGzZkvHjxzN8+PAS48jJyaFLly48/PDDTJw4scT9/fr1o2XLlmzcuBGA1157jSFDhrBr1y7Uarl+V11tOXPZuhrxnIda2JQPuJNAdyd+nNiRf2/4k0//OMuqI4nsOJfKG0ObMTgqsMJHcqflFHL+cjb3hXnKqHEhhBA1mkpRbl4LrfbJysrC3d2dzMxM6tSpY+9wyiTlaj4jvtjJxbRcmgXVYclfO+LmqLN3WPcs32Bi74U0Fu2IZf1Jy9XqYA8nXh/ajD5N/KSDJoSoFfLz84mJiSE8PBxHx9uPgK1KMjIy8PT0ZNOmTXTv3r3Y/ujoaB5++GHy8vLQaku+PnbhwgXCw8M5ePAgrVq1AiA+Pp6QkBDmzZvHpEmTbNqrVCqWLVvGAw88UOrjAfz+++8MGDCA9PR0ax8gPT0dLy8v1q1bR58+fUo83u3em+rar6iucZckJSufAR9vJTWnkNEd6jL7wRZ3fawjlzJ45X9HOJVkGbk9oHkAH45shaOuYi6UHU/IZNyCvVy+WsCj7UN5a1hzWRFQCCFEtVPafoX8havGruYbGL9gLxfTcgn1cmLB+HY1IiEF4KjT0LWhL/OfaMt/xrYl2MOJ+Iw8Jn67jwEfb+W/++LIN5jufCAhhKhpFAUKcyr/VoZrWK6urri6uhIdHU1BQfEpTwEBARiNRpYtW0ZZro3duOJdeSkoKEClUqHX663bHB0dUavVbNu2rdzOIyqP0WTmhSWHSM0ppHGAG/8Y3PSejhcV4sGK5+7nhd4N0apVrD6WxPRfjpTpZ7e0tp+9wsgvd3H5quX35sc9cUz6bj+5hcZyP5cQQtwLRVEwFxaiGOXzSdwbmb5Xjf1j+XGOJ2Th7eLAdxM64OdWfa6il0Xfpv50aeDNvzecZdGOC5xKusor/zvC3NWneL5XA8Z1Cb/zQYQQoqYw5MLsoMo/78wEcCjd9CetVsvChQuZOHEi8+bNo02bNnTv3p1Ro0YRFRVFx44dmTlzJqNHj+bpp5+mffv29OrVi7Fjx+Lv71/iMXNycpgxYwYajabE0Vd3q2PHjri4uDB9+nRmz56NoihMnz4ds9lMYmJiuZ1HVI5Co5kXlhxk5/lUnB00fPZYm3IZ0eSgVfNi30a0D/fiiW/2sPxQAg18XXm+d8NyiNpi+aF4Xvr5MAaTQsf6XjzSNpQZS4+y4VQKo/+zm6+faIu3q/7OBxJCiBIoZjPm3DzMuTmYc3Iw5+Re/z4396ZtN37Nvd7mpm1cS0ipHBxQOzmhcnZG7eyM2snp2n0n1E43bHN2Qu3sjMqpaLuTdZ/K6dr3Nz7eyQmVTKOv8SQpVU2tOZbEsoPxqFXw1dj7ylQnoTpydtDy9wGNeaZ7BEv2XmTRjgskZObz+soT1Pd1pVsjX3uHKIQQ4gbDhw9n0KBBbN26lZ07d7JmzRreffdd5s+fz7hx43j77beZOnUqGzduZNeuXcybN4/Zs2ezZcsWWrS4PtWqc+fOqNVqcnNzCQwMZOHChTb775Wvry8///wzzzzzDP/+979Rq9U8+uijtGnTBo1G6hhWJ/kGE88s3s8fpy/joFHz71GtifB1LddzdGngw5vDmjNz2VE+WHeG+r6uDIoKvOvj5RWa+P1EEtEH4/nj9GUABkUF8q9HWqLXagjzdubJRfs4FJfBw/N28sPEjgS418yLkEKIkikmE8bLlzGmpGDOzsaUk4OSm4sp56aEUm6udbuSk4sp9/pXc45lX4XFWFiIqbAQMjPL/diqawmqoqSWytn5pkSXJbl1PdF17ebiYrm5Wr5qXF2t21S3KB0g7ENqSlG1aihk5hk4HJdB5wjvW9YPSM0uoN+HW0jNKeSZHhFM/0vjSo7S/owmM/9YcZwfdl8kzNuZtVO6VVhtByGEsJcS6xYpimW0VGXTOcM91vN76qmnWLduHbGxscX2FRYW0rp1a9q2bcuiRYusNaBWrFhB06ZN8fDwwNvb+5bHvtuaUje6cuUKWq0WDw8PAgICmDZtGi+//HKJbaWmVNWSXWBk4qJ97DyfiqNOzVdj2lboBas3V57gm+0xOOrU/PTXTrQM9Sj1YxVFYXdMGv/dF8faY0k2qxc/eX84rw5sgvqGVQLPpmTzxDd7iM/II9zHhR8lMSVEjaEoCqa0NAyJSRiTEjEkJmFISsSYmIQh6dr3ySlgKseyJWr19aTNzQmcom0lfbV+f8N9JycUkwklL8+SHMvLs47GUvLybrifizkv91q7G9rm5aLY3LfcKjKBBqBydLRNWDnf8PxvSF6VlNC6cb/GxQWVg0OFxlqdlbZfISnCKuRKdgGPzNvJ+Ss59GvqzyejWxdbxU5RFF5bfozUnEIi/d2Y0qf8ho1XJ1qNmhkDGrPhZDKxqbl8/sdZpvaLtHdYQghR8VSqUk+jq2qaNm1KdHR0ifscHByIiIggJyfHZntoaCgRERGVEB34+PgAsHHjRlJSUhg6dGilnFeU3d4LaSzYHkNqdiGZeQaSsvLJyDXgqtfyzbh2tA/3qtDzvzqoCRdSc9h4KoWx3+zh88fa0KWBz20fk3I1n5/3XeK/++KITb3+D1eolxMPtgrmgdbB1C9hZFcDP1eW/LUjj/5nFzFXcnj0P7skMSVENWG6ehVDYiLGpCRLwikxwTbhlJSMUkLtxWK0WrS+vmjc3EqRNHKxTRzdmHhydkbl6Fj+i0Z5epbr4RSzGSU//3qiKicXJS/X5r41yWW9n2fdZh1FlpOLOTvb8n12NkphoeX4+fmY8vMxpabec6wqne56osqasHK+nshyvrbdzRWttw9aX1+0fr5ofX1Ru7rKAl5IUqrKyMw1MObrPZy/YumM/34imScX7uPLMffhor/+Nq08kshvR5PQqlV8cG1od23l5qhj1pBmPPv9Ab7YfI6hrYJp4Fe+w/SFEEKUXWpqKg8//DATJkwgKioKNzc39u3bx7vvvsuwYcNYtWoVS5YsYdSoUTRq1AhFUVi5ciW//fYbCxYsKPV5srOzOXv2rPV+TEwMhw4dwsvLi7p16wKQlpbGxYsXSUhIAOD06dOApdh6QEAAAAsWLKBJkyb4+vqyc+dOXnjhBV588UUiI+ViR1V04UoO477ZYzPCCMDLxYEF49qVadTS3dKoVXw8qhVjvt7DobgMxn6zh9cGNeGJzvVK/Adj+9krPLN4P1n5lvorLg4ahrQMYsR9IdwX5nnHf0pCvZz5caJtYurjUa2IDHCr1X1BIezJnJ9vSTYlJWFISLQd4XQt+WS+6ULLrWh8fdAFBqELCEAXGIA2IBBdYAC6wEC0AYFofbxR1aIp5Sq12lqfqjwpBgOm7GxLsionB3POtYTVtaSVqSiBVbT/hoSWKTcHc3aOtb2Sn3/9mOnpmNLTy/48HR0tSSpfX7R+fte/v/Hm54vGw6NGJ68kKVUF5BQYGb9wDycTs/Bx1fNK/0jeWHmcbWev8PjXu/n3qNYcT8hiy5+XWXnI0ql+rlcDmge72zly+xvQPIAekb5sOn2Z/4s+yo8TO9boX1ghhKgOXF1d6dChAx9++CHnzp3DYDAQGhrKxIkTmTlzJomJiTg7OzNt2jTi4uLQ6/U0bNiQ+fPnM2bMmFKfZ9++ffTs2dN6f+rUqQA88cQTLFy4EIAVK1Ywfvx4a5tRo0YBMGvWLF5//XXAkqiaMWMGaWlp1KtXj1dffZUXX3zxHl8FURGKCpnnFJq4L8yTJzrXw9NZh4eTA/V9XWwu5FU0N0cdS/7akZlLj7L0YDyvrzzBycSrvD60GU4O1/95/G5XLK+vOI7JrNAksA4TutRjYIvAMsd6c2Jq6Kfb0apVhPu40CyoDi/0aUR4Da8xKkRlUYxGjCkpGBITb5pal4QxMRFDYmKpkxBqd3d0gYHoAgLQBgaguzHhFBiIzs9PpoBVEpVOh9bTs1xGdilGozVBZcrOtklY3ZzwMmVnY866ivHKFUt9sMuXLSO38vMxxMVhiIu7/cl0OrQ+tqOstL6+17f5+lm2e1fP5KXUlMK+NRTyDSaeXLSX7WdTcXfS8dOkjjQOqMPBi+mMW7CXzLziy163qevBT5M6obtFzanaJi4tlz7/2kyB0czknhE82r4uIZ7lm1UXQgh7uF3dImFfUlPKPt5ZfYp5m8/h7qRj9QtdCfJwsndIKIrC/K0xzFl9ErMCjjo1nSN86Bnpy58p2Xy701JD7cHWwcx5qMU918C8lJ7L/0UfY39sOlfzry/F7uPqwKIJ7WkWJBcthSgrY3o6uXv3krt7D7l79lBw7hyYzXd8nMrJ6dropkCbhJM2MNCaiCrv0T6iZjDn5VkTVJZC9pdt718rbm/KyCj9QdVqNN5eaH190RUlqkoafeXjUymJ0NL2KyQphX07Yf8XfZTFuy7i4qDh+4kdaXXDkPNTSVmM+XoPl68WUN/XhW4NfenWyIcuDXxkqPZNPvvjLO+tPW293zjAjT5N/HmoTcn1GYQQojqQpFTVJUmpyrf92ghyRYF5j7fhL83vftW7ivDH6RT+b9kx4jPybLarVPBy/0ie6R5RrqO5FUUhKSufU0lXeX/taY4nZOHmqGXh+HbcF1axNbWEqO6sSag9ey1JqDNnijfS6dD5+18b4WRJMOmCAtFeS0LpAgJQu7vLLA1RoZTCQpsRVoaUFOv3psvXtxtTU0uVSC2i8fBA6+uLY/PmBM2ZXSGxS6HzamDt8SQW77oIwOeP32eTkAJoHFCHjdO6k1NgkmKWd/B09whc9Vp+PZLIvtg0TiVd5VTSVT794yxdGnjzWIcw+jb1l9FlQgghRDWUllPIiz8dQlHg0fZ1q1xCCqBnpB/bpvfkdPJVNp5KYdOpy1xKz2XW0Gb0bxZQ7udTqVQEujsR6O7EfWGePLlwL3svpPP4/D18NfY+ujasuNUHhahuSpOE0jdsiHP79ji3b49Tq5ZofX1RqeV/B2FfKgcHdEFB6IKCbttOMZkwpqYWH21182isK1fAYMCUkYEpIwO1m1slPZNbk5FS2OfKYGJmHgM+3kpGroFJ3eozY2CTSjlvbZCeU8imMymsPJzIH6dTKPoJD6jjyLR+jRjeJsRmqWUhhKiqZKRU1SUjpSqPoihM/HY/608m08DPlZXP3W9Ts0lY5BWamLR4P1vOXEanUfF/g5oytlOYzSiOolULH21fV5JWokYrXRKqAc7tLEko53Zt0Xp72yFSISqXYjZjysy0ThdU6XS4dGhfIeeSkVJVmMms8OJPh8jINdAi2J1p/WR1n/Lk6eLAg61DeLB1CJfSc/lxz0V+2htHUlY+L//vCAt3XOD/BjWlU4T84RFCCCGquh/3xLH+ZDIOGjUfj2olCalbcHLQMH9sW6b+9xCrjiQya8Vx9sSkMWd4CzQqFe+uOcW3u2JRFDgQm8GWV3rioJVRIKJmMGVkkLtvHzlFNaFOny7WRpJQQlhWNtR6eloKvkc2snc4gCSl7GLe5nPsOp+Gs4OGfz/aWjoEFSjE05mX+zfmb70bsmjHBT7ZcJbjCVk8+p9d9G/mz6sDm1LXW4oPCiGEEFXR+cvZvLXqBGCpyyRFvG/PQavmk0db07quJ3N+O8mvRxM5lpCJyaxwKd1S60qvVZOUlc+KwwmMuC/EzhELcXesSag9e8jds9eShLppApBDRAQuHdrj3L6DJKGEqMIkKVXJ/jidwr/WWYaPvjG0mSzdW0n0Wg1/7RbB8DYhfLT+T37Yc5G1x5P54/RlJnYN59keDSp1GWkhhBBC3J7BZGbKT4fIM5jo0sCbJ+8Pt3dI1YJKpeLJ+8NpU9eD5344SGxqLgDBHk68M7wFR+MzeXfNaf6z5TzD2wRLkWZRLZQtCdUe57Zt0fr42ClaIURZyH/hlejgxXSeXXwAk1lhxH0hcnXKDrxd9bz1QHPGdArjzZUn2Hb2Cp/9cY7/7b/EBw+34v6G8sdLCCGEqAo+Wn+GI5cycXfS8f7DLaUeZBm1ruvJr3+7n3fXnqaOo47ne1kuwEWFePDZxrOcTr7KpjOX6RnpZ+9QhSimVEmoBhE4t2uHS4cOkoQSohqTpFQlOZuSzYSFe8kzmOjeyJc5D7WQK1N21Mjfje+ebM/vJ5L5568niEvL46lv9/LDxI60qetp7/CEEEKIWu3IpQw+33QOgDkPtSDQ3cnOEVVPHs4OzH6whc02dycdj7avy/xtMXy5+ZwkpUSVYMrIIHf/fnJ275YklBC1jCSlKkFSZj5PfLOH9FwDLUM9+PyxNug0UkfK3lQqFf2bBdC9kS9PL97PptOXmbBwL/97ujMN/FztHZ4QQghRKymKwusrjqMoMLRlEANbBNo7pBpnwv3hLNxxgV3n0zhyKYOoEA97hyRqEUVRMMTGknf0GHlHjpC7bx8Fp06VOB3PuV1bSxKqXTtJQglRQ0lSqoJl5hl44ps9xGfkUd/XhQXj2kntoirGUafh88fa8OhXuzh8KZMnvtnD0mc7419Hll8XQgghKlv0oXgOXMzA2UHDq4Oa2DucGinIw4khLYNYdjCeL7ec57PRbewdkqjBjJcvWxJQR4+Qf+QoeceOYc7MLNbOoX79ayOh2luSUL6+dohWCFHZZLhOBXPQqAnxdMK/jp5vJ7THy8XB3iGJEjg7aPlmXDvCfVyIz8jj8fm7mbP6JO+sPsXcNaf43/5LKDddvRFCCHFrKSkpTJo0ibp166LX6wkICKB///7s3LkTgIMHDzJ48GD8/PxwdHSkXr16jBw5kitXrgBw4cIFVCqV9ebp6Um3bt3YvHmz9Rxz5syhXbt2uLm54efnxwMPPMDpEpYBLzJp0iRUKhUfffSRzfYePXrYnEulUjFq1Kjyf1HEHeUUGHln9SkAJvdsIBeIKtDErvUBWH00kYvXiqELca9M2dnk7NpN6vz5XPrbC/zZsxd/du3GpWefJfWLeeRs3445MxOVgwNOLVviOWYMQR+8T8OtW4j47VcC33idOgMHSkJKiFpEhuxUMCcHDV+OuY/EzHxCPJ3tHY64DW9XS+LwoS928GdKNn+mZNvs16pVPNA62E7RCSFE9TJ8+HAMBgOLFi2ifv36JCcns2HDBtLS0khJSaFPnz4MGTKEtWvX4uHhQUxMDCtWrCA31/af4/Xr19OsWTNSUlKYOXMmAwcO5NixY4SHh7N582YmT55Mu3btMBqNvPrqq/Tr148TJ07g4mK7um10dDS7d+8mKCioxHgnTpzIm2++ab3v5CQ1jOzhsz/OkpxVQF0vZ1ltr4I1DapD14Y+bP3zCv/Zep63HmherM2+C2n413Ek1Ev6sKI4pbCQ/NNnyD92lLwjR8k7eoTCc+eLTcNDpULfIALHFlE4RbXAsXkLHBs1ROUgF+uFEJKUqhRajVr+mFcToV7O/O/pTvx3XxwFBjNmBS6m5bL+ZDL/WH6MThHectVWCCHuICMjg23btrFp0ya6d+8OQFhYGO3btwcsCaKsrCzmz5+PVmvpioSHh9OrV69ix/L29iYgIICAgAC+/PJLQkJC+P3335k0aRJr1qyxabtgwQL8/PzYv38/3bp1s26Pj4/nueeeY+3atQwaNKjEmJ2dnQkICCiX5y/uTmxqDvO3xgDwf4Oa4KjT2Dmimu+ZHhFs/fMK/90Xxwt9GuLjqrfu2/bnFR7/ejchnk5sfrknGln9sFZTzGYKY2PJP3o9AVVw4iSKwVCsrTYoEKcbE1DNmqFxdSnhqEIIIUkpIYoJ83bh5f6NrfcNJjMPfb6Do/GZ/P2XI3wzrp2snCiEsBtFUcgz5lX6eZ20TqX+7HN1dcXV1ZXo6Gg6duyIXq+32R8QEIDRaGTZsmWMGDGi1Md1drZc4DGU8E8QQOa1GiVeXl7WbWazmTFjxvDyyy/TrFmzWx77+++/Z/Hixfj7+zNgwABmzZqFm5tbqeIS90ZRFPbEpPHOmlMUmsx0behD36b+9g6rVuhU35uWIe4cvpTJwu0XeKl/JAAms8I/fz0BwKX0PHacu0LXhvc2ncpkViSxVY0YklOsI6Dyjx4h79hxzFlZxdqp3d1xatECxxbNcYqKwqlFCylILoQoE0lKCXEHOo2aDx5pyeBPtvHH6cv8vO8Sj7QLtXdYQohaKs+YR4cfOlT6eXeP3o2zrnSjfrVaLQsXLmTixInMmzePNm3a0L17d0aNGkVUVBQdO3Zk5syZjB49mqeffpr27dvTq1cvxo4di79/ycmInJwcZsyYgUajsY6+upGiKEydOpX777+f5s2vT0OaO3cuWq2Wv/3tb7eM97HHHiM8PJyAgACOHTvGjBkzOHz4MOvWrSvV8xV3J99g4n/7L7F4Vyynkq4CoNeq+cfgpnLxp5KoVCqe6RHB04sP8O3OCzzdIwJXvZalBy5Z3xOAX/Zfuuuk1NV8A3NWW+pzjmoXysyBMgquqjFdvUr+8ePXE1BHjmJMTi7WTqXX49i0qXUElFNUC3R168rvqxDinkhSSohSaOTvxrS+jZiz+hRvrjpBl4Y+BHtIvREhhLiV4cOHM2jQILZu3crOnTtZs2YN7777LvPnz2fcuHG8/fbbTJ06lY0bN7Jr1y7mzZvH7Nmz2bJlCy1atLAep3PnzqjVanJzcwkMDGThwoU2+4s899xzHDlyhG3btlm37d+/n48//pgDBw7c9p+miRMnWr9v3rw5DRs2pG3bthw4cIA2bWRVsory5qoT/LD7IgCOOjUPtApmwv3hNPSXEWqVqV/TAOr7unD+cg4/7r7I4x3D+OD3MwAMigrk1yOJrDmeRHaBEdcyriC99c/L/P2Xo8RnWEZ3frszlr0X0vlsdGvq+7qW+3MRd2YuLKTg1Cnyjh61rIR39CiF588Xb6hWo2/QAMeoFpapeC2ao2/YEJVOV/lBCyFqNJUiS4qRlZWFu7s7mZmZ1KlTx97hiCrKZFZ45Mud7I9Np0ekLwvHt7d3SEKIGi4/P5+YmBjCw8NxdLTUs6sO0/du5amnnmLdunXExsYW21dYWEjr1q1p27YtixYt4sKFC4SHh7NixQqaNm2Kh4cH3t7eJR73+eefJzo6mi1bthAefr049kcffcTUqVNRq68vNmwymVCr1YSGhnLhwoUSj6coCnq9nu+++46RI0eW2Kak96ZIde1XVHbcvT/YxLnLOTzdPYJnekTg7iT/7NrLf/fG8covR/Cvo2dku7r8e8OfBHs4sWFadwb+eyvnL+fw7ogoHmlbupHiJxKyWLA9hp/3XwIg1MuJcZ3D+eyPs6TlFOLsoOHNYc0Z3iZYRtlUAlNWFpnR0WSu+pX8kyehhCnQuuBgHFu0sEzBi2qBY9OmqJ2lJq4Q4u6Vtl8hI6WEKCWNWsV7I6Lo++EWNp2+zLH4TJoHu9s7LCFELaNSqUo9ja6qadq0KdHR0SXuc3BwICIigpycHJvtoaGhRERElPgYRVF4/vnnWbZsGZs2bbJJSAGMGTOGPn362Gzr378/Y8aMYfz48beM8/jx4xgMBgIDA0vxrMTdyC00cv6K5b2ecH89SUjZ2bDWQfxr3RmSsvL594Y/AXjlL5E46jQMbxPCe2tPs/TApdsmpS5fLWDpgUssOxhvM/VvXOd6vNw/Ehe9lsFRgUxZcoid51N56efDLNwRw996NaRvU39JTlWAvGPHSV/yI1mrfkXJz7du13h4WEZANW+BU8soHFu0QHtDLT4hhKhMkpQSogzq+7oyqEUgKw4n8PW2GD4c2creIQkhRJWTmprKww8/zIQJE4iKisLNzY19+/bx7rvvMmzYMFatWsWSJUsYNWoUjRo1QlEUVq5cyW+//caCBQtKfZ7Jkyfzww8/sHz5ctzc3EhKSgLA3d0dJycnvL29i42u0ul0BAQEEBlpKeh87tw5vv/+ewYOHIiPjw8nTpxg2rRptG7dmi5dupTfiyJsnEq6iqKAr5sePzdZ1dbe9FoNT3UN55+/ngQgKsSdIVFBADzQOpj3fz/NrvNpXErPJcSzeFJ834U0nly0j8w8ywgcB42a3k38ePL+cNrWu57s8K/jyOKnOjBv8zk+++Msx+Kz+Ot3+2kSWIcXejegf7MASU7dI3N+Plm/rSb9xx/JP3rUul3fqBEeo0bi2q0bumAZoSaEqDokKSVEGU3sWp8VhxNYeTiBV/4SSaC71JYSQogbubq60qFDBz788EPOnTuHwWAgNDSUiRMnMnPmTBITE3F2dmbatGnExcWh1+tp2LAh8+fPZ8yYMaU+zxdffAFAjx49bLYvWLCAcePGleoYDg4ObNiwgY8//pjs7GxCQ0MZNGgQs2bNQqORYswV5USCZRWvpoHVZ3pjTTeqfV0+++Ms6bkGZg5sgvraSnnBHk50qu/NjnOpLDsQz/O9G9o8bt2JZJ774QAFRjONA9wY26keg1oE4u5c8ug3jVrF5J4NeLR9Xb7edp5FO2I5mZjF04sP0CLYnZf6R9KtoY8kTcqo8MIF0pf8RMayZZivrUSq0ulw698fz0dH4dSmjbymQogqSWpKUX1rPwj7GfnlTnbHpDGpe31mDGhi73CEEDXU7eoWCfuSmlL3ZsbSo/y45yLP9ojglb80rtBzidL7M/kqV7IL6RRhO8Lwl/2XmPbzYcJ9XNg4rbs1ubFkz0VmLjuKWYHejf34dHQbnBzKlszNyC3k620xfLMthpxCEwDt63kxd0QU4T4u5fPEaijFaOTqH3+Q8eOP5OzYad2uCw7GY+RIPIY/hPYWtfiEEKKiSU0pISrQU13rszsmjR92X+T5Xg3LvBqNEEIIUZudSLw2Uiqo+iTtaoOG/m409C++/S/NA3ht+TFiruTw3trTZOUbOJOczZ6YNAAeaRvC7AdboNWoiz/4DjycHZjWL5JxnevxxaZzfLsrlj0X0vj7L0f4aVKne31KNZIhOYWMn38m4+efMSYnWzaqVLh264bHo6Nw7doVlYz0FEJUE2X/yyGEoHdjP+r7uHA138jP++LsHY4QQghhY86cOahUKqZMmWLvUIoxmsycupaUahYkC4ZUBy56LX9pHgDA55vOsXjXRWtC6rmeDZg7POquElI38nbV83+Dm7LyufsB2B+bTk6B8d4Cr0EURSFn1y4u/e0FzvbqxZVPP8WYnIzGywvviROJWLeO0C/n4dajhySkhBDVigzvEOIuqNUqJtwfzv9FH+Ob7TGM7VQPjVrm6QshhLC/vXv38tVXXxEVFWXvUEoUcyWHAqMZFwcNYV7VcyXJ2mhyzwbEp+dRx0lHhK8rDfxcaRHsTmSAW7meJzLAjVAvJ+LS8thzIY2ekX7levzqxpSVRWZ0NOk/LqEwJsa63antfXiOehS3fn1ROzjYMUIhhLg3dh0pNWfOHNq1a4ebmxt+fn488MADnD592qaNoii8/vrrBAUF4eTkRI8ePTh+/LhNm4KCAp5//nl8fHxwcXFh6NChXLp0qTKfiqiFhrcJwdNZR1xaHisPJ9g7HCGEEILs7Gwee+wx/vOf/+Dp6WnvcEp0/FqR8yaBdazFtEXVF+Hryk+TOvGfsW35+4DGjLgvpNwTUkU61/cBYOe51Ao5fnWQd+w4Ca++yp/dupM8ew6FMTGonZ3xeHQU4cuXU2/xYtwHD5KElBCi2rNrUmrz5s1MnjyZXbt2sW7dOoxGI/369SMnJ8fa5t133+Vf//oXn376KXv37iUgIIC+ffty9epVa5spU6awbNkylixZwrZt28jOzmbw4MGYTCZ7PC1RSzg5aBjTqR4Ar/zvCMsPxds3ICGEELXe5MmTGTRoEH369Llj24KCArKysmxulUHqSYk76dzAUpx7x7krdo6kcpnz8sj4ZSkxDz/ChREjyPxlKUp+PvpGjQh4fRYNtmwhcNYsHCMb2TtUIYQoN3advrdmzRqb+wsWLMDPz4/9+/fTrVs3FEXho48+4tVXX+Whhx4CYNGiRfj7+/PDDz8wadIkMjMz+frrr/nuu++sHbDFixcTGhrK+vXr6d+/f6U/L1F7PNsjgjNJV1lzPIkXlhwiPiOPZ7pHyJK7QgghKt2SJUs4cOAAe/fuLVX7OXPm8MYbb1RwVMUdT7AsV99MklLiFopW/zuekEVGbiEezjV7NFBBTAwZS34iIzoac6bl9wOdjjr9++M5+lGcWreWvqUQosaqUoXOM699CHt5eQEQExNDUlIS/fr1s7bR6/V0796dHTt2ALB//34MBoNNm6CgIJo3b25tczN7XRkUNY+jTsNnj7XhyfvDAXh3zWlmLjtKVr7BzpEJIYSoTeLi4njhhRdYvHgxjo6OpXrMjBkzyMzMtN7i4ip+4Q5FUThxbfpe00Apci5K5ufmSEM/VxQFdp2/+yl8BUYTZ1Ou3rmhHShGI1m//87FCRM4P2AgaYsWYc7MRBcUhO+LL9Jw0x8Ev/8ezm3aSEJKCFGjVZlC54qiMHXqVO6//36aN28OQFJSEgD+/rZr0/r7+xMbG2tt4+DgUKxugr+/v/XxN7PXlUFRM2nUKl4b3JRQTyfeWHWCH/fEseJQAg+3DeWJzvUI93Gxd4hCCCFquP3795OSksJ9991n3WYymdiyZQuffvopBQUFaG5akUuv16PX6ys1zsTMfNJzDWjVKhr6u1bquUX10jnCmz9TstlxLpW/NA+8q2NM/98Rog8l8HL/SCb3bFDOEd4dQ3IKGT//TMbPP2NMTrZsVKlw7dYNj0dH4dq1q6yeJ4SoVapMUuq5557jyJEjbNu2rdi+m68OKIpyxysGt2szY8YMpk6dar2flZVFaGjoXUQtxHXjuoQT5u3CnNUnOZOczcIdF1i08wKDWgTy3oiWODlIB0MIIUTF6N27N0ePHrXZNn78eBo3bsz06dOLJaTspWiUVAM/Vxx1VSMmUTV1ivBh0c5YdtxlsfODF9OJPmRZiOa9tadp6OdKv2YB5RliqSmKQu6uXaT/uISrGzbAtbq3Gi8vPEaMwOORR3AICbZLbEIIYW9VIin1/PPPs2LFCrZs2UJISIh1e0CA5Q9HUlISgYHXr5CkpKRYR08FBARQWFhIenq6zWiplJQUOnfuXOL57HFlUNQOPRv70SPSl+1nU1mwPYYNp1JYdSSR1OxCvhnXThJTQgghKoSbm5t1pHkRFxcXvL29i223p6KV96TIubiTjvW9UKngbEo2KVn5+NUp3bRUsCSBZv92EgBvFwdScwqZ8tMhlj7bmcYBlfezZ8rMJDM6mvQlP1EYE2Pd7tT2PjxHPYpbv76yep4QotYrc02pgoICtm7dynfffceXX37J0qVLibnhQ7YsFEXhueeeY+nSpWzcuJHw8HCb/eHh4QQEBLBu3TrrtsLCQjZv3mxNON13333odDqbNomJiRw7duyWSSkhKpJKpeL+hj58Pa4dPz/dCVe9lp3nU5mwcC+5hUZ7hyeEEJUiJSWFSZMmUbduXfR6PQEBAfTv35+dO3cCcPDgQQYPHoyfnx+Ojo7Uq1ePkSNHcuWKZbWtCxcuoFKprDdPT0+6devG5s2bref44osviIqKok6dOtSpU4dOnTqxevVqmzhuPMaNt/fee8/apqCggOeffx4fHx9cXFwYOnQoly5dqoRXqfY5kWipH9o0UJJS4vY8nB1oHmSpO7azjHWl1p1IZu+FdPRaNdGTu9A5wpvcQhNPLdpHanZBRYRro+D8eRL+7//4s3sPkue8Q2FMDGoXFzxHP0r4iuXUW7wY98GDJCElhBCUYaTUjh07+OSTT4iOjqawsBAPDw+cnJxIS0ujoKCA+vXr89e//pWnn34aNze3Uh1z8uTJ/PDDDyxfvhw3NzdrDSh3d3ecnJxQqVRMmTKF2bNn07BhQxo2bMjs2bNxdnZm9OjR1rZPPvkk06ZNw9vbGy8vL1566SVatGhRquWQhahI7ep5sWhCe574Zg87z6fy5MJ9fD2uLc4OVWKQohBCVJjhw4djMBhYtGgR9evXJzk5mQ0bNpCWlkZKSgp9+vRhyJAhrF27Fg8PD2JiYlixYgW5ubk2x1m/fj3NmjUjJSWFmTNnMnDgQI4dO0Z4eDghISG88847NGhgqRWzaNEihg0bxsGDB2nWrBlguVB1o9WrV/Pkk08yfPhw67YpU6awcuVKlixZgre3N9OmTWPw4MHs37+/ykx7uxubNm2ydwjFFI2UahYkRc7FnXWO8OZofCbbz15hWKvSTW8zmsy8s+YUAE/eH06olzOfP9aGYZ9tJzY1l2e/P8CPEzuiVpd/8XBFUUhf/D0p772HUlgIgL5RIzxHP0qdwUPQuEqdUSGEKEYphaFDhyqBgYHKtGnTlM2bNys5OTk2+8+dO6csXLhQ6d+/vxIQEKD8/vvvpTmsApR4W7BggbWN2WxWZs2apQQEBCh6vV7p1q2bcvToUZvj5OXlKc8995zi5eWlODk5KYMHD1YuXrxYqhgURVEyMzMVQMnMzCz1Y4Qoi30X0pRm/1ijhE1fpdw/d4Py5eazSlp2gb3DEkJUcXl5ecqJEyeUvLw8e4dSJunp6QqgbNq0qcT9y5YtU7RarWIwGG55jJiYGAVQDh48aN126dIlBVDmzZt3y8d5enoq8+fPv+X+YcOGKb169bLez8jIUHQ6nbJkyRLrtvj4eEWtVitr1qy55XFu995U135FRcedkVuohE1fpYRNX6Vk5BRWyDlEzfLHqWQlbPoqpcs7GxRFUZS8QqOy/FC88u2OGKXQaCrxMYt3XVDCpq9SWr/5u5KZd/3n7M/kLKXx/61WwqavUg5eTC/3WA0pKUrsUxOVE5GNlRORjZXYJ59ScvbvV8xmc7mfSwghqoPS9itKNVyjX79+/PzzzzjcYohp/fr1qV+/Pk888QTHjx8nISGhtAmxO7ZRqVS8/vrrvP7667ds4+joyCeffMInn3xSqvMKUdnuC/Nk0YT2TPx2H3Fpecz+7RQf/H6GIS2DeKlfJAHupa+TIISo3RRFQcnLq/Tzqq6NYC4NV1dXXF1diY6OpmPHjsXqOAYEBGA0Glm2bBkjRowo9XGdnZ0BMBgMxfaZTCZ+/vlncnJy6NSpU4mPT05O5tdff2XRokXWbfv378dgMNCvXz/rtqCgIJo3b86OHTvo379/qWITd1ZU5DzE0wl3Z52doxHVQbt6XmjVKi6l5/H3X46w5ngSGbmW3/+lB+P5dHQbgj2crO3Tcwr5cN2fAPytVwPqOF7/OWvg50aXBj6sP5nM7vOptAr1KLc4r278g8RXX8WUno5Kr8fvlZfxHD261J9tQghRm5UqKTV58uRSH7BZs2bWIfNCiOvuC/Nk2/SerDiUwLc7YzmRmMX/9l9iy5nLfP1EO1qEyFQGIcSdKXl5nG5zX6WfN/LAflTXkkJ3otVqWbhwIRMnTmTevHm0adOG7t27M2rUKKKioujYsSMzZ85k9OjRPP3007Rv355evXoxduxY60ImN8vJyWHGjBloNBq6d+9u3X706FE6depEfn4+rq6uLFu2jKZNm5Z4jEWLFuHm5sZDDz1k3ZaUlISDg4PNYikA/v7+1rIConycSLxW5FzqSYlSctFraRXqwb7YdJbsjQMgyN2RqwVGDl7MYODHW/nXIy1p5O/GN9tj+GlvHLmFJup5OzO6Q1ix43Ws78X6k8nsiUljUveIe47PnJdH8ty5ZCz5CQB948YEv/8e+mtTioUQQtxZmQvb5OXlsW7dOs6cOYNKpaJhw4b07dsXJyenOz9YiFrO2UHLqPZ1GdkulAMX05mx9ChnkrN55MudfDyqld2WKhZCiPI2fPhwBg0axNatW9m5cydr1qzh3XffZf78+YwbN463336bqVOnsnHjRnbt2sW8efOYPXs2W7ZsoUWLFtbjdO7cGbVaTW5uLoGBgSxcuNBmf2RkJIcOHSIjI4NffvmFJ554gs2bN5eYmPrmm2947LHHcHS88+hURVFklEM5a1/Piyl9GtLAz9XeoYhqZEynMP5MyaZjfS9Gta9Lt4a+JGTkMfmHAxy5lMmTi/ahUaswmS0zMBoHuPHuiCgctMXXc+oQ7g3AngtpmMwKmnuoK5V3/DgJL79C4fnzAHiNH4/vi1OkeLkQQpSRSinNHLprVqxYwVNPPWVdGaeIj48PX3/9NUOGDCn3ACtDVlYW7u7uZGZmUqeOXL0TlScr38Dk7w+w9c8rqFTwSv/GjOtcDyeH6ltYVwhRfvLz84mJiSE8PNyaSKkO0/du5amnnmLdunXExsYW21dYWEjr1q1p27YtixYt4sKFC4SHh7NixQqaNm2Kh4cH3t7edzxHnz59iIiI4Msvv7TZvnXrVrp168ahQ4do2bKldfvGjRvp3bs3aWlpNqOlWrZsyQMPPMAbb7xR4nlKem+KVNd+RXWNW9ROBUYTc347xcIdFwDo2tCHiV3r07Whzy0/q4wmM63eXEd2gZFVz99P8+Cyj1JXzGbSFiwg5aOPwWBA6+tL0Nx3cJFVv4UQwkZp+xXFLyHcwo4dOxgxYgTdunVj+/btpKWlkZaWxrZt2+jatSsjRoywLvMshCidOo46Foxrx+gOdVEUmLvmFG3eWsczi/ez/FA8OQVGe4cohKhiVCoVamfnSr+Vx6ihpk2bkpOTU+I+BwcHIiIiiu0PDQ0lIiKiVAkpsCTtCgqKL/n+9ddfc99999kkpADuu+8+dDod69ats25LTEzk2LFjdJZ/MoWosvRaDa8PbcayZzuzdko3vnuyA90a+d72s0qrUdO2niX5vCcmrcznNCQlcXHCk6S89z4YDLj26U34iuWSkBJCiHtQ6ul7//znPxk/fnyxK4+dO3emc+fOTJo0ibfeeovffvut3IMUoibTatS8/UBzGge48eXm88Rn5LH6WBKrjyUR5u3Miufux91JCsIKIaqP1NRUHn74YSZMmEBUVBRubm7s27ePd999l2HDhrFq1SqWLFnCqFGjaNSoEYqisHLlSn777TcWLFhQ6vPMnDmTAQMGEBoaytWrV1myZAmbNm1izZo1Nu2ysrL4+eef+eCDD4odw93dnSeffJJp06bh7e2Nl5cXL730Ei1atKBPnz73/FoIISpW67qed250gw7h3mw6fZndMalMuD+81I/LWrOWxFmzMGdmonJywn/mDDzKsFCDEEKIkpU6KbVz507mzp17y/2TJ0+2KTwqhCg9lUrF2E71GNMxjGPxWaw+lsh/910iNjWX2b+eZO6IKHuHKIQQpebq6kqHDh348MMPOXfuHAaDgdDQUCZOnMjMmTNJTEzE2dmZadOmERcXh16vp2HDhsyfP58xY8aU+jzJycmMGTOGxMRE3N3diYqKYs2aNfTt29em3ZIlS1AUhUcffbTE43z44YdotVoeeeQR8vLy6N27NwsXLkSjkanUQtQ07cO9AMtIKbNZQX2HulKm7BySZ88mc+lSABybNyfovXfRh5c+oSWEEOLWSl1TysnJiVOnThEWVnwlC4DY2FiaNGlCbm5uuQZYGaSGgqiK9l5I45Evd6IosGhCe7o38rV3SEKISna7ukXCvqSmlBDVU6HRTMs3fifPYGLtlG5EBrjdsm3ekSPEv/QyhosXQaXCe+JEfJ9/DpVORrALIcSdlHtNqUaNGrFx48Zb7t+wYQMNZPlTIcpNu3pePNGpHgAzfjnC1XyDfQMSQgghhKjmHLRq2oR5ALAnJrXENorJxJV587jw6GgMFy+iDQyk7qKF+E19URJSQghRzkqdlBo3bhwvvfRSiTWjfv31V1555RXGjx9frsEJUdu98pdI6no5k5CZz+zfTtk7HCGEEEKIaq9DuGXhhF0lFDsvvBRP7NgnuPzRx2AyUWfgAOpHL8OlffvKDlMIIWqFUteUeuGFF9ixYweDBw8mMjKSJk2aAHDixAn+/PNPHnjgAV544YUKC1SI2sjZQcvc4VE8+p9d/LjnIo46Nc4OGhQFnHQaHmwTTIins73DFEIIIYSoNjpcqyu1+3waiqKgUqlQjAa2ffQMfksOY87ORu3iQsA/XqPO0KFSzFwIISpQqZNSarWan3/+mZ9++okff/yRU6csozYaN27M66+/zqhRoyosSCFqs04R3ozpGMZ3u2JZsP2Czb5P/jjLuM71mNyjAe7OMpxcCCGEEOJOWoZ64KBVcyW7gJgrOdT3dWX90/0J2ZaIGdA3a0jIx5/jEBJi71CFEKLGK3VSqsjIkSMZOXJkRcQihLiFmQOb4OniQGZuISqVCpUKTiRksTsmja+2nOenvXGM7RRGAz9XgjycCHR3JMjd6Y4rygghhBBC1DaOOg2tQj3YE5PG7pg06vu6om4aiHFHIr90UfPnfaf5+PAH+Pi8AY5S9F8IISpSmZNSQojK5+SgYWrfRjbbFEVh05nLvPPbKU4nX+WTjWdt9kf6u/HhyFY0DZLOlBDVXSkXyhWVSN4TIaq3DuFelqTU+VQebV+X3lO/Z3+Hxaw/+z6ZqBmdtIbPvviNhr3/CS1GgEzhE0KIClHqQudqtRqNRnPbm1YrOS4hKotKpaJnpB+/vdCVDx5uyQOtgmgf7kWolxM6jYrTyVd54LPtfLMtRv55EqKa0l1b5Sk3N9fOkYibFb0nOlmJS4hqqajY+e6YNGs/6b4uj/P9g8sJc/QlUatljIeW7aufg0VDIEUWnBFCiIqgUkr53+ry5ctvuW/Hjh188sknKIpCXl5euQVXWbKysnB3dyczM5M6dWRUiaj+UrMLmP7LEdafTAGgeyNf3n+4Jb5u+go7pzkvj/xjx1Dp9ehCQtB4ekphUCHKQWJiIhkZGfj5+eHs7Cy/V3amKAq5ubmkpKTg4eFBYGBgsTbVtV9RXeMW4m7kFhp5/oeDtAv34sn7w9Fprl+rzyzIZMrGv7Ev5QAaRWFmajqP5ORDx2eh+3TQu9oxciGEqB5K268odVKqJKdOnWLGjBmsXLmSxx57jLfeeou6deve7eHsRjphoiZSFIXFuy/yz1UnKDCa8XPT8/ljbWhbz6tcjm8uKCDv4CFy9+wmZ/ce8o4cAYPBul/t7IwuJARdaCgOISGW70OCcQgNRRccjNrJqVziEKKmUxSFpKQkMjIy7B2KuIGHhwcBAQElJgmra7+iusYtREUwmAy8vvN1VpxbAcATmVm8mJaBpk4w9J8NTYfJlD4hhLiNCk1KJSQkMGvWLBYtWkT//v2ZM2cOzZs3v6eA7Uk6YaImO5N8lWe/P8DZlGy0ahUzBzZhfJd6ZR5toRQWknf0KDm7d5O7ew95Bw+iFBbatNH6+4OiYExJuePxND4+JSSrQnAIDUEbEIBKoylTfELUdCaTCcMNiV9hPzqdDs1tPqOqa7+iusYtREVRFIWvjnzFp4c+BaBXIcxJiMNZUSCiFwx4D3wa2DlKIYSomiokKZWZmcns2bP55JNPaNWqFXPnzqVr167lErA9SSdM1HQ5BUb+vvQoKw8nADA4KpC5w6Nw0d+6DpxiNJJ/4oQlCbVrN7kHDqDcND1X4+uDS/sOOHfsgEuHDuhCQ1GpVJgLCjDEx2O4dInCS5cwxF26/v2lS5ivXr19wFotuqAgHEKC0YWEoguxJKt015JYGg8PmcIkhKiyqmu/orrGLURF++38b7y2/TUKzYU0dfDi0/On8DXkg8YBOv8Nuk4DB2d7hymEEFVKuSel3n33XebOnUtAQACzZ89m2LBh5RasvUknTNQGiqKwaMcF/vnrSYxmhXGd6/H60GbX95tM5J86Re7uPeTu3k3uvn2Yc3JsjqHx9MS5QwdcOrTHuUMHHMLD7yo5ZMrMpPBaospwKc42cZWQYDMNsCRqF5drUwNDcAgOuf79taSV2tGxzDHdjmI0Ys4vQCnIR8nPx3ztphQUXLtv2Xf96/V2Sn4B5gLLV2ub/HzbUWZFr6FKZfv9jaybVTdvKN7eus32vqqkx9z0OI2rKxpPz2s3D7ReXjfc90Tj7o5KXeo1MoSolaprv6K6xi1EZTiYcpAXNr5AekE6AY4+fFroQuS5rZad7nVhwDsQOVCm9AkhxDXlnpRSq9U4OTnRp0+f2w5ZX7p0admjtTPphInaZH9sGnNXn+Y/Y9vihoFf/zEEz5g8fC8WYr5qm4RS16mDc7t2uHTogHOHDugbNqjwhIRiMmFMSaEwLg7DpaLRVte/L9XUQF8fHG4YYaV2q3NDsqgAc37eLZNF1oRSUcKpoACMxgp9ztWKWo3G3d02ceXpicbDE42X1/X7RcksD0/ULlKcW9Qu1bVfUV3jFqKyxGXF8eyGZ7mQdQEXnQvvhY+g666FkBlnadCwvyU55VXfrnEKIURVUO5JqXHjxpXqn4oFCxaUPsoqQjphorZRFAWVSsWFhKNk9n0EB9O1HToFl3ruuNzXCue+D+LYoQ8q7a2n+NmDOT+/+NTA+EsUXorHEBeHOTu7Qs+v0utROTqivtVXJ0dUekdUjnrUNl8dUTteu+/oiMrBActQpmsfwYpiuYF1aeqiXRT7mFZstyvKrR9zm8cqN7cxK5iuZmFKz8CUno4pLQ1TRgbGjHRM6RmYs7Lu7jXT6WxHW3l6oPW8PgJL6+V5035P1A4Od3UuIaqC6tqvqK5xC1GZMgsymbppKnuS9qBWqZlx31RGJV6AHZ+A2QAaPdz/Itw/BXSyqIsQovaqlNX3agrphInaSsm/yo5pI/nDdJH9dSE2QGHc1atMyshErwBuQVC/x7Vbd3ALsHPEt6coCuaiqYHx16YDxl3CnJuL2lGPSu9o/WqTNHJyQqW/liwqanNjosnRklRSOTjU6qlrisFgSVKlp2NKS8eUkYEpPe2m++mY0tMt29LTUfLz7+pcamfn60kqL0+03j5ofbzReHmj9fFG6+2NxvvaV09PKYwvqpTq2q+ornELUdkMJgNv7HyD5eeWAzCm6Rim1RuKZvV0OL/J0sirPoz7FeoE2S9QIYSwI0lKlYF0wkRtdyXvCnN2zeb3i+sAqKdoeTM5mdZ5ttP58G0M4d0tSap6XcDRvfKDrWbMipnLuZdJyEkgPjuehOwEErITSM9Px8/Zj2DXYIJcg6xfPfQ1q4i7OS/PkqRKsySpTBmWEVhGawIr49qIrHSM10ZoYTLd+cA3UqksI668vdH4eFsSWN5eaLx9riWvvK5v8/GRUViiwlXXfkV1jVsIe1AUha+Pfc3HBz4GoEdoD+be/w7Of66DNTPgagI06AOP/U/qTAkhaqVyTUo9/fTTvPrqq4SGht7xxD/99BNGo5HHHnusbBHbkXTChLDYcHEDb+96m8t5l1GhYlTg/UxRPHC+sB0SD3N9bhig0kBwG0uCKrw7hLYHrd5eoduNWTFzJe8KCdnXk07x2fHW7xNzEjGYb1+4/UZOWieCXIIIcrW9BbtYklZejl41Kml1M8VsxpyVdX1E1rVphMbUNIypVzBdScWYloYp9QrGK6mYMjJKmKJ4e2o3N9uRVjcmrby90fr4WPerXVxq9OstKkZ17VeUNm6TyYThDgtSiMqh0+luW+tVVLw1MWt4ddurFJoLaeLVhE96fYJ/bgbM6wqmAhj8EbQdb+8whRCi0pVrUuq1117j3//+N507d2bo0KG0bduWoKAgHB0dSU9P58SJE2zbto0lS5YQHBzMV199RYsWLcr1CVWk6tp5FKIiZBZk8sG+D1h2dhkAQS5BzOo0i86ejeHCVsuw9PObIe2c7QO1ThDWCTo/DxG9Kj/wCmJWzKTmpV4f5XTTiKeE7AQKzYW3PYZGpSHAJYBg12ACXQIJdg3GXe/O5bzL15NX2Ymk5N25iLujxpFA10CbRFXRKKsg1yC8Hb1rVRJFMRotI7FSUzGmpmJKTcWYej1pZUxLtSayjKmpd1zZ8WYqvf6GpNUNCSwfb7R+ftdvvr6o9bUvKStKVl37FXeKW1EUkpKSyMjIqPzgxC15eHgQEBBQqz77q5pDKYd44Y8XSMtPw8/Zj896f0bj0xtg7UzQucAz28Er3N5hCiFEpSr36XspKSl8/fXXLFmyhGPHjtnsc3Nzo0+fPvz1r3+lX79+9xa5HVTXzqMQFWlHwg7e3Pkm8dnxAAyLGMbL7V7GXX9tyl5GnCVBFbPZkqTKuZZQUWvh4YXQZIhd4i4rRVFIzU8tcZRTaZNOapWaAOcAa4LoxiRRsGswfs5+aNV3LhhfYCogKSeJ+KvxJOQk2Iy+SshJ4HLuZRRu/5HtqHG0JsCsI61crsfi7eSNWlU762IpioI5K+uG5FWqJXFVNAKraPu1BJaSm1um42vc3W0TVX5+aP390N1439sblU5XQc9QVBXVtV9xp7gTExPJyMjAz88PZ2dZVdPeFEUhNzeXlJQUPDw8CAwMtHdItdqlq5eYvGEy5zPP46R1Yk6Xt+nxx4doYrdD3c6W+lK1uC6lEKL2qdCaUhkZGcTGxpKXl4ePjw8RERHVumNSXTuPQlS0XEMunxz8hO9Pfo+Cgo+TD692eJU+YX1sGyoKXD4Fm9+F40stialHvoXGg+wTuE1olqRTUYLpxqRTfHY8iTmJFJgKbnsMtUqNv7N/8aSTSxDBbpakk05d8YkGg8lAUk4Sl7IvkZiTaJs8y0kgOSf5jkkrB7WD7dTAGxJWQa5B+Dr5VuvP8/Jkzs21TBW8cqXYSCzj5cuWW0oKxpQUlMLbJy6tVCrLFEE/X3S+NyWw/HzR+lmSWBovLyneXo1V137F7eI2mUycOXMGPz8/vL297RShKElqaiopKSk0atRIpvLZWVZhFtM2TWNX4i4AnDVONMnNonl+Hs0iH6R5p2mEuIXI31khRK0ghc7LoLp2HoWoLIdSDvGPHf8gJjMGgL5hfZnZYSY+Tj62DU1GWDYJjv0P1DoY+R1EDqjQ2G6s6VSUnLnx+8TsRPJNt18B7sakU1GiKcjFkqgJdA0kwCWgUpJO96ooaWV9DXISrKOuErMTScpNwqyYb3uMcPdwhkYMZVD4IAJd5ap7aRSt+mhIScGYchljcvL1hNXlFAzJKdYkFkZj6Q6q0VhqW92QsNLdPArLzw+NR80qjF9TVNd+xe3izs/PJyYmhnr16uHkJMvcVyV5eXlcuHCB8PBwHB0d7R1OrWcwG/jXvn/xy5+/kGfMK7bfXe9OM+9mlptPM5p7N8fP2U8+y4UQNU6FJaWOHDlS8oFUKhwdHalbty76alZXo7p2HoWoTAWmAr48/CXfHPsGk2LCXe/O9HbTGVx/sG1HymSEpROvjZjSwajvoVH/uz6vyWzict5lm6lsRaOEEnMSSchOuGMhcRUq/F38bUYF3Ti9rbokne6VwWwgOSfZ+vrdONIqMSeRpJwkTIpl5TsVKtoFtGNIxBD6hvXFRedi5+irP8VsttS/upa0MqSkYCxKWF0bcWVMSbHUvjLfPnlYRKXTofX1vZ6k8vJE4+GB1tPyVXPTV7Wrq/zjUwmqa7+iNEkpSXxUPfLeVE1Gs5GYzBiOXTnG8Z3/4nh+Mqcd9BhK+Aj2cfKhuXdzmvo0pZl3M5r7NMfL0avygxZCiHJUYUkptVp92w6tTqdj5MiRfPnll9XmD2N17TwKYQ+n0k7xj+3/4GTaSQC6BHdhVsdZtqNqTEb45Uk4EQ0aBxj1AzTsW+LxjGYjKbkpxUc5XUtCJeUkYVRuP7qkqKZToGugTTFxa9LJOQCdpuYnne5VdmE262LXser8KvYk7bFud9Q40qtuL4ZGDKVDYIdS1ccSd08xGi1TBFNSMKZcH3V1cxLLlJZW9oNrtZYklYc7Wg9PNJ4eaDxuSmB5eFzbbkluqevUQSV1UMqkuvYrJClVPcl7Uw1kJcLnHTHkZ3Cm0ySO12vL8dTjHLtyjHMZ56wXhG4U6BJIc5/mNPVuav1ax6H6fJ4IIUSFJaWWL1/O9OnTefnll2nfvj2KorB3714++OADZs2ahdFo5O9//zsjR47k/fffv+cnUhmqa+dRCHsxmA0sOr6ILw59QaG5EGetM1Pum8LIyJHXi2ibDPC/CRhOriDZwYmEfrOIdw8olnhKzk0usTN2I61Ki7+LvzXhdPOKc5VV06k2SchO4Nfzv7Ly/ErrtE0AXydfBoYPZEjEECK9Iu0YoTAXFmK6Ni2waOqgKT3dcsvIwJSRjjEjw/J9egZKXvFpJKWiVqNxd78hYeVZLHFVbJ+7Oypt7U1eVtd+hSSlqid5b6qJIz/D0qcsdTefWg9BrQHIM+ZxOu00x1OPc/zKcY6lHuNC5oUSa0SG1QmzTv1r7tOcxl6NcdY5V/YzEUKIUqmwpFT79u1566236N/fdjrO2rVree2119izZw/R0dFMmzaNc+fO3eIoVUt17TwKYW8xmTG8vuN1DqQcAKCNXxvaBrQlMft6Ee6U3CTuNBFJq9baJptcgmxWr/N18kWjluKt9qAoCsdTj7Pi3ApWx6wmoyDDui/SM5IhEUMYVH9Q8fpiosox5+dfS1Zl3JC4ysB4w/emdNv95uzsuz6fuk4dNJ4eaD290Hh5ofX2QuPlXfJXD48alcSqrv2KmpyUSklJ4bXXXmP16tUkJyfj6elJy5Ytef311+nUqRMHDx609mOzsrIICAigQ4cOfPbZZ/j4+FhrNhXx8PCgRYsWvPXWW3Tv3h2ALVu28N5777F//34SExNZtmwZDzzwgE0cS5cu5csvv2T//v2kpqZy8OBBWrVqZdPm3LlzvPTSS2zbto2CggL+8pe/8Mknn+Dv71/ic6vu702toSjw8xNwYjn4NoG/bgJdye9XdmE2J9NOWpNUx64cs66GfCO1Sk199/rWJFUz72ZEekXioHGo4CcjhBB3Vtr+UJl7gEePHiUsLKzY9rCwMI4ePQpAq1atSExMLOuhhRDVTLh7OAv+soCfTv/ER/s/4kDKAWuC6kYOqAgqLCTQrBBcryfBQW1tEk8+Tj7XR1iJKkWlUtHcpznNfZrzctuX2Ra/jRXnVrDp0iZOp5/m9L7T/Gv/v+gc1JmhEUPpGdoTR638U1QVqR0dUQcEoAsIKPVjlMJCTJmZ15NX6bYJLVN6OsaMG+5nZGLOzATAnJWFOSsLQ+zFO59IpbKMsPL2QuvljdbH+9YJLG9v1C4uUhtLlMnw4cMxGAwsWrSI+vXrk5yczIYNG0hLSyMlJYU+ffowZMgQ1q5di4eHBzExMaxYsYLc3Fyb46xfv55mzZqRkpLCzJkzGThwIMeOHSM8PJycnBxatmzJ+PHjGT58eIlx5OTk0KVLFx5++GEmTpxY4v5+/frRsmVLNm7cCMBrr73GkCFD2LVrF2qZSlt9qVQw6EOI3QGXT8Ifb0O/t0ps6urgSruAdrQLaGfdlp6fbp3yVzSq6nLeZc5mnOVsxlmWn1sOWC70NfRoaP3b3cy7GREeETL1XghRZZV5pFTr1q1p2bIlX331FQ4Oliy8wWBg4sSJHD58mIMHD7J9+3Yef/xxYmJi7nC0qqG6XtEUoipJyE5g4fGFmMwma7Ip0CWQELcQvLSuqH8eB2dWg9YJRv8E9bvbO2RxDzILMlkTs4aV51dy+PJh63ZXnSt9w/oyJGII9/nfJ8nGWkgxGjFlZVmnEhrT0zGlpmFMS8V0JRVjeprNfVNmpmUEQRmoHBzQeHuj9fKyJrJsvnp7XxudZfmqdqjcUQPVtV9RU0dKZWRk4OnpyaZNm6yjmm4UHR3Nww8/TF5eHtpbjNgrGil148im+Ph4QkJCmDdvHpMmTbJpr1KpShwpdbvjAfz+++8MGDCA9PR063uQnp6Ol5cX69ato0+fPsWOVZ3fm1rp1G+w5FFABRPWQN2Od32olNyU60mqa4mqG0c0F3HUONLYqzFNvJvgqnNFp9GhU1+/adVay/c3bS9rO/mbL4S4UYWNlPrss88YOnQoISEhREVFoVKpOHLkCCaTiVWrVgFw/vx5nn322buPXghR7QS5BjGzw8xbN3hkEfw0Bv5cCz+MhMd+hvCulRegKFfuendGNh7JyMYjic2KZcW5Ffx6/lfis+NZdnYZy84uI8gliEH1BzEkYgjh7uF3PqioEVRaLVovL7RepVs5SjEaLSOxUtMwpV7BmJaOKS0V45VUTOlp17anYkxNxZSWhjk3F6WwEGNiIsZSjspWu7ldS2BdH3XlMWIETi2a38tTFYoChtw7t6sIOmfLyJNScHV1xdXVlejoaDp27FhsleiAgACMRiPLli1jxIgRpR6F5+xsqeVjMNx+BdiyKCgoQKVS2cTo6OiIWq1m27ZtJSalRDXTeCC0egwOfQ/Lnoant4He9a4O5efsR6+6vehVtxdgmXKfkJNgM5rqROoJsg3ZHLp8iEOXD5XjEylOo9JcT1zdlLC6OaF1Y7sAlwCaeDUh0iuSBh4NZPqhELVMmZNSnTt35sKFCyxevJgzZ86gKAojRoxg9OjRuLm5ATBmzJhyD1QIUc1p9fDIt/DTY3B2PfzwCDz2P6jXxd6RiXsUVieM51s/z+RWkzmQfICV51fy+4XfSchJ4D9H/8N/jv6HKJ8oBkcMZkC9AXg4etg7ZFGFqLRatD4+aH18gEZ3bG/Oy8OUloYxNRVj2rVRV9cSVsa01Ov3U1MxpqeD0Yj56lUKr16F2FjrcVy7dQUkKXVPDLkwO8g+556ZAA4upWqq1WpZuHAhEydOZN68ebRp04bu3bszatQooqKi6NixIzNnzmT06NE8/fTTtG/fnl69ejF27Nhb1nHKyclhxowZaDSaEkdf3a2OHTvi4uLC9OnTmT17NoqiMH36dMxms5TGqEn+MgfOb4b0GFg/CwZ9UC6HValUBLsGE+waTP96lvq/ZsVMbFYsx64c42zGWQpMBRhMBgxmA4XmQoxmIwbTDd+bDRjNRgpNhRgVo7WtwWSwuV9oLsSs2FYNNSkmTCYTBaaCu34OWpWW+h71LSO7vJrQ2KsxkV6RuDm43dNrI4Souko9fW/ChAl8/PHH1sRTTVJdh9kLUS0Z8i3D1s9tBJ0LPP4/COts76hEOcs35rMpbhMrzq1gR8IO6wqLWrWWbsHdGBoxlK4hXeVqqKhQitmMOSvretIq9Xriyn3YUBzq1q2Q81bXfkWZp+8V5lSLpFSR/Px8tm7dys6dO1mzZg179uxh/vz5jBs3DoDU1FQ2btzIrl27iI6OJi0tjS1bttCiRQvrdDsnJyfUajW5ubkEBgYyd+5cHn/88WLnutvpe2CZwvfMM88QExODWq3m0Ucf5cSJE3To0IHPP/+8xOcl0/eqofOb4Nthlu/HLIOIXnYN526YzCaMyrUE1rWElsFssLlfUoKrKAFWtC82K5bTaac5mXaSrMKsEs8V4hpCE+8mRHpGWr/6OftJfUEhqrByX31Po9GQmJiIn59fuQVZVVTXzqMQ1ZYhD358FM7/cS0x9QuEdbJ3VKKCXMm7wuqY1aw8t5KTaSet29317vyl3l8YEjGEKJ8o6ViKGsNe/Yo5c+awdOlSTp06hZOTE507d2bu3LlERkaW6vFlTkpVk+l7t/LUU0+xbt06Ym8YQVeksLCQ1q1b07ZtWxYtWmRNIq1YsYKmTZvi4eGBt7f3LY99L0mpIleuXEGr1eLh4UFAQADTpk3j5ZdfLtZOklLV2G8vw56vwC0Int0JTh72jsiuFEUhMSeRU2mnOJV2ipNpJzmVdoqknKQS23s5ellHUhVN/wtzC5MVm4WoIsq9plQZ66ELIcSt6Zxg1A/w4yiI2Qzfj4DHl0LdDvaOTFQAHycfxjQdw5imYziTfoaV51by6/lfuZx3mZ9O/8RPp38irE4YQ+oPYXDEYIJdg+0dshDV0ubNm5k8eTLt2rXDaDTy6quv0q9fP06cOIGLS9lGFZWKSlXm0UpVSdOmTYmOji5xn4ODAxEREeTk5NhsDw0NJSIiohKiAx8fHwA2btxISkoKQ4cOrZTzikrU53VLSYO087B6Ojz0pb0jsiuVSmVdLKeoThZARn4Gp9NPWxNVp9NOcz7zPGn5aexI2MGOhB3Wtk5aJxp5NqKxV2PrFMAGng3Qa/QlnVIIUQWUqaZUeV/F3rJlC++99x779+8nMTGx2BUlRVF44403+Oqrr0hPT6dDhw589tlnNGvWzNqmoKCAl156iR9//JG8vDx69+7N559/TkhISLnGKoQoZw7O8OgS+HEkxGyBxcNhzFIIbW/vyEQFauTZiGltpzGlzRR2J+5m5fmVbLi4gdisWD499CmfHvqUtv5tGRoxlL5hfXF1uLvir0LURmvWrLG5v2DBAvz8/Ni/fz/dunWzU1T2l5qaysMPP8yECROIiorCzc2Nffv28e677zJs2DBWrVrFkiVLGDVqFI0aNUJRFFauXMlvv/3GggULSn2e7Oxszp49a70fExPDoUOH8PLyou61qaJpaWlcvHiRhIQEAE6fPg1Yiq0HBAQAlvetSZMm+Pr6snPnTl544QVefPHFUo94E9WIgws8+CV80x+OLIEmg6HJEHtHVeV4OHrQIbADHQKvX7zMN+bzZ/qfnEo/xanUU5xKP8WZtDPkGfM4fPmwzcrAGpWGcPdw62iqoq/uend7PB0hxE3KlJRq1KjRHRNTaWlppT5eTk4OLVu2ZPz48QwfPrzY/nfffZd//etfLFy4kEaNGvHPf/6Tvn37cvr0aWttqylTprBy5UqWLFmCt7c306ZNY/Dgwezfvx+NRoZuClGlOTjDoz9Zip5f2ArfPWSpqxDazt6RiQqmUWvoHNyZzsGdyTHksD52PSvPrWRP0h72Je9jX/I+3t79Nr1CezE4YjAdAztK/SkhyigzMxMAr1ushFhQUEBBwfWCxFlZJddyqe5cXV3p0KEDH374IefOncNgMBAaGsrEiROZOXMmiYmJODs7M23aNOLi4tDr9TRs2JD58+eXafGeffv20bNnT+v9qVOnAvDEE0+wcOFCAFasWMH48eOtbUaNGgXArFmzeP311wFLomrGjBmkpaVRr149Xn31VV588cV7fBVElRXaHrq8ANs+hJVTILQjuPraO6oqz1HrSAvfFrTwbWHdZjKbiM2KtY6mKpr+l1GQwdmMs5zNOMvK8yut7QNdAm0KqjfxboK/s7+UExCikpW6ppRareajjz7C3f32GeUnnnji7gK5ae69oigEBQUxZcoUpk+fDlg6T/7+/sydO5dJkyaRmZmJr68v3333HSNHjgQgISGB0NBQfvvtN/r371+qc0tNKSHsrDAHvn8EYreBvg6MiYaQ++wdlbCDxOxEfo35lZXnVnI+87x1u6vOle6h3ekb1pcuQV1w1ErdFFF1VYV+haIoDBs2jPT0dLZu3Vpim9dff5033nij2PZS15QSVYK8NzWAsQD+0wuSj0HjwTBy8T3XTBMWiqKQnJtsrVNVlKyKz44vsb2H3oNIr0iaeTejc1BnWvu1lotiQtylci90rlarSUpKqrBC5zcnpc6fP09ERAQHDhygdevW1nbDhg3Dw8ODRYsWsXHjRnr37k1aWhqenp7WNi1btuSBBx4osaNVkqrQeRSi1ivMgcUj4OIO0LvD2GgIbmPvqISdKIrCidQTrDy/kt8v/M7lvMvWfU5aJ7qFdKNPWB+6BXfDWedsx0iFKK4q9CsmT57Mr7/+yrZt225Z0qCkkVKhoaGSlKpm5L2pIZKOwlc9wWyAB+ZBq0ftHVGNllWYxem00zZF1WMyYjAqRpt2Tlon2ge0p3NQZ+4Pvp+6dSpm1VYhaqJyL3Re2cMYk5Isqyz4+/vbbPf397eukpKUlISDg4NNQqqoTdHjS1JbhqsLUa04uMBjP1uKnl/cCd89AGOXQ1DrOz5U1DwqlYpmPs1o5tOMV9q9wpHLR/g99nfWx64nMSeRtRfWsvbCWvQaPV2CutC3Xl+6h3THzcHN3qELYXfPP/88K1asYMuWLbetsanX69HrpfivEFVCQAvo8XfY+BasfgXCu4K71MitKHUc6tAuoB3tAq6XjCgwFXA24yynUk9xIOUA2+O3k5qfyuZLm9l8aTMAIa4hdAnuQuegznQI7ICLrvou9iBEVVHlV9+7ORmmKModE2R3ajNnzpxSj6ISQlQivaslMbV4OMTthm8fgCdWQGBLe0cm7EitUtPKrxWt/FrxctuXOZ56nHWx61gXu464q3FsjNvIxriN6NQ6OgZ2pG9YX3qG9sTD0cPeoQtRqRRF4fnnn2fZsmVs2rSJ8PBwe4ckhCiLLlPgzBq4tBeWT4bHl4Fabe+oag29Rk8z72Y0827G8EbDURSFM+ln2Ba/jR0JOziQcoBL2ZesKwdrVVpa+bWiS3AXugR1IdIrErVK3i8hyqrUSSmz2VyRcRRTtAJJUlISgYGB1u0pKSnW0VMBAQEUFhaSnp5uM1oqJSWFzp073/LYM2bMsBafhOvD1YUQVYDeDR77Hyx+yNIp+3YYPLHScgVR1HoqlYrmPs1p7tOcKW2mcCb9jDVBdT7zPFvjt7I1fisalYa2AW3pF9aPXnV74ePkY+/QhahwkydP5ocffmD58uW4ublZR427u7vj5ORk5+iEEHek0Vqm7s27H85vgn1fQ/uJ9o6q1lKpVER6RRLpFcmTLZ4k15DLnqQ91iRV3NU46+IsHx/4GC9HL7oEdbEs5BLUGS/HkheZEKIqKTQV2r1uWqlrSlW0WxU6f/HFF3nllVcAKCwsxM/Pr1ih88WLF/PII48AkJiYSEhIiBQ6F6K6y8+E7x6E+P3g5HUtMdXc3lGJKuxcxjnWxa5jfex6Tqeftm5XoaKNfxv6hvWld93eBLgE2DFKURvYq19xq1HiCxYsYNy4cXd8/O3ilrpFVZe8NzXQ7i8tU/h0zvD0NvCOsHdEogRxWXFsT9jO9vjt7E7aTZ4xz7pPhYom3k0sSaqgzrT0a4lOrbNjtKK2K1qd8nT6aU6nnbZ+be7TnH/3+neFnLPcC51XhOzsbM6ePQtA69at+de//kXPnj3x8vKibt26zJ07lzlz5rBgwQIaNmzI7Nmz2bRpE6dPn8bNzVI35JlnnmHVqlUsXLgQLy8vXnrpJVJTU9m/fz8ajaZUcUhSSogqKi/DUlsq4SA4e8MTq8C/qb2jEtXAxayLrL+4nvWx6zl65ajNvijfKPrW7UufsD6EuEm9DlH+qmu/QpJS1ZO8NzWQ2QzfDoULWyG0A4xfDerS/V8j7MNgMnDo8iHrKKpTaads9rvoXOgQ0MFaj0r6H6IiXS28ypn0M5xOO239ejbjLPmm/GJtg12DWTN8TYXEUS2SUps2baJnz57Ftj/xxBMsXLgQRVF44403+PLLL0lPT6dDhw589tlnNG9+fbREfn4+L7/8Mj/88AN5eXn07t2bzz//vEzT8apr51GIWiEv3VJbKvEQOPvAuFXg18TeUYlqJDE7kfUX17Mudh2HUg6hcP3PXhOvJvQN60vfsL7Uc69nvyBFjVJd+xWSlKqe5L2poTIuwuedofAq9Hkd7n/R3hGJMriSd4UdCTvYFr+NXQm7SC9It9lfr049a4KqXUA7nLQyxVqUnaIoxGfHXx/9dG0EVHx2fIntnbRONPRsSKRnpOXmFUlDz4YVVrC/WiSlqorq2nkUotbIS7fUlko8DC6+lhFTfo3tHZWohi7nXmbDxQ2si13HvuR9mJXr9RIbeDSwJqgaeDSo9FVnRc1RXfsVkpSqnuS9qcEOLrYUPNc4wF83gX8ze0ck7oJZMXMy9aR1qt/hy4cxKSbrfge1A23829AlqAtdgrtIH0SUKM+Yx9n0s9YE1Jn0M5xJP0O2IbvE9gEuAUR6RtLIsxGNvRoT6RVJqFtopRbjl6RUGVTXzqMQtUpummUoe9JRcPGDcb+CbyN7RyWqsbT8NP64+AfrYtexO3E3RsVo3VevTj36hPWhT1gfmno1lc6hKJPq2q+QpFT1JO9NDaYo8OOjcGY1BETBUxtAa9+CxOLeXS28yp7EPWxL2Mb2+O0k5iTa7Pdz9qNzUGe6BHehU2An3PXudopU2IOiKKTkpnA6/frUu9Ppp4nNirW5mFpEp9YR4RFhHflU9LUq/NxIUqoMqmvnUYhaJzcNFg2F5KPg6m9JTPk0tHdUogbILMhk86XNrLuwjh0JOyg0F1r3BbsG06duH/rW60sLnxay3LO4o+rar5CkVPUk700NdzUZPu8IeWnQ7RXo9aq9IxLlSFEUYrJi2BG/g20J29iXtI8CU4F1v1qlprl3c+tUv0ivSJnqV4MYTAbOZ54vVnw8oyCjxPZejl408mx0PQHlFUm4e3iVLaIvSakyqK6dRyFqpZxUWDQEUo6Da8C1xFQDe0clapAcQw5bLm1hXew6tsVvs1lNx8/Zz7qKX5RvFHqN3o6RiqqquvYranJSKiUlhddee43Vq1eTnJyMp6cnLVu25PXXX6dTp04cPHiQ1157jT179pCVlUVAQIC1lqmPjw8XLlwgPDzcejwPDw9atGjBW2+9Rffu3QGYM2cOS5cu5dSpUzg5OdG5c2fmzp1LZGRkiTFNmjSJr776ig8//JApU6ZYt/fo0YPNmzfbtB05ciRLliwp8TjV/b0RpXB8Gfw8DlQaeGodBN9n74hEBSkwFbA/eT/b47ezI2EHZzPO2uxXoSLYNZgIjwgiPCJo4NGA+h71qe9eX5JVVVx6frrN1LtTaac4n3keo9lYrK1apaZenXo2yadIz0h8nHyq1ej90vaHtJUYkxBC3DsXb3hixbXE1AlYNNiSmJLlkkU5cdG5MCB8AAPCB5BnzGN7/HZ+j/2dLZe2kJKbwvcnv+f7k9+jU+to6t2UVr6taO3XmpZ+LfFx8rF3+EKIEgwfPhyDwcCiRYuoX78+ycnJbNiwgbS0NFJSUujTpw9Dhgxh7dq1eHh4EBMTw4oVK8jNzbU5zvr162nWrBkpKSnMnDmTgQMHcuzYMcLDw9m8eTOTJ0+mXbt2GI1GXn31Vfr168eJEydwcbEtIhsdHc3u3bsJCgoqMd6JEyfy5ptvWu87Ock/m7Vaswfh5Eo49gssexombQGd/EzURHqNns5Bnekc1BmApJwkdiTsYHv8dvYl7yMtP41L2Ze4lH2JzZeuJ69vTlYV3SRZVTkURSE1P5XE7EQSchJIzE4kPjuexJzr929V+8lN52YpPu4Vaan95BlJhEcEjtrac5FBRkpRfa9oClGrZV+2JKYunwS3IMuqfJKYEhWowFTAzoSd1hFUaflpxdqEuIbQyq8VrXxb0cqvFQ08GqCRZbxrnerar6ipI6UyMjLw9PRk06ZN1lFNN4qOjubhhx8mLy8Prbbk67VFI6UOHjxIq1atAIiPjyckJIR58+YxadKkYo+5fPkyfn5+bN68mW7dulm3x8fH06FDB9auXcugQYOYMmVKsZFSrVq14qOPPirV86vO740og9w0+LwTZCdBx8nwl9n2jkjYQVp+GucyznE24yznMs5Zbzev7ldERlaVD6PZSEpuCgnZCZZE001fE3MSbaZd3kqoW6il+LjX9Sl4QS5B1Wr0U1nISCkhRM3m6gtPrLSMlLp8ypKgGrcKvOrbOzJRQ+k1enqE9qBHaA8UReHS1UscunyIgykHOXT5EGfTz1qvXq46vwqwjLqK8omyjqRq6duywpbdFaKyKYpiM721MjlpnUrdiXd1dcXV1ZXo6Gg6duyIXm877TYgIACj0ciyZcsYMWJEqY/r7OwMgMFgKHF/ZmYmAF5eXtZtZrOZMWPG8PLLL9Os2a1XUvv+++9ZvHgx/v7+DBgwgFmzZuHm5laquEQN5ewFQz+BHx6GXZ9D44FQ7357RyUqmZejF14BXrQLaGezPTUvlfOZ54slrNIL0ks1sqqBRwMiPCIIdw+vlcmqAlOBzSinm78m5ybbrJhYEhUqfJ19CXYNJtAlkCDXIOvXIJcgAl0Da+VrWxqSlBJCVF9FiamFg+HKaVhYlJgKv/NjhbgHKpWK0DqhhNYJZUjEEMCyms7Ry0c5ePkgh1IOceTyEXIMOexM3MnOxJ2ApUZAQ4+GltFU10ZUBbsG19grZKJmyzPm0eGHDnY59+7Ru3HWOZeqrVarZeHChUycOJF58+bRpk0bunfvzqhRo4iKiqJjx47MnDmT0aNH8/TTT9O+fXt69erF2LFj8ff3L/GYOTk5zJgxA41GU+LoK0VRmDp1Kvfffz/Nmze3bp87dy5arZa//e1vt4z3scceIzw8nICAAI4dO8aMGTM4fPgw69atK9XzFTVYo37QZiwc+Bain4FndoBekpUCvJ288XbyLpasut3Iqtslq4qSVEW36p6syi7Mtkk0JWQn2Ix2Ss1PveMxtGqtJcl0LcF089cA5wB0mqpZcLyqk+l7VN9h9kKIa64mW0ZMXTkD7qGWGlOeYfaOStRyJrOJsxlnrSOpDqUcIj47vlg7Hycf63S/Vn6taOLVBAeNLPldnVXXfkVZp+/lGnKrRVKqSH5+Plu3bmXnzp2sWbOGPXv2MH/+fMaNGwdAamoqGzduZNeuXURHR5OWlsaWLVto0aKFdfqek5MTarWa3NxcAgMDmTt3Lo8//nixc02ePJlff/2Vbdu2ERISAsD+/fsZNGgQBw4csNaSqlevXrHpezfbv38/bdu2Zf/+/bRp06bE5yXT92qRgqvwRWfIuAhtnoCh/7Z3RKIauttpgEXT/0oaWaUoCkbFiFkxYzKbMCpGTGYTJsVk8/XG7UbFiNlstnxvNlra3NS+aFvRfrNivt72hv03Hvtq4VWbJNTVwqt3fE2ctE4lJpyCXC03HycfWYG5jGT1vTKorp1HIcQNribBwkGQehbc68L4X8Gjrr2jEsJGSm4Kh1IOcejyIQ6nHOZE2oliq644qB1o7tOcln4tae1rmfbn5eh1iyOKqqi69ivKmpSqLtP3buWpp55i3bp1xMbGFttXWFhI69atadu2LYsWLbImpVasWEHTpk3x8PDA29u7xOM+//zzREdHs2XLFpsV+z766COmTp2KWn39nxqTyYRarSY0NJQLFy6UeDxFUdDr9Xz33XeMHDmy2H5JStVCMVstF+MARv9sGUElRDlIzUu1JKgyryeqzmacJaMg45aP0aq1mMwmFKp2WsFD73HLaXVBLkG4691l5Ho5k5pSQojaxS0AnlhlSUylnbNM6Rv3K3iE2jsyIaz8nP3oV68f/epZ/oHIN+ZzIvWEdTTV4ZTDpBekcyDlAAdSDrCABQDUq1OPlr4tae3XmlZ+rQh3D5erdcLuVCpVmUcrVSVNmzYlOjq6xH0ODg5ERESQk5Njsz00NJSIiJIX1VAUheeff55ly5axadMmm4QUwJgxY+jTp4/Ntv79+zNmzBjGjx9/yziPHz+OwWAgMDCwFM9K1ArhXaHjs5baUiueh2d3WmpOCXGPiqYBtg9sb7O9qGZV0ciqoq8ZBRnFLq6VRKvWolFpUKvUaNVatCotapUajVqDVqVFo9agUWms7Yrul/R9SY8tOm5RO2edc7HRTtX571VNJ0kpIUTNUSfQUlNqwUBIj7FcRRz3K7iH2DsyIUrkqHWkjX8b2vhbpuQoikJsVqx1ut/BlIOczzzPhawLXMi6wPJzywFwc3CjpW9LWvm2orVfa5r7NJfOlhC3kJqaysMPP8yECROIiorCzc2Nffv28e677zJs2DBWrVrFkiVLGDVqFI0aNUJRFFauXMlvv/3GggULSn2eyZMn88MPP7B8+XLc3NxISkoCwN3dHScnJ7y9vYuNrtLpdAQEBBAZGQnAuXPn+P777xk4cCA+Pj6cOHGCadOm0bp1a7p06VJ+L4qo/nr/A/5cB6l/wm8vwYhv7B2RqMFKqlmlKArpBekUmgrRqq8lim5MLF1LQskqxOJOJCklhKhZ6gRZElMLB0H6BcuIqfG/WbYLUcWpVCrqudejnns9HmjwAACZBZkcvnzYOu3v2JVjXC28yrb4bWyL3waARqWhkWcjWvi0oLlPc5p6NyXCIwKtWv7MC+Hq6kqHDh348MMPOXfuHAaDgdDQUCZOnMjMmTNJTEzE2dmZadOmERcXh16vp2HDhsyfP58xY8aU+jxffPEFAD169LDZvmDBAmvdqjtxcHBgw4YNfPzxx2RnZxMaGsqgQYOYNWsWGo38YyduoHOCB7+Er/vCsV+g8WBo/pC9oxK1iEqlkvIColxITSmqb+0HIcRtZMRZElMZseDiC5EDoEEfCO8OTh72jk6Iu2YwGziTfsaSpLqWqErKSSrWzlHjSKRXJM28m9HcpznNvJsRVidMrlhWguraryhrTSlRNch7U8tt/CdseQ+cPOHZXZZyBkIIUQVIofMyqK6dRyHEHWRchEVDLVP5iqg0ENIOGvS23AJbg1pq84jqLSkniUOXD3HiygmOpR7jROoJcgw5xdo5a51p6t2UZt7NaObTjGbezQh1C5XCnuWsuvYrJClVPcl7U8sZC2F+b0g6Ag37w+ifQD7ThRBVgCSlyqC6dh6FEKVgyIcL2+Dseji3Aa6csd3v5AURvSwJqohecoVR1AhmxcyFrAucSD3B8SvHOXblGKfSTpFvyi/W1s3B7Xqi6lqyKsglSBJV96C69iskKVU9yXsjSD4BX3UHUyEM/QTajLV3REIIIUmpsqiunUchxF3IuAhnN1gSVOc3Q0GW7X7/FtCgl2WqX2hH0DrYJ04hypnRbCQmM4bjqZYk1cnUk5xKO0WhubBYW0+9J019bkhUeTfDz9lPElWlVF37FZKUqp7kvREAbP8Y1v0DHFzhmR3gGWbviIQQtZwkpcqgunYehRD3yGSAS/ssCaqz6yHhoO1+nQuEd7s+1c+rvn3iFKKCGMwGzmWc49gVy5S/46nHOZN+psTlnX2cfGju3dwmWeXt5F3CUUV17VdIUqp6kvdGAGA2WWppXtwJ9brC2BVSnkAIYVeSlCqD6tp5FEKUs5wrcO6P61P9cv6/vTuPj6I+/wD+2WSzCTkIVw5CAoQg92UgQAyHlIgithwRuZUft9SDAhWhWorWgliBVgRBFFKsTUstKCgIFbm8EMopeBDunJCYOySbzfP7Y3Y3u8mGfDmym+Pzfr3mtbMzs7PfebLHk2e/851r9uubtAEizAWq1v0BT1/XtJOoGhWbivHjzz/iu+vfab2qMk4jMSsRpVJaYdtgn2DrQOqWUwD9Pf1d0OqapbbmFSxK1U7825BV5nlgbQxgLAAeWgb0fdLVLSKieoxFqVtQW5NHIqpGpaVA2intVL9znwFXvgZse4+4eQAt+5p7UcUCQV04sCjVWYUlhfgh8wecvn7aOpD6xeyLEFRMIUJ9Q62DqHdp1gURjSLQ2LNxvTr1r7bmFSxK1U7825CdbzcAH88D9F7ArENAs3tc3SIiqqdYlLoFtTV5JCInupEDXDxoLlL9F8i6ZL/eN6isF1XELwDvJq5pJ5GT5BXn4WzmWetg6t9lfIfLuZcdbuvp7okg7yAE+wQj2CcYQd5BaO7bHMHewdZlfgY/Jx9B9amteQWLUrUT/zZkRwR4bxSQuBdo0ROYshtw17u6VURUD6nmQ/yEIiJS4dUQ6DBMm0S0LvLn/qsVqS4eBPLSgBPvaxN0QItIc5EqVksKmRBSHeNr8EVUcBSigqOsy7KLsq1jU1mKVcn5ySgyFeFy7uVKi1YA4OPhY1ekCvIJQnOf5tp983IvPf/hJiK6KZ0O+NVqYE00kHQU+GIlMOC3rm4VEVGl2FMKtfcXTSKqIUqKtIFFLaf6pX9nv97LH2hzf1lPKv9QlzSTyBWKTcVIK0hDan4qUvNT7eZT81ORWpCK7KJspX018myE5j7NEeQTZFfAskyB3oHwcPOo5iOqWm3NK9hTqnbi34YcOpEAbJ2pDTcwfS/QvJurW0RE9Qx7ShEROYveUys6tbkfGPIykJOsFacSP9MGTr+RBZz5UJsAIKCDVqBq3Q9oFQ00aOzCxhNVL4O7AWF+YQjzC6t0mwJjAdIK0pCSn4K0/DRrscpSuErJT0FhSSGyirKQVZSFs5lnHe5HBx2aNWhmX6wyF68sva6aNmgKNx2vSEVEdVy3McDZ7cD3O4Cts4AZn2v5ChFRDcOiFBHR3dYwBIicpE2lJiDpf1qB6txnQNIR4Nr32vT1mwB0QHAXoFU/oHUM0CqG41FRvePt4Y1w/3CE+4c7XC8iyCnOqbSnlWXeWGrEtcJruFZ4Daeun3K4L72bHkHeQVgQtQCDWg6qzsOiGiQ9PR0vvvgidu7cibS0NDRu3Bjdu3fHH/7wB0RHR+PYsWN48cUXcfjwYeTk5CA4OBh9+vTBm2++iWbNmuHixYsIDy97fTZq1Ahdu3bFyy+/jIEDBwIA1q5di7Vr1+LixYsAgM6dO+P3v/89hg4dan1cZQP+L1++HL/9rXaKVVFREebPn49//OMfKCwsxODBg7FmzRqEhrKXLd0CnQ54ZBVw+WutB/e+ZUDsYle3ioioAhaliIiqk5s7EBalTfc/DxT+DJzfp00XvwAyfgJST2nTN2u1xwR21gpUrftpRSqfZq48AiKX0+l08Pf0h7+nP9o3ae9wm1IpReaNTLueVil5KXZFq2uF11BSWoKkvCQY3A1OPgpypbi4OBiNRsTHx6NNmzZIS0vDZ599hszMTKSnpyM2Nha//OUv8emnn6JRo0a4cOECPvroIxQUFNjt57///S86d+6M9PR0LFq0CA8//DBOnz6N8PBwhIaGYtmyZWjbti0AID4+HsOHD8exY8fQuXNnAEBKSord/nbu3ImpU6ciLi7OumzOnDnYvn07EhIS0LRpU8ybNw+PPPIIjh49Cnd392qOFNUpvgHAL1cB/5wIfLEKaD8UCOvt6lYREdnhmFKovWM/EFEdkJsKXPpCK1BdPARc/6HiNgEdtOJU6xitR5VfkPPbSVQHlJSW4HrhdaTmp6JNozZoaKie7/zamlfU1TGlsrKy0LhxY+zbt8/aq8nWtm3bMHr0aBQWFkKvd/x7raWn1LFjx9CjRw8AQFJSEkJDQ/HWW29h5syZDh/XpEkTvPbaa5g6darD9SNGjEBubi4+++wzAEB2djYCAgKwefNmjBkzBgCQnJyMsLAwfPLJJ3jwwQcr7KM2/23ISf4zEziZADSJAKb9lz2yicgpOKYUEVFt4BcMdInTJgDIu6YVqS6Zi1TpZ8pO9zvyjrZN07bmXlTmU/4ahriu/US1iN5Nbx1riu6ciEAKC13y3LoGDSo9Fa48X19f+Pr6Ytu2bejbty88Pe3H1QkODkZJSQm2bt2KRx99VHm/3t7eAACj0VhhnclkwpYtW5Cfn4/o6GiHj09LS8PHH3+M+Ph467KjR4/CaDRiyJAh1mUhISHo0qULvvzyS4dFKaIqDX0VuHAAyEwElocDjVsDwd20wc+b99Dm+YMXEbkIi1JERDWJbwDQeYQ2AUB+BnD5y7KeVGmngYxz2nR0k7ZNkzbmnlT9tIlX9yMiJ5DCQvwQ2dMlz93+f0ehMxeFqqLX67Fp0yZMnz4db731FiIjIzFw4ECMHTsW3bp1Q9++fbFo0SKMHz8es2bNQu/evfGLX/wCjz/+OIKCHP+jnp+fj4ULF8Ld3d2u99WpU6cQHR2NGzduwNfXF1u3bkWnTp0c7iM+Ph5+fn4YNWqUdVlqaioMBgMaN7a/AEZQUBBSU1OVjpeoggaNgNEbgW2ztcLUzxe16exHZdv4BpkLVd21YlVwN614pVikJSK6XSxKERHVZD5NgY6/1CZAG5Pq0ldlPalSTwKZ57Xp2GZtm0atysajah2j3WdSSUT1WFxcHIYNG4aDBw/iq6++wq5du7B8+XJs2LABkydPxiuvvIK5c+di7969+Prrr/HWW2/hT3/6Ew4cOICuXbta93PffffBzc0NBQUFaN68OTZt2mS3vn379jh+/DiysrLwwQcf4IknnsD+/fsdFqbeffddTJgwQemUOxFR7sFF5FDLvsAz/wMKMrXcIeUkkHJCm7/+E5CXBpzbo00Wnv5AcFdzj6ruWqGqWTvAnf9CEtHdwzGlUHvHfiAiwo1s7co6Fw9phark44CY7LdpGFp2Zb/W/bSeVfznhqja1Na84lbHlKotp+9VZtq0adizZw8uXbpUYV1xcTHuvfde9OrVC/Hx8dYxpT766CN06tQJjRo1QtOmTat8jtjYWERERGDdunV2yw8ePIgBAwbg+PHj6N69u3X53r17MXjwYGRmZtr1lurevTtGjBiBJUuWVHgOjilFd6w4H0j7rqxIlXJSGz7AVFxxW70XENS57PS/4O5AUCfAo4Hz201ENRrHlCIiqg+8/IF2D2oTABTlAle+KTvdL/l/QM5V4OQ/tQkA/JrbD5ze7B4WqYjolul0OuVT6GqiTp06Ydu2bQ7XGQwGREREID8/3255WFgYIiIilJ9DRFBUVFRh+TvvvIOePXvaFaQAoGfPnvDw8MCePXvw2GOPAdCu2Hf69GksX75c+XmJbonBR7sqn+2V+UxGbTzLlJPmQtUJ7UrBxXlA0lFtstC5Ac3al53217y71sOqQSOnHwoR1T4sShER1SWefkDbWG0CtF8/rxwuu8Jf0hEgNwU4/W9tAgCfwLKeVMFdgcbhgG8gC1VEVCdkZGRg9OjRmDJlCrp16wY/Pz8cOXIEy5cvx/Dhw7Fjxw4kJCRg7NixaNeuHUQE27dvxyeffIKNGzcqP8+iRYswdOhQhIWFITc3FwkJCdi3bx927dplt11OTg62bNmC119/vcI+/P39MXXqVMybNw9NmzZFkyZNMH/+fHTt2hWxsbF3HAsiZe4eWk4Q3BXABG1ZaSnw8wX7HlUpJ4CC68C1s9pk+QEM0IYPsPSmsoxV5ccLTRCRPRaliIjqMoMPEDFImwDAWAhc/basJ9XVb4H8dOC7rdpk4eEDNDFfoadJuHbKX+Nwbb5hKMeTIKJaw9fXF3369MHKlSuRmJgIo9GIsLAwTJ8+HYsWLUJKSgq8vb0xb948XLlyBZ6enrjnnnuwYcMGTJo0Sfl50tLSMGnSJKSkpMDf3x/dunXDrl278MADD9htl5CQABHBuHHjHO5n5cqV0Ov1eOyxx1BYWIjBgwdj06ZNcHd3v6M4EN0xNzegaYQ2dTEP0C+i/dhl26Mq5SSQfRnIuqRNZ7eX7cMn0H6MqubdgEattX0TUb3EMaVQe8d+ICK6Y8YbWhf8S18Al7/SruqXfRWQ0sof46YHGrW0KVS1MRewzEUsD45pQvVbbc0rbnVMKaoZ+LehGqkgUzvdz7ZQlfGT4/zCzQNo2Fz70cu/hXYV4Yblbhs0Zg9uolqGY0oREVHVPLy0U/dax5QtKykGsi5rV/T7+QKQeaFs/ueL2sCnliv+VaADGoaU9aqyFKsshSsvf2cdGREREbmKdxOgzUBtsiguANJOOx5QPeuyNlXGw9tcoGpRVryyFKwsxStP3+o/LiK661iUIiIie3oD0KytNpVXagJykisWqzLPA5kXgeJcICdJmy4dqvh476Y2Bas29vM+AfwVlIiIqK4yeDsYUL0EyEvVemlnX9Xyh2xzHpF9RZsvuA4YC7SeVhk/Vb5/L3/AP8ymeNVCu2+Zb9hCy3GIqEZhUYqIiNS5uQONwrQpfID9OhGgIKNcsepC2W1+ura+IEMbcL08u3GsbE4JbBgCGHy1X0ANvlobiIiIqPZz15f1dqqM8Ya5SGVbtLpqU7y6ChTlADeytSntdOX78gm0OUUwtGLxyjeIeQaRk7EoRUREd4dOB/g006awqIrri3K10/8yz9sUq8zz2VcBY76WSN4smQQAfYOyApWnL2Dw0wZ09/TVbg1+5daX29a6nXk5B22nOmbNmjV47bXXkJKSgs6dO2PVqlXo37+/q5tFRHR7PLzKBlivzI2csoJV9pWKxavsq4CpSPuBLD8dSD7meD9uesCvuVac8mqoXdXY0w/wtJ0vv6zcOha1iG4JM3EiInIOTz+by0uXU1JkHsfKQS+rvHSgOA8oLTFvW6hN+dfuTrv0Xg6KVr43L3J5eGtJp87dfKuzmbe51blpVxSyztuudyu3nWVeV3E/lu15eiNV4Z///CfmzJmDNWvWICYmBuvWrcPQoUNx5swZtGzZ0tXNIyKqHl4NtSmwo+P1lt7cFXpb2RStclO0XCP7ijbdLg/vKopYNpOXf9m8wdd+mbvH7beBqBbh1fdQe6+SQ0RUb4hohaviPG0qygOK87UxrIpsl+Vqyy3LrMsdPKbU6Oqjug06mwKVbdHKcl9vnmzny91397j5erv7HpWsr2qftvfNt5b2Wtusr+S+3lykK/88jrarmUU6V+YVffr0QWRkJNauXWtd1rFjR4wYMQJLly696WNVrr7XqlUreHt7V0vb6fYUFBTg0qVLvPoe0Z0qNQG5qVrRKi9d6+FdlAsUZWt5g/V+rjmvyNHmb5hvTUV3tz16L/sClsFcqHL3KPuetc7rtZ7flu9gd8utg23t1tl+j9ussy7TO3gOD/t1Ojdzg83fydbvZtv7urLbSrdBjf1ep9tT766+x67qRER1mE6ndd/38NJOD7wbSoocFLJsilzF+TaJZ7mClrFAS16lFBATUGq+lVLzcsu8Zb3J/lak3Hbm+SpJWY8xglakq6TwVel9vVbEe+Bl+6tC1QHFxcU4evQonn/+ebvlQ4YMwZdffllh+6KiIhQVlf0TlZOTU+m+DQYD3NzckJycjICAABgMBuj4z4NLiQiKi4tx7do1uLm5wWDgAM5Ed8TN3TzeVIvbe7wlr7ArYuWY53PK3bfM55QVum7kaDmHscC8vxvadLd6htdKunJFLfMyQPG+6ra2z+Vgvlqe7zYfa33orTxfJccLAEGdgZFvwZXqRFGKXdWJiOiW6T21yaepq1tSprTUptBlW8gqtS9e3bTwVaLNm4zmefP9UqP51naZZb7cOpPRvO9y901Gm21NNo+12Z/JWNYe23nLNnb3bZdZ5ksrrquUmJ//Nnq9Fefd9p+pprp+/TpMJhOCgoLslgcFBSE1NbXC9kuXLsWSJUuU9u3m5obw8HCkpKQgOTn5rrSX7g5vb2+0bNkSbm5uVW9MRNXnbuUVphLtRzBLkcq2h5ble9j2O966zOY72WR0sK7E/rEV9lHiYFvbx5hs5p3V21y0H/LMs1QNasBponWiKLVixQpMnToV06ZNAwCsWrUKn376KdauXVtlV3UiIqIaw80NgBvqyNfz3SFiU6gqV8Cyu19iU6CzKZLZPra0pKwo1ry7q4+s2pTvwSQiDns1LVy4EHPnzrXez8nJQVhYWKX7NRgMaNmyJUpKSmAyqfTso+rm7u4OvV7PXmtEdYm7HmjQWJtqKkuP71KjuWgkZbeW9dqMzf3y61Bx28r24XB/Dvav9BgHz3tbz1fV8VV2Hw7W38rz3GYbrU9r+3zQxmJzsVqf9d5qV3Xg1rqrExERkQvZDiJPN9WsWTO4u7tX6BWVnp5eofcUAHh6esLT0/OWnkOn08HDwwMeHq7/ZZWIiFxEp9OKZ7yCMd0Ftb6f7612VQe07ur+/v7W6Wa/ChIRERHVBgaDAT179sSePXvslu/Zswf33Xefi1pFREREVLlaX5SyUO2qDmjd1bOzs63TlSt3cMlPIiIiohpi7ty52LBhA959912cPXsWv/nNb3D58mXMmjXL1U0jIiIiqqDW97e71a7qwO11VyciIiKq6caMGYOMjAy89NJLSElJQZcuXfDJJ5+gVatWrm4aERERUQW1vihl21V95MiR1uV79uzB8OHDlfYh5kHAOLYUERER3SlLPiHlB1V1ktmzZ2P27Nm3/DjmQ0RERHS3qOZDtb4oBWhd1SdNmoRevXohOjoa69evv6Wu6rm5uQDAsaWIiIjorsnNzYW/v7+rm6GM+RARERHdbVXlQ3WiKHWnXdVDQkJw5coV+Pn51elL6lou9XzlyhU0bOj6Sz/WVIyTOsZKHWOlhnFSx1ipc3asRAS5ubkICQmp9ue6m5gPUXmMlRrGSR1jpY6xUsM4qaup+VCdKEoBt99VHQDc3NwQGhp6l1tUczVs2JBvWAWMkzrGSh1jpYZxUsdYqXNmrGpTDykL5kNUGcZKDeOkjrFSx1ipYZzU1bR8qM5cfY+IiIiIiIiIiGoPFqWIiIiIiIiIiMjpWJSqRzw9PbF48WJ4enq6uik1GuOkjrFSx1ipYZzUMVbqGCuyxdeDOsZKDeOkjrFSx1ipYZzU1dRY6cRV1ysmIiIiIiIiIqJ6iz2liIiIiIiIiIjI6ViUIiIiIiIiIiIip2NRioiIiIiIiIiInI5FKSIiIiIiIiIicjoWpaje4dj+6hgrNYyTOsZKHWOlhnEiun18/6hhnNQxVuoYKzWMk7raGisWpeqg2vpidIb09HTk5uZa7zNWlWOs1DBO6hgrdYyVGsaJqsLXROX4/lHDOKljrNQxVmoYJ3W1OVYsStVyxcXFePXVV7F69Wrs378fAKDT6VzcqpqnpKQEU6dORe/evREbG4sJEybg+vXrjJUDjJUaxkkdY6WOsVLDOJEjzInU8P2jhnFSx1ipY6zUME7q6kKsWJSqxXbu3ImQkBBs27YNGzduxMiRI/HCCy/gxo0brm5ajVJSUoLJkyfjzJkziI+Px7hx43Dy5EmMGjUKZ8+edXXzahTGSg3jpI6xUsdYqWGcyBHmRGr4/lHDOKljrNQxVmoYJ3V1JlZCtdbo0aNl5syZIiKSmZkpW7ZsEU9PT1m5cqUUFBS4uHU1x+XLl+Wee+6RzZs3W5elpKRIixYt5Omnn5bU1FQXtq5mYayqVlpayjgpYqzUMVbqGCdyhDmRGr5/1DBOavjdpY6xUsM43Zq6Eiv2lKqlzp8/jy+//BL9+/cHADRu3BiPPvooZsyYgffeew+HDh1ycQtrjoyMDFy9ehV9+/YFABQVFSE4OBgLFy7E7t27ceDAARe3sOZgrBwrKCiA0WgEoJ0KwjhVLi0tzfrLDGN1c8XFxdZ5nU6H69evM1YK+Jqi8pgTqeP7Rw3jVDnmROqYE6lhPnT76sprikWpWmL37t04ceIETCYTACA8PBxGoxE5OTkAgMLCQgDA4sWLkZ+fj507dyIvL89l7XWVP/3pT1i8eDESEhKsyzp27IjAwEC89957AAA3N+1l/+tf/xp+fn7YuXMnioqKXNJeV1q/fj3efvttuw+re+65B8HBwYwVygYHXLp0KaKionDkyBHrunbt2jFODvzmN79Bly5d8Pbbb1s/q9q3b89YOfC73/0OEyZMwKxZs3D27FmUlpaic+fOCAoKYqxs8DOdHGFOpIbvHzXMh6rGnOjWMSdSw3xIXZ3+THd1Vy26uY0bN0pwcLB07dpV/Pz8ZPbs2ZKUlCQiIjNnzpRu3bpZty0uLhYRkWXLlklYWJj8/PPPrmiyS3zzzTfSsmVLiYyMlKFDh4qfn5/ExcVJYmKiiIjMnz9f2rVrJ2lpaSIiUlhYKCIi8fHx0qhRI+v9+uD999+XwMBAiY6Olh49ekhAQIC88sorIiKSnZ0tzz33HGNlZjKZpFevXqLT6eTZZ5+VrKwsERHJy8tjnGzk5OTIww8/LD169JD9+/dLSkqKlJSUiIhIfn4+Y2Vj//790qZNG4mOjpZXXnlFWrVqJQMGDJDk5GQpKChgrMz4mU6OMCdSw/ePGuZDt4Y5kRrmRGqYD6mrD5/pLErVYBs2bJC2bdvKP/7xD7l27Zr8/e9/Fx8fHzl+/LiIiHzwwQfSoUMHWbVqlYiI3LhxQ0RErl27Jg0aNJCDBw+6rO3ONnfuXBk2bJiIaF+ap06dklatWsmsWbMkKytLvv76a4mMjJTZs2eLiHa+sojI559/LoGBgXLixAmXtd2Z/v73v0v37t3lrbfeEhGRpKQkWb16tfj4+Eh2draIiOzZs0eioqLqfaxERK5cuSIzZ86UtWvXik6nk127dlkTi927d0vv3r0ZJ9FiERUVJenp6SIicvHiRcnIyLB+Ce7du1d69uzJWInIlClT5IknnrDe/+GHH0Sn08n58+dFhO8/C36mU3nMidTx/VM15kO3jjmRGuZEapgPqasPn+k8fa8GEhGYTCbs3bsX0dHRGDt2LJo1a4bx48ejRYsWKC0tBQDExMRgyJAheP3115GcnAxPT08AwLFjxxAQEAA/Pz9XHoZTiAiys7Nx+PBhdOzY0bq8S5cuWLBgAb755hskJCSgT58+mDRpEjZt2oStW7daz4X/4osv0KlTJ3Tt2tVVh+AUYu52bTQa0adPHzz++OMAgJCQEPTo0QMtWrTAmTNnAAD9+vXD+PHjER8fXy9jZctgMODTTz/FrFmz0L9/fyxbtgw///wzAKB///4YN25cvX1NAWWvq7Nnz6Jp06bw9vbGlClTMGjQIAwcOBDDhg3DiRMnMGjQIEycOLFexwoArly5gn379qFHjx7WZUlJSXjsscdgMBgAaK+r8ePH1+tY8TOdbDEnUsecqGrMh24fc6KbY06kjvmQunrzme66ehhVpUePHjJt2jTrqPlPP/20tG/fXv7whz/Il19+KSIiiYmJ1m7H7733nvz0008yduxYiY2Nlfz8fFc2v9ocPXrU2mXYolevXtar7lh+HS0uLpZRo0bJr371K0lKSpLi4mL57W9/K35+fjJw4EAZPXq0NGjQQN58800RKasq1yVHjx61O2UhKyvL+quWxfHjxyU4OFgyMzOty3JycuS5556rN7Fy9JoS0X5hGDx4sIiInDx5UnQ6ncTHx8vSpUvl6NGjIiL18jVVPlazZ8+WuLg4efXVV2XYsGFy4MAB2bFjh/Tp00diY2Pl9OnTIiIyb968eh+rfv36SVRUlKxfv15+97vfiV6vl86dO0vjxo1l7ty5cu7cORGpX7Eq/5kkIhIVFcXPdLLDnMgx5kRqmA+pY06kjjmRGuZD6uprTsSiVA3wr3/9S6ZNmyarVq2SkydPWpcnJCRIq1atZMiQIdK0aVPp0KGDvPTSSzJo0CDp1q2bLFu2TEREUlNT5aGHHpKOHTtKixYtJCYmRi5cuOCio6k+//73vyU0NFQiIiKkZcuW8vvf/16uXr0qIiJ/+ctfxNfX15p0FhUViYjWnT80NFS++OIL6362bNkiixcvllmzZsnZs2edfyBOUD5WL774ot0lQU0mk3V+xYoVEhMTIyJlcbOo67Fy9JqyjdPnn38usbGx1vuDBg0Sd3d3iYiIkCNHjliX1/U4idz8/bd7927R6XQSHBws27Ztsz7mwIEDEhMTYx2jQ6T+xurKlSsiIvL999/LkiVLZMSIEdKiRQvZvn27pKamyubNmyU6Olrmz59v3U9dj9UHH3wg7dq1k+3bt1uXWZKxN954g5/p9RRzIjXMidQwH1LHnEgdcyI1zIfU1feciEUpF7p+/bo8+uijEhwcLLNmzZJ+/fpJSEiIbNy40bpNenq6vPbaazJw4EDJycmxLp8+fbqMHDnSbkCzlJQUOXXqlLMPwym+/fZb61gRJ06ckDVr1khAQIA8+eSTkpWVJZcuXZKIiAhrFdkywKmISNOmTeWdd95xVdOd7maxysjIEBEtCTMajSIiMnLkSPn1r3/tyia7hEqcVq5cKfPmzZOrV69KVFSU+Pv7i6enpzz33HPW+NUHN4vV9evXpbS0VIYNGyZ6vV4OHDhg99gBAwbIM88846KWO9/NYnXt2jXrdlOmTJHnn3/e7rGjR4+WUaNGSUFBgbOb7VQFBQWydOlSadu2rTRr1kyio6MlNzfXbpszZ85Iu3bt+JlejzAnUsecSA3zIXXMidQxJ1LDfEgNcyINi1IutGXLFundu7e1si4iMnz4cAkPD5f//Oc/IiJiNBpl7Nix8sc//lFEyiqjc+fOlYiICMnLyxORmt8l73ZZjmvt2rUSGhpqHXxSRGT16tXSu3dvWbp0qYiIvPnmm+Lu7i779++3bpOYmCgRERHywQcfOLfhLlBVrPr27Ssvv/yydZnJZJLS0lKJiIiQHTt2iIg2yODYsWPl8uXLzm28E6nEacmSJSKiDayr0+nEzc1NJk2aJEVFRfLGG2+Ij49PvRg0t6pY9enTx/rZtHPnTtHr9fLCCy9Yf8kpLS2VIUOGyOLFi53edmdTeV299NJLIqIlIO3atbP+gmp5bFxcnPzf//2fk1vufMnJybJw4UJZvXq1nDhxQho0aCCrV6+226aoqEjWrl0rer2+3n6m1zfMiarGnEgN8yF1zInUMSdSw3zo1jAn0nCgcxd6//33ERoaihYtWiAvLw8AMHLkSFy8eBFvvvkm0tPTodfrkZGRgSNHjgDQBhlMS0vDjz/+iLFjx8LHxwcAoNPpXHYc1clyXBcuXEC7du2g1+ut6yZPnoyoqCh8+OGH+PHHH/Hkk09i7NixGDNmDF566SUcP34cy5cvh7e3N/r27euqQ3CaqmLVs2dP7Ny5E9999x0AwM3NDd9++y28vb0RGRmJOXPmoFu3bsjIyEBgYKBLjsEZVOK0a9cuXLhwAR06dMCcOXNw8OBB/O1vf4PBYMBTTz2FRo0a4dy5c646BKepKla9evXCxx9/jDNnzuChhx7CvHnzsH79esycORP79u3DnDlzkJiYiFGjRrnqEJxG9XV16tQpNGjQAN27d8fChQuxY8cOnDt3DnPmzMHhw4cxfvx4Vx2C0zRv3hwTJ07EjBkz0K1bN8yfPx8vv/wykpKSrNsYDAaMGzcO48ePr7ef6fUNc6KqMSdSw3xIHXMidcyJ1DAfujXMicxcXRWrL/bv3y+7du2y69763HPPSfv27e22e/7552Xw4MESExMj69atExHt0qEeHh5y3333yZNPPimhoaEyYMAAuXTpklOPwRl2794tTz/9tKxatUq++eYb6/IPP/xQvLy8JDExUUTE7hK09913n6xYscK67dNPPy09evSQtm3bSmRkpN2YFHXJ7cQqJibGLlaLFy8WnU4nfn5+0qlTJ7sxAeqK24lTdHS0/PWvfxUR+/EmLO9fy6/xdc3tvv9ef/1167arV6+WgQMHSs+ePaVv375y7Ngxpx6Ds9zpZ1VKSor06NFD2rRpI23atKmzsaosThalpaWSk5MjYWFh8uyzzzrcR335TK9PmBOpYU6khvmQOuZE6pgTqWE+pI45UeVYlKpm165dk8cff1x0Op10797dbrDNxMRECQgIkIEDB8qrr74q0dHREh4eLp999pl0795dXnjhBeu2W7dulQULFsj48ePlX//6lwuOpHolJyfLI488IoGBgTJhwgTp2rWr+Pv7W9+whYWF0qFDB5kxY4aI2H8p9u/fX5588knrfZPJJPn5+fL999879yCc5E5jNXv2bOv9P/7xjxIQEFAnun2Wd7deU7bL66q7+ZqyrLcMZFnX3M3PqszMTPnpp5/q5D8/lcXp8OHDDrffvHmzGAwG6xWcRMr+4TEajXX6M70+YU6khjmRGuZD6pgTqWNOpIb5kDrmRFVjUaoaGY1GWbNmjTz44IOSkJAg3t7esnTpUuulHEVEDh06JNOnT5fIyEh56qmnrAO/TZo0SeLi4lzVdKfKz8+XJ554QsaMGSPnz5+3Lo+KipLJkyeLiFZd/9vf/iZubm52VxgQEZkwYYIMGjTIer+ujiUhcndidf/991vvp6enO6fhTna3X1N1GWOljrFSc7M4WcaIcPSPTb9+/eThhx8Wo9Eox44dky1bttSLf4DqC+ZEapgTqWE+pI7fXeoYKzWMkzrmRGo4plQ10uv1iIyMxFNPPYUxY8ZgwYIFWLFiBc6ePWvdJiYmBuvXr8dXX32FN954A82aNUN6ejqOHTuGe++9FwBQWlrqqkNwCm9vb3h6emLy5MkIDw9HSUkJAOCRRx6xxsrd3R2PPfYYhg8fjmnTpmH//v0QEaSmpuKnn37ChAkTrPurq2NJAHcnVhMnTrTuLyAgwCXHUd3u9muqLmOs1DFWalTi5OZWMf1YsWIF9uzZgyFDhiAyMhJHjx6t899/9QlzIjXMidQwH1LH7y51jJUaxkkdcyJFrqqG1Rflf6EKCQmRGTNmWC9lbLu+sLBQiouLZc2aNXLvvffWmXNEVdhe2tISk4kTJ8r06dPtlhUWFsr9998vgYGBMmTIEAkJCZG+ffvW+auj2GKs1DBO6hgrdYyVGtU4WeTm5srKlStFp9NJdHS03dVlqO5gTqSGnzNqGCd1jJU6xkoN46SOOVHV9FWXrehOWH6hKi4uhsFgwKpVqzB+/Hg8+uijeOCBB6zrk5KS8NFHH+Hdd9/F+fPnsXr1anTt2tWVTXcqDw8P67wlJpcuXcKUKVOsy00mE7y8vJCQkICTJ0/i22+/xRNPPFFvrs5gwVipYZzUMVbqGCs1KnGyKC4uxrp167Bo0SKsXbsWM2fOdFo7ybmYE6nh54waxkkdY6WOsVLDOKljTqTA1VWx+ig6OlpiY2MlLS1NRMrOY3///fflz3/+syubVmMkJiZKUFCQ3YB3RUVFLmxRzcVYqWGc1DFW6hgrNY7iZPvLoeXqPFT/MCeqGj9n1DBO6hgrdYyVGsZJHXOiijimlBNZziF9++238fnnnyMhIQHPPvssHnroIZw+fRrjxo3DvHnzXNxK1xIRAMChQ4fg6+uLnj17AgCWLFmCZ599Funp6a5sXo3CWKlhnNQxVuoYKzU3i9MzzzyDtLQ0AECbNm1c1kZyDeZEVePnjBrGSR1jpY6xUsM4qWNOVDmevudEer0W7s6dOyMyMhJz5sxBy5YtsW7dOnTp0sXFrasZLF0aDx8+jLi4OOzZswczZsxAQUEBNm/ejMDAQBe3sOZgrNQwTuoYK3WMlZqq4hQUFOTiFpKrMCeqGj9n1DBO6hgrdYyVGsZJHXOim3BNB63669y5c9KlSxfx9vaWDRs2uLo5NVJhYaG0bdtWdDqdeHp6yrJly1zdpBqLsVLDOKljrNQxVmoYJ6oMc6Kq8f2jhnFSx1ipY6zUME7qGCvH2FPKydzd3REXF4cFCxagQYMGrm5OjeTl5YXWrVvjgQcewIoVK+Dl5eXqJtVYjJUaxkkdY6WOsVLDOFFlmBNVje8fNYyTOsZKHWOlhnFSx1g5phMxn9xIVIOYTCa4u7u7uhm1AmOlhnFSx1ipY6zUME5Et4/vHzWMkzrGSh1jpYZxUsdYVcSiFBEREREREREROR2vvkdERERERERERE7HohQRERERERERETkdi1JEREREREREROR0LEoREREREREREZHTsShFREREREREREROx6IUERERERERERE5HYtSRERERERERETkdCxKERERERERERGR07EoRURERERERERETseiFBEREREREREROR2LUkRERERERERE5HT/D8GGrRYVmEn4AAAAAElFTkSuQmCC",
       "text/plain": [
        "<Figure size 1200x480 with 4 Axes>"
       ]
@@ -880,6 +1184,8 @@
     "dates = pd.date_range(\"1/1/1970\", periods=N, freq='Y')\n",
     "\n",
     "axs4[0,0].plot(dates, NOx_hist_road_yearly_global_weighted_averages[220:])\n",
+    "ceds_data.plot(ax= axs4[0,0])\n",
+    "cams_data.plot(ax= axs4[0,0])\n",
     "emissions_NOx_road.plot(title = 'Yearly total road emissions of NOx across scenarios', ax= axs4[0,0])\n",
     "axs4[0,1].plot(dates, NH3_hist_road_yearly_global_weighted_averages[220:])\n",
     "emissions_NH3_road.plot(title = 'Yearly total road emissions of NH3 across scenarios', ax= axs4[0,1])\n",
@@ -894,6 +1200,14 @@
     "\n",
     "fig4.tight_layout()"
    ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "1367aa2b-f62a-4187-9c03-331a505d812d",
+   "metadata": {},
+   "outputs": [],
+   "source": []
   }
  ],
  "metadata": {